
Revisiting the Alpha Algorithm To Enable
Real-Life Process Discovery Applications –

Extended Report

Aaron Küsters[0009−0006−9195−5380], Wil M.P. van der Aalst[0000−0002−0955−6940]

Process and Data Science (PADS), RWTH Aachen University, Germany
kuesters@pads.rwth-aachen.de

wvdaalst@pads.rwth-aachen.de

Abstract. The Alpha algorithm was the first process discovery algo-
rithm that was able to discover process models with concurrency based
on incomplete event data while still providing formal guarantees. How-
ever, as was stated in the original paper, practical applicability is limited
when dealing with exceptional behavior and processes that cannot be
described as a structured workflow net without short loops. This paper
presents the Alpha+++ algorithm that overcomes many of these limita-
tions, making the algorithm competitive with more recent process mining
approaches. The different steps provide insights into the practical chal-
lenges of learning process models with concurrency, choices, sequences,
loops, and skipping from event data. The approach was implemented in
ProM and tested on various publicly available, real-life event logs.

Keywords: Process Discovery · Process Mining · Process Models · Petri
Nets

1 Introduction

The original Alpha algorithm was developed over twenty years ago [1,3]. The goal
of the algorithm was to show the challenges related to discovering process models
with concurrency from example traces. It was formally proven that, a process
modeled as a structured workflow net without short loops, can be rediscovered
from an event log that is directly-follows complete [3]. Despite this remarkable
theoretical result, the Alpha algorithm has limited practical relevance for two
main reasons:

– The original algorithm did not attempt to filter out infrequent behavior.
Since exceptional behavior is not separated from frequent behavior, it is
generally impossible to uncover structure from real-life event logs.

– The original algorithm assumed that the process can be modeled as a free-
choice Petri net with unique visible activity labels. Most real-life processes
can not be modeled as a structured workflow net without short loops and
unique visible labels.

ar
X

iv
:2

30
5.

17
76

7v
2

 [
cs

.D
B

]
 3

 O
ct

 2
02

3

mailto:kuesters@pads.rwth-aachen.de
mailto:wvdaalst@pads.rwth-aachen.de

2 Aaron Küsters, Wil van der Aalst

These limitations were already acknowledged in the papers proposing the al-
gorithm, e.g., the focus of [3] was on showing the theoretical limits of process
discovery based on directly-follows complete event logs. Many of the later pro-
cess discovery approaches use these insights. Various extensions of the Alpha
algorithm have been proposed, e.g., [18] extends the core algorithm to deal with
long-term dependencies, and [19] extends the core algorithm to deal with invis-
ible activities (e.g., skipping). Region-based process-discovery approaches pro-
vide formal guarantees. State-based regions were introduced by Ehrenfeucht and
Rozenberg [9] in 1989 and generalized by Cortadella et al. [7]. In [2], it is shown
how these state-based regions can be applied to process mining by first creating
a log-based automaton using different abstractions. In [6,14], refinements are
proposed to tailor state-based regions toward process discovery. Language-based
regions work directly on traces without creating an automaton first; see, for
example, the approaches presented in [5,20,21].

Variants of the Alpha algorithm and the region-based approaches have prob-
lems dealing with infrequent behavior and are rarely used in practice. The region-
based approaches are also infeasible for larger models and logs. Approaches such
as the eST-Miner [12] and the different variants of the inductive miner [10,11] aim
to provide formal guarantees but can also handle infrequent behavior. Variants
of the inductive miner have also been implemented in various commercial sys-
tems (e.g., Celonis). The so-called split-miner uses a combination of approaches
to balance recall and precision [4].

The goal of this paper is to go back to the original ideas used by the Alpha
algorithm and make the algorithm work in practical settings. The result is the
Alpha+++ algorithm, which, not only extends the core algorithm, but also re-
moves problematic noisy activities, adds invisible activities, repairs loops, and
post-processes the resulting Petri net. The approach uses a broad combination
of novel ideas, making the Alpha algorithm competitive when compared with
the state-of-the-art. The ideas incorporated in the Alpha+++ algorithm may
also be used in combination with other approaches (e.g., identifying problematic
activities and introducing artificially created invisible activities).

The remainder of this paper is organized as follows. Section 2 introduces
event logs, directly-follows graphs, and the original Alpha algorithm. Section 3
describes the Alpha+++ algorithm. The algorithm has been implemented in
ProM (cf. Section 4) and evaluated using various event logs (cf. Section 5).
Section 6 concludes the paper.

2 Preliminaries

2.1 Event Logs

Process mining starts from event data. An event may have many different at-
tributes. However, here we focus on discovering the control flow and assume that
each event has a case attribute, an activity attribute, and a timestamp attribute.
We only use the timestamps to order events related to the same case. Therefore,

Revisiting the Alpha Algorithm 3

each case can be described as a sequence of activities, also called trace. An event
log is a multiset of traces, as different cases can exhibit the same trace.

Definition 1 (Event Log). Uact is the universe of activity names. A trace
σ = ⟨a1, a2, . . . , an⟩ ∈ Uact

∗ is a sequence of activities. An event log L ∈ B(Uact
∗)

is a multiset of traces.

For example, L1 = [⟨a, b, c, d⟩400, ⟨a, b, d⟩250, ⟨d, a, b, c⟩4, ⟨d, a, b⟩2] is an event
log containing 656 cases with 4 different variants. Variant ⟨a, b, c, d⟩ is the most
frequent one, i.e., L1(⟨a, b, c, d⟩) = 400.

We write actMult(L) = [σ(i) | σ ∈ L ∧ 1 ≤ i ≤ |σ|] for the multiset of ac-
tivities in an event log L and act(L) = {a | a ∈ actMult(L)} for the set of
activities.

2.2 Directly-Follows Graphs

A Directly-Follows Graph (DFG) is a graph showing how often one activity is
followed by another. A DFG consists of the activities as nodes and has an arc
from an activity a ∈ Uact to an activity b ∈ Uact if a is directly followed by b. Two
special nodes, corresponding to a start and an end node, are added additionally.

Definition 2 (Directly-Follows Graph). A Directly-Follows Graph (DFG)
is a pair G = (A, G=⇒), where A ⊆ Uact is a set of activities and G=⇒ ∈ B((A ×
A) ∪ ({▶} × A) ∪ (A × {■}) ∪ ({▶} × {■})) is a multiset of arcs. ▶ is the start
node and ■ is the end node.

Note that a DFG has arc weights. Hence, G=⇒ is a multiset, where G=⇒(a, b)
denotes how often a is followed by b. We write a G=⇒ b if and only if G=⇒(a, b) > 0
holds. Similarly, we say that a G==⇒

≥t
b holds if and only if G=⇒(a, b) ≥ t.

The construction of a DFG from an event log is straightforward.

Definition 3 (Constructing DFGs from Event Logs). Let L ∈ B(Uact
∗)

be an event log. We can construct a DFG discdfg(L) = (A, L=⇒) based on the
directly-follows relations of event log L, with the set of activities A = {a ∈ σ |
σ ∈ L} and the multiset of arcs L=⇒ = [(σi, σi+1) | σ ∈ L′ ∧ 1 ≤ i < |σ|] , where
L′ = [⟨▶⟩ · σ · ⟨■⟩ | σ ∈ L] denotes the event log where artificial start and end
activities have been added.

Given an event log L, we can construct a DFG discdfg(L) = (A, L=⇒), and in
the context of L refer to the directly-follows relations in L represented by L=⇒
directly.

2.3 Petri Nets

We would like to discover process models which can represent more complex
control-flow structures, like choices, loops, and concurrency. Therefore, we use
labeled Petri nets as a target format for process discovery. The reader is assumed
to be familiar with the Petri net basics.

4 Aaron Küsters, Wil van der Aalst

(a) Basic DFG constructed from event
log L1.

(b) Weighted DFG for event log L1

with annotated frequencies of the
directly-follows relations and activities.

Fig. 1: Example DFGs for event log L1.

Definition 4 (Labeled Petri Net). A labeled Petri net is a tuple N = (P, T, F, l)
with a set of places P , a set of transitions T (where T ∩P = ∅), a flow relation,
F ⊆ (P ×T)∪ (T ×P), and a labeling function l ∈ T ̸→ Uact . We write l(t) = τ
if t ∈ T \ dom(l) (i.e., t is a silent transition that cannot be observed).

A marking is represented by a multiset of places M ∈ B(P). For a node
x ∈ P ∪ T , we define the preset of x as •x = {y ∈ P ∪ T | (y, x) ∈ F} and the
postset of x as x• = {y ∈ P ∪ T | (x, y) ∈ F}. We focus on so-called accepting
Petri nets, i.e., Petri nets with a defined initial and final state.

Definition 5 (Accepting Petri Net). An accepting Petri net is a triplet
AN = (N,Minit ,Mfinal) where N = (P, T, F, l) is a labeled Petri net, Minit ∈
B(P) is the initial marking, and Mfinal ∈ B(P) is the final marking. UAN is the
set of accepting Petri nets.

The language defined by an accepting Petri net is then simply given by
the set of traces corresponding to all firing sequences that start in the initial
marking Minit and end in the final marking Mfinal. A firing sequence leading
from Minit to Mfinal is converted into a trace, i.e., a sequence of activities.
Note that transitions that fire are mapped onto the corresponding activities. If
a transition t is silent (i.e., l(t) = τ), no corresponding activity is created when
firing t. Hence, the language of an accepting Petri net is a set of traces.

Revisiting the Alpha Algorithm 5

2.4 Alpha Algorithm

A process discovery algorithm aims to discover a model from event data such
that the language of the model best characterizes the example behavior seen in
the event log.

Definition 6 (Process Discovery Algorithm). A process discovery algo-
rithm is a function disc ∈ B(Uact

∗) → UAN , i.e., based on a multiset of traces,
an accepting Petri net is discovered.

The classical Alpha process discovery algorithm was introduced in [3]. To
be able to better explain the extensions presented in this paper, we split the
description into three main parts. From an input event log L, place candidates
are constructed based on the directly-follows relations of the log. The resulting
set of place candidates is pruned to remove dominated candidates. Finally, the
discovered Petri net is constructed.

Candidate Building

Cnd = {(A,B) | ∅ ⊊ A,B ⊆ act(L) ∧ ∀a∈A∀b∈B(a
L=⇒ b)

∧ ∀a,a′∈A(a
L
=⧸⇒ a′) ∧ ∀b,b′∈B(b

L
=⧸⇒ b′)}

Candidate Pruning

Sel = {(A1, A2) ∈ Cnd | ∀(A′
1,A

′
2)∈Cnd ((A1 ⊆ A′

1 ∧A2 ⊆ A′
2)

⇒ (A1, A2) = (A′
1, A

′
2))}

Petri Net Construction Let PN = ((P, T, F, l),Minit,Mfinal), where:
– P = {p(A,B) | (A,B) ∈ Sel} ∪ {iW , oW }
– T = {ta | a ∈ act(L)}
– F = {(ta, p(A,B)) | (A,B) ∈ Sel ∧ a ∈ A} ∪ {(p(A,B), tb) | (A,B) ∈ Sel

∧ b ∈ B} ∪ {(iW , ts) | ∃σ ⟨s⟩ · σ ∈ L} ∪ {(te, oW) | ∃σ σ · ⟨e⟩ ∈ L}
– l = {(ta, a) | a ∈ act(L)}
– Minit = [iW]
– Mfinal = [oW]

3 Alpha+++

In this section, we introduce the Alpha+++ process discovery algorithm based
on the classical Alpha algorithm. Through certain pre-processing steps on the
event log and a corresponding DFG, as well as fitness-based place filtering, this
algorithm is especially well suited for real-life event logs.

The input for this process discovery algorithm is an event log L. In particular,
only ordered traces of activities with corresponding frequencies are required.
For the main steps of the algorithm, a DFG based on the event log L is used
exclusively. Traces of the event log are only used for replay to remove unfitting
place candidates. For simplicity, we assume that the traces of L already include
artificial start and end activities, in particular, we assume {▶,■} ⊆ act(L).

