
Mining Frequent Infix Patterns from Concurrency-Aware Process
Execution Variants

Michael Martini

RWTH Aachen University

Aachen, Germany

michael.martini1@rwth-aachen.de

Daniel Schuster

Fraunhofer FIT

Sankt Augustin, Germany

RWTH Aachen University

Aachen, Germany

daniel.schuster@fit.fraunhofer.de

Wil M.P. van der Aalst

Fraunhofer FIT

Sankt Augustin, Germany

RWTH Aachen University

Aachen, Germany

wvdaalst@pads.rwth-aachen.de

ABSTRACT
Event logs, as considered in process mining, document a large

number of individual process executions. Moreover, each process

execution consists of various executed activities. To cope with the

vast amount of process executions in event logs, the concept of vari-

ants exists that group process executions with identical ordering

relations among their executed activities. Variants are an integral

concept of process mining and help process analysts explore, filter,

and manage large amounts of event data. In this paper, we consider

concurrency-aware variants that allow activities within a process

execution to be partially ordered—the execution of individual activ-

ities can overlap in time. However, the number of variants is often

vast, making it challenging for process analysts to explore event

data. Therefore, we present a novel approach to frequent pattern

mining from concurrency-aware variants. We show that mining

frequent patterns from concurrency-aware variants can be reduced

to the frequent subtree mining problem. Further, we compare our

proposed algorithm to a state-of-the-art frequent subtree mining

algorithm exhibiting improved performance on real-life event logs.

PVLDB Reference Format:
Michael Martini, Daniel Schuster, and Wil M.P. van der Aalst. Mining

Frequent Infix Patterns from Concurrency-Aware Process Execution

Variants. PVLDB, 16(10): 2666 - 2678, 2023.

doi:10.14778/3603581.3603603

PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available

at https://github.com/fit-daniel-schuster/Mining-Frequent-Infix-Patterns-

from-Concurrency-Aware-Process-Execution-Variants.

1 INTRODUCTION
Process mining [31] is an established research field offering a wide

range of data-driven techniques that have changed how organ-

izations analyze, manage and improve their processes, from ad-

ministrative to production processes [22]. A vital artifact for these

techniques is event data, generated during the execution of pro-

cesses and stored in information systems that support those process

executions. In short, process mining aims to analyze and improve

existing processes by extracting insights from event data.

Event data contain activity instances representing executions of

activities; for instance, the packing of a customer’s order within

an order-to-cash process. The activity instances associated with an

individual process execution form a trace. Real-world event logs

usually contain many traces, and as the logging increases and be-

comes more fine-grained, the number increases even further [1, 13].

To cope with large event logs and a high number of traces, variants
are used. Variants group traces of an event log that have identical

ordering relationships between the activities they contain. Thus,

variants are an integral concept in process mining to handle a large

number of traces. However, the number of variants can still be large

due to the distribution of traces per variant often following power-

law distributions [32]. Consequently, as exploring all variants is

infeasible, one can instead rely on the frequent subpatterns shared

by variants that emerge from consistent subprocesses making up

larger business processes. The frequent subpatterns of variants this

paper focuses on are called frequent infixes. The goal is mining all

frequent infixes of a set of concurrency-aware variants, henceforth

shortened to concurrency variants.

Most existing process mining techniques consider traces and

variants as strict totally-ordered sequences of activities [31]. How-

ever, in real-world processes, activities overlap in time, i.e., occur

concurrent [19]. Consequently, concurrency variants [24] have

been introduced to more adequately represent the concurrency of

activities. Consider Figure 1 that shows an event log from a loan ap-

plication process; each row represents an activity instance. Activity

instances are grouped into traces according to their case id. Looking

at a trace’s activity instances represented in an interval plot, one

can observe sequentiality, e.g., submit application (SA) is followed

by check integrity (CI) in case 1, and concurrency, e.g., create offer
(CO) temporarily overlaps fill-in information (FI) in case 1. Based

on the sequentiality and concurrency of activity instances, concur-

rency variants are derived [24]. Traces having the same sequential

and concurrent relations between instances of the same activities

are then grouped into a concurrency variant, e.g., case 1 and 2 in

Figure 1. Concurrency variants consist of colored chevrons repres-

enting activities. Horizontally aligned chevrons indicate sequential

execution of activities, while vertically aligned chevrons indicate

concurrent execution.

A benefit of traditional variants is that the strict total ordering of

activities allows for established techniques, i.e., frequent sequence

mining [2], to mine frequent infixes. However, as concurrency

variants model concurrency between activities and sequences, e.g.,

Event Log Concurrency Variants Frequent Infix Patterns

Contributions of this Paper

Frequent
Infix

Mining

Applications

…

Event
ID

Case
ID

Activity Label Start Complete

1 1 Submit Application (SA) 1/9/2021 08:00 1/9/2021 08:00

2 1 Check Integrity (CI) 1/9/2021 10:00 1/9/2021 10:30

3 1 Fill-in Information (FI) 1/9/2021 11:30 1/9/2021 15:00

4 1 Request Information (RI) 1/9/2021 11:45 1/9/2021 12:10

5 1 Verify Information (VI) 1/9/2021 12:30 1/9/2021 13:30

6 1 Create Offer (CO) 1/9/2021 14:00 1/9/2021 15:05

7 1 Request Signature (RQ) 1/9/2021 16:30 1/9/2021 17:00

8 2 Submit Application (SA) 1/9/2021 08:00 1/9/2021 08:00

9 1 Fill-In Information (FI) 1/9/2021 16:00 1/9/2021 17:10

10 1 Complete (C) 1/9/2021 18:35 1/9/2021 11:35

12 2 Check Integrity (CI) 1/9/2021 9:30 1/9/2021 10:00

… … … … …

Time

SA
CI

RI
VI

CO

RS RS

FI FI FI

C

FI
Time

SA
CI

RI VI CO
RS

FI
C

Time

SA
CI RI

VI
CO

RS

FI FI

C

Case ID: 1

Case ID: 2

Case ID: 3

Interval Plots

?

Visual
Analytics

Process
Discovery

Trace
Clustering

Prediction

Figure 1: Overview of mining frequent infix patterns from concurrency variants and related concepts from process mining.

fill-in information (FI) being concurrent to request (RI) and verify
information (VI) in Figure 1, frequent sequence mining cannot be

used on concurrency variants. Consequently, common techniques

in process mining that build on top of frequent infixes, such as

trace clustering [7, 39]; next-event prediction [6, 9, 16], and (local)

process discovery [20, 30] can no longer be used. Thus, to allow

such application for concurrency variants, this paper addresses the

following research questions to allow for the mining of frequent

infixes.

RQ1 How can concurrency variants and their infixes be modeled

to allow for mining frequent infix patterns?

RQ2 How can the mining of infix patterns be done efficiently?

The contributions of this paper are as follows. We answer RQ1
by showing that frequent infix mining from concurrency variants

can be reduced to the task of frequent subtree mining. We model

concurrency variants as labeled, rooted, ordered trees and infixes as

a specific kind of subtrees called infix subtrees that preserve the se-
quential closure of activities. To answer RQ2, we propose the Valid
Tree Miner algorithm, capable of efficiently mining frequent infix

subtrees. Further, we have implemented the proposed algorithm

in the open-source process mining tool Cortado [26], allowing the

usage of the proposed algorithm in an end-user-oriented tool.

To support our solution to RQ2, we evaluate the algorithm using

real-world event logs and compare it to a state-of-the-art frequent

subtree mining algorithm [4]. Our findings indicate that the Valid

TreeMiner outperforms the state-of-the-art algorithm. Additionally,

we explore the number of frequent infix patterns for each event log,

observing consistency in the result between the Valid Tree Miner

and the state-of-the-art algorithm, as well as an exponential growth

of the number with decreasing minimum support thresholds.

The remainder of this paper is structured as follows. Section 2

presents related work on frequent pattern mining. Following, Sec-

tion 3 introduces background and preliminaries. We present the

Valid Tree Miner in Section 4. Section 5 presents its implementation

and an application scenario. Section 6 presents the evaluation of

the Valid Tree Miner. Finally, Section 7 concludes this paper.

2 RELATEDWORK & BACKGROUND
Variants summarize unique process executions of a process that

have identical ordering relations among their executed activities.

Variants find application in multitudes of tasks in process mining

[31], including process discovery [5], process model conformance

Table 1: Overview of frequent subtree mining algorithms.
The checkmark ✓ indicates that the algorithm can mine the
corresponding type of subtrees.

Algorithm Infix Induced Closed Maximal

FREQT [4] ✓
CMTreeMiner [11] ✓ ✓ ✓

AMIOT [17] ✓
IMB-3 [28] ✓

TRIPS/TIDES [29] ✓
PathJoin [37] ✓ ✓

Valid Tree Miner ✓

checking [8], and visual analytics [36]. This paper considers concur-

rency variants, recently introduced in [24]. Concurrency variants

address two major short-coming of traditional variants [19]. Tradi-

tional variants 1) consider activities to be atomic, thus occurring

on a singular time point, and 2) enforce a strict ordering of activit-

ies. Both create a representational bias as activities in real-world

processes are performed in time intervals and concurrently. Con-

currency variants overcome these limitations by modeling activities

overlapping in time. Here to note is that the chosen abstraction

level of concurrency variants does not differentiate the overlap of

two activities, e.g., an activity execution is wholly contained in

another activity’s execution is modeled the same as them partially

overlapping. However, detailed relations are often too fine-granular

for many process mining analysis goals and result in a larger num-

ber of variants. A consequence of the chosen abstraction level is

that, in rare cases, the relation of activities can not be modeled

as solely sequential or concurrent. In such cases, an explicit fall-

through represents the non-specific order of activities. We refer to

[24] for an extensive introduction to concurrency variants.

In this paper, we show that the task of frequent infix mining can

be reduced to frequent subtree mining by modeling concurrency

variants as trees. We use trees as established techniques for tradi-

tional variants, i.e., frequent sequence mining [2], are incapable

of representing the concurrency between activities and sequences

possible in concurrency variants. Furthermore, techniques such as

frequent episode mining [21] cannot reuse the existing tree struc-

ture and order of the concurrency variant to speed up computation.

We adopt the idea of frequent subtree mining to mine frequent

subtrees corresponding to infixes. General overviews on frequent

subtree mining are presented in [10, 18]. This paper focuses on ex-
act methods that guarantee mining all frequent subtrees, compared

2667

0

SA
1

CI
2
∧

3

FI
4 5

RI
6

VI
7

CO
8

∧
9

FI
10

RQ
11

C
12

𝑑1 (12 Traces)

0

SA
1

CI
2
⊕

3

RI
4

VI
5

CO
6

FI
7

C
8

𝑑2 (3 Traces)

0

SA
1

CI
2
∧

3

FI
4 5

RI
6

VI
7

CO
8

∧
9

FI
10

RQ
11

∧
12

FI
13

RQ
14

C
15

𝑑3 (5 Traces)

Figure 2: A (variant) tree bank consisting of three trees, 𝑑1, 𝑑2,
and 𝑑3. 𝑑1 and 𝑑3 represent the concurrency variants shown
in Figure 1.

to approximate approaches. The trees we mine are labeled, rooted,

ordered trees, with the subtrees we want to extract extending upon

the definition of induced subtrees. Induced subtrees are subtrees

of a tree that preserve the labeling, the child-parent relationship

between nodes, and the order of siblings. Table 1 presents selected

algorithms for frequent induced subtree mining. The proposed Valid

Tree Miner mines a specific type of subtree called infix subtree. In

addition to the induced subtree relation, infix subtrees preserve se-

quential completeness, meaning no activity in a sequence is skipped.

No algorithms for mining frequent infix subtrees exist currently.

The presented algorithms [4, 11, 17, 28, 29] in Table 1 follow

a generate-and-test approach, similar to the proposed Valid Tree

Miner. These algorithms incrementally create new candidate sub-

trees from known frequent subtrees and prune the candidate pat-

terns by applying the apriori-principle [3]. Candidate subtrees are
tested if they are frequent in the tree bank, commonly using oc-

currence lists to speed up the computation. In the next iteration,

frequent subtrees are then grown into new candidate trees. Further-

more, PathJoin and CMTreeMiner [11, 37] are capable of mining

maximal and closed subtrees from the tree bank, not requiring

their a-posteriori computation from the set of all frequent subtrees.

Closedness means no supertree exists with the same support, while

maximality means no frequent supertree exists.

In short, mining frequent infixes of concurrency variants is not

possible via established techniques in process mining, such as fre-

quent sequence mining. However, frequent infix mining can be

mapped to the task of frequent subtree mining. Frequent subtree

mining is well-established, especially for induced subtrees. How-

ever, induced subtrees are yet too lenient in their definition, not

enforcing the sequential completeness we are interested in with

infixes of concurrency variants. Consequently, we introduce infix

subtrees enforcing sequential completeness and a mining algorithm.

3 PRELIMINARIES
First, we introduce definitions for labeled, rooted, ordered trees and

their subtrees. Subsequently, we introduce event data and variants.