We introduce the steps of the algorithm in the following order:

6 Aaron Küsters, Wil van der Aalst

1. Determine Activities, where the set of activities used throughout the algo-
rithm is determined. Problematic activities are removed from the event log
and artificial activities are added, resulting in a repaired event log L̂.

2. Create an Advising DFG, where an advising DFG is constructed based on
the DFG corresponding to the repaired log L̂, retaining only some of the
original DFG edges.

3. Candidate Building, where a set of place candidates is built based on the
directly-follows relation of the activities.

4. Candidate Pruning, where through efficient multistep filtering unfit or un-
desirable place candidates are discarded.

5. Petri Net Construction, where a Petri net is constructed based on the activ-
ities of the event log, the added artificial activities and the remaining place
candidates.

6. Post-Processing Petri Net, where the repaired event log is replayed on the
Petri net to remove problematic places.

3.1 Determine Activities

First, we determine the set of activities used in the later steps. Initially, start-
ing with the set of activities occurring in the log, we first remove problematic
activities that can cause issues with discovering place candidates later on. Next,
we also add artificial activities to allow discovery of place candidates for certain
loop and skip constructs.

Removing Problematic Activities Problematic activities can significantly
alter the directly-follows relations of an event log, which are used in the later
steps to identify place candidates. In the most extreme case, if a problematic
activity randomly occurs between any other two activities in all traces, all the
directly-follows information between two other activities would be lost.

We select a subset AL ⊆ act(L) of activities to keep and remove the other
problematic activities act(L) \AL. There are many possible approaches to iden-
tifying problematic activities, such as calculating a problem-score per activity
and considering all values above a certain threshold as problematic. For instance,
for a simple problem-score, the fraction of directly-follows relation involving an
activity which are parallel, i.e., also occur in the opposite direction, could be
considered. This would, for example, allow to correctly identify the problem in
the aforementioned extreme case.

Adding Artificial Activities Discovering Petri net constructs involving silent
transitions is a non-trivial task for a DFG-based algorithm. Additionally, in
later steps, we want to use traces from the log to assess the fitness of place
candidates. Silent activities make calculating fitness scores significantly harder,
as then token-based replay is no longer sufficient and computationally expensive
alignments have to be computed. As a solution, we propose adding artificial
activities to traces. They are not part of the activity set of the event log and

Revisiting the Alpha Algorithm 7

Fig. 2: Two event logs (traces shown on the left) and their DFGs. In the first
event log (L⟲) the directly-follows relation between ▶ and a is the same as
between c and a. This causes issues, as the corresponding place candidates all
have very low fitness. The added artificial activity τ inserted between the looped
sequence ⟨a, b, c⟩ solves this problem, as the problematic directly-follows relation
between c and a is replaced.

are only used to find and evaluate place candidates. In the final discovered Petri
net, these artificial activities are then translated as silent transitions. This allows
discovering Petri nets with silent transitions, while still retaining the advantages
of token-based replay fitness evaluation during the algorithm steps. We add
artificial activities for two types of constructs: Loops and Skips.

Adding artificial activities for loops is necessary, as the directly-follows rela-
tion between an end activity and a start activity of a loop can cause the discov-
ery of problematic places. For example, consider the event log L⟲ = [⟨a, b, c, d⟩,
⟨a, b, c, a, b, c, d⟩]. Clearly, this event log can be nicely expressed by a Petri net
containing a loop construct, which allows repeating the activities a, b, c. However,
the directly-follows relation c L⟲==⇒ a prevents discovering this loop accurately, as
shown in Figure 2.

We detect loop constructs based on the directly-follows relations of the input
event log L. For a given threshold d ∈ R+, we can define the set of detected
loops:

Definition 7 (Detected Loops). Let loops be the function that maps an event
log to the set of detected loop start and end activities.

loops(L) = {(b, a) ∈ act(L)× act(L) | ∃(x1,...,xk)∈act(L)∗,i∈{1,...,k}(xi = a

∧ ∀i∈{1,...,k−1}(xi
L==⇒
≥d

xi+1)

∧ xk
L==⇒
≥d

b ∧ b L==⇒
≥d

a)}

The parameter d determines the minimal DFG edge weight to consider when
looking for loops. For example, with a threshold d=1 and the event log L⟲, we
can calculate loops(L⟲) = {(c, a)}. As loop constructs can make a process model

8 Aaron Küsters, Wil van der Aalst

very imprecise, we do not want to falsely detect loop behavior from rather infre-
quent directly-follows relations. For convenience, we can also consider threshold
values d relative to the mean directly-follows weight.

For each detected loop endpoint pair (b, a) ∈ loops(L), we want to add an
artificial activity loopb,a ̸∈ act(L). We write Aloop = {loopb,a | (b, a) ∈ loops(L)}
to denote the set of added artificial loop activities. Additionally, we define a
transformation function which transforms a trace σ ∈ L to a trace σ′ ∈ (AL ∪
Aloop)

∗.

Definition 8 (Loop Repair Function). Let repair⟲ be the function that trans-
forms a trace σ into a repaired trace with added artificial loop activities.

repair⟲(σ, L) =


⟨b, loopb,a, a⟩ · repair⟲(σ′, L) if ∃(b,a)∈loops(L)σ = ⟨b, a⟩ · σ′

⟨⟩ if σ = ⟨⟩
⟨x⟩ · repair⟲(σ′, L) otherwise,with σ = ⟨x⟩ · σ′

This function will be later used to transform the input event log L into a repaired
event log, in which artificial activities have been added to relevant traces.

Next, we describe how artificial activities can assist in correctly discovering
activity Skips, as shown in Figure 3.

Fig. 3: Two event logs and their DFGs showcasing the motivation for repairing
implicit skips. The directly-follows relation between a and d would suggest con-
sidering place candidates with poor fitness. The second log, where an artificial
activity τ is inserted where b and c are skipped, mitigates this problem by re-
placing the directly-follows relation between a and d.

For a directly-follows-weight threshold d ∈ R+, the detected skips for event
log L are defined by the following function, which provides the set of activities
that have been detected as being “skippable” after an activity a ∈ (AL ∪Aloop).

skips(a, L) = {b ∈ act(L) | a L=⇒ b ∧ a
L
=⧸⇒ a ∧ b

L
=⧸⇒
≥d

a ∧ b
L

=⧸⇒
≥d

b ∧ a, b ̸∈ {▶,■}

∧ ∅ ⊊ {x ∈ act(L) | b L==⇒
≥d

x} ⊆ {x ∈ act(L) | a L==⇒
≥d

x}}

Revisiting the Alpha Algorithm 9

If B ∈ skips(a, L) we assume that all activities b ∈ B are optional steps after
a. To allow appropriate model discovery in the rest of the algorithm, the log is
repaired using a new artificial activity skipa,B ̸∈ act(L). The set of all artificial
skip activities is denoted by Askip. This artificial skip activity is inserted every-
where in a trace σ of L, where activity a is not directly followed by an activity
b ∈ B in σ (i.e., b was skipped). For that, we define the following transformation
function:

repairτ (σ, L) =


⟨⟩ if σ = ⟨⟩
⟨x⟩ · repairτ (σ′, L) if σ = ⟨x⟩ · σ′ ∧ skips(x, L) = ∅
⟨a, skipa,B⟩ · repairτ (⟨x⟩ · σ′, L) if σ = ⟨a, x⟩ · σ′ ∧ x ̸∈ skips(a, L)

⟨a, x⟩ · repairτ (σ′, L) if σ = ⟨a, x⟩ · σ′ ∧ x ∈ skips(a, L)

We can now construct a repaired event log L̂ from the input event log L based
on the previously identified set of detected loops loops(L) and skips skips(L). For
that, we use their corresponding artificial activity set Aloop and Askip as well
as their corresponding trace transformation functions repair⟲ and repairτ to

transform the input event log L into a repaired event log L̂. Note that act(L̂) =
(AL ∪̇ Aloop ∪̇ Askip).

L̂ = [repairτ
(
repair⟲(σ, L↾AL), L↾AL

)
| σ ∈ L↾AL]

3.2 Create an Advising DFG

Next, we extract a pruned DFG from the repaired event log L̂, which ignores
infrequent directly-follows relations. This DFG is used as guidance using the
following algorithm steps. Note that this step does not modify the repaired
event log: The output of this step is a pruned DFG containing the activities
act(L̂) as nodes. Edges between activities a and b are retained if their weight
corresponds to at least 1% of the sum of the weights of all incoming edges to b
or 1% of the sum of all outgoing edges from a. The value of 1% was determined
as a good cutoff through experimentation. In addition, edges with weights below
an absolute threshold value n ∈ N0 are also removed.

For the repaired event log L̂ and a given DFG-weight threshold n ∈ N0, we
define the advising DFG (abbreviated as aDFG) as follows:

minW (a, b) = 0.01 ·min

{ ∑
c∈act(L̂)

L̂=⇒(c, b),
∑

c∈act(L̂)

L̂=⇒(a, c)

}

aDFG =

(
act(L̂),

[
(a, b) ∈ act(L̂)2

∣∣∣∣ L̂=⇒(a, b) ≥ max {n,minW (a, b)}
])

3.3 Candidate Building

With the repaired event log and the aDFG, we can continue with building place
candidates. Place candidates are composed of two sets of activities: The first set

10 Aaron Küsters, Wil van der Aalst

corresponds to the transitions that should add a token to this place in a Petri
net. The second set corresponds to transitions that should remove a token from
this place.

The set of all place candidates is given by:

Cnd0 = {(A1, A2) | A1, A2 ⊆ act(L̂) ∧ ∀a1∈A1
∀a2∈A2

(a1
aDFG===⇒ a2)

∧ ∀a1∈A1
∀a2∈A1\A2

(a1
aDFG
==⧸=⇒ a2)

∧ ∀a1∈A2\A1
∀a2∈A2

(a1
aDFG
==⧸=⇒ a2)

∧ ∃a1∈A1\A2
∃a2∈A2\A1

(a2
aDFG
==⧸=⇒ a1)}

3.4 Candidate Pruning

The set of place candidates Cnd0 includes many unfit places, which would pro-
duce process models with very low fitness. Furthermore, some place candidates
might be dominated by others (e.g., the place candidate ({a}, {f}) is dominated
by the candidate ({a, b}, {e, f})). Pruning the set of place candidates requires
an efficient approach, as the number of place candidates can easily grow huge.
We propose a three-step pruning approach. First, place candidates are filtered
purely based on activity counts. If the difference in frequency of the input and
output activity set is relatively large, the place candidate is rather unfit. This
condition can be checked very efficiently. Next, the local fitness of the place
candidate is calculated based on local trace replay. Local trace replay takes the
order of the activities in the traces into account, and thus can detect even more
unfit place candidates. Finally, to remove dominated place candidates, we retain
only maximal place candidates.

Balance-based Pruning: For the balance-based pruning, we consider the num-
ber of activity occurrences in the log L̂ using actMult(L̂). For a set of activ-
ities, A ⊆ act(L̂) we can then sum the frequencies together as count(L̂, A) =∑

a∈A actMult(L̂)(a). Based on that, we define the balance of a candidate (A1, A2):

balance(L̂, A1, A2) =
|count(L̂, A1)− count(L̂, A2)|

max{count(L̂, A1), count(L̂, A2)}

The balance of a candidate is between 0 and 1. Higher values are an indica-
tion that the place candidate is unfit. Based on a balance threshold b ∈ [0, 1],
candidates with a higher balance value than b can be filtered out:

Cnd1 = {(A1, A2) ∈ Cnd0 | balance(L̂, A1, A2) ≤ b}

Revisiting the Alpha Algorithm 11

Fitness-based Pruning: Let fit(σ, (A1, A2), k) be defined as follows:

fit(σ, (A1, A2), k) =



1 if σ = ⟨⟩, k = 0

0 if σ = ⟨⟩, k ̸= 0

0 if σ = ⟨a⟩ · σ′, k = 0, a ̸∈ A1, a ∈ A2

fit(σ′, (A1, A2), k + 1) if σ = ⟨a⟩ · σ′, a ∈ A1, a ̸∈ A2

fit(σ′, (A1, A2), k − 1) if σ = ⟨a⟩ · σ′, k ≥ 1, a ̸∈ A1, a ∈ A2

fit(σ′, (A1, A2), k) if σ = ⟨a⟩ · σ′, (a ∈ A1 ∩A2 ∨ a ̸∈ A1 ∪A2)

Note that fit(σ, (A1, A2), 0) = 1 if the place candidate (A1, A2) fits the trace;
otherwise it takes the value 0.

The traces relevant for a place candidate (A1, A2) are defined by the following
function:

rel(A1, A2) =
[
σ = ⟨a1, . . . , an⟩ ∈ L̂ | ∃i∈{1,...,n}(ai ∈ A1 ∨ ai ∈ A2)

]
We consider traces relevant for a place candidate, if they contain at least one
activity that is in the set of outgoing or ingoing activities of that place candidate.
For a single activity, we use the notation rel(a) := rel({a}, ∅) to denote the traces
containing that activity.

We write fit(σ, (A1, A2)) := fit(σ, (A1, A2), 0) and

fit(L̂, (A1, A2)) :=
∑

σ∈rel(A1,A2)

fit(σ, (A1, A2))

for ease of notation.
For a given local candidate fitness threshold t ∈ [0, 1], the candidates remain-

ing after the local fitness replay pruning are then given as:

mfit(A1, A2) = min

{∑
σ∈rel(a) fit(σ, (A1, A2))

|rel(a)|

∣∣∣∣ a ∈ A1 ∪A2

}

Cnd2 =

{
(A1, A2) ∈ Cnd1

∣∣∣∣ fit(L̂, (A1, A2))

|rel(A1, A2)|
≥ t ∧mfit(A1, A2) ≥ t

}

Maximal Candidate Selection: Finally, as the last candidate pruning step,
all dominated place candidates are removed, just like in the original Alpha al-
gorithm.

Sel = {(A1, A2) ∈ Cnd2 | ∀(A′
1,A

′
2)∈Cnd2

((A1 ⊆ A′
1 ∧A2 ⊆ A′

2)

⇒ (A1, A2) = (A′
1, A

′
2))}

3.5 Petri Net Construction

Based on the remaining place candidates, an accepting Petri net is constructed
as the tuple ((P, T, F, l),Minit,Mfinal), where

12 Aaron Küsters, Wil van der Aalst

– P = {p(A1,A2) | (A1, A2) ∈ Sel}
– T = {ta | a ∈ act(L̂) \ {▶,■}}
– F = {(ta, p(A1,A2)) | (A1, A2) ∈ Sel ∧ a ∈ A1 \ {▶,■}} ∪ {(p(A1,A2), ta) |

(A1, A2) ∈ Sel ∧ a ∈ A2 \ {▶,■}}
– l = {(ta, a) | a ∈ AL} ∪ {(ta, τ) | a ∈ (Aloop ∪ Askip}
– Minit =

[
p(A1,A2) ∈ P | ▶ ∈ A1

]
– Mfinal =

[
p(A1,A2) ∈ P | ■ ∈ A2

]
are the components defined using the results of the previous steps.

3.6 Post-Processing Petri Net

Let replay(p, PN, σ) be the replay function, which takes the value 1 exactly when
the place p of the Petri net PN can replay trace σ (i.e., there is no missing or
remaining token in p at any time when replaying σ on PN).

For a given local place replay fitness threshold r ∈ [0, 1], we can then define
the result of the post-process replay as ((P ′, T, F ′, l),M ′

init,M
′
final), where the

set of updated places P ′ is given by:

P ′ =

{
p(A1,A2) | (A1, A2) ∈ Sel ∧

∑
σ∈rel(A1,A2)

replay(p, PN, σ)

|rel(A1, A2)|
≥ r

}

The flow relation and initial and final markings are also updated correspondingly:

– F ′ = {(i, o) ∈ F | i ∈ P ′ ∧ o ∈ P ′}
– M ′

init = [p ∈ Minit | p ∈ P ′]
– M ′

final = [p ∈ Mfinal | p ∈ P ′]

Note, that this post-processing uses a similar local fitness measure as the
fitness-based pruning presented in section 3.4. One key difference is the handling
of self-loops (where the post-processing replay is more restrictive). Another as-
pect to consider is that the candidate fitness pruning occurs before deleting dom-
inated place candidates, while the post-processing fitness replay occurs after this
pruning. In particular, choosing more aggressive filtering in the post-processing
can lead to a decrease in places and an increase in disconnected transitions,
which is often undesirable.

The final accepting Petri net discovered is ((P ′, T, F ′, l),M ′
init,M

′
final).

4 Implementation

We implemented the Alpha+++ algorithm as a ProM1 plugin (Java) and also
created a Python implementation2 for large-scale evaluation on a variety of real-
life event logs. The ProM plugin (AlphaRevisitExperiments3) can be installed

1 https://promtools.org/
2 https://github.com/aarkue/alpha-revisit-python
3 https://svn.win.tue.nl/repos/prom/Packages/AlphaRevisitExperiments/

https://promtools.org/
https://github.com/aarkue/alpha-revisit-python
https://svn.win.tue.nl/repos/prom/Packages/AlphaRevisitExperiments/

Revisiting the Alpha Algorithm 13

in ProM Nightly versions and can be used in standard mode to simply discover
a Petri net or in interactive mode to experiment with different algorithm step
options and view additional information (e.g., how many place candidates were
pruned in which step). In both versions, the Alpha+++ preset can be selected
out of the preset list on the top. The parameters used throughout the algorithm
steps can then be changed. Additionally, the different algorithm steps can be
swapped with alternatives or skipped, allowing for further experimentation.

Fig. 4: A screenshot of the interactive mode of the developed ProM plugin Alpha
Revisit Experiments. On the right, the steps and different step parameters can
be configured. The main section on the left shows the discovered Petri net.

5 Evaluation

To evaluate the proposed Alpha+++ algorithm (α+++), we discovered Petri
nets for five real-life event logs, shown in Table 1. For comparison, we also dis-
covered models using the Inductive Miner Infrequent (IMf) and the standard
Alpha algorithm (α). We subsequently calculated alignment-based fitness, pre-
cision and F1-scores using PM4Py4.

4 https://pm4py.fit.fraunhofer.de/ (Version 2.6.1)

https://pm4py.fit.fraunhofer.de/

14 Aaron Küsters, Wil van der Aalst

Fig. 5: A closeup of the configuration panel of the ProM plugin. For each step,
there are multiple possible algorithm implementations available, which can be
selected from a dropdown-menu. Different presets that form a complete process
discovery algorithm, e.g., the Alpha+++ algorithm presented here, can be ap-
plied at the top.

Table 1: Overview of the event logs used for evaluation. We used a random sample
of 3000 cases from the BPI Challenge 2019 log for computational reasons, as it
allowed for alignment-based evaluation of the discovered models.
Event Log #Events #Activities #Traces #Variants Reference

RTFM 561,470 11 150,370 231 [8]

Sepsis 15,214 16 1,050 846 [13]

BPI Challenge 2019
(Sample of 3000 Cases)

18,972 34 3,000 470 [15]

BPI Challenge 2020
(Request for Payment)

36,796 19 6,886 89 [17]

BPI Challenge 2020
(Domestic Declaration)

56,437 17 10,500 99 [16]

Revisiting the Alpha Algorithm 15

For IMf, we evaluated four models per event log using noise thresholds of 0.1,
0.2, 0.3 and 0.4. For α, we used four variant filtering approaches upfront: Either
only selecting the 10 most common variants or the n most common variants to
cover at least 10%, 50% or 80% of traces. For α+++, we chose artificial activity
thresholds of 2 and 4 (relative to the mean directly-follows weight) for the log
repair steps. Here, a lower threshold value causes more artificial activities to be
added. For each artificial activity threshold, we selected five combinations of the
balance b, local candidate fitness t and local place replay fitness r thresholds.
Note, that for t and r a value closer to 1 and for b a value closer to 0 is more
restrictive. We did not apply problematic activities filtering.

The evaluation results are shown in Table 2. Overall, the fitness and F1-scores
of α+++ are competitive compared to the IMf. 8 of the 20 models discovered
with α are not easy sound (i.e., no final marking is reachable), and thus no
alignment scores could be computed. The remaining 12 models exhibit rather
low fitness for some logs but very high precision across the board, significantly
boosting the corresponding F1-values. Although our approach does not guaran-
tee easy soundness, all 50 Petri nets discovered with α+++ are easy sound and
allow computation of alignments. There are notable differences across the differ-
ent event logs: α+++ performs significantly worse compared to the IMf on the
Sepsis log in terms of F1-score, caused by lower precision scores, as the models
discovered with α+++ seem to be underfitting. On the two BPI Challenge 2020
logs, α+++ outperforms the IMf in most configurations, often also exhibiting
better fitness and precision scores simultaneously.

The influence of the parameters of α+++ is mostly as expected: More re-
strictive b, t, r values improve the fitness of the models while decreasing the
precision.

Manual inspection of the discovered models reveals that the models discov-
ered with α+++ are mostly rather simple and often consist of several discon-
nected model fragments. Furthermore, multiple models exhibit redundant struc-
tures involving silent transitions (e.g., a place with one labeled transition as
preset and one silent transition as postset). Such constructs could be removed
by further post-processing of the Petri net. For more details and a comprehensive
list of the discovered models, see section B and section C of the appendix.

6 Conclusion

In this paper, we revisited the Alpha algorithm to overcome its limitations,
focusing on real-life event logs. For that, we presented the Alpha+++ algo-
rithm which, like the Alpha algorithm, primarily uses directly-follows relations
to discover Petri nets. Alpha+++ pre-processes event logs by adding artificial
activities for potential loop or skip constructs. This allows discovering silent
transitions while still assessing the fitness of places by easily computable token-
based replay instead of expensive alignment computations. Subsequently, place
candidates are generated based on a pruned DFG. A multistep candidate filter-
ing approach efficiently removes place candidates with low fitness, configurable