3.1 Trees
To model concurrency variants and their infixes, we use trees.

Definition 3.1 (Labeled, Ordered, Rooted Tree). A labeled, ordered,

rooted tree 𝑡 is a 6-tuple (𝑉𝑡 , 𝐸𝑡 , 𝐿𝑡 , 𝜆𝑡 , 𝑟𝑡 , <𝑡) where 𝑉𝑡 is a set of
nodes, 𝐸𝑡⊆𝑉𝑡×𝑉𝑡 is a set of edges, 𝐿𝑡 is a set of labels, 𝜆𝑡 : 𝑉𝑡 → 𝐿𝑡 is

a surjective labeling function that assigns labels to nodes, and 𝑟𝑡∈𝑉𝑡
is the root node. For (𝑣, 𝑣 ′)∈𝐸𝑡 , we call 𝑣 the parent of 𝑣 ′ and 𝑣 ′ the

child of 𝑣 . If two nodes 𝑣, 𝑣 ′∈𝑉𝑡 have the same parent, we call them
siblings. Last, <𝑡⊆𝑉𝑡×𝑉𝑡 is a strict partial order defined for every

sibling pair; for siblings 𝑣, 𝑣 ′∈𝑉𝑡 and 𝑣≠𝑣 ′, either 𝑣<𝑡𝑣 ′ or 𝑣 ′<𝑡𝑣
hold. Further, for two siblings 𝑣, 𝑣 ′∈𝑉𝑡 with 𝑣<𝑡𝑣

′
, we call them

immediate siblings, denoted by 𝑣≺𝑡𝑣 ′, if ∄𝑣∗∈𝑉𝑡 (𝑣<𝑡𝑣∗ ∧ 𝑣∗<𝑡𝑣 ′).
We denote the universe of labeled, ordered, rooted trees as O.

We refer to a set 𝐷⊂O of labeled, rooted ordered trees as tree
bank. The set of tree bank labels for a tree bank 𝐷⊂O is defined as

𝐿𝐷=
⋃︁

𝑑=(𝑉𝑑 ,𝐸𝑑 ,𝐿𝑑 ,𝜆𝑑 ,𝑟𝑑 ,<𝑑) ∈𝐷 𝐿𝑑 . The Figure 2 shows an example

tree bank. For now, one can ignore the difference in the shape of

nodes. For a tree 𝑡=(𝑉𝑡 , 𝐸𝑡 , 𝐿𝑡 , 𝜆𝑡 , 𝑟𝑡 , <𝑡)∈O. We define the size of a
tree 𝑡 as |𝑉𝑡 |. We consider trees in normal form, meaning all nodes

are integers that are assigned in the order of the preorder traversal

of the tree. In Figure 2, we write the assigned integer right above

each node. The node |𝑉𝑡 |−1 is called the right-most leaf of 𝑡 , and we

denote it as rml𝑡 . Hereinafter, we refer in examples to a node 𝑣∈𝑉𝑡
as 𝜆𝑡 (𝑣)𝑣 to emphasize its label; for instance, consider 𝑑1∈𝐷⊂O in

Figure 2, we then write 𝑟𝑑1 =
0
and rml𝑑1 = 𝐶12

.

3.1.1 Functions on labeled, rooted, ordered trees. For a node 𝑣∈𝑉𝑡
and 𝑝∈N0, we define prt𝑝𝑡 :𝑉𝑡↛𝑉𝑡 that returns the 𝑝-th parent of 𝑣

with prt0𝑡 (𝑣)=𝑣 . Consider 𝑑1 (Figure 2) as an example, prt0
𝑑1
(FI4) =

FI4, prt1
𝑑1
(FI4)=∧3, and prt2

𝑑1
(FI4)= 0

. For an arbitrary set 𝑋 , we

denote its power set as P(𝑋)={𝑆 |𝑆⊆𝑋 }. We define the function

chd𝑡 :𝑉𝑡→P(𝑉𝑡) returning the children of a node 𝑣∈𝑉𝑡 . Further,
lmc𝑡 :𝑉𝑡↛𝑉𝑡 and rmc𝑡 :𝑉𝑡↛𝑉𝑡 return the left- and right-most child

of 𝑣 . For example, for𝑑2 it holds that lmc𝑑2 (⊕3)=RI4, rmc𝑑2 (⊕3)=FI7
and chd𝑑2 (⊕3)={RI4,VI5,CO6, FI7}. The function dec𝑡 :𝑉𝑡→P(𝑉𝑡)
with dec𝑡 (𝑣)={𝑣 ′∈𝑉𝑡 |∃𝑛∈N[𝑣=prt𝑛𝑡 (𝑣 ′)]} returns the descendants
of 𝑣 . As an example, dec𝑑1 (∧3)={FI4, 5, RI6,VI7,CO8}. Last, we
denote paths in 𝑡 as sequences of unique nodes ⟨𝑣0, . . ., 𝑣𝑛⟩∈𝑉 ∗𝑡 ,
such that an edge in 𝐸𝑡 connects every pair of adjacent nodes in

the sequence. A path of particular interest is the right-most path,
i.e., the path ⟨𝑟𝑚𝑙𝑡 , . . . , 𝑟𝑡 ⟩ leading from the right-most leaf to the

root node. Consider 𝑑1 as an example, ⟨𝑅𝐼6, 5,∧3⟩ is a path and

⟨𝐶12, 0⟩ is the right-most path.

0

RI
1

VI
2

𝑝1 valid
V T

T 2 17
R 2 17

⊕
0

RI
1

FI
2

𝑝2 valid
V T

T 1 3
R 1 3

0

RI
1

CO
2

𝑝3 valid
V T

T 0 0
R 0 0

0

∧
1
∧

2

𝑝4 invalid
V T

T 2 17
R 2 17

∧
0

FI
1

RQ
2

𝑝5 valid
V T

T 2 17
R 3 22

0

RI
1

VI
2

CO
3

𝑝6 valid
V T

T 2 17
R 2 17

∧
0

1

RI
2

VI
3

CO
4

𝑝7 incomplete
V T

T 2 17
R 2 17

0

CI
1
∧

2

FI
3 4

RI
5

VI
6

CO
7

𝑝8 valid
V T

T 2 17
R 2 17

0

CI
1
∧

2

FI
3 4

VI
5

CO
6

𝑝9 valid
V T

T 0 0
R 0 0

0

∧
1

FI
2 3

RI
4

VI
5

𝑝10 incomplete
V T

T 2 17
R 2 17

Figure 3: Induced (infix) subtrees for the (variant) tree bank
in Figure 2. Beneath the subtrees is indicated if they are
valid/invalid/incomplete. The table below each subtree shows
the support of the infix subtree in the variant tree bank. The
rows represent Transactions and Root-occurrence support,
and the columns indicate Variant and Trace weighting.

2668

We define induced subtrees via one-to-one mappings from the

nodes of a subtree to a tree. The mapping must preserve the labeling,
the sibling order, and the child-parent relationship of both the sub-

tree and the tree. As an example for the tree bank in Figure 2 and

the induced subtrees in Figure 3, 𝑝1 is an induced subtree of 𝑑1 and

𝑑3. Further, 𝑝2 is an induced subtree of 𝑑2; observe that the sibling

order is not restricted to immediate siblings in induced subtrees.

For instance, an occurrence maps RI1 of 𝑝2 to RI4 in 𝑑2, while FI2

of 𝑝2 is mapped to FI7 in 𝑑2; RI1 and FI2 are immediate siblings in

𝑝2, but not RI4 and FI7 in 𝑑2. Last 𝑝3 is not an induced subtree of

any trees shown in Figure 2, as a mapping into 𝑑1 or 𝑑3 violates the

sibling order, and a mapping into 𝑑2 the labeling.

Definition 3.2 (Induced Subtree). Let 𝑡 = (𝑉𝑡 , 𝐸𝑡 , 𝐿𝑡 , 𝜆𝑡 , 𝑟𝑡 , <𝑡), 𝑡 ′ =
(𝑉𝑡 ′ , 𝐸𝑡 ′ , 𝐿𝑡 ′ , 𝜆𝑡 ′ , 𝑟𝑡 ′ , <𝑡 ′)∈O. Tree 𝑡 is an induced subtree of 𝑡 ′, if an
injective mapping 𝛿𝑡→𝑡 ′ :𝑉𝑡→𝑉𝑡 ′ for all 𝑣, 𝑣

′∈𝑉𝑡 preserves:

(Child-Parent) (𝑣, 𝑣 ′) ∈ 𝐸𝑡⇔(𝛿𝑡→𝑡 ′ (𝑣), 𝛿𝑡→𝑡 ′ (𝑣 ′)) ∈ 𝐸𝑡 ′
(Sibling order) 𝑣 <𝑡 𝑣

′⇔𝛿𝑡→𝑡 ′ (𝑣) <𝑡 ′ 𝛿𝑡→𝑡 ′ (𝑣 ′)
(Labeling) 𝜆𝑡 (𝑣) = 𝜆𝑡 ′ (𝛿𝑡→𝑡 ′ (𝑣))

We write 𝑡 ⊑ 𝑡 ′ to denote 𝑡 being an induced subtree of 𝑡 ′, if
|𝑉𝑡 | < |𝑉𝑡 ′ | we write 𝑡 ⊏ 𝑡 ′. We then call 𝑡 ′ a supertree of 𝑡 . We

define the set of all mappings between 𝑡 and 𝑡 ′ that preserve the
above relations as ΔInd

𝑡→𝑡 ′⊆{𝛿𝑡→𝑡 ′ :𝑉𝑡→𝑉𝑡 ′ }.

Having defined induced subtrees, we are interested in the support
of an induced subtree to quantify its number of occurrences in a

tree bank. We introduce two different notions of support, transac-
tion and root-occurrences support, as well as a weighting function
that assigns each tree of a tree bank a weight. Transaction support

counts the number of trees in the tree bank with at least one occur-

rence of a subtree, while root-occurrence support counts the number

of occurrences with unique roots in the trees of the tree bank. Root-

occurrence support addresses the limitation of transaction support

to not count multiple occurrences per tree in a way that still al-

lows for mining using the apriori-principle, cf. Subsection 3.1.3.

Weighting functions consider that a tree, i.e., a concurrency variant,

of the tree bank represents multiple traces. Variant weighting as-

signs every tree in the tree bank a weight of 1. In comparison, trace
weighting assigns every tree in the tree bank a weight according

to the number of traces its concurrency variant represents. As an

example for the subtrees in Figure 3 and the tree bank in Figure 2

using variant weighting, 𝑝1 has a transaction support of 2 given

occurrences in 𝑑1 (cf. nodes→5
, 𝑅𝐼6, and 𝑉 𝐼7) and 𝑑3 (cf. nodes

→5
, 𝑅𝐼6, and 𝑉 𝐼7); both trees having a weight of 1. The subtree 𝑝5

has a transaction support of 2, but a root-occurrence support of 3,

as 𝑝5’s root can be mapped to {∧9} in 𝑑1 and to {∧9,∧12} in 𝑑3.

Definition 3.3 (Weighted Support). Let 𝐷 ⊆ O be a tree bank, let

𝑡 = (𝑉𝑡 , 𝐸𝑡 , 𝐿𝑡 , 𝜆𝑡 , 𝑟𝑡 , <𝑡) ∈ O. For 𝑑 = (𝑉𝑑 , 𝐸𝑑 , 𝐿𝑑 , 𝜆𝑑 , 𝑟𝑑 , <𝑑) ∈ 𝐷 ,

let roots(𝑡, 𝑑):O × O ↛ P(𝑉𝑑) with roots(𝑡, 𝑑) = {𝛿𝑡→𝑑 (𝑟𝑡)∈𝑉𝑑
|𝛿𝑡→𝑑∈ΔInd

𝑡→𝑑
} return the nodes of 𝑑 to which 𝑟𝑡 is mapped. Let

𝑤 :𝐷→N0 be a function assigning weights to trees of 𝐷 . It follows

𝑠𝑢𝑝𝑤𝑡𝑟𝑎𝑛𝑠 (𝑡, 𝐷) =
∑︂

{𝑑∈𝐷 |𝑡⊑𝑑 }
𝑤 (𝑑)

𝑠𝑢𝑝𝑤𝑟𝑜𝑜𝑡 (𝑡, 𝐷) =
∑︂
𝑑∈𝐷

𝑤 (𝑑) · |roots(𝑡, 𝑑) |

(1)

(2)

∅

0
∧

0 ...

0

SA
1
...

0

∧
1

∧
0

SA
1

∧
0

1 ...

0

∧
1

SA
2

...

0

∧
1

2

0

∧
1
SA

2
...

0

∧
1

CI
2
...

(0,) (0,∧)

(0,∧)

(0, 𝑆𝐴)
(0,)

(0, 𝑆𝐴)

(0,) (0, 𝑆𝐴)
(1, 𝑆𝐴)

(1,𝐶𝐼)

Figure 4: Excerpt of the right-most extension enumeration
tree for subtrees of the tree bank in Figure 2. We annotate
the edges with the respective (𝑝, 𝑙)-extension and highlight
the extended node in the trees in red.

0

CI
1
∧

2

FI
3

RI

4
(0, RI)

4(1,)

C

4
(2, C)

Figure 5: Candidate (𝑝, 𝑙)-extensions on a subtree. The right-
most path is highlighted in red, and examples of different
candidate extensions are shown via dashed arcs and borders.