16 Aaron Küsters, Wil van der Aalst

T
a
b
le

2
:
E
va
lu
a
tio

n
R
esu

lts

In
d
u
c
tiv

e
M

in
e
r
In

fre
q
u
e
n
t

A
lp
h
a
A
lg
o
rith

m
A
lp
h
a
+
+
+

A
lg
o
rith

m
N
o
ise

T
h
resh

o
ld

V
a
ria

n
t
F
ilterin

g
A
rtifi

cia
l
A
ctivity

T
h
resh

o
ld

o
f
2
.0

A
rtifi

cia
l
A
ctivity

T
h
resh

o
ld

o
f
4
.0

0
.1

0
.2

0
.3

0
.4

T
o
p
1
0

1
0
%

5
0
%

8
0
%

b=
0
.5

t=
0
.5

r=
0
.5

b=
0
.3

t=
0
.7

r=
0
.6

b=
0
.2

t=
0
.8

r=
0
.7

b=
0
.2

t=
0
.8

r=
0
.8

b=
0
.1

t=
0
.9

r=
0
.9

b=
0
.5

t=
0
.5

r=
0
.5

b=
0
.3

t=
0
.7

r=
0
.6

b=
0
.2

t=
0
.8

r=
0
.7

b=
0
.2

t=
0
.8

r=
0
.8

b=
0
.1

t=
0
.9

r=
0
.9

R
T
F
M

F
itn

ess
0
.9
8
7
1

0
.9
0
9
4

0
.9
0
9
1

0
.7
6
5
7

0
.6
7
1
1

0
.6
7
3
1

0
.8
7
6
9

0
.8
7
6
9

0
.7
8
8
0

0
.9
4
1
2

0
.9
9
3
5

0
.9
9
3
5
0
.9
9
9
8

0
.9
1
6
0

0
.9
9
2
5

0
.9
9
3
5

0
.9
9
3
5

0
.9
9
9
8

P
recisio

n
0
.6
2
1
8

0
.6
7
0
5

0
.7
9
5
9

0
.9
9
2
9

0
.6
7
9
7

1
.0
0
0
0

1
.0
0
0
0

1
.0
0
0
0

0
.5
2
2
3

0
.3
6
7
7

0
.3
0
8
2

0
.3
0
8
2
0
.3
0
8
6

0
.4
0
5
6

0
.3
1
2
7

0
.3
0
8
2

0
.3
0
8
2

0
.3
0
8
6

F
1
S
co
re

0
.7
6
3
0

0
.7
7
1
9

0
.8
4
8
7

0
.8
6
4
6

0
.6
7
5
4

0
.8
0
4
6

0
.9
3
4
4

0
.9
3
4
4

0
.6
2
8
2

0
.5
2
8
9

0
.4
7
0
5

0
.4
7
0
5
0
.4
7
1
6

0
.5
6
2
2

0
.4
7
5
6

0
.4
7
0
5

0
.4
7
0
5

0
.4
7
1
6

S
e
p
sis

C
a
se

s
F
itn

ess
0
.9
3
8
2

0
.9
0
7
5

0
.8
4
2
1

0
.8
1
0
8

0
.6
3
7
8

–
–

–
0
.9
1
8
3

0
.9
3
6
2

0
.9
8
2
8

0
.9
9
6
5
0
.9
9
6
5

0
.9
2
7
5

0
.9
6
3
6

0
.9
9
4
8

0
.9
9
4
8

1
.0
0
0
0

P
recisio

n
0
.6
0
4
9

0
.6
1
5
8

0
.6
2
9
8

0
.7
2
8
5

0
.9
9
1
6

–
–

–
0
.3
7
5
8

0
.2
9
2
2

0
.3
1
5
2

0
.2
6
3
3
0
.2
6
3
3

0
.2
8
5
5

0
.2
9
2
3

0
.2
9
2
3

0
.2
9
2
3

0
.2
8
0
5

F
1
S
co
re

0
.7
3
5
6

0
.7
3
3
7

0
.7
2
0
6

0
.7
6
7
5

0
.7
7
6
3

–
–

–
0
.5
3
3
4

0
.4
4
5
4

0
.4
7
7
3

0
.4
1
6
6
0
.4
1
6
6

0
.4
3
6
5

0
.4
4
8
5

0
.4
5
1
8

0
.4
5
1
8

0
.4
3
8
1

B
P
I
C
h
a
lle

n
g
e
2
0
1
9

(S
a
m
p
le

o
f
3
0
0
0
C
a
se

s)
F
itn

ess
0
.9
9
0
6

0
.9
9
3
8

0
.9
5
3
6

0
.9
1
7
7

0
.6
2
8
2

0
.7
4
6
2

–
0
.3
2
0
5

0
.9
4
2
2

0
.9
4
3
1

0
.9
5
0
6

0
.9
5
0
6
1
.0
0
0
0

0
.9
4
2
2

0
.9
4
3
3

0
.9
6
0
2

0
.9
6
0
2

1
.0
0
0
0

P
recisio

n
0
.2
0
8
6

0
.2
3
7
9

0
.2
3
8
3

0
.2
5
2
8

0
.9
9
8
6

1
.0
0
0
0

–
0
.9
9
6
4

0
.3
3
9
5

0
.3
1
8
0

0
.2
4
1
6

0
.2
4
1
6
0
.1
9
6
8

0
.3
7
4
8

0
.3
4
8
7

0
.2
5
0
1

0
.2
5
0
1

0
.1
9
6
8

F
1
S
co
re

0
.3
4
4
6

0
.3
8
3
9

0
.3
8
1
3

0
.3
9
6
4

0
.7
7
1
2

0
.8
5
4
7

–
0
.4
8
5
0

0
.4
9
9
2

0
.4
7
5
7

0
.3
8
5
2

0
.3
8
5
2
0
.3
2
8
8

0
.5
3
6
3

0
.5
0
9
2

0
.3
9
6
8

0
.3
9
6
8

0
.3
2
8
8

B
P
I
C
h
a
lle

n
g
e
2
0
2
0

(R
e
q
u
e
sts

fo
r
P
a
y
m
e
n
t)

F
itn

ess
0
.9
4
7
6

0
.9
0
5
1

0
.9
0
5
1

0
.9
0
5
1

–
0
.8
6
7
8

0
.8
3
8
0

–
0
.9
1
7
9

0
.9
4
3
8

0
.9
4
3
8

0
.9
4
3
8
0
.9
5
9
5

0
.9
1
7
9

0
.9
4
3
8

0
.9
4
3
8

0
.9
4
3
8

0
.9
5
9
5

P
recisio

n
0
.3
1
7
3

0
.2
7
0
4

0
.2
7
0
4

0
.2
7
0
4

–
1
.0
0
0
0

1
.0
0
0
0

–
0
.5
4
1
5

0
.4
4
5
1

0
.4
4
5
1

0
.4
4
5
1
0
.3
5
0
0

0
.5
4
1
5

0
.4
4
5
1

0
.4
4
5
1

0
.4
4
5
1

0
.3
5
0
0

F
1
S
co
re

0
.4
7
5
4

0
.4
1
6
4

0
.4
1
6
4

0
.4
1
6
4

–
0
.9
2
9
2

0
.9
1
1
9

–
0
.6
8
1
2

0
.6
0
4
9

0
.6
0
4
9

0
.6
0
4
9
0
.5
1
2
9

0
.6
8
1
2

0
.6
0
4
9

0
.6
0
4
9

0
.6
0
4
9

0
.5
1
2
9

B
P
I
C
h
a
lle

n
g
e
2
0
2
0

(D
o
m
e
stic

D
e
c
la
ra

tio
n
)

F
itn

ess
0
.9
4
9
9

0
.9
3
0
2

0
.9
3
0
2

0
.9
3
0
2

–
0
.8
9
0
6

0
.8
5
4
9

–
0
.9
0
2
9

0
.9
2
6
5

0
.9
3
0
8

0
.9
3
0
8
0
.9
4
9
3

0
.9
1
4
3

0
.9
1
4
3

0
.9
4
6
1

0
.9
4
6
1

0
.9
4
7
7

P
recisio

n
0
.4
0
5
6

0
.2
4
6
9

0
.2
4
6
9

0
.2
4
6
9

–
1
.0
0
0
0

1
.0
0
0
0

–
0
.9
0
9
4

0
.7
2
0
6

0
.7
1
9
2

0
.7
1
9
2
0
.4
8
9
7

0
.6
7
9
5

0
.6
7
9
5

0
.4
7
8
0

0
.4
7
8
0

0
.4
7
8
0

F
1
S
co
re

0
.5
6
8
5

0
.3
9
0
2

0
.3
9
0
2

0
.3
9
0
2

–
0
.9
4
2
1

0
.9
2
1
8

–
0
.9
0
6
1

0
.8
1
0
7

0
.8
1
1
4

0
.8
1
1
4
0
.6
4
6
1

0
.7
7
9
6

0
.7
7
9
6

0
.6
3
5
1

0
.6
3
5
1

0
.6
3
5
4

Revisiting the Alpha Algorithm 17

through parameters. We implemented the Alpha+++ algorithm both as a ProM
plugin and in Python. The ProM plugin is available in ProM nightly builds and
also features an interactive mode to allow experimenting with different algo-
rithm steps and parameters. We evaluated the Alpha+++ on five real-life event
logs and compared the results to the classical Alpha algorithm and the widely
adapted Inductive Miner Infrequent. Overall, the results indicate that the Al-
pha+++ algorithm is competitive in terms of fitness and precision. In general,
the different step parameter configurations tested reliably determine the trade-
off between fitness and precision.

Further research should include further evaluation of the algorithm. For that,
additional performance metrics like simplicity or generality could be included
and also compared to other process discovery algorithms. It is particularly inter-
esting to see if there are any patterns regarding algorithm parameters, event log
properties, and model performance. Such observations could enable automatic
parameter selection based on the log, and thus simplify Alpha+++ to a well-
performing one-in-all algorithm. Additionally, a more comprehensive qualitative
analysis of the discovered models is needed. Further research could also explore
if any theoretical guarantees, such as easy-soundness, are attainable, e.g., using
more sophisticated post-processing of the discovered Petri net.

18 Aaron Küsters, Wil van der Aalst

References

1. W.M.P. van der Aalst and B.F. van Dongen. Discovering Workflow Performance
Models from Timed Logs. In Y. Han, S. Tai, and D. Wikarski, editors, International
Conference on Engineering and Deployment of Cooperative Information Systems
(EDCIS 2002), volume 2480 of Lecture Notes in Computer Science, pages 45–63.
Springer-Verlag, Berlin, 2002.

2. W.M.P. van der Aalst, V. Rubin, H.M.W. Verbeek, B.F. van Dongen, E. Kindler,
and C.W. Günther. Process Mining: A Two-Step Approach to Balance Between
Underfitting and Overfitting. Software and Systems Modeling, 9(1):87–111, 2010.

3. W.M.P. van der Aalst, A.J.M.M. Weijters, and L. Maruster. Workflow Mining:
Discovering Process Models from Event Logs. IEEE Transactions on Knowledge
and Data Engineering, 16(9):1128–1142, 2004.

4. A. Augusto, R. Conforti, M. Marlon, M. La Rosa, and A. Polyvyanyy. Split Miner:
Automated Discovery of Accurate and Simple Business Process Models from Event
Logs. Knowledge Information Systems, 59(2):251–284, 2019.

5. R. Bergenthum, J. Desel, R. Lorenz, and S. Mauser. Process Mining Based on
Regions of Languages. In G. Alonso, P. Dadam, and M. Rosemann, editors, Inter-
national Conference on Business Process Management (BPM 2007), volume 4714
of Lecture Notes in Computer Science, pages 375–383. Springer-Verlag, Berlin,
2007.

6. J. Carmona, J. Cortadella, and M. Kishinevsky. A Region-Based Algorithm for
Discovering Petri Nets from Event Logs. In Business Process Management (BPM
2008), pages 358–373, 2008.

7. J. Cortadella, M. Kishinevsky, L. Lavagno, and A. Yakovlev. Deriving Petri Nets
from Finite Transition Systems. IEEE Transactions on Computers, 47(8):859–882,
August 1998.

8. M. de Leoni and F.Mannhardt. Road Traffic Fine Management Pro-
cess, 2015. https://data.4tu.nl/articles/dataset/Road_Traffic_Fine_

Management_Process/12683249.
9. A. Ehrenfeucht and G. Rozenberg. Partial (Set) 2-Structures - Part 1 and Part 2.

Acta Informatica, 27(4):315–368, 1989.
10. S.J.J. Leemans, D. Fahland, and W.M.P. van der Aalst. Discovering Block-

Structured Process Models from Event Logs Containing Infrequent Behaviour.
In N. Lohmann, M. Song, and P. Wohed, editors, Business Process Management
Workshops, International Workshop on Business Process Intelligence (BPI 2013),
volume 171 of Lecture Notes in Business Information Processing, pages 66–78.
Springer-Verlag, Berlin, 2014.

11. S.J.J. Leemans, D. Fahland, and W.M.P. van der Aalst. Scalable Process Discovery
and Conformance Checking. Software and Systems Modeling, 17(2):599–631, 2018.

12. L.L. Mannel and W.M.P. van der Aalst. Discovering Process Models with Long-
Term Dependencies While Providing Guarantees and Handling Infrequent Behav-
ior. In L. Bernardinello and L. Petrucci, editors, Application and Theory of Petri
Nets and Concurrency (Petri Nets 2022), volume 13288 of Lecture Notes in Com-
puter Science, pages 303–324, 2022.

13. F. Mannhardt. Sepsis Cases - Event Log, 2016. https://data.4tu.nl/articles/
dataset/Sepsis_Cases_-_Event_Log/12707639.

14. M. Solé and J. Carmona. Process Mining from a Basis of State Regions. In J. Lilius
and W. Penczek, editors, Applications and Theory of Petri Nets 2010, volume 6128
of Lecture Notes in Computer Science, pages 226–245. Springer-Verlag, Berlin,
2010.

https://data.4tu.nl/articles/dataset/Road_Traffic_Fine_Management_Process/12683249
https://data.4tu.nl/articles/dataset/Road_Traffic_Fine_Management_Process/12683249
https://data.4tu.nl/articles/dataset/Sepsis_Cases_-_Event_Log/12707639
https://data.4tu.nl/articles/dataset/Sepsis_Cases_-_Event_Log/12707639

Revisiting the Alpha Algorithm 19

15. B. van Dongen. BPI Challenge 2019, 2019. https://data.4tu.nl/articles/

dataset/BPI_Challenge_2019/12715853.
16. B. van Dongen. BPI Challenge 2020: Domestic Declarations, 2020.

https://data.4tu.nl/articles/dataset/BPI_Challenge_2020_Domestic_

Declarations/12692543.
17. B. van Dongen. BPI Challenge 2020: Request For Payment, 2020.

https://data.4tu.nl/articles/dataset/BPI_Challenge_2020_Request_For_

Payment/12706886.
18. L. Wen, W.M.P. van der Aalst, J. Wang, and J. Sun. Mining Process Models with

Non-Free-Choice Constructs. Data Mining and Knowledge Discovery, 15(2):145–
180, 2007.

19. L. Wen, J. Wang, W.M.P. van der Aalst, B. Huang, and J. Sun. Mining Process
Models with Prime Invisible Tasks. Data and Knowledge Engineering, 69(10):999–
1021, 2010.

20. J.M.E.M. van der Werf, B.F. van Dongen, C.A.J. Hurkens, and A. Serebrenik.
Process Discovery using Integer Linear Programming. Fundamenta Informaticae,
94:387–412, 2010.

21. S.J. van Zelst, B.F. van Dongen, W.M.P. van der Aalst, and H.M.W Verbeek.
Discovering Workflow Nets Using Integer Linear Programming. Computing,
100(5):529–556, 2018.

https://data.4tu.nl/articles/dataset/BPI_Challenge_2019/12715853
https://data.4tu.nl/articles/dataset/BPI_Challenge_2019/12715853
https://data.4tu.nl/articles/dataset/BPI_Challenge_2020_Domestic_Declarations/12692543
https://data.4tu.nl/articles/dataset/BPI_Challenge_2020_Domestic_Declarations/12692543
https://data.4tu.nl/articles/dataset/BPI_Challenge_2020_Request_For_Payment/12706886
https://data.4tu.nl/articles/dataset/BPI_Challenge_2020_Request_For_Payment/12706886

20 Aaron Küsters, Wil van der Aalst

A Generality and Simplicity Evaluation

We additionally evaluated all the Petri nets discovered for the evaluation in
section 5 in terms of simplicity and generalization. For that, we again utilized
PM4Py using the corresponding evaluation functions. In those, simplicity is mea-
sured using the inverse arc degree of nodes in the Petri net, while generalization
relies on how frequent model elements are revisited during replay5.

5 See also https://pm4py.fit.fraunhofer.de/documentation#evaluation.

https://pm4py.fit.fraunhofer.de/documentation#evaluation

Revisiting the Alpha Algorithm 21

T
ab

le
3
:
S
im

p
licity

a
n
d
G
en
era

liza
tio

n
R
esu

lts

In
d
u
c
tiv

e
M

in
e
r
In

fre
q
u
e
n
t

A
lp
h
a
M

in
e
r

A
lp
h
a
+
+
+

A
lg
o
rith

m
N
o
ise

T
h
resh

o
ld

V
a
ria

n
t
F
ilterin

g
A
rtifi

cia
l
A
ctivity

T
h
resh

o
ld

o
f
2
.0

A
rtifi

cia
l
A
ctivity

T
h
resh

o
ld

o
f
4
.0

0
.2

0
.3

0
.4

0
.5

T
o
p
1
0

1
0
%

5
0
%

8
0
%

b=
0
.5

t=
0
.5

r=
0
.5

b=
0
.3

t=
0
.7

r=
0
.6

b=
0
.2

t=
0
.8

r=
0
.7

b=
0
.2

t=
0
.8

r=
0
.8

b=
0
.1

t=
0
.9

r=
0
.9

b=
0
.5

t=
0
.5

r=
0
.5

b=
0
.3

t=
0
.7

r=
0
.6

b=
0
.2

t=
0
.8

r=
0
.7

b=
0
.2

t=
0
.8

r=
0
.8

b=
0
.1

t=
0
.9

r=
0
.9

R
T
F
M

S
im

p
licity

0
.6
0
9
8

0
.6
0
9
8

0
.6
0
0
0

0
.7
0
2
1

1
.0
0
0
0

1
.0
0
0
0

1
.0
0
0
0

1
.0
0
0
0

0
.7
2
7
3

0
.8
2
8
6

1
.0
0
0
0

1
.0
0
0
0

1
.0
0
0
0

0
.7
5
6
1

0
.8
7
5
0

1
.0
0
0
0

1
.0
0
0
0

1
.0
0
0
0

G
en

era
liza

tio
n

0
.7
2
9
9

0
.9
8
4
4

0
.9
7
9
2

0
.9
3
4
3

0
.9
9
3
6

0
.9
9
6
6

0
.9
9
6
6

0
.9
9
6
6

0
.8
6
4
5

0
.7
3
9
8

0
.6
7
7
6

0
.6
7
7
6

0
.6
7
7
6

0
.8
6
4
5

0
.6
7
7
6

0
.6
7
7
6

0
.6
7
7
6

0
.6
7
7
6

S
e
p
sis

C
a
se

s
S
im

p
licity

0
.6
1
8
3

0
.5
9
2
9

0
.5
9
1
4

0
.6
1
9
0

0
.8
4
6
2

1
.0
0
0
0

1
.0
0
0
0

1
.0
0
0
0

0
.6
3
6
4

0
.9
5
0
0

1
.0
0
0
0

1
.0
0
0
0

1
.0
0
0
0

1
.0
0
0
0

1
.0
0
0
0

1
.0
0
0
0

1
.0
0
0
0

1
.0
0
0
0

G
en

era
liza

tio
n

0
.8
7
4
5

0
.8
4
9
9

0
.8
2
6
9

0
.7
8
2
4

0
.9
7
0
8

0
.9
7
1
9

0
.9
1
3
2

0
.9
1
3
2

0
.8
4
4
7

0
.8
0
2
8

0
.7
6
1
2

0
.6
7
7
4

0
.6
7
7
4

0
.9
1
9
9

0
.8
6
5
2

0
.8
6
5
2

0
.8
6
5
2

0
.8
1
1
7

B
P
I
C
h
a
lle

n
g
e
2
0
1
9

(S
a
m
p
le

o
f
3
0
0
0
C
a
se

s)
S
im

p
licity

0
.6
0
7
7

0
.5
9
4
9

0
.5
8
9
4

0
.6
0
0
0

0
.6
4
7
1

1
.0
0
0
0

0
.8
2
6
1

0
.4
7
1
7

0
.7
7
5
0

1
.0
0
0
0

1
.0
0
0
0

1
.0
0
0
0

1
.0
0
0
0

0
.6
7
4
4

0
.8
7
5
0

1
.0
0
0
0

1
.0
0
0
0

1
.0
0
0
0

G
en

era
liza

tio
n

0
.8
1
8
3

0
.8
4
4
2

0
.8
3
7
2

0
.7
8
3
3

0
.9
6
3
4

0
.9
8
1
1

0
.9
7
1
6

0
.9
5
9
0

0
.7
4
6
9

0
.7
4
6
9

0
.6
9
7
5

0
.6
9
7
5

0
.6
9
0
0

0
.7
6
1
7

0
.7
6
1
7

0
.7
6
1
7

0
.7
6
1
7

0
.7
2
8
4

B
P
I
C
h
a
lle

n
g
e
2
0
2
0

(R
e
q
u
e
sts

fo
r
P
a
y
m
e
n
t)

S
im

p
licity

0
.6
7
2
7

0
.6
9
2
3

0
.6
9
2
3

0
.6
9
2
3

0
.5
6
1
0

1
.0
0
0
0

1
.0
0
0
0

0
.6
9
2
3

0
.4
7
7
3

0
.5
8
8
2

0
.5
8
8
2

0
.5
8
8
2

0
.7
2
5
5

0
.4
6
5
1

0
.5
7
5
8

0
.5
7
5
8

0
.5
7
5
8

0
.7
1
4
3

G
en

era
liza

tio
n

0
.8
4
9
9

0
.7
6
1
3

0
.7
6
1
3

0
.7
6
1
3

0
.9
7
2
6

0
.9
8
7
4

0
.9
8
5
8

0
.9
8
1
2

0
.8
2
5
4

0
.8
2
5
4

0
.8
2
5
4

0
.8
2
5
4

0
.7
4
3
8

0
.8
1
8
8

0
.8
1
8
8

0
.8
1
8
8

0
.8
1
8
8

0
.7
7
6
1

B
P
I
C
h
a
lle

n
g
e
2
0
2
0

(D
o
m
e
stic

D
e
c
la
ra

tio
n
)

S
im

p
licity

0
.7
0
6
7

0
.6
6
6
7

0
.6
6
6
7

0
.6
6
6
7

0
.5
2
1
7

1
.0
0
0
0

1
.0
0
0
0

0
.8
7
5
0

0
.4
6
9
9

0
.5
2
7
8

0
.7
2
0
0

0
.7
2
0
0

0
.8
9
1
9

0
.4
5
0
0

0
.4
7
3
7

0
.8
4
2
1

0
.8
4
2
1

0
.8
8
5
7

G
en

era
liza

tio
n

0
.8
6
0
9

0
.7
9
7
5

0
.7
9
7
5

0
.7
9
7
5

0
.9
6
9
7

0
.9
9
0
0

0
.9
8
8
5

0
.9
8
8
5

0
.8
3
1
4

0
.8
3
1
4

0
.8
3
1
4

0
.8
3
1
4

0
.7
8
6
6

0
.8
2
3
4

0
.8
2
3
4

0
.8
2
3
4

0
.8
2
3
4

0
.8
2
3
4

22 Aaron Küsters, Wil van der Aalst

B Disconnected Transitions

In many of the models discovered with Alpha+++ there are one or more tran-
sitions that are disconnected from the rest of the model. As expected, this phe-
nomenon is most frequently observable for more restricting algorithm param-
eters, which aggressively filter out low-fitness place candidates and places. In
Table 4, we counted the number of disconnected labeled transitions for each
of the models and calculated what percentage of the activities of the log are
represented by disconnected transitions on average.

Table 4: Disconnected labeled transitions in models discovered with Alpha+++.
The average percentage refers to the average fraction of activities in the event
log that are labels of disconnected transitions.

Alpha+++ Algorithm
Average %Artificial Activity Threshold of 2.0 Artificial Activity Threshold of 4.0

b=0.5
t=0.5
r=0.5

b=0.3
t=0.7
r=0.6

b=0.2
t=0.8
r=0.7

b=0.2
t=0.8
r=0.8

b=0.1
t=0.9
r=0.9

b=0.5
t=0.5
r=0.5

b=0.3
t=0.7
r=0.6

b=0.2
t=0.8
r=0.7

b=0.2
t=0.8
r=0.8

b=0.1
t=0.9
r=0.9

RTFM 1 1 2 2 2 1 1 2 2 2 14.55
Sepsis Cases 1 5 5 7 7 6 7 12 12 13 46.88
BPI Challenge 2019
(Sample of 3000 Cases)

8 10 14 14 22 7 10 14 14 24 40.29

BPI Challenge 2020
(Requests for Payment)

0 0 0 0 0 0 0 0 0 0 0

BPIC 2021 0 0 0 0 0 1 1 1 1 1 2.94

In Alpha+++ disconnected transitions are not handled separately and al-
ways included in the final Petri net. Note, that always including the transitions
without restrictions is not the only option, and has non-negligible effects on the
fitness and precision of the complete model. In particular, the decision whether
an activity should be included as a disconnected transition, i.e., without restric-
tions, or not at all can be made separately for each transition based on frequency
information of the corresponding activity.