Next, we define the term frequent for induced subtrees. An in-

duced subtree 𝑡 is frequent in a tree bank 𝐷 if its support is above

a user-supplied threshold 𝑚 ∈ N0, i.e., sup(𝑡, 𝐷) > 𝑚. Consider

the previous example, for root-occurrence support and minimum

support of𝑚 = 2, 𝑝5 from Figure 3 is frequent in the tree bank from

Figure 2. At the same time, all other subtrees are infrequent.

3.1.2 Right-Most Extension. To mine frequent subtrees, we utilize

the idea of the right-most extensions. Observe that for any tree

of size 𝑘 by removing its right-most leaf, we can derive a smaller

subtree of size 𝑘−1. Repeating the removal of the right-most leaf,

one derives a chain of 𝑘−1, 𝑘−2, . . . , 1, 0 sized trees. By reverting

the incremental removal, i.e., incrementally appending a new right-

most leaf from a given label set, we can uniquely enumerate any

tree of size 𝑘 . Incrementally appending a new right-most leaf forms

an enumeration tree, shown on an example in Figure 4. To formalize

the right-most enumeration, we introduce (𝑝, 𝑙)-extensions that
encode the position at which the new right-most leaf is appended

in a tree and the label of the newly added leaf. We show an example

of a subtree and potential (𝑝, 𝑙)-extensions in Figure 5.

Definition 3.4 ((𝑝, 𝑙)-Extension). Let 𝑡 = (𝑉𝑡 , 𝐸𝑡 , 𝐿𝑡 , 𝜆𝑡 , 𝑟𝑡 , <𝑡)∈O.
A (𝑝, 𝑙)-extension (𝑝, 𝑙)∈(N0×𝐿𝑡) consists of an offset 𝑝 along the

right-most path of 𝑡 representing 𝑣𝑝 = prt𝑝𝑡 (rml𝑡)∈𝑉𝑡 and a label

𝑙∈𝐿𝑡 . We denote the set of all (𝑝, 𝑙)-extensions of 𝑡 as 𝑃𝑡⊆(N0×𝐿𝑡)

3.1.3 Apriori-principle. Using (𝑝, 𝑙)-extensions, all frequent sub-
trees of a tree bank can be uniquely enumerated. However, enu-

merating all possible candidate subtrees is infeasible due to the

2669

combinatorial blow-up. Therefore, the apriori-principle is used. For

a frequent subtree 𝑡 in a tree bank𝐷 , it holds that if it is frequent, all

its subtrees also are frequent. In the counterfactual, thus, only fre-

quent subtrees need to be extended, as an infrequent subtree cannot

be extend into a frequent subtree. Applying the apriori-principle

depends on the admissibility of the support definitions, cf. Defini-

tion 3.3. A support definition is admissible if for a tree bank 𝐷⊆O
∀𝑡, 𝑡 ′∈O 𝑡⊆𝑡 ′ ⇒ sup(𝑡, 𝐷)≥sup(𝑡 ′, 𝐷) holds. Thus, the support of
a subtree is always greater or equal to that of its supertrees.

3.1.4 Right-Most Occurrence Set. We use tree embeddings to make

the computation of the frequency of a subtree more tractable, fore-

going explicit sub-isomorphism checking. The idea of a tree em-

bedding is storing occurrences of a subtree in a tree bank and

incrementally updating the embedding when growing the subtree.

The occurrence information is then used for support computation

and to verify frequency. For the right-most extension-based enumer-

ation, Asai et al. [4] proposed the Right-Most Occurrence list [4] to
store the embeddings of induced subtrees in a tree bank. An RMO

stores occurrence information as a tuple, based on the tree of the

tree bank, and where the root and the right-most leaf of an induced

subtree are mapped to in the tree of a tree bank. As an example, for

𝑝5 from Figure 3 and 𝑑3 from Figure 2, one occurrence of 𝑝5 maps

rml𝑝5=𝑅𝑄
2
to 𝑅𝑄11

and 𝑟𝑝5=∧0 to ∧9 in 𝑑3. The occurrence is then
represented by the tuple (𝑑3, 𝑅𝑄11,∧9) in an RMO.

Definition 3.5 (RMO Entry). Let 𝑡=(𝑉𝑡 , 𝐸𝑡 , 𝐿𝑡 , 𝜆𝑡 , 𝑟𝑡 , <𝑡)∈O and

𝐷⊆O. An RMO entry is a triple (𝑑, 𝑣𝑟𝑚𝑙 , 𝑟)∈(𝐷×𝑉𝑑×N0) that rep-
resents 𝛿𝑡→𝑑∈ΔInd

𝑡→𝑑
with 𝑣𝑟𝑚𝑙 = 𝛿𝑡→𝑑 (rml𝑡) and 𝑟 = 𝛿𝑡→𝑑 (𝑟𝑡).

Having defined the RMO entries, we define the RMO of a tree

𝑡=(𝑉𝑡 , 𝐸𝑡 , 𝐿𝑡 , 𝜆𝑡 , 𝑟𝑡 , <𝑡)∈O in a tree bank 𝐷⊆O as a set. For a 𝑑∈𝐷
we define RMO𝑡

𝑑
={(𝑑, 𝛿𝑡→𝑑 (𝑣𝑟𝑚𝑙), 𝛿𝑡→𝑑 (𝑟𝑡)) | 𝛿𝑡→𝑑∈ΔInd

𝑡→𝑑
} and

for the tree bank 𝐷 we define RMO𝑡
𝐷
=
⋃︁

𝑑∈𝐷 RMO𝑡
𝑑
. As an ex-

ample, for 𝑝5 from Figure 3, 𝑝5’s RMO in Figure 2 is given by

RMO𝑝5
𝐷
={(𝑑1, RQ11,∧9), (𝑑3, RQ11,∧9), (𝑑3, RQ14,∧12)}.

3.1.5 Closed & Maximal Subtrees. A common issue of frequent

subtree mining is that the number of mined frequent subtrees can

be large to the extent that human analysis becomes infeasible. The

apriori-principle explains the large number of frequent subtrees;

for a frequent subtree, all its subtrees are both frequent and cover

the same information redundantly. To address the redundancy, the

idea of closedness and maximality of subtrees emerged [10, 11].

A subtree is closed if none of its proper supertrees have the same

support. Similarly, a subtree is maximal if no frequent supertree

exists.

Definition 3.6 (Closed and Maximal Subtrees). Let 𝐷 ⊆ V be a

variant tree bank, let𝑚 ∈ N0 be a minimum support, let 𝐹𝐷,𝑚
be

the set of frequent subtrees of 𝐷 with minimum support above𝑚

and let 𝑡∈F𝐷,𝑚
be a frequent subtree. Let sup be a support function

as defined in Definition 3.3.

𝑡 is closed ⇔ ∄𝑡 ′∈𝐹𝐷,𝑚 [𝑡 ⊏ 𝑡 ′ ∧ sup(𝑡, 𝐷) ≤ sup(𝑡 ′, 𝐷)]
𝑡 is maximal ⇔ ∄ 𝑡 ′ ∈ 𝐹𝐷,𝑚 [𝑡 ⊏ 𝑡 ′]

For example, consider the subtrees in Figure 3, the variant tree

bank in Figure 2, variant-weighted root-occurrence support, and

a minimum support of 𝑚 = 1. Then 𝑝5 is closed, as none of its

supertrees has the same support of 3. Further, for minimum support

of𝑚 = 2, 𝑝5 is maximal as no frequent supertree of it exists. As

a further example, 𝑝1 is not closed, as its supertree 𝑝6 also has a

support of 2, and thus 𝑝1 is also not maximal.

3.2 Event Data & Variants
An event log is a set of activity instances that describe activit-

ies performed in a process, cf. Figure 1. We assume each activity

instance has two timestamps modeling the start and end of its exe-

cution, as well as a case identifier and a label representing a specific
activity. Using the case identifiers, multiple activity instances are

grouped into a single case, i.e., an individual process execution (cf.

Figure 1). Activity instances represent a time interval in which the

activity is performed. Thus multiple activity instances in the same

case can overlap, i.e., one activity starts before the other activity

is completed. We refer to temporal overlapping activities as con-
current. If activities do not overlap, i.e., one activity strictly ends

before the other starts, we call them following. The concurrency
and follows relations between activity instances is a subclass of

partial orders called an interval order [15]. The interval order is

used to derive a representation of the concurrency and sequenti-

ality of activity instances in a case. We call this representation a

concurrency variant [24]. We present a concurrency variant and

the interval plot of a possible trace of the variant in Figure 1. The

colored chevrons of the variant, cf. Figure 1, represent distinct activ-

ities performed in the variant. The left-to-right order of the variant

indicates the sequentiality of activities, while stacking activities

above each other indicates concurrency. As is shown in Figure 1,

a sequence of activities, RI ,VI ,CO can be concurrent to a single

activity, FI . An implication of the abstraction level introduced by

concurrency variants [24] is that certain interval orders of activity

instances cannot be represented, as the relation between groups of

activity instances is neither strictly concurrent nor sequential. In

these cases, the relation between the activities is abstracted as an

fallthrough. An example of a fallthrough would be an activity RI
being followed by an activity VI and both happening concurrently

to an activity CO. Then an activity FI concurrent to VI , but follow-
ing RI and CO, would allow for no partition of the activities based

on sequentiality and concurrency between activities.

We represent concurrency variants as rooted, ordered labeled

trees, cf. Definition 3.1. We refer to a tree representing a concur-

rency variant as a Variant Tree. As an example, the concurrency

variants representing cases 1, 2, and 3 from Figure 1 correspond

to the variant trees 𝑑1 and 𝑑3 of Figure 2. On variant trees, some

restrictions compared to labeled, rooted ordered trees (cf. Defini-

tion 3.1) hold based on their derivation. The variant tree’s labels

consist of activity labels 𝐿𝑎𝑐𝑡 and operator labels 𝐿𝑜𝑝 = { ,∧, ⊕}.
The inner nodes are labeled with operator labels only, shown as

circles in Figure 2. Further, every inner node has at least two chil-

dren. The leaf nodes are labeled with activity labels only and are

colored squares in Figure 2. The operator labels are either modeling

sequentially (), concurrency (∧), or a fallthrough (⊕). Operator
nodes with the same label cannot be children of another. Similarly,

the fallthrough operator node cannot have operator node children

and concurrent operator nodes at most one operator node child.

The latter is a consequence of using interval orders to represent

2670

the concurrency in the derivation of concurrency variants. Last,

to enforce consistency across variant trees, the children’s order

of the fallthrough and the concurrent operator follows a lexico-

graphical order defined over the labels, with operator labels sorting

highest, i.e., as the right-most child. Next, we define variant trees

as a subclass of labeled, ordered, rooted trees.

Definition 3.7 (Variant Tree). We denote a variant tree as a 7-tuple

𝑑=(𝑉𝑑 , 𝐸𝑑 , 𝐿𝑑 , 𝜆𝑑 , 𝑟𝑑 , <𝑑 , 𝑛𝑡𝑟𝑐𝑑
)∈V , where (𝑉𝑑 , 𝐸𝑑 , 𝐿𝑑 , 𝜆𝑑 , 𝑟𝑑 , <𝑑)∈O

is a labeled, rooted ordered tree representing a concurrency vari-

ant [24] and 𝑛trc
𝑑
∈N is the number of traces of the variant. Let ≤𝐿𝑒𝑥

be a lexicographical order over the set of labels 𝐿𝑑=𝐿𝑜𝑝∪𝐿𝑎𝑐𝑡 , with
∀ 𝑙𝑎𝑐𝑡∈𝐿𝑎𝑐𝑡 , 𝑙𝑜𝑝∈𝐿𝑜𝑝 [𝑙𝑎𝑐𝑡≤𝐿𝑒𝑥 𝑙𝑜𝑝], where 𝐿𝑜𝑝={ ,∧, ⊕}. Based on
the definition of concurrency variants [24], the following restric-

tions regarding 𝑑 hold for arbitrary 𝑣∈𝑉𝑑 :
𝜆𝑑 (𝑣) ∉ 𝐿𝑜𝑝 ⇔ |chd𝑑 (𝑣) | = 0

𝜆𝑑 (𝑣) ∈ 𝐿𝑜𝑝 ⇔ |chd𝑑 (𝑣) | ≥ 2

𝜆𝑑 (𝑣) ∈ 𝐿𝑜𝑝 ⇒ ∄ 𝑣 ′ ∈ chd𝑑 (𝑣) [𝜆𝑑 (𝑣 ′) = 𝜆𝑑 (𝑣)]
𝜆𝑑 (𝑣) = ∧ ⇒ ∄ 𝑣 ′, 𝑣 ′′∈chd𝑑 (𝑣) [𝑣 ′≠𝑣 ′′∧𝜆𝑑 (𝑣 ′), 𝜆𝑑 (𝑣 ′′) ∈ 𝐿𝑜𝑝]
𝜆𝑑 (𝑣) = ⊕ ⇒ ∄ 𝑣 ′ ∈ chd𝑑 (𝑣) [𝜆𝑑 (𝑣 ′) ∈ 𝐿𝑜𝑝]
∀𝑣 ′, 𝑣 ′′∈chd𝑑 (𝑣)

(︁
[𝜆𝑑 (𝑣)≠ ∧ 𝑣 ′<𝑑𝑣 ′′] ⇒ 𝜆𝑑 (𝑣 ′)≤𝐿𝑒𝑥𝜆𝑑 (𝑣 ′′)

)︁
The universe of variant trees is denoted byV . For a variant tree

bank 𝐷 ⊆ V , we denote the set of activity labels as 𝐿𝐷act = 𝐿𝐷\𝐿op .