In particular, certain disconnected transitions can be omitted with the goal to
maximize certain performance metrics, like precision or F1 score. Note that the
fitness of the model will consistently decrease whenever a disconnected (labeled)
transition is removed, as the resulting Petri net is more restrictive, i.e., not
allowing this activity to occur at all. Thus, it is in particular interesting to
attempt to increase the precision of the end model while not decreasing the
fitness too much. As a heuristic, we propose removing the labeled, disconnected
transitions in the reverse order of their frequency in the log (i.e., transitions
with activity labels that are infrequent in the log are removed first). We call this
technique of determining the removal order greedy. Removing a transition with
a rather infrequent activity label often leads to only a small decrease in fitness
and a bigger gain in precision. In Figure 6 we applied this technique to a model
discovered using the Sepsis event log. As such, we removed disconnected, labeled

Revisiting the Alpha Algorithm 23

transitions one by one in the given order, and measured the fitness, precision
and F1 score in every step. The x-axis additionally shows the number of events
that are no longer covered by a transition (i.e., the sum of events in the log with
an activity label corresponding to a transition that was removed).

Fig. 6: Fitness, precision and F1 score values of the resulting models when remov-
ing transitions one by one greedily. Clearly, in most steps, the greedy ordering
has the desired effect of only decreasing the fitness slightly while increasing the
precision significantly. Performance values for the Inductive Miner Infrequent
0.2 are given as a reference point.

We ran experiments to compare how well the greedy activity removal per-
forms compared to the brute-force approach of evaluating all possible removal
orders. For that, we selected to maximize the F1 score and evaluated the Petri
nets obtained by removing the transitions corresponding to the first k infrequent
activities. In the brute force approach, we also selected a set of k disconnected
labeled transitions to remove, but choose that set from all possibilities that max-
imizes the F1 score of the resulting net. This allows us to compare the F1 score
for every number k of removed transitions between the removal set based on the
greedy ordering or the best possibility for maximizing the F1 score. As such, the
brute force approach provides an upper bound of achievable F1 score improve-
ments and is always guaranteed to be at least as high as the F1 score achieved
using greedy removal.

Figure 7 shows the observed gain in F1 score from the brute-force approach
compared to the greedy ordering for one model discovered with the Sepsis event
log. Our experiments indicate that for most use-cases, the greedy activity removal
order should be preferred because of the significantly better running time. While
the brute-force approach might find better removal sets in some configurations, it
requires evaluating models for every possible removal set of a given size, which is
computationally expensive. In particular, we observed that for many discovered
models the greedy removal order was, in fact, already optimal regarding the F1
score.

24 Aaron Küsters, Wil van der Aalst

Fig. 7: Comparison of the greedy activity removal order versus the best removal
set of that size (w.r.t. F1 score). The possible F1 score improvements of the
brute-force approach (shown as light orange on top of bar) are noticeable for
some removal counts.

The brute-force and greedy transition removal post-processing, as well as the
corresponding evaluation and visualization functions, are also published open-
source6.

6 https://github.com/aarkue/alpha-revisit-python/blob/main/

remove-disconnected-acts.ipynb

https://github.com/aarkue/alpha-revisit-python/blob/main/remove-disconnected-acts.ipynb
https://github.com/aarkue/alpha-revisit-python/blob/main/remove-disconnected-acts.ipynb

Revisiting the Alpha Algorithm 25

C Discovered Process Models

In the next pages, we include all the process models used for evaluation (see
section 5). The logs are enumerated in the following order:

1. RTFM
2. Sepsis Cases
3. BPI Challenge 2019 (Sample of 3000 Cases)
4. BPI Challenge 2020 (Request for Payment)
5. BPI Challenge 2020 (Domestic Declarations)

To stay concise, we abbreviate the algorithms as before and additionally in-
troduce the following notation for the different configurations of the Alpha+++
algorithm:

α+++; 2.0︸︷︷︸
DF Threshold

; b 0.3︸︷︷︸
Balance Thresh.

; t 0.7︸︷︷︸
Local Candidate Fitness Thresh.

; r 0.6︸︷︷︸
Replay Fitness Thresh.

For example, the configuration α+++;2.0;b0.3;t0.7;r0.6 represents that the
model was discovered with α+++ using a relative DF threshold of 2.0 (used for
adding artificial activities), a balance threshold of 0.3 (used to filter place can-
didates), a local candidate fitness threshold of 0.7 (used to prune the candidates
further) and finally a replay place fitness threshold of 0.6 (used to post-process
the Petri net by removing unfit places).

We (visually) post-processed the models discovered with α+++, to allow
for easier interpretation and comparison of the models, as the models often
exhibit multiple disconnect parts. In particular, we added artificial start and
end transitions, marked by ▶ or ■, and connected them to an added place, which
also connects all disconnected process parts. Note, that this does not alter the
underlying semantic of the Petri net, if interpreted correctly.

C.1 RTFM

Send Fine ■Send for Credit Collection

Send Appeal to Prefecture

Create Fine

Payment

Notify Result Appeal to Offender

Insert Fine Notification

Receive Result Appeal from Prefecture

Appeal to Judge

Insert Date Appeal to Prefecture

Add penalty●

Fig. 8: Model discovered using IMf 0.1 on RTFM

26 Aaron Küsters, Wil van der Aalst

Payment

Send Fine

Appeal to Judge

Send Appeal to Prefecture

Notify Result Appeal to Offender

Add penalty

Send for Credit Collection

Insert Fine Notification

■

Insert Date Appeal to Prefecture

Create Fine

Receive Result Appeal from Prefecture

●

Fig. 9: Model discovered using IMf 0.2 on RTFM

Create Fine

■

Send Appeal to Prefecture

Appeal to Judge

Payment

Insert Fine Notification

Add penalty

Send Fine

Receive Result Appeal from Prefecture

Send for Credit Collection

Insert Date Appeal to Prefecture

Notify Result Appeal to Offender

●

Fig. 10: Model discovered using IMf 0.3 on RTFM

Appeal to Judge

Payment

■

Send Fine Add penalty

Notify Result Appeal to Offender

Insert Fine Notification

Insert Date Appeal to Prefecture

Send for Credit CollectionCreate Fine
Receive Result Appeal from Prefecture●

Fig. 11: Model discovered using IMf 0.4 on RTFM

Payment

Insert Fine NotificationSend FineCreate Fine Add penalty

Insert Date Appeal to Prefecture

Send Appeal to Prefecture

■
Send for Credit Collection

●

Fig. 12: Model discovered using α Top10 on RTFM

Insert Fine Notification Send for Credit Collection ■Add penaltyCreate Fine Send Fine●

Fig. 13: Model discovered using α 10%Cov on RTFM

Revisiting the Alpha Algorithm 27

Send Fine
Send for Credit Collection

■
Add penaltyInsert Fine Notification

Create Fine

Payment

●

Fig. 14: Model discovered using α 50%Cov on RTFM

Add penalty

Create Fine

Payment

■
Insert Fine NotificationSend Fine

Send for Credit Collection
●

Fig. 15: Model discovered using α 80%Cov on RTFM

Add penalty

Receive Result Appeal from Prefecture

Notify Result Appeal to Offender

Create Fine Send Fine

Payment

Insert Date Appeal to Prefecture
Send Appeal to Prefecture

Insert Fine Notification

Appeal to Judge

Send for Credit Collection

Fig. 16: Model discovered using α+++;2.0;b0.5;t0.5;r0.5 on RTFM

Create Fine

Appeal to Judge

Add penalty

Send Appeal to Prefecture

Send Fine

Receive Result Appeal from Prefecture

Send for Credit Collection

Notify Result Appeal to Offender

Insert Date Appeal to Prefecture

Payment

Insert Fine Notification

Fig. 17: Model discovered using α+++;2.0;b0.3;t0.7;r0.6 on RTFM

28 Aaron Küsters, Wil van der Aalst

Create Fine

Appeal to Judge

Payment

Insert Fine Notification

Send for Credit Collection

Receive Result Appeal from Prefecture

Send Fine

Insert Date Appeal to Prefecture

Notify Result Appeal to Offender

Send Appeal to Prefecture

Add penalty

Fig. 18: Model discovered using α+++;2.0;b0.2;t0.8;r0.7 on RTFM

Add penalty

Receive Result Appeal from Prefecture

Send for Credit Collection

Insert Fine Notification

Notify Result Appeal to Offender

Payment

Insert Date Appeal to Prefecture

Create Fine

Appeal to Judge

Send Appeal to Prefecture

Send Fine

Fig. 19: Model discovered using α+++;2.0;b0.2;t0.8;r0.8 on RTFM

Revisiting the Alpha Algorithm 29

Add penalty

Receive Result Appeal from Prefecture

Notify Result Appeal to Offender

Send for Credit Collection

Insert Fine Notification

Create Fine

Send Fine

Payment

Send Appeal to Prefecture

Appeal to Judge

Insert Date Appeal to Prefecture

Fig. 20: Model discovered using α+++;2.0;b0.1;t0.9;r0.9 on RTFM

Insert Date Appeal to Prefecture

Send Appeal to Prefecture

Payment

Add penalty

Notify Result Appeal to Offender

Create Fine

Insert Fine Notification

Appeal to Judge

Send Fine

Send for Credit Collection

Receive Result Appeal from Prefecture

Fig. 21: Model discovered using α+++;4.0;b0.5;t0.5;r0.5 on RTFM

Insert Fine Notification

Appeal to Judge

Send Fine

Receive Result Appeal from Prefecture

Add penalty

Payment

Send Appeal to Prefecture

Insert Date Appeal to Prefecture

Create Fine

Send for Credit Collection

Notify Result Appeal to Offender

Fig. 22: Model discovered using α+++;4.0;b0.3;t0.7;r0.6 on RTFM

30 Aaron Küsters, Wil van der Aalst

Appeal to Judge

Insert Date Appeal to Prefecture
Send Appeal to Prefecture

Notify Result Appeal to Offender

Add penalty

Send for Credit Collection

Receive Result Appeal from Prefecture

Insert Fine Notification

Payment

Send Fine

Create Fine

Fig. 23: Model discovered using α+++;4.0;b0.2;t0.8;r0.7 on RTFM

Payment

Notify Result Appeal to Offender

Appeal to Judge

Send Fine

Add penalty

Insert Date Appeal to Prefecture

Send Appeal to Prefecture

Create Fine

Send for Credit Collection

Receive Result Appeal from Prefecture

Insert Fine Notification

Fig. 24: Model discovered using α+++;4.0;b0.2;t0.8;r0.8 on RTFM

Revisiting the Alpha Algorithm 31

Appeal to Judge

Payment

Receive Result Appeal from Prefecture

Notify Result Appeal to Offender

Insert Fine Notification

Add penalty

Create Fine

Send Fine

Send for Credit Collection

Insert Date Appeal to Prefecture

Send Appeal to Prefecture

Fig. 25: Model discovered using α+++;4.0;b0.1;t0.9;r0.9 on RTFM

32 Aaron Küsters, Wil van der Aalst

C.2 Sepsis Cases

ER Triage

ER Registration

ER Sepsis Triage

Return ER

IV Antibiotics

■

Admission NC

Admission IC

Release E

CRP

LacticAcid

IV Liquid

Release D

Leucocytes

Release A

Release C

●

Fig. 26: Model discovered using IMf 0.1 on Sepsis Cases

Release A

Release C

Return ER

LacticAcid

IV Liquid

ER Triage

Leucocytes

CRP

ER Sepsis Triage IV Antibiotics

■

Admission NC

Admission IC

ER Registration

Release D

●

Fig. 27: Model discovered using IMf 0.2 on Sepsis Cases

Revisiting the Alpha Algorithm 33

LacticAcid

ER Triage

ER Sepsis Triage

■

Admission NC

ER Registration

Admission IC

Leucocytes

IV Antibiotics

CRP

IV Liquid

●

Fig. 28: Model discovered using IMf 0.3 on Sepsis Cases

ER Triage

ER Registration

IV Antibiotics

IV Liquid

Admission NC

ER Sepsis Triage

Admission IC

■

LacticAcid

Leucocytes

CRP

●

Fig. 29: Model discovered using IMf 0.4 on Sepsis Cases

Release A

■
ER Registration ER Triage

IV Antibiotics
IV LiquidLacticAcidER Sepsis Triage

Leucocytes

Admission NCCRP

●

Fig. 30: Model discovered using α Top10 on Sepsis Cases

Leucocytes

LacticAcid

IV Antibiotics ■IV LiquidER Registration ER Sepsis TriageER Triage

CRP

●

Fig. 31: Model discovered using α 10%Cov on Sepsis Cases

34 Aaron Küsters, Wil van der Aalst

Release A

ER Registration

Return ER

LacticAcid

CRP

Leucocytes

Admission NC

Release D

Release E

Admission IC

IV Liquid

Release C

ER Sepsis Triage

ER Triage

IV Antibiotics

Release B

●

■

Fig. 32: Model discovered using α 50%Cov on Sepsis Cases

Release A

Return ER

Release C

ER Sepsis Triage

Leucocytes

ER Triage

Release D

Release E

IV Liquid

ER Registration

LacticAcid

CRP

Admission NC

IV Antibiotics

Release B

Admission IC

●

■

Fig. 33: Model discovered using α 80%Cov on Sepsis Cases

Revisiting the Alpha Algorithm 35

Release A

Admission IC

CRP

IV Antibiotics

ER Registration

Return ER

Release C

Admission NC

Leucocytes

Release E

Release B

ER Sepsis TriageER Triage

LacticAcid

IV Liquid

Release D

Fig. 34: Model discovered using α+++;2.0;b0.5;t0.5;r0.5 on Sepsis Cases

Return ER

Release D

Admission NC

LacticAcid

ER Sepsis Triage

Admission IC

CRP

Release A

Release B

IV Liquid

Leucocytes

IV Antibiotics

Release E

Release C

ER Registration

ER Triage

Fig. 35: Model discovered using α+++;2.0;b0.3;t0.7;r0.6 on Sepsis Cases

ER Triage

ER Sepsis Triage

Release C

IV Liquid

LacticAcid

Admission IC

Return ER

Release B

Release E

Release D

Admission NC

IV Antibiotics

Release A

CRP

Leucocytes

ER Registration

Fig. 36: Model discovered using α+++;2.0;b0.2;t0.8;r0.7 on Sepsis Cases

36 Aaron Küsters, Wil van der Aalst

Release D

LacticAcid

ER Registration

IV Antibiotics

Release B

ER Triage

CRP

Release A

IV Liquid

Release C

Return ER

Release E

ER Sepsis Triage

Admission NC

Admission IC

Leucocytes

Fig. 37: Model discovered using α+++;2.0;b0.2;t0.8;r0.8 on Sepsis Cases

Admission NC

Leucocytes

ER Sepsis Triage

Release B

Return ER

Release E

IV Liquid

CRP

IV Antibiotics

Release C

Release D

Admission IC

LacticAcid

ER Triage

ER Registration

Release A

Fig. 38: Model discovered using α+++;2.0;b0.1;t0.9;r0.9 on Sepsis Cases

Revisiting the Alpha Algorithm 37

Leucocytes

Release B

IV Antibiotics

Release D

ER Sepsis Triage

Return ER

Release A

IV Liquid

Release E

LacticAcid

Admission NC

CRP

ER Triage

Release C

Admission IC

ER Registration

Fig. 39: Model discovered using α+++;4.0;b0.5;t0.5;r0.5 on Sepsis Cases

ER Triage

Admission IC

Leucocytes

Release A

Release D

ER Sepsis Triage

Release E

Release B

Release C

ER Registration

LacticAcid

CRP

Return ER

IV Liquid IV Antibiotics

Admission NC

Fig. 40: Model discovered using α+++;4.0;b0.3;t0.7;r0.6 on Sepsis Cases

38 Aaron Küsters, Wil van der Aalst

Admission IC

Release E

Release D

ER Triage

Admission NC

LacticAcid

Release A

Return ER

CRP

IV Antibiotics

Release B

Release C

Leucocytes

ER Sepsis Triage

ER Registration

IV Liquid

Fig. 41: Model discovered using α+++;4.0;b0.2;t0.8;r0.7 on Sepsis Cases

ER Triage

LacticAcid

ER Sepsis Triage

IV Liquid

Release D

Release E

IV Antibiotics

Leucocytes

ER Registration

Return ER

Admission IC

Release B

Release A

Admission NC

Release C

CRP

Fig. 42: Model discovered using α+++;4.0;b0.2;t0.8;r0.8 on Sepsis Cases

Revisiting the Alpha Algorithm 39

Release D

Return ER

Release E

ER Triage

LacticAcid

Admission NC

IV Liquid

Admission IC

Release A

IV Antibiotics

Release C

ER Registration

CRP

Release B

Leucocytes

ER Sepsis Triage

Fig. 43: Model discovered using α+++;4.0;b0.1;t0.9;r0.9 on Sepsis Cases

40 Aaron Küsters, Wil van der Aalst

C.3 BPI Challenge 2019 (Sample of 3000 Cases)

Receive Order Confirmation

SRM: Created

Cancel Subsequent Invoice

Vendor creates invoice

SRM: Complete Record Invoice Receipt

Record Service Entry Sheet

Change Price

Change Delivery Indicator

Create Purchase Requisition Item
Release Purchase Requisition

Delete Purchase Order Item

SRM: Change was Transmitted

SRM: Transfer Failed (E.Sys.)

■
Create Purchase Order Item

SRM: Document Completed

SRM: Ordered

Vendor creates debit memo

Release Purchase Order

Remove Payment Block

Change Storage Location

Change Quantity

Clear Invoice

Block Purchase Order Item

SRM: In Transfer to Execution Syst.

Update Order Confirmation

Reactivate Purchase Order Item

Record Subsequent Invoice

Record Goods Receipt

SRM: Awaiting Approval SRM: Deleted

Cancel Goods Receipt

Change Approval for Purchase Order

Cancel Invoice Receipt

●

Fig. 44: Model discovered using IMf 0.1 on BPI Challenge 2019 (Sample of 3000
Cases)

Create Purchase Order Item

SRM: Awaiting Approval

Record Goods Receipt

Delete Purchase Order Item

Cancel Goods Receipt

SRM: Complete

Change Price

Cancel Subsequent Invoice

Cancel Invoice Receipt

Block Purchase Order Item

Release Purchase Order

Change Approval for Purchase Order

SRM: Transfer Failed (E.Sys.)

■
Clear Invoice

Vendor creates invoice

Record Service Entry Sheet

Receive Order Confirmation

Change Quantity

SRM: Document Completed

SRM: In Transfer to Execution Syst. SRM: Change was Transmitted

Change Delivery Indicator

Release Purchase Requisition
Create Purchase Requisition Item

Change Storage Location

SRM: Created

SRM: Ordered

Reactivate Purchase Order Item

Record Invoice Receipt

Update Order Confirmation

Remove Payment Block

Vendor creates debit memo
Record Subsequent Invoice

●

Fig. 45: Model discovered using IMf 0.2 on BPI Challenge 2019 (Sample of 3000
Cases)

Revisiting the Alpha Algorithm 41

Clear Invoice

Record Goods Receipt

Record Invoice Receipt

SRM: Complete

Change Quantity

Vendor creates debit memo

Cancel Subsequent Invoice

SRM: Transfer Failed (E.Sys.)

■

Create Purchase Order Item

SRM: Awaiting Approval

Delete Purchase Order Item

Cancel Goods Receipt

Release Purchase Order

Vendor creates invoice

Cancel Invoice Receipt

Record Subsequent Invoice

SRM: Created

SRM: In Transfer to Execution Syst.

Reactivate Purchase Order Item

Change Approval for Purchase Order

Change Delivery Indicator

Update Order Confirmation

Remove Payment Block

Create Purchase Requisition Item

SRM: Document Completed SRM: Change was Transmitted

Block Purchase Order Item

Receive Order Confirmation

Release Purchase Requisition

Change Storage Location

SRM: Ordered

Change Price

Record Service Entry Sheet●

Fig. 46: Model discovered using IMf 0.3 on BPI Challenge 2019 (Sample of 3000
Cases)

SRM: Change was Transmitted

Change Approval for Purchase Order

Vendor creates debit memo

Receive Order Confirmation

Change Storage Location

Record Goods Receipt

Change Price

Release Purchase Requisition

SRM: Complete

Remove Payment Block

Create Purchase Order Item

SRM: In Transfer to Execution Syst.

Cancel Invoice Receipt

Record Invoice Receipt

Block Purchase Order Item

Release Purchase Order

Delete Purchase Order Item

Record Service Entry Sheet

SRM: Created

Change Quantity

SRM: Transfer Failed (E.Sys.)

■

Create Purchase Requisition Item

SRM: Awaiting Approval

SRM: Ordered

Reactivate Purchase Order Item

Change Delivery Indicator

Update Order Confirmation

SRM: Document Completed

Vendor creates invoice

Cancel Goods Receipt

Record Subsequent Invoice
Clear Invoice●

Fig. 47: Model discovered using IMf 0.4 on BPI Challenge 2019 (Sample of 3000
Cases)

Remove Payment Block

Receive Order Confirmation

Vendor creates invoice Record Invoice Receipt

Create Purchase Requisition Item

Clear Invoice

■

Delete Purchase Order Item

Create Purchase Order Item

Record Goods Receipt

●

Fig. 48: Model discovered using α Top10 on BPI Challenge 2019 (Sample of
3000 Cases)

Vendor creates invoice Record Goods Receipt Record Invoice ReceiptCreate Purchase Order Item Clear Invoice ■●

Fig. 49: Model discovered using α 10%Cov on BPI Challenge 2019 (Sample of
3000 Cases)

42 Aaron Küsters, Wil van der Aalst

Remove Payment Block

Receive Order Confirmation

Vendor creates invoice

Create Purchase Order Item
Record Goods Receipt

Record Invoice Receipt Clear Invoice ■

Create Purchase Requisition Item●

Fig. 50: Model discovered using α 50%Cov on BPI Challenge 2019 (Sample of
3000 Cases)

Remove Payment Block

Vendor creates invoiceReceive Order Confirmation

Record Invoice Receipt

Change Price

Record Goods Receipt

Change Quantity

Clear Invoice

■

Delete Purchase Order Item

Create Purchase Order ItemCreate Purchase Requisition Item Record Service Entry Sheet●

Fig. 51: Model discovered using α 80%Cov on BPI Challenge 2019 (Sample of
3000 Cases)

Cancel Subsequent Invoice

Receive Order Confirmation

Delete Purchase Order Item

SRM: Created

SRM: Complete

SRM: Deleted

Clear Invoice

Change Approval for Purchase Order

Release Purchase Order

SRM: Ordered

Record Subsequent Invoice

Release Purchase Requisition

Record Service Entry Sheet

Change Delivery Indicator

Block Purchase Order Item

SRM: Transfer Failed (E.Sys.)

SRM: In Transfer to Execution Syst.

Record Goods Receipt

Vendor creates debit memo

Create Purchase Order Item

Update Order Confirmation

Reactivate Purchase Order Item

Cancel Invoice Receipt

Create Purchase Requisition Item
SRM: Awaiting Approval

SRM: Change was Transmitted

Change Storage Location

Change Quantity

Vendor creates invoice

Change Price

Remove Payment Block

SRM: Document Completed

Cancel Goods Receipt

Record Invoice Receipt

Fig. 52: Model discovered using α+++;2.0;b0.5;t0.5;r0.5 on BPI Challenge
2019 (Sample of 3000 Cases)

Revisiting the Alpha Algorithm 43

Receive Order Confirmation

Vendor creates debit memo

Record Subsequent Invoice

Change Quantity

Create Purchase Requisition Item

Delete Purchase Order Item

Cancel Subsequent Invoice

Create Purchase Order Item

Update Order Confirmation

Vendor creates invoice

SRM: Created SRM: Document Completed

Clear Invoice

Record Goods Receipt

SRM: Awaiting Approval

SRM: Transfer Failed (E.Sys.)

SRM: Change was Transmitted

Change Storage Location

SRM: OrderedSRM: Complete

Cancel Goods Receipt

Record Invoice Receipt

Remove Payment Block

Block Purchase Order Item

Change Approval for Purchase Order

Record Service Entry Sheet

SRM: In Transfer to Execution Syst.