3.2.1 Directly follows relations. For variant trees and their subtrees,
we define the (directly)-follows relations of their activities. To this

end, we look at the lowest-common ancestor (LCA) of two activity

leaves. The LCA being the node, if it exists, that is the lowest

shared parent of two nodes in a tree. As an example, observe that

for tree 𝑑1 (cf. Figure 2), the LCA of SA1
and 𝐶12

is
0
. As their

LCA’s label is (), we then say that SA1
is eventually followed

by 𝐶12
in 𝑑1. We denote this as SA1<

𝑑1
EF𝐶

12
. As a counter-example

FI4≮𝑑1EFRI
6
, as their LCA is a concurrent operator ∧3. If no activity

occurs in between two activities eventually following each other,

we denote them as directly-following each other, e.g., SA1<
𝑑1
DFCI

2
.

The (directly) follows relation holds across different tree levels, e.g.,

CI2<𝑑1DFRI
6
. Last, we cannot establish direct-follow relations across

tree levels in case of a fallthrough, as it indicates no specific relation

between activities. Thus, for 𝑑3, 𝐶𝐼
2≮𝑑2

𝐷𝐹
𝑅𝐼4, but 𝐶𝐼2<

𝑑2
𝐸𝐹

𝑅𝐼4.

4 MINING FREQUENT VALID INFIX SUBTREES
To mine frequent infix patterns from concurrency variants, we

exploit their inherent tree structure and adapt frequent subtree

mining. This section introduces the Valid Tree Miner that follows a
generate and test approach shown in Figure 6. From the concurrency

variants of the event log, a set of initial frequent infix subtrees is

computed. Subsequently, the subtrees are grown into new candidate

infix subtrees of a larger size. The frequency of the candidates is

then verified, and if they are frequent, they are again grown to

generate new candidate infix subtrees of a larger size. The growth

and verification are repeated until all frequent infix subtrees of the

concurrency variants are mined.

First, Subsection 4.1 models infixes of concurrency variants as

infix subtrees. In Subsection 4.2, we introduce the Valid Tree Miner

algorithm to compute the frequent infix subtrees of a variant tree

bank. Finally, Subsection 4.3 and Subsection 4.4 close out on the

Verify Frequency

Candidate Infix Subtrees

Grow Tree

Compute initial
Subtrees,

Relations &
RMO

Frequent Relations

Update Right-Most Occurrence Sets

Pre-
processing

Prune

Generate & Test Loop

Variant Tree BankEvent Log

Frequent Infix Subtrees

Figure 6: Overview of the proposed Valid TreeMiner frequent
infix subtree mining algorithm.

algorithm by presenting a correctness proof of the support function

for infix subtrees and a runtime analysis of the Valid Tree Miner.

4.1 Infix Patterns in Process Execution Variants
This paper focuses on infix patterns that are sequentially closed,

i.e., no activity is skipped within a sequence. Sequential closedness

makes the mined infixes represent closed sequences of activities,

not skipping a process activity. We model infix patterns based

on induced subtrees, cf. Definition 3.2. Infix subtrees are labeled,

rooted ordered trees that share the same label set as the variant

tree bank they are a subtree of but are not necessarily variant trees.

The difference between induced and infix subtrees is shown in the

following example. For the subtrees from Figure 3, we know that

𝑝3 is an induced subtree of both 𝑑1 and 𝑑3 of Figure 2. However,

it is neither an infix subtree of 𝑑1 nor 𝑑3 because any potential

occurrence of 𝑝3 skips the activity VI in 𝑑1 and 𝑑3 in sequential

order. The sequential completeness must further hold across tree

levels, i.e., 𝑝8 is a subtree of 𝑑1 and 𝑑3, while 𝑝9 is not, as activity RI ,
sequentially between CI and VI , would be skipped for all potential

occurrences of 𝑝9 in the tree bank.

Definition 4.1 (Infix Subtree). Let 𝐷 ⊆ V be a variant tree bank

and 𝑡 = (𝑉𝑡 , 𝐸𝑡 , 𝐿𝑡 , 𝜆𝑡 , 𝑟𝑡 , <𝑡), 𝑡 ′ = (𝑉𝑡 ′ , 𝐸𝑡 ′ , 𝐿𝑡 ′ , 𝜆𝑡 ′ , 𝑟𝑡 ′ , <𝑡 ′)∈O with

𝐿𝑡 , 𝐿𝑡 ′⊆𝐿𝐷 . We say that 𝑡 is an infix subtree of 𝑡 ′, if 𝑡⊑𝑡 ′, and there

exists 𝛿𝑡→𝑡 ′∈ΔInd
𝑡→𝑡 ′ that preserves the following relation for every

𝑣, 𝑣 ′ ∈ 𝑉𝑡 :
𝑣 <𝑡DF 𝑣 ′ ⇔ 𝛿𝑡→𝑡 ′ (𝑣) <𝑡

′
DF 𝛿𝑡→𝑡 ′ (𝑣 ′)

(𝑣 ≺𝑡 𝑣 ′ ∧ 𝜆𝑡 (prt1𝑡 (𝑣))=) ⇔ 𝛿𝑡→𝑡 ′ (𝑣) ≺𝑡 ′ 𝛿𝑡→𝑡 ′ (𝑣 ′)
We define the set of all 𝛿𝑡→𝑡 ′ that preserves the above relations as

Δ
Infix
𝑡→𝑡 ′ . For infix subtree 𝑡 of 𝑡

′
, we write 𝑡⊆𝑡 ′ and 𝑡⊂𝑡 ′, if |𝑉𝑡 |< |𝑉𝑡 ′ |.

We use the infix subtree relation, ⊆ see Definition 4.1, with the

notations previously introduced for induced subtrees, foremost

Definition 3.3. Furthermore, we introduce a trace-weighting func-
tion𝑤trace :V→N0, that for a variant tree 𝑑=(𝑉𝑑 , 𝐸𝑑 , 𝐿𝑑 , 𝜆𝑑 , 𝑟𝑑 , <𝑑 ,
𝑛𝑡𝑟𝑐
𝑑
)∈V weights occurrence according to the number of traces of 𝑑 ,

𝑤trace (𝑑)=𝑛trc𝑑 . Figure 3 shows the different infix subtrees and their

corresponding support values for the variant tree bank shown in Fig-

ure 2. As an example, the trace-weighted root-occurrence support of

𝑝5 is computed given one occurrence of 𝑝5 in 𝑑1 (12 traces) and two

occurrences in 𝑑3 (5 traces), as sup
𝑤trace
root (𝑝5, 𝐷) = 22 = 1·12 + 2·5.

Not every infix subtree corresponds to an interesting infix pat-

tern of the concurrency variants. Since the operator nodes of a

variant tree model the relation between activities, infix subtrees

containing operator nodes without children show little informa-

tion. To encompass this, we define valid and invalid infix subtrees.

An infix subtree is valid if all operator nodes have at least two

2671

children, else it is invalid. Given the right-most enumeration (cf.

Definition 3.4), infix subtrees are incrementally grown into larger

trees by appending a new right-most leaf along the right-most path.

Thus, invalid subtrees with all operator nodes having less than

two children located on the right-most path can still be grown into

a valid infix subtree. We call these infix subtrees incomplete. We

indicate the (in)validness for the subtrees in Figure 3.

Definition 4.2 (Valid & Incomplete Trees). Let 𝑡 = (𝑉𝑡 , 𝐸𝑡 , 𝐿𝑡 , 𝜆𝑡 ,
𝑟𝑡 , <𝑡)∈O. We define valid and incomplete.

𝑡 is valid ⇔ (∀ 𝑣 ∈ 𝑉𝑡 (𝜆𝑡 (𝑣) ∈ 𝐿op ⇒ |chd𝑡 (𝑣) | > 1))
𝑡 is incomplete⇔ (𝑡 is not valid
∧ ∀ 𝑣∈𝑉𝑡 [(𝜆𝑡 (𝑣)∈𝐿op∧|chd𝑡 (𝑣) | < 2) ⇒ 𝑣∈⟨rml𝑡 , . . . , 𝑟𝑡 ⟩])

If 𝑡 is neither valid nor incomplete, we call it invalid.

4.2 Valid Tree Miner
The proposed Valid Tree Miner, cf. Algorithm 1, follows a generate-

and-test approach. The generate-and-test routine breadth-first tra-

verses the right-most enumeration tree of the infix subtrees of the

variant tree bank using the apriori-principle to prune infrequent

subtrees. Through exhaustive search, the algorithm is exact as it

enumerates and checks all frequent valid infix subtrees.

The first step of the Valid Tree Miner is the computation (line 1)

of the initial set of frequent infix subtrees, which are later grown

into larger candidate infix subtrees. Next, we initialize a processing

queue𝑄 (line 2) using the set of initial frequent infix subtrees.While

𝑄 contains frequent infix subtrees, these are gradually processed

(lines 3-4). For the frequent infix subtree 𝑡 , we compute feasible

extensions using a pruning function (line 5) and then verify if the

extended candidate infix subtree is frequent. The verification is

done by computing the updated RMO of the extend infix subtree 𝑡 ′

based on the RMO of 𝑡 (line 6). Based on the RMO, we verify if 𝑡 ′ is
frequent (line 7). If so, 𝑡 ′ is added to the result set of frequent infix

subtrees 𝐹𝐷,𝑚
(line 9) and the processing queue𝑄 (line 10). Finally,

we filter out the incomplete subtree from the set of frequent infix

subtrees (line 14).

Algorithm 1: Valid Tree Miner

Input: 𝐷 ⊆ V ,𝑚 ∈ N0
Output: 𝐹𝐷,𝑚

valid ⊆ O
1 𝐹𝐷,𝑚 ← GenerateInitialFrequentSubtrees (𝐷,𝑚)
2 𝑄 ← 𝐹𝐷,𝑚 //Initialize the processing queue

3 while𝑄 ≠ ∅ do //While trees left to process

4 𝑡 ← 𝑄.𝑑𝑒𝑞𝑢𝑒𝑢𝑒 () //Process the next frequent tree

5 for (𝑝, 𝑙) ∈ 𝐺𝑟𝑜𝑤𝑇𝑟𝑒𝑒 (𝑡) do //For every (𝑝, 𝑙)-extension
6 𝑡 ′ ← grow (𝑡, (𝑝, 𝑙)) //Grow 𝑡 into 𝑡 ′ based on (𝑝, 𝑙)

7 RMO𝑡 ′
𝐷
← 𝑈𝑝𝑑𝑎𝑡𝑒𝑅𝑀𝑂 (RMO𝑡

𝐷
, (𝑝, 𝑙)) //Compute RMO of 𝑡 ′

8 if sup (𝑡 ′, 𝐷) >𝑚 then //If 𝑡 ′ is frequent

9 𝐹𝐷,𝑚 ← 𝐹𝐷,𝑚 ∪ {𝑡 ′ } //Add 𝑡 ′ to the frequent trees

10 𝑄.𝑒𝑛𝑞𝑢𝑒𝑢𝑒 (𝑡 ′) //Add 𝑡 ′ to the processing queue

11 𝐹
𝐷,𝑚

valid ← FilterIncomplete (𝐹𝐷,𝑚) //Filter incomplete trees

12 return 𝐹
𝐷,𝑚

valid

4.2.1 Generating Initial Pattern Candidates. The Valid Tree Miner

algorithm starts by computing the sets of frequent infix subtrees

of size three, i.e., 𝐹
𝐷,𝑚
3

, from the variant tree bank as the initial

frequent subtrees. The algorithm starts with size three, as these are

the first possible valid infix subtrees. The initial subtrees and their

right-most occurrence sets, cf. Definition 3.5, are computed in a

single pass over the variant tree bank. The pass over the variant tree

bank also computes the sets of frequent (directly)-follows relations.

The frequent relations sets are used for pruning and are computed

based on counting the number of activity leaf pairs with the respect-

ive relation, i.e., <DF and <EF . We denote them as F𝐷,𝑚
DF ⊂𝐿𝐷act×𝐿𝐷act

and F𝐷,𝑚
EF ⊂𝐿𝐷act×𝐿𝐷act .

4.2.2 Growing Patterns. Frequent infix subtrees are grown into lar-

ger candidate subtrees using right-most extension, cf. Algorithm 1

lines 5-6. The growth algorithm is shown in Algorithm 2. GrowTree

takes a frequent infix subtree as input, moves up along the tree’s

right-most path, computes all feasible (𝑝, 𝑙)-extensions at each pos-

ition, and outputs a set of (𝑝, 𝑙)-extensions.
An infeasible extension is an extension that results in a structure

not observed in a variant tree, an invalid subtree, or an extension

that cannot be frequent based on the apriori-principle. To prevent

infeasible extensions, the algorithm utilizes two pruning strategies:

structure-based pruning, which prevents extensions leading to in-

valid subtrees, and label-based pruning using information from

previous iterations of the algorithm. Structure-based pruning is

implemented during the processing along the right-most path in

Algorithm 2, stopping early if an infeasible extension would be

made. Label-based pruning is implemented as a function (cf. Al-

gorithm 2, line 4), which returns the pruned set of labels feasible at

a given extension position along the right-most path based on the

application of the apriori-principle.

Algorithm 2: GrowTree
Input: 𝑡 = (𝑉𝑡 , 𝐸𝑡 , 𝐿𝑡 , 𝜆𝑡 , 𝑟𝑡 ,<𝑡) ∈ O
Output:𝐶 = { (𝑝1, 𝑙1), . . . (𝑝𝑛 , 𝑙𝑛) } ⊆ P(𝑃𝑡)

1 𝑝 ← 0 //Initialize Offset Counter

2 for 𝑣𝑒𝑥𝑡𝑒𝑛𝑑 ∈ ⟨rml𝑡 , . . . , 𝑟𝑡 ⟩ do //For every node along the right-most path

3 if 𝜆𝑡 (𝑣𝑒𝑥𝑡𝑒𝑛𝑑) ∈ 𝐿op then //Only extend on operators

4 𝐶 ← 𝐶 ∪ LabelPrn(𝑡, 𝑝)
5 if |chd𝑡 (𝑣𝑒𝑥𝑡𝑒𝑛𝑑) | < 2 ∧ |𝑉𝑡 | > 2 then
6 break //Break early if the node only has 2 children

7 𝑝 ← 𝑝 + 1
8 return C

4.2.3 Structure-based pruning. Consider Figure 5, for the subtree
and (𝑝, 𝑙)-extensions depicted, one easily sees that both the (𝑝, 𝑙)-
extensions (0, RI) and (2,C) would be infeasible. The former, (0, RI),
results in a patternwhere two nodeswith an activity label are nested

under one another. Variant trees of this form do not exist based on

the restrictions defined in Definition 3.7. The latter, (2,C), results in
an invalid subtree, cf. Definition 4.2. To prune infeasible extensions,

we use two checks in GrowTree (Algorithm 2). We only extend

on operator nodes (line 3) and terminate the backtracking after

processing a node with less than two children (line 5).

4.2.4 Label-based pruning. The function LabelPrn (cf. Algorithm 2,

line 4) represents label-based pruning and is composed of two dif-

ferent pruning strategies introduced below. The first label-based

pruning strategy tree pruning utilizes the apriori-principle to prune

extensions in case the subtrees of sizes 3 are not frequent. Observe

that if any of the subtrees of an extended subtree would be infre-

quent, the extension is redundant as the extended tree cannot be

2672

0

CI
1
∧

2

FI

3(0, FI)

𝑝11

0

CI
1
∧

2

FI
3 4

RI
5

VI
6

CO
7

FI

8
(1, FI)

C

8
(3, C)

𝑝8

Figure 7: Candidate (𝑝, 𝑙)-extensions on two subtrees. Struc-
turally pruned extension positions are not considered. The
right-most path is demarcated in red, and the candidate ex-
tensions are shown via dashed arcs and borders.

frequent by the apriori principle. Depending on the extension pos-

ition 𝑝 of the (𝑝, 𝑙)-extension, we consider two forms of subtrees

of size 3. For 𝑝=0, we consider the subtree of the extended tree,

consisting of the new right-most leaf and its parent and grand-

parent. For example, consider 𝑝11 in Figure 7. For the extension

(0, FI), we first verify if the subtree consisting of
0
, ∧2 and 𝐹𝐼3

is frequent, i.e., contained in the set 𝐹𝐷,𝑚
. For the other case, 𝑝>0,

the subtree is made up of the right-most leaf; its left-sibling, the

𝑝−1-th node; and its parent, the 𝑝-th node. As an example, for this,

consider extension (1, FI) on 𝑝8 in Figure 7. Then, we verify that

the corresponding tree with root
4
and children, 𝐶𝑂7

and 𝐹𝐼8, is

frequent and thus the (𝑝, 𝑙)-extension feasible.

Definition 4.3 (Tree Prune). Let 𝐷⊆V be a variant tree bank,

minimum support 𝑚 ∈ N0, 𝑡 = (𝑉𝑡 , 𝐸𝑡 , 𝐿𝑡 , 𝜆𝑡 , 𝑟𝑡 , <𝑡)∈𝐹𝐷,𝑚
, and

𝑝 ∈ N0. Let 𝑣𝑝 = prt𝑝𝑡 (rml𝑡); if 𝑝>0 let 𝑣𝑝-1 = prt𝑝-1𝑡 (rml𝑡); let
𝑣𝑝+1 = prt𝑝+1𝑡 (rml𝑡). Let 𝑙𝑝+1=𝜆𝑡 (𝑣𝑝+1), 𝑙𝑝=𝜆𝑡 (𝑣𝑝), 𝑙𝑝-1=𝜆𝑡 (𝑣𝑝-1).
Let 𝐹

𝐷,𝑚
3

be the frequent subtrees of size 3 of 𝐷 and let 𝑡=(𝑉𝑡 ,
𝐸𝑡 , 𝐿𝑡 , 𝜆𝑡 , 𝑟𝑡 , <𝑡) ∈ 𝐹

𝐷,𝑚
3

. We define 𝑓
𝐷,𝑚

3,Sib : (𝐿𝐷 × 𝐿𝐷)→P(𝐿𝐷)
with 𝑓

𝐷,𝑚

3,Sib (𝑙𝑝 , 𝑙𝑙)={𝜆𝑡 (𝑣𝑟) | 𝑣𝑙 , 𝑣𝑟 ∈chd𝑡 (𝑟𝑡) ∧ 𝑣𝑙<𝑡𝑣𝑟 ∧ 𝜆𝑡 (𝑟𝑡)=𝑙𝑝 ∧
𝜆𝑡 (𝑣𝑙)=𝑙𝑙 } and 𝑓

𝐷,𝑚
3,Nest : (𝐿𝐷 × 𝐿𝐷)→P(𝐿𝐷) with 𝑓

𝐷,𝑚
3,Nest (𝑙𝑔, 𝑙𝑝) =

{𝜆𝑡 (𝑣𝑐) | 𝜆𝑡 (𝑟𝑡)=𝑙𝑔 ∧ 𝑣𝑝∈chd𝑡 (𝑟𝑡) ∧ 𝑣𝑐∈chd𝑡 (𝑣𝑝) ∧ 𝜆𝑡 (𝑣𝑝)=𝑙𝑝 }.
The functions 𝑓

𝐷,𝑚
3,Nest and 𝑓

𝐷,𝑚

3,Sib return the labels of the frequent

subtree of size 3 with parent label 𝑙𝑝 and respective left sibling 𝑙𝑙
or grandparent label 𝑙𝑔 . We then define the function, TreePrn(𝑡, 𝑝) :
O × N0 ↛ P(𝑃𝑡)

TreePrn(𝑡, 𝑝) =
{︄
{(𝑝, 𝑙) | 𝑙 ∈ 𝐿𝐷 ∧ 𝑙 ∈ 𝑓

𝐷,𝑚
3,Nest (𝑙𝑝+1, 𝑙𝑝)} if 𝑝 = 0

{(𝑝, 𝑙) | 𝑙 ∈ 𝐿𝐷 ∧ 𝑙 ∈ 𝑓
𝐷,𝑚

3,Sib (𝑙𝑝 , 𝑙𝑝-1)} if 𝑝 > 0

The second label-based pruning strategy relation prune utilizes
the frequent relation sets, i.e., F𝐷,𝑚

DF and F𝐷,𝑚
EF , computed during

the initial candidate generation (cf. Subsection 4.2.1). For an exten-

sion next to an operator node, one can show that for all pairs of the

descendant activity leaves and the newly extended activity leaf sib-

ling, the (directly)-follows relation is frequent. For instance, for the

extensions (3,𝐶) on 𝑝8 in Figure 7 as FI3<DFC
8
and CO7<DFC

8

hold in the extended tree, we verify that (CO,C), (FI ,C)∈F𝐷,𝑚
DF

holds. Similarly, in the extended tree RI5<EF𝐶
8
and VI6<EF𝐶

8
hold,

thus we verify if (RI ,𝐶), (VI ,𝐶)∈F𝐷,𝑚
EF . Only if all such relations

are frequent the corresponding extended subtree can be frequent

Definition 4.4 (Relations Prune). Let 𝐷⊆V be a variant tree bank,

minimum support𝑚∈N0, 𝑡=(𝑉𝑡 , 𝐸𝑡 , 𝐿𝑡 , 𝜆𝑡 , 𝑟𝑡 , <𝑡)∈𝐹𝐷,𝑚
, and 𝑝∈N.

Let 𝑣𝑝=prt
𝑝
𝑡 (rml𝑡) and let 𝑣𝑝-1 = prt𝑝-1𝑡 (rml𝑡). Let 𝑙𝑝 = 𝜆𝑡 (𝑣𝑝),

𝑙𝑝-1=𝜆𝑡 (𝑣𝑝-1). Let 𝐿EF = {𝜆𝑡 (𝑣𝑑) | 𝑣𝑑∈dec𝑡 (𝑣𝑝-1) ∧ 𝜆𝑡 (𝑣𝑑)∈𝐿𝐷act }
and 𝐿DF={𝜆𝑡 (𝑣𝑑) | 𝑣𝑑∈dec𝑡 (𝑣𝑝-1)∧𝜆𝑡 (𝑣𝑑)∈𝐿𝐷act∧𝜆𝑡 (prt1𝑡 (𝑣𝑑))≠⊕∧
∄𝑣 ′∈𝑉𝑡 [𝑣𝑑 <𝑡EF 𝑣 ′]}. Let rhdl𝐷,𝑚

□ : 𝐿𝐷act → P(𝐿𝐷act) for □∈{𝐸𝐹, 𝐷𝐹 }
with rhdl𝐷,𝑚

□ (𝑙) = {𝑙 ′∈𝐿𝐷act | (𝑙, 𝑙 ′)∈F
𝐷,𝑚
□ }. Using rhdl𝐷,𝑚

□ , we

define𝐿𝑝𝑟𝑛=
⋂︁

𝑙𝑑 ∈𝐿EF rhdl
𝐷,𝑚
EF (𝑙𝑑)∩

⋂︁
𝑙𝑑 ∈𝐿DF rhdl

𝐷,𝑚
DF (𝑙𝑑). Then, we

define RelPrn : O × N0 ↛ P(𝑃𝑡), that computes the set of (𝑝, 𝑙)-
extensions after applying the relation-based pruning.

RelPrn(𝑡, 𝑝) = {(𝑝, 𝑙) | 𝑙 ∈ (𝐿𝑝𝑟𝑛 ∪ {∧, ⊕})}

Combining the two pruning strategies Definition 4.3 and 4.4, we

define the label-pruning function (cf. Algorithm 2, line 4) as follows.

Definition 4.5 (Label Prune). Let 𝐷⊆V be a variant tree bank,

𝑚∈N0 a minimum support, and 𝑡 = (𝑉𝑡 , 𝐸𝑡 , 𝐿𝑡 , 𝜆𝑡 , 𝑟𝑡 , <𝑡)∈𝐹𝐷,𝑚
and

𝑝∈N0. Let 𝑙𝑝 = 𝜆𝑡 (prt𝑝𝑡 (rml𝑡)); let 𝑙𝑝-1 = 𝜆𝑡 (prt𝑝-1𝑡 (rml𝑡)), if 𝑝 > 0.

We define the pruning function LabelPrn : O ×N0↛P(𝑃𝑡), that for
a given 𝑝 offset along the right-most path of 𝑡 computes the pruned

set of (𝑝, 𝑙)-extensions.

LabelPrn(𝑡, 𝑝)=
{︃
TreePrn(𝑡, 𝑝)∩RelPrn(𝑡, 𝑝) 𝑝>0∧𝑙𝑝= ∧𝑙𝑝-1∈𝐿op
TreePrn(𝑡, 𝑝) otherwise

4.2.5 Updating the RMO Set. After computing the feasible exten-

sions of the frequent infix subtrees of size 𝑘 into candidate infix

subtrees of size 𝑘 + 1 (cf. Algorithm 1, line 6), we compute the RMO

of the candidate by updating the RMO of its frequent infix subtree

parent. Figure 8 shows the update routine. Using the right-most

occurrences of an infix subtree stored in the RMO and a (𝑝, 𝑙)-
extension, one first computes the extension position in the variant

tree for every occurrence by backtracking to the 𝑝-th parent of the

node. From this extension position, a sibling of the 𝑝−1-th parent

matching the label 𝑙 of the (𝑝, 𝑙)-extension is searched. If the 𝑝−1-th
parent does not exist, all children of the 𝑝-th parent are searched

instead. If a node with a label matching 𝑙 is found, a new entry for

the RMO of the extended infix subtree is created.

Further restrictions are made to ensure the sequential complete-

ness of the infix subtree. If the 𝑝-th parent is a sequential operator,

only the immediate right sibling of the 𝑝−1-th parent is considered

instead of all siblings. Similarly, for sequential operators, if 𝑝=0, only

the left-most child is checked instead of all children if an activity

exists that happened sequentially before the explored children. Last,

backtracking is stopped if it passes a node, e.g., CO8
, that would be

skipped in sequential order, i.e., its to the right of the backtrack-

ing path under a sequential operator. We introduce the function

Entries that given a right-most occurrence (cf. Definition 3.5) of in-

fix subtree 𝑡 in a variant tree bank and a (𝑝, 𝑙)-extension computes

right-most occurrences of the (𝑝, 𝑙)-extended infix subtree 𝑡 ′, based
on the RMO of 𝑡 .

Definition 4.6 (Entries). Let 𝐷⊆V be a variant tree bank, min-

imum support𝑚∈N0, and RMO𝑡
𝐷
of 𝑡=(𝑉𝑡 , 𝐸𝑡 , 𝐿𝑡 , 𝜆𝑡 , 𝑟𝑡 , <𝑡)∈𝐹𝐷,𝑚

.

Let (𝑝, 𝑙)∈𝑃𝑡 and 𝑡 ′∈O be the (𝑝, 𝑙)-extended tree of 𝑡 . For 𝑑=(𝑉𝑑 ,
𝐸𝑑 , 𝐿𝑑 , 𝜆𝑑 , 𝑟𝑑 , <𝑑 , 𝑛

𝑡𝑟𝑐
𝑑
)∈𝐷 and a RMO entry (𝑑, 𝑣𝑜 , 𝑟)∈RMO𝑡

𝑑
, let

𝑣𝑝=prt
𝑝

𝑑
(𝑣𝑜). If 𝑝>0, let 𝑣𝑝-1=prt𝑝-1𝑑

(𝑣𝑜). We define LAnc ≡ ∃ 𝑣∈
⟨rml𝑡 , . . ., 𝑟𝑡 ⟩[𝜆𝑡 (𝑣)= ∧ lmc𝑡 (𝑣)∉⟨rml𝑡 , . . ., 𝑟𝑡 ⟩] and RAnc ≡ ∄ 𝑣 ∈

2673

∧
0

FI
1

RQ

2
(1, RQ)

𝑝12

0

SA
1

CI
2
∧

3

FI
4 5

RI
6

VI
7

CO
8

∧
9

FI
10

RQ
11

C
12

𝑑1 (12 Traces)

0

∧
1

FI
2 3

RI
4

VI
5

∧
6

(3, ∧)

𝑝8

0

SA
1

CI
2
∧

3

FI
4 5

RI
6

VI
7

CO
8

∧
9

FI
10

RQ
11

∧
12

FI
13

RQ
14

C
15

𝑑2 (5 Traces)

Figure 8: RMO update step for (𝑝, 𝑙)-extensions on subtrees
𝑝8 and 𝑝12, for the variant trees 𝑑1 and 𝑑2 from Figure 2. To
find amatching occurrence of the extended infix subtree, one
backtracks to the 𝑝-th parent of the right-most occurrence of
the infix subtree in the variant tree. At the 𝑝-th parent, one
then searches the siblings right to the 𝑝−1-th parent or of the
node itself if 𝑝=0. The dotted arcs indicate the backtracking,
and the dashed arcs indicate the children that are searched
for a matching label. To ensure sequential completeness the
backtracking is stopped when passing a node that violates
sequential completeness, as is the case for the backtracking
for 𝑝8 and the node 𝐶𝑂8 in 𝑑1 and 𝑑2.

⟨𝑣𝑜 , . . ., 𝑣𝑝-1⟩(𝜆𝑑 (𝑣)= ∧ rmc𝑑 (𝑣)∉⟨𝑣𝑜 , . . . , 𝑣𝑝-1⟩). Then, the func-
tion Entries : (P((𝐷×𝑉𝑑×𝑉𝑑))×𝑃𝑡)→P((𝐷×𝑉𝑑×𝑉𝑑)) computes the

entries in RMO𝑡 ′

𝑑
based on the (𝑝, 𝑙)-extension on (𝑑, 𝑣𝑜 , 𝑟)∈RMO𝑡

𝑑
.

Entries((𝑑, 𝑣𝑜 , 𝑟), (𝑝, 𝑙)) =⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

{(𝑑, 𝑣𝑐 , 𝑟) | 𝑣𝑐=lmc𝑑 (𝑣𝑝), 𝜆𝑑 (𝑣𝑐)=𝑙} LAnc ∧ 𝜆𝑑 (𝑣𝑝)= ∧ 𝑝=0
{(𝑑, 𝑣𝑐 , 𝑟) | 𝑣𝑐∈chd𝑑 (𝑣𝑝), 𝜆𝑑 (𝑣𝑐) = 𝑙} (¬LAnc ∨ 𝜆𝑑 (𝑣𝑝)≠) ∧ 𝑝=0
{(𝑑, 𝑣𝑟 , 𝑟) | 𝑣𝑟=rSib𝑑 (𝑣𝑝-1), 𝜆𝑑 (𝑣𝑟)=𝑙} ¬RAnc ∧ 𝜆𝑑 (𝑣𝑝)= ∧ 𝑝>0
{(𝑑, 𝑣𝑟 , 𝑟) | 𝑣𝑟 ∈rSibs𝑑 (𝑣𝑝-1), 𝜆𝑑 (𝑣𝑟)=𝑙} 𝑝>0 ∧ 𝜆𝑑 (𝑣𝑝)≠

∅ otherwise

Using the function Entries, we define UpdateRMO that computes

the full RMO update step, i.e., computing the RMO of a (𝑝, 𝑙)-
extended subtree based on the RMO of the extended subtree. Using

the RMO, the support of the extended subtree is then computed.

Definition 4.7 (UpdateRMO). Let 𝐷 ⊆ V be a variant tree bank,

minimum support𝑚 ∈ N0, and 𝑡 = (𝑉𝑡 , 𝐸𝑡 , 𝐿𝑡 , 𝜆𝑡 , 𝑟𝑡 , <𝑡) ∈ 𝐹𝐷,𝑚

with RMO𝑡
𝐷
. Let (𝑝, 𝑙) ∈ 𝑃𝑡 and 𝑡 ′ ∈ O being the (𝑝, 𝑙)-extended

tree from 𝑡 . The RMO of 𝑡 ′ is computed as UpdateRMO : P((𝐷 ×
𝑉𝑑 ×𝑉𝑑)) × 𝑃𝑡 → P((𝐷 ×𝑉𝑑 ×𝑉𝑑))

UpdateRMO(RMO𝑡
𝐷 , (𝑝, 𝑙)) =

⋃︂
𝑑∈𝐷

⋃︂
𝑒∈RMO𝑑 (𝑡)

Entries(𝑒, (𝑝, 𝑙))

4.3 Correctness
We prove the correctness of the Valid Tree Miner by showing that

the apriori-principle holds for infix subtrees and the support defini-

tions (cf. Definition 3.3). The correctness of the general RMO ap-

proach has been shown by Asai et al. [4]. To show that the apriori-

principle holds for infix subtrees and the support definitions (cf.

Definition 3.3), observe that for the infix subtree relation (cf. Defin-

ition 4.1), transitivity holds. Thus, for 𝑡, 𝑡 ′, 𝑡 ′′∈O, if 𝑡⊆𝑡 ′ and 𝑡 ′⊆𝑡 ′′
holds, it follows that 𝑡⊆𝑡 ′′; observe that one can construct an in-

fix subtree mapping 𝛿𝑡→𝑡 ′′∈ΔInfix
𝑡→𝑡 ′′ as 𝛿𝑡→𝑡 ′′ = 𝛿𝑡 ′→𝑡 ′′ ◦ 𝛿𝑡→𝑡 ′ for

𝛿𝑡→𝑡 ′∈ΔInfix
𝑡→𝑡 ′ and 𝛿𝑡 ′→𝑡 ′′∈ΔInfix

𝑡 ′→𝑡 ′′ . Using transitivity, Lemma 4.8

follows, which shows for infix subtrees that transaction support is

admissible under the apriori-principle.

Lemma 4.8 (Apriori for Transaction Support). Let 𝐷⊆V
be a variant tree bank, 𝑡=(𝑉𝑡 , 𝐸𝑡 , 𝐿𝑡 , 𝜆𝑡 , 𝑟𝑡 , <𝑡), 𝑡 ′=(𝑉𝑡 ′ , 𝐸𝑡 ′ , 𝐿𝑡 ′ , 𝜆𝑡 ′ ,
𝑟𝑡 ′ , <𝑡 ′)∈O with 𝐿𝑡 , 𝐿𝑡 ′⊆𝐿𝐷 and 𝑡 ′⊆𝑡 . Let sup𝑤trans be as defined in
Definition 3.3 (1). Then sup𝑤trans (𝑡 ′, 𝐷) ≥ sup𝑤trans (𝑡, 𝐷).

Proof. By the transitivity of ⊆, ∀𝑑 ∈ 𝐷 [𝑡 ⊆ 𝑑 ⇒ 𝑡 ′ ⊆ 𝑑]. Thus,
{𝑑∈𝐷 | 𝑡 ′⊆𝑑}⊇{𝑑∈𝐷 | 𝑡⊆𝑑} holds. It follows that∑︂

𝑑∈𝐷,
𝑡 ′⊆𝑑

𝑤 (𝑑) ≥
∑︂
𝑑∈𝐷,
𝑡⊆𝑑

𝑤 (𝑑)

and, thus, suptrans (𝑡 ′, 𝐷) ≥ suptrans (𝑡, 𝐷). □

Using the construction for 𝛿𝑡→𝑡 ′′∈ΔInfix
𝑡→𝑡 ′′ , we show the admiss-

ibility of root-occurrence support in Definition 3.3.

Lemma 4.9 (Apriori for Root-Occur. Support). Let 𝐷⊆V be
a variant tree bank and 𝑡=(𝑉𝑡 , 𝐸𝑡 , 𝐿𝑡 , 𝜆𝑡 , 𝑟𝑡 , <𝑡), 𝑡 ′=(𝑉𝑡 ′ , 𝐸𝑡 ′ , 𝐿𝑡 ′ , 𝜆𝑡 ′ ,
𝑟𝑡 ′ , <𝑡 ′)∈O with 𝐿𝑡 , 𝐿𝑡 ′⊆𝐿𝐷 and 𝑡⊆𝑡 ′. Let sup𝑤root be as defined in
Definition 3.3 (2). Then sup𝑤root (𝑡 ′, 𝐷)≥sup𝑤root (𝑡, 𝐷).

Proof. For all 𝑑=(𝑉𝑑 , 𝐸𝑑 , 𝐿𝑑 , 𝜆𝑑 , 𝑟𝑑 , <𝑑 , 𝑛𝑡𝑟𝑐𝑑
)∈𝐷 with 𝑡⊆𝑑 and

every 𝛿𝑡 ′→𝑑∈Δ
Infix
𝑡 ′→𝑑

, we construct 𝛿𝑡→𝑑=𝛿𝑡 ′→𝑑 ◦𝛿𝑡→𝑡 ′∈ΔInfix
𝑡→𝑑

. For

all 𝛿𝑡 ′→𝑑 , that maps 𝑟𝑡 ′ to a node 𝛿𝑡 ′→𝑑 (𝑟𝑡 ′)∈roots(𝑡 ′, 𝑑), we have
a 𝛿𝑡→𝑑∈Δ

Infix
𝑡→𝑑

. Then 𝛿𝑡→𝑑 maps 𝑟𝑡 to a descendant of 𝛿𝑡 ′→𝑑 (𝑟𝑡 ′),
thus, 𝛿𝑡 ′→𝑑 (𝑟𝑡 ′)=prtℎ𝑑 (𝛿𝑡→𝑑 (𝑟𝑡)) for ℎ∈N0. Now observe that ℎ

by infix mappings preserving child-parent relations is fixed for

every 𝛿𝑡 ′→𝑑∈Δ
Infix
𝑡 ′→𝑑

. Furthermore, observe that a node’s height ℎ

descendants are unique, as there cannot exist another node with the

same height ℎ descendants, as it would imply a cycle. Consequently,
for every 𝑣, 𝑣 ′∈roots(𝑡, 𝑑) with 𝑣≠𝑣 ′ there exist 𝑣 ′′, 𝑣 ′′′∈roots(𝑡 ′, 𝑑)
with 𝑣 ′′≠𝑣 ′′′. Thus, |roots(𝑡 ′, 𝑑) |≥|roots(𝑡, 𝑑) | and it follows that∑︂

𝑑∈𝐷
𝑤 (𝑑) · |roots(𝑡 ′, 𝑑) |≥

∑︂
𝑑∈𝐷

𝑤 (𝑑) · |roots(𝑡, 𝑑) |

Hence, 𝑠𝑢𝑝𝑤roots (𝑡 ′, 𝐷)≥𝑠𝑢𝑝𝑤roots (𝑡, 𝐷). □

4.4 Runtime Analysis
We derive a worst-case runtime bound of the Valid Tree Miner.

Let 𝐷⊆V be a variant tree bank, then for a frequent infix subtree,

in the worst case, we have |𝐿𝐷 |·𝑠 many (𝑝, 𝑙)-extensions, where 𝑠
is the size of the largest 𝑑∈𝐷 . To see this, consider that one can

attach a node with every label along a right-most path of maximal

length 𝑠 . Then for the update of the RMOs observe the size of a

tree’s RMO is bound by |𝑉𝐷 |, the number of nodes of variant trees

in 𝐷 . Thus, for at most |𝐿𝐷 |·𝑠 many (𝑝, 𝑙)-extensions we need to

compute the extended trees RMO entries based on at most |𝑉𝐷 |
entries of the frequent infix subtree’s RMO. Doing this for all |𝐹𝐷,𝑚 |
frequent infix subtrees of a variant tree bank leads to a bound

of O(|𝐹𝐷,𝑚 |·|𝐿𝐷 |·|𝑉𝐷 |·𝑠). This bound is quite pessimistic as the

2674

number of occurrences of a frequent subtree is expected to be

much smaller than |𝑉𝐷 |. Furthermore, by pruning extensions and

assuming a non-pathological structure of the variant trees, the

number of (𝑝, 𝑙)-extensions likely is much lower than |𝐿𝐷 |·𝑠 . Finally,
consider that the number of frequent subtrees of a tree bank grows

exponentially when the minimum support threshold approaches

zero [10]. Consequently, the computation of the set of frequent infix

subtrees becomes ill-conceived as the output grows exponentially.

5 TOOL SUPPORT & APPLICATION SCENARIO
We implemented the proposed Valid Tree Miner in the open-source

process mining tool Cortado [26], a tool for interactive process

discovery and visual analytics. The Valid Tree Miner algorithm in

Cortado is integrated as a tool that allows users to mine, explore,

and filter the infixes of an event log’s concurrency variants. The

goal of infix mining in Cortado is to aid users in visual analytics

and support process model discovery.

We present the tool based on the screenshot of the infix mining

functionality in Cortado shown in Figure 9. Image section (1) shows

the parameter selection, allowing a choice of support definition and

the minimum support threshold used for mining. The size para-

meters allow for limiting the size of the mined infixes by stopping

the mining early. Additional options allow for preprocessing of the

variant tree bank before mining; for example, one can add artifi-

cial start and end activities to the concurrency variants. An infix

containing a start or end activity corresponds to a prefix or suffix,

respectively. Image section (2) shows further information about the

infixes. The information includes the size, support, closeness, and

a visualization of the infix. The infix subtree for visualization is

transformed into a concurrency variant. If prefixes and suffixes are

mined in addition, the dots preceding and following the pattern

allow distinguishing prefix, suffix, and infix patterns. In addition,

alignments between the infix and an existing process model, i.e.,

if the infix conforms to the process model, can be computed [23].

The infixes can be sorted in the table and filtered using the interface

in image section (3) based on different properties, such as support,

size, closeness, and maximality.
1

Besides visual analytics, frequent infix mining is used in Cortado

to support users during the incremental discovery of process mod-

els. Process discovery is concerned with learning a process model

from an event log and is an essential step in process mining meth-

odologies [31, 36]. Conventional discovery approaches [5] are fully

automatic and thus return a process model given an event log as

input. Therefore, the process model depends on the choice of the

initial parameters and the event log’s data quality. Furthermore, it

does not allow human intervention during the discovery process to

improve the model’s quality. Consequently, interactive approaches

have emerged to use human guidance during process discovery

[25]. The approach in Cortado works by a user incrementally choos-

ing variants and infixes that are not fitting the current model and

automatically improving the process model to fit the chosen vari-

ants and infixes. The limiting factor of this approach is that the

user needs to find interesting variants and infixes out of the large

number of variants of real-world event logs. Frequent infix mining

1
For this, we have adopted the introduced closeness and maximality in Subsection 3.1.5

for the set of frequent valid infix subtrees.

presents one avenue to discover interesting variants and infixes,

showing common and shared behavior.

In a short example, we show the application scenario of infixmin-

ing for incremental process discovery. For the event log BPI Chal-

lenge 2012, which covers a loan-application process, we discover

an initial process model covering the 25 most frequent variants.

Approximately 70% of the event log’s traces fit the resulting process

model. To improve the model using Cortado, we mine frequent

infixes of the event log with minimum trace-weighted transaction

support of 5%, 600 out of 11, 998 traces, and explore the frequent

infixes not fitting the process model. We discover the not-fitting

closed infix with a support of 1, 122 traces in Figure 10 representing

a subprocess of the loan application process not yet covered by the

event log. Using the infix as input, Cortado improves the process

model such that the model fits the infix. The modified model is

capable of replaying ≈ 75% of traces.

6 EVALUATION
We evaluate the proposed Valid Tree Miner regarding runtime,

memory usage, and the number of mined frequent valid infix sub-

trees. Furthermore, we explore how the runtime and the results

change using different support definitions.

6.1 Experimental Setup
For the evaluation, we use the open access, real-world event logs:

BPI Challenge 2012 [33], 2017 [34], 2020 [35], and the Sepsis Cases

log [14]. To the best of the authors’ knowledge, currently, no syn-

thetic event log generator for concurrency variants that provides

a known ground truth, i.e., the number of frequent infixes of the

event log, exists. We focus on two event logs in the discussion.

BPI 2017 covers a loan application process and contains 1,202,267

events following 5,937 concurrency variants. Sepsis Cases covers
sepsis treatment in a hospital with 15,214 events, many concurrent,

following 694 concurrency variants. The variant trees of BPI 2017

have a median size of 25 out of the min-max interval [8, 64], with
a median height of 4 out of [2, 6] and a median max degree - the

number of children of a node - of 14 out of [4, 51]. For Sepsis Cases,
the trees have a median size of 10 out of [4, 256], a median height

of 3 out of [1, 3], and a median max degree of 11 out of [3, 86]. Plots
regarding BPI 2012, a smaller log from the same process as BPI

2017, and BPI 2020, a small log from a travel cost reimbursements

process with little concurrency, can be found online.
2

We compare the proposed Valid Tree Miner, abbreviated as VTM,

against a baseline algorithm based on the FREQT algorithm [4]

that is state-of-the-art for frequent induced subtree mining. We im-

plemented a version of the FREQT algorithm utilizing the adapted

RMO update function presented in Definition 4.7 that mines fre-

quent infix subtrees and uses the support definitions as introduced

in Definition 3.3.

As parameters, we use relative minimum support computed

based on the event log’s number of traces/variants depending on

the weighting used by the support function. As the results regarding

transaction- versus root-occurrence support are nearly identical for

2
We provide further plots, especially for event logs BPI 2012 and 2020, at

https://github.com/fit-daniel-schuster/Mining-Frequent-Infix-Patterns-from-

Concurrency-Aware-Process-Execution-Variants

2675

Figure 9: Overview of infix mining in Cortado used on the BPI 2012 event log. (1) encompasses the parameter selection for the
algorithm. In (2), the visualization and information for each infix are shown. Last, (3) shows the filter interface for the infixes.

O_CANCELLED

O_SELECTED
O_CREATED O_SENT

W_Nabellen offertes

Figure 10: Frequent infix of the BPI 2012 event log, denoting
the cancellation of a loan offer to a customer (O_CANCELLED)
and the creation (O_CREATED) and sending (O_SENT) of a
new offer during a customer call (W_Nabellen offertes).

the tested event logs regarding the number of discovered patterns,

the runtime, and memory usage, we mainly differentiate between

trace- and variant-weighting during the discussion. The reason for

the close-to-identical results is based on the observation that the

transaction support of an infix subtree is always less or equal to its

root-occurrence support, cf. Definition 3.3. Thus, only in the case

of many distinct root occurrences, an infix subtree that is frequent

for root-occurrence support but infrequent for transaction support

is discovered, resulting in different sets of frequent infixes.

Due to the nature of the result set to grow exponentially, we

stop after 5 minutes or a memory usage over 10 gigabytes. All

experiments are conducted on a Windows 10 PC with 16 GB of

physical memory and an i7-4790 CPU with 3.60 GHz. The mining

algorithm runs multiple times per experiment to outbalance the

impact that fluctuations in the system’s performance have.

6.2 Results
This section presents the experiments’ results, ordered by the num-

ber of frequent patterns, runtime, and memory consumption.

6.2.1 Number of Patterns. To practically show the correctness of

the pruning strategies, we compared the size and equivalence of the

sets of frequent valid infix subtrees mined by both FREQT and the

VTM using canonical strings [12]. The resulting sets of frequent

valid infix subtrees were identical for all tested parameterizations

and event logs, as is expected for exact algorithms. Consequently,

in the following, we present the number of frequent valid infix sub-

trees independent of the algorithm. Looking at Figure 11, one ob-

serves that the theoretical increase in frequent infixes as described

in Subsection 4.4 does occur for a decreasing minimum support

threshold. This increase is observed in Figure 11a and Figure 11b.

0.00.050.10.150.20.250.30.350.4
Relative Support

101

102

103

104

Nu
m

be
r o

f F
re

qu
en

t I
nf

ix
 Su

bt
re

es Trace Transaction Support
Type of Subtree

Valid
Closed
Maximal

0.00.050.10.150.20.250.30.350.4
Relative Support

Trace Occurence Support

(a) Sepsis Cases event log

0.00.050.10.150.20.250.30.350.4
Relative Support

101

102

103

Nu
m

be
r o

f F
re

qu
en

t I
nf

ix
 Su

bt
re

es Trace Transaction Support
Type of Subtree

Valid
Closed
Maximal

0.00.050.10.150.20.250.30.350.4
Relative Support

Variant Transaction Support

(b) BPI 2017 event log

Figure 11: Number of frequent valid infix subtrees for dif-
ferent support definitions and minimum support values for
various event logs.

The number of valid closed and valid maximal infix subtrees
3
devel-

ops similarly, with an exception for low minimum support values

for the Sepsis Cases event log, where high growth in the num-

ber of frequent valid but non-closed infix subtrees is observed, cf.

Figure 11a. The latter is related to Sepsis Cases containing many

concurrent activities. As infix subtrees allow for concurrent activit-

ies to be skipped, cf. Subsection 4.1, more frequent subpatterns of

larger frequent infixes exist.

6.2.2 Runtime. The results in Figure 12 show that the proposed

VTM can outperform the FREQT algorithm on the presented real-

world event logs. The margin between the algorithm increases

with a decreasing minimum support threshold. For the BPI 2017

event log in absolute numbers, using variant-weighted support for

relative support of 1%, equivalent to 59 variants out of the 5,936

variants, the VTM mines the 3, 290 frequent valid infix subtrees in

3
Closeness and maximality considering only frequent valid infix subtrees.

2676

0.00.050.10.150.20.250.30.350.4
Relative Support

100

101

102

Ru
nt

im
e (

Se
co

nd
s)

Trace Transaction Support
Algorithm
Valid Miner
FREQT
FREQT (Pruning)

0.00.050.10.150.20.250.30.350.4
Relative Support

Variant Transaction Support

(a) Sepsis Cases event log

0.00.050.10.150.20.250.30.350.4
Relative Support

101

102

Ru
nt

im
e (

Se
co

nd
s)

Trace Transaction Support
Algorithm
Valid Miner
FREQT
FREQT (Pruning)

0.00.050.10.150.20.250.30.350.4
Relative Support

Variant Transaction Support

(b) BPI 2017 event log

Figure 12: Runtime comparison between algorithms for dif-
ferent relative support values and support definitions for
different logs. Lower values indicate a faster runtime.

20 seconds. For the same task, the FREQT algorithm with pruning

took 170 seconds, and without pruning took 235 seconds.

Looking at higher minimum support values, cf. Figure 12b, one

observes that FREQT outperforms the VTM for trace-weighted

support. The likely reason is that the number of frequent valid infix

subtrees is small for high support, cf. Figure 11b. Thus, the higher

initial cost of computing pruning sets of VTM, e.g., the frequent

relation sets (cf. Subsection 4.2.1), are not paying off over the long

run compared to the faster computable pruning sets used by FREQT

(Pruning). For variant-weighted support, cf. Figure 12, the VTM

outperforms FREQT directly. For Sepsis cases, cf. Figure 12a, one

can observe the impact of the rapid growth in frequent valid infixes

for low minimum support, cf. Subsection 6.2.1; the runtime of the

VTM rapidly increases, while FREQT times out.

6.2.3 Memory. To measure memory usage, we track the size of

the RMOs for each set of frequent subtrees of a given relative

support. Observe that both FREQT and VTM traverse the right-

most enumeration tree in a breadth-first manner. Consequently, the

RMOs for the trees of size 𝑘 are only needed when computing the

RMOs for the candidate subtree of size 𝑘+1. Thus after computing

the RMOs for the candidate subtrees of size 𝑘+1, the RMOs of

the frequent subtree of size 𝑘 can be deleted. As such, to get an

approximation of peak usage, i.e., the maximum number of entries

in the RMOs that need to be maintained, we sum the size of the

RMOs and take the maximum out of the sums for the different

sizes of frequent subtrees. As both versions of the FREQT algorithm

compute the identical frequent infix subtrees, we compare only the

FREQT Algorithm against the VTM. In Figure 13, we observe that

the VTM needs to maintain fewer RMO entries than the FREQT

algorithm. The lower memory usage is caused by the VTM being

able to prune invalid subtrees earlier instead of filtering them out

after the mining. Furthermore, the blow-up, cf. Subsection 6.2.1, in

the number of frequent valid subtrees for the Sepsis Cases event

log causes a increase in the number of RMO entries.

0.00.050.10.150.20.250.30.350.4
Relative Support

105

106

M
ax

im
al

 R
M

O
Si

ze

Trace Transaction Support

Algorithm
Valid Miner
FREQT

0.00.050.10.150.20.250.30.350.4
Relative Support

Variant Transaction Support

(a) Sepsis Cases event log

0.00.050.10.150.20.250.30.350.4
Relative Support

105

2 × 105

3 × 105

M
ax

im
al

 R
M

O
Si

ze

Trace Transaction Support

Algorithm
Valid Miner
FREQT

0.00.050.10.150.20.250.30.350.4
Relative Support

Variant Transaction Support

(b) BPI 2017 event log

Figure 13: Max RMO size comparison for different relative
minimum support values and support definitions for differ-
ent logs. Lower values indicate a lower memory footprint.

7 CONCLUSION
This paper addresses the problem of frequent infix mining from

concurrency variants. Infixes allow for visual analytics and other

down-stream application on large event logs in process mining. This

paper presented a novel algorithm for mining frequent infixes from

concurrency variants. The presented Valid Tree Miner algorithm
builds on the established field of frequent subtree mining [10] to

discover a new type of frequent subtrees called valid infix sub-

trees, representing infixes of concurrency variants. Furthermore,

we presented an example application scenario, i.e., incremental

process discovery, in which frequent infixes, as considered in this

paper, are used to learn a process model. We have fully implemen-

ted the proposed algorithm into an interactive process mining tool

called Cortado that allows visual exploration of the mined frequent

infixes. We evaluated the algorithm’s efficiency in terms of runtime

and memory usage. We compared it to a state-of-the-art algorithm

for mining frequent induced subtrees on real-world event logs. Our

results show runtime improvements of the proposed algorithm

compared to the state-of-the-art.

Future research regarding frequent infix mining could explore

other subtree definitions besides infix subtrees. The adherence to

sequential completeness and the tree structure in infix subtrees

causes behavioral patterns crossing multiple tree levels to be missed.

Embedded subtrees [10, 38] present a suitable alternative for this

task but are more computationally expensive to mine. Furthermore,

additional applications of the infix patterns are to be considered.

Foremost, infix patterns can be leveraged to cluster traces and

variants, a common task in process mining [27]. Similarly, they can

be used for prediction tasks in process mining [6, 9, 16].

REFERENCES
[1] Wil M. P. van der Aalst, Arya Adriansyah, Ana Karla Alves de Medeiros, Franco

Arcieri, Thomas Baier, Tobias Blickle, Jagadeesh Chandra Bose, Peter van den

Brand, Ronald Brandtjen, Joos Buijs, et al. 2011. Process mining manifesto.

In International conference on business process management. Springer, 169–194.

2677

https://doi.org/10.1007/978-3-642-28108-2_19

[2] Rakesh Agrawal and Ramakrishnan. Srikant. 1995. Mining sequential patterns.

In Proceedings of the Eleventh International Conference on Data Engineering. IEEE
Comput. Soc. Press, 3–14. https://doi.org/10.1109/ICDE.1995.380415

[3] Rakesh Agrawal, Ramakrishnan Srikant, et al. 1994. Fast algorithms for mining

association rules. In Proc. 20th Int. Conf. Very Large Data Bases, VLDB, Vol. 1215.
Santiago, Chile, 487–499. https://doi.org/10.5555/645920.672836

[4] Tatsuya Asai, Kenji Abe, Shinji Kawasoe, Hiroshi Sakamoto, Hiroki Arimura,

and Setsuo Arikawa. 2004. Efficient substructure discovery from large semi-

structured data. IEICE Transactions on Information and Systems 87, 12 (2004),
2754–2763. https://doi.org/10.1137/1.9781611972726.10

[5] Adriano Augusto, Raffaele Conforti, Marlon Dumas, Marcello La Rosa, Fab-

rizio Maria Maggi, Andrea Marrella, Massimo Mecella, and Allar Soo. 2019.

Automated Discovery of Process Models from Event Logs: Review and Bench-

mark. IEEE Transactions on Knowledge and Data Engineering 31, 4 (2019), 686–705.
https://doi.org/10.1109/TKDE.2018.2841877

[6] Kristof Böhmer and Stefanie Rinderle-Ma. 2020. LoGo: combining local and global

techniques for predictive business process monitoring. In Advanced Information
Systems Engineering: 32nd International Conference, CAiSE 2020, Grenoble, France,
June 8–12, 2020, Proceedings 32. Springer, Springer, Cham, 283–298. https:

//doi.org/10.1007/978-3-030-49435-3_18

[7] R. P. Jagadeesh Chandra Bose andWil M. P. van der Aalst. 2009. Trace Clustering

Based on Conserved Patterns: Towards Achieving Better Process Models.. In

Business Process Management Workshops, Vol. 43. Springer, 170–181. https:

//doi.org/10.1007/978-3-642-12186-9_16

[8] Josep Carmona, Boudewijn F. van Dongen, Andreas Solti, and Matthias Weidlich.

2018. Conformance Checking. Springer. https://doi.org/10.1007/978-3-319-99414-

7

[9] Michelangelo Ceci, Pasqua Fabiana Lanotte, Fabio Fumarola, Dario Pietro Cavallo,

and Donato Malerba. 2014. Completion time and next activity prediction of

processes using sequential pattern mining. InDiscovery Science: 17th International
Conference, DS 2014, Bled, Slovenia, October 8-10, 2014. Proceedings 17. Springer,
Springer, Cham, 49–61. https://doi.org/10.1007/978-3-319-11812-3_5

[10] Yun Chi, Richard R. Muntz, Siegfried Nijssen, and Joost N. Kok. 2005. Frequent

subtree mining - An overview. Fundamenta Informaticae 66, 1-2 (2005), 161–198.
https://doi.org/10.5555/1227174.1227182

[11] Yun Chi, Yi Xia, Yirong Yang, and Richard R. Muntz. 2005. Mining closed

and maximal frequent subtrees from databases of labeled rooted trees. IEEE
Transactions on Knowledge and Data Engineering 17, 2 (2005), 190–202. https:

//doi.org/10.1109/TKDE.2005.30

[12] Yun Chi, Yirong Yang, and Richard R. Muntz. 2005. Canonical forms for labelled

trees and their applications in frequent subtree mining. Knowledge and informa-
tion systems 8 (2005), 203–234. https://doi.org/10.1007/s10115-004-0180-7

[13] Remco Dijkman, Juntao Gao, Alifah Syamsiyah, Boudewijn F. van Dongen, Paul

Grefen, and Arthur ter Hofstede. 2020. Enabling efficient process mining on

large data sets: realizing an in-database process mining operator. Distributed
and Parallel Databases 38, 1 (2020), 227–253. https://doi.org/10.1007/s10619-019-

07270-1

[14] Felix Mannhardt. 2016. Sepsis Cases - Event Log. https://doi.org/10.4121/uuid:

915d2bfb-7e84-49ad-a286-dc35f063a460

[15] Peter C Fishburn. 1970. Intransitive indifference with unequal indifference

intervals. Journal of Mathematical Psychology 7, 1 (1970), 144–149. https:

//doi.org/10.1007/978-3-319-19069-3_19

[16] Philippe Fournier-Viger, Ted Gueniche, and Vincent S. Tseng. 2012. Using

partially-ordered sequential rules to generate more accurate sequence prediction.

In Advanced Data Mining and Applications: 8th International Conference, ADMA
2012, Nanjing, China, December 15-18, 2012. Proceedings 8. Springer, Springer,
Berlin, Heidelberg, 431–442. https://doi.org/10.1007/978-3-642-35527-1_36

[17] Shohei Hido andHiroyuki Kawano. 2005. AMIOT: induced ordered tree mining in

tree-structured databases. In Fifth IEEE International Conference on Data Mining
(ICDM’05). IEEE, IEEE, 8–17. https://doi.org/10.1109/ICDM.2005.20

[18] Chuntao Jiang, Frans Coenen, and Michele Zito. 2013. A survey of frequent

subgraph mining algorithms. The Knowledge Engineering Review 28, 1 (2013),

75–105. https://doi.org/10.1016/j.procs.2015.03.198

[19] Sander J. J. Leemans, Sebastiaan J. van Zelst, and Xixi Lu. 2023. Partial-order-

based process mining: a survey and outlook. Knowledge and Information Systems
65, 1 (2023), 1–29. https://doi.org/10.1007/s10115-022-01777-3

[20] Jing Lu, Weiru Chen, Osei Adjei, and Malcolm Keech. 2008. Sequential patterns

postprocessing for structural relation patterns mining. International Journal of
Data Warehousing and Mining (IJDWM) 4, 3 (2008), 71–89. https://doi.org/10.

4018/978-1-61520-969-9.ch049

[21] Heikki Mannila, Hannu Toivonen, and A Inkeri Verkamo. 1997. Discovery of

frequent episodes in event sequences. Data mining and knowledge discovery 1, 3

(1997), 259–289. https://doi.org/10.1023/A:1009748302351

[22] Lars Reinkemeyer. 2020. Process Mining in Action. Springer. https://doi.org/10.

1007/978-3-030-40172-6

[23] Daniel Schuster, Niklas Föcking, Sebastiaan J van Zelst, and Wil M. P. van der

Aalst. 2022. Conformance Checking for Trace Fragments Using Infix and Postfix

Alignments. In International Conference on Cooperative Information Systems.
Springer, Springer, Cham, 299–310. https://doi.org/10.1007/978-3-031-17834-

4_18

[24] Daniel Schuster, Lukas Schade, Sebastiaan J. van Zelst, andWilM. P. van der Aalst.

2022. Visualizing Trace Variants from Partially Ordered Event Data. In Process
MiningWorkshops. LNBIP, Vol. 433. Springer, 34–46. https://doi.org/10.1007/978-

3-030-98581-3_3

[25] Daniel Schuster, Sebastiaan J. van Zelst, and Wil M. P. van der Aalst. 2022.

Utilizing domain knowledge in data-driven process discovery: A literature review.

Computers in Industry 137 (2022), 103612. https://doi.org/10.1016/j.compind.

2022.103612

[26] Daniel Schuster, Sebastiaan J. van Zelst, and Wil M. P. van der Aalst. 2023.

Cortado: A dedicated process mining tool for interactive process discovery.

SoftwareX 22 (2023), 101373. https://doi.org/10.1016/j.softx.2023.101373

[27] Minseok Song, Christian W Günther, and Wil M. P. van der Aalst. 2008. Trace

clustering in process mining. In International conference on business process
management. Springer, Springer, Berlin, Heidelberg, 109–120. https://doi.org/10.

1007/978-3-642-12186-9_16

[28] Henry Tan, Tharam S. Dillon, Fedja Hadzic, Elizabeth Chang, and Ling Feng.

2006. IMB3-Miner: Mining Induced/Embedded subtrees by constraining the

level of embedding. In Pacific-Asia Conference on Knowledge Discovery and Data
Mining. Springer, Springer, Berlin, Heidelberg, 450–461. https://doi.org/10.1007/

11731139_52

[29] Shirish Tatikonda, Srinivasan Parthasarathy, and Tahsin Kurc. 2006. TRIPS and

TIDES: new algorithms for tree mining. In Proceedings of the 15th ACM interna-
tional conference on Information and knowledge management. ACM, Association

for Computing Machinery, 455–464. https://doi.org/10.1145/1183614.1183680

[30] Niek Tax, Natalia Sidorova, Reinder Haakma, and Wil M. P. van der Aalst. 2016.

Mining local process models. Journal of Innovation in Digital Ecosystems 3, 2
(2016), 183–196. https://doi.org/10.1016/j.jides.2016.11.001

[31] Wil M. P. van der Aalst. 2016. Process Mining: Data Science in Action. Springer.
https://doi.org/10.1007/978-3-662-49851-4

[32] Wil M. P. van der Aalst. 2020. On the Pareto Principle in Process Mining, Task

Mining, and Robotic Process Automation.. In Proceedings of the 9th Interna-
tional Conference on Data Science, Technology and Applications - DATA. INSTICC,
SciTePress, 5–12. https://doi.org/10.5220/0009979200050012

[33] Boudewijn F. van Dongen. 2012. BPI Challenge 2012 - Event Log. https:

//doi.org/10.4121/uuid:3926db30-f712-4394-aebc-75976070e91f

[34] Boudewijn F. van Dongen. 2017. BPI Challenge 2017 - Event Log. https:

//doi.org/10.4121/uuid:5f3067df-f10b-45da-b98b-86ae4c7a310b

[35] Boudewijn F. van Dongen. 2020. BPI Challenge 2020 - Event Log. https:

//doi.org/10.4121/uuid:52fb97d4-4588-43c9-9d04-3604d4613b51

[36] Maikel L. van Eck, Xixi Lu, Sander J. J. Leemans, andWil M. P. van der Aalst. 2015.

PM
2
: A Process Mining Project Methodology. In Advanced Information Systems

Engineering. LNCS, Vol. 9097. Springer, 297–313. https://doi.org/10.1007/978-3-

319-19069-3_19

[37] Yongqiao Xiao and J-F Yao. 2003. Efficient data mining for maximal frequent

subtrees. In Third IEEE International Conference on Data Mining. IEEE, IEEE,
379–386. https://doi.org/10.1109/ICDM.2003.1250943

[38] Mohammed J. Zaki. 2002. Efficiently mining frequent trees in a forest. In Proceed-
ings of the eighth ACM SIGKDD international conference on Knowledge discovery
and data mining. IEEE, 71–80. https://doi.org/10.1109/TKDE.2005.125

[39] Fareed Zandkarimi, Jana-Rebecca Rehse, Pouya Soudmand, and Hartmut Hoehle.

2020. A generic framework for trace clustering in process mining. In 2020 2nd
International Conference on Process Mining (ICPM). IEEE, IEEE, Padova, 177–184.
https://doi.org/10.1109/ICPM49681.2020.00034