Change Delivery Indicator

Release Purchase Order

Release Purchase Requisition

SRM: Deleted

Cancel Invoice Receipt

Change Price

Reactivate Purchase Order Item

Fig. 53: Model discovered using α+++;2.0;b0.3;t0.7;r0.6 on BPI Challenge
2019 (Sample of 3000 Cases)

SRM: Deleted

Receive Order Confirmation

Change Delivery Indicator

SRM: Document Completed

Cancel Subsequent Invoice

Release Purchase Requisition

Record Invoice Receipt

Release Purchase Order

Remove Payment Block

SRM: In Transfer to Execution Syst.

SRM: Complete

Delete Purchase Order Item

SRM: Transfer Failed (E.Sys.)

Vendor creates debit memo

Change Price

Record Service Entry Sheet

Cancel Invoice Receipt

SRM: Ordered

Change Quantity

Clear Invoice

Record Goods Receipt

Create Purchase Requisition Item

Record Subsequent Invoice

Create Purchase Order Item

SRM: Created

Cancel Goods Receipt

Block Purchase Order ItemUpdate Order Confirmation

Vendor creates invoice

SRM: Change was Transmitted

Change Storage Location

Change Approval for Purchase Order

Reactivate Purchase Order Item

SRM: Awaiting Approval

Fig. 54: Model discovered using α+++;2.0;b0.2;t0.8;r0.7 on BPI Challenge
2019 (Sample of 3000 Cases)

44 Aaron Küsters, Wil van der Aalst

SRM: Created

SRM: Ordered

Release Purchase Order

Update Order Confirmation

SRM: Deleted

Cancel Subsequent Invoice

Delete Purchase Order Item

Change Approval for Purchase Order

Clear Invoice

Receive Order Confirmation

Record Subsequent Invoice

Remove Payment Block

Release Purchase Requisition

SRM: Awaiting ApprovalSRM: Complete

Change Quantity

Record Invoice Receipt

Reactivate Purchase Order Item

Block Purchase Order Item

Record Service Entry Sheet

SRM: Change was Transmitted

SRM: In Transfer to Execution Syst.

Cancel Goods Receipt

Change Price

Create Purchase Requisition Item

Vendor creates invoice

Vendor creates debit memo

Change Delivery Indicator

Change Storage Location

Record Goods Receipt

Create Purchase Order Item

SRM: Transfer Failed (E.Sys.)

SRM: Document Completed

Cancel Invoice Receipt

Fig. 55: Model discovered using α+++;2.0;b0.2;t0.8;r0.8 on BPI Challenge
2019 (Sample of 3000 Cases)

Remove Payment Block

SRM: Document Completed

Change Price

Cancel Invoice Receipt

Clear Invoice

SRM: Change was Transmitted

Record Subsequent Invoice

Vendor creates invoice

SRM: Transfer Failed (E.Sys.)

Cancel Subsequent Invoice

Change Approval for Purchase Order

Create Purchase Order Item

Cancel Goods Receipt

Change Delivery Indicator

Change Quantity

SRM: In Transfer to Execution Syst.

Delete Purchase Order Item

Reactivate Purchase Order Item

Change Storage Location

Block Purchase Order Item

SRM: Deleted

Record Goods Receipt

Vendor creates debit memo

SRM: Awaiting Approval

Release Purchase Order

SRM: Ordered

Record Service Entry Sheet

Update Order Confirmation

SRM: Created

Record Invoice Receipt

Create Purchase Requisition Item
Release Purchase Requisition

Receive Order Confirmation

SRM: Complete

Fig. 56: Model discovered using α+++;2.0;b0.1;t0.9;r0.9 on BPI Challenge
2019 (Sample of 3000 Cases)

Revisiting the Alpha Algorithm 45

SRM: Document Completed
Vendor creates invoice

SRM: Change was Transmitted

SRM: In Transfer to Execution Syst.

Block Purchase Order Item

Vendor creates debit memo

Cancel Goods Receipt

Cancel Invoice Receipt

Create Purchase Requisition Item

Record Service Entry Sheet

Change Delivery Indicator

Cancel Subsequent Invoice

Remove Payment Block

Change Storage Location

Change Price

Reactivate Purchase Order Item

SRM: Deleted

Change Approval for Purchase Order

Record Goods Receipt

SRM: Transfer Failed (E.Sys.)

Change Quantity

SRM: Complete

Receive Order Confirmation

Release Purchase Requisition

Record Subsequent Invoice

SRM: Awaiting Approval

Clear Invoice

Delete Purchase Order Item

SRM: Ordered

SRM: Created

Create Purchase Order Item

Release Purchase Order

Update Order Confirmation

Record Invoice Receipt

Fig. 57: Model discovered using α+++;4.0;b0.5;t0.5;r0.5 on BPI Challenge
2019 (Sample of 3000 Cases)

Change Price

Release Purchase Requisition

Block Purchase Order Item

Release Purchase Order

SRM: Document Completed

Change Approval for Purchase Order

Cancel Goods Receipt

Create Purchase Order Item

Record Subsequent Invoice

Clear Invoice

Remove Payment Block

Reactivate Purchase Order Item

Change Delivery Indicator

Record Goods Receipt

SRM: Complete

SRM: Transfer Failed (E.Sys.)

Update Order Confirmation

Record Service Entry Sheet

SRM: Change was Transmitted

SRM: Ordered

Create Purchase Requisition Item

Delete Purchase Order Item

Change Quantity

Record Invoice Receipt

SRM: Deleted

Receive Order Confirmation

Cancel Invoice Receipt

SRM: Created

SRM: In Transfer to Execution Syst.

Vendor creates invoice

Cancel Subsequent Invoice

SRM: Awaiting Approval

Vendor creates debit memo

Change Storage Location

Fig. 58: Model discovered using α+++;4.0;b0.3;t0.7;r0.6 on BPI Challenge
2019 (Sample of 3000 Cases)

46 Aaron Küsters, Wil van der Aalst

Cancel Subsequent Invoice

Change Approval for Purchase Order

Change Price

SRM: Awaiting Approval

Release Purchase Requisition

SRM: Created

Cancel Goods Receipt

Vendor creates debit memo

Record Invoice Receipt

Remove Payment Block

SRM: Ordered

Change Quantity

SRM: Complete

Update Order Confirmation

SRM: Change was Transmitted

Create Purchase Requisition Item

Block Purchase Order Item

Delete Purchase Order Item

SRM: Transfer Failed (E.Sys.)

Release Purchase Order

Clear Invoice

Change Storage Location

SRM: In Transfer to Execution Syst.

Record Subsequent Invoice

Cancel Invoice Receipt

Vendor creates invoice

SRM: Document Completed

Receive Order Confirmation

Record Service Entry Sheet

Reactivate Purchase Order Item

Record Goods Receipt

SRM: Deleted

Create Purchase Order Item

Change Delivery Indicator

Fig. 59: Model discovered using α+++;4.0;b0.2;t0.8;r0.7 on BPI Challenge
2019 (Sample of 3000 Cases)

Record Subsequent Invoice

SRM: Deleted

Record Goods Receipt

Vendor creates invoice

Cancel Goods Receipt

Create Purchase Order Item

SRM: Document Completed

Change Delivery Indicator

Clear Invoice

Cancel Subsequent Invoice

SRM: Created SRM: Complete

Record Service Entry Sheet

Delete Purchase Order Item

Change Quantity

SRM: Ordered

Reactivate Purchase Order Item

Release Purchase Requisition

Create Purchase Requisition Item

Change Storage Location

Update Order Confirmation

Remove Payment Block

Block Purchase Order Item

Change Price

Cancel Invoice Receipt

SRM: Transfer Failed (E.Sys.)

SRM: Change was TransmittedSRM: Awaiting Approval

SRM: In Transfer to Execution Syst.

Record Invoice Receipt

Change Approval for Purchase Order

Receive Order Confirmation

Release Purchase Order

Vendor creates debit memo

Fig. 60: Model discovered using α+++;4.0;b0.2;t0.8;r0.8 on BPI Challenge
2019 (Sample of 3000 Cases)

Revisiting the Alpha Algorithm 47

Create Purchase Order Item

Cancel Subsequent Invoice

Vendor creates invoice

Delete Purchase Order Item

Clear Invoice

Receive Order Confirmation

Release Purchase Requisition

Change Quantity

SRM: Document Completed

Reactivate Purchase Order Item

Change Storage Location

Release Purchase Order

Change Price

Record Subsequent Invoice

Cancel Goods Receipt

Record Invoice Receipt

Update Order Confirmation

SRM: Complete SRM: Ordered

SRM: Change was Transmitted

SRM: Transfer Failed (E.Sys.)

Record Goods Receipt

SRM: Awaiting Approval

Change Delivery Indicator

Record Service Entry Sheet

Create Purchase Requisition Item

Block Purchase Order Item

Vendor creates debit memo

Change Approval for Purchase Order

Cancel Invoice Receipt

SRM: In Transfer to Execution Syst.

SRM: Created

Remove Payment Block

SRM: Deleted

Fig. 61: Model discovered using α+++;4.0;b0.1;t0.9;r0.9 on BPI Challenge
2019 (Sample of 3000 Cases)

48 Aaron Küsters, Wil van der Aalst

C.4 BPI Challenge 2020 (Request for Payment)

Request For Payment REJECTED by ADMINISTRATION

Payment Handled

Request For Payment FINAL_APPROVED by BUDGET OWNER

Request For Payment SUBMITTED by EMPLOYEE

Request For Payment REJECTED by EMPLOYEE

Request For Payment FINAL_APPROVED by SUPERVISOR

Request For Payment FOR_APPROVAL by SUPERVISOR

■

Request For Payment APPROVED by BUDGET OWNER

Request For Payment APPROVED by PRE_APPROVER

Request For Payment SAVED by EMPLOYEE

Request For Payment APPROVED by ADMINISTRATION

Request For Payment FINAL_APPROVED by DIRECTOR

Request For Payment APPROVED by SUPERVISOR

Request Payment●

Fig. 62: Model discovered using IMf 0.1 on BPI Challenge 2020 (Request for
Payment)

Request For Payment REJECTED by PRE_APPROVER

Request For Payment APPROVED by PRE_APPROVER

Request For Payment FINAL_APPROVED by DIRECTOR

Request For Payment APPROVED by SUPERVISOR

Request For Payment REJECTED by SUPERVISOR

Payment HandledRequest For Payment APPROVED by BUDGET OWNER

Request For Payment REJECTED by MISSING

Request For Payment APPROVED by ADMINISTRATION

Request For Payment FINAL_APPROVED by BUDGET OWNER

Request For Payment REJECTED by ADMINISTRATION

Request For Payment FOR_APPROVAL by SUPERVISOR ■

Request For Payment REJECTED by EMPLOYEE

Request For Payment SUBMITTED by EMPLOYEE

Request For Payment FINAL_APPROVED by SUPERVISOR

Request For Payment SAVED by EMPLOYEE

Request Payment

●

Fig. 63: Model discovered using IMf 0.2 on BPI Challenge 2020 (Request for
Payment)

Request For Payment APPROVED by PRE_APPROVER

Request For Payment APPROVED by SUPERVISOR

Request For Payment APPROVED by BUDGET OWNER

Request For Payment REJECTED by MISSING

Request For Payment APPROVED by ADMINISTRATION

Request Payment

Request For Payment FINAL_APPROVED by BUDGET OWNER

Request For Payment REJECTED by ADMINISTRATION

Request For Payment FOR_APPROVAL by SUPERVISOR

■

Request For Payment REJECTED by EMPLOYEE

Request For Payment SUBMITTED by EMPLOYEE

Request For Payment SAVED by EMPLOYEE

Request For Payment REJECTED by SUPERVISOR

Payment Handled

Request For Payment REJECTED by PRE_APPROVER

Request For Payment FINAL_APPROVED by SUPERVISOR

Request For Payment FINAL_APPROVED by DIRECTOR

●

Fig. 64: Model discovered using IMf 0.3 on BPI Challenge 2020 (Request for
Payment)

Request For Payment REJECTED by SUPERVISOR

Request For Payment REJECTED by PRE_APPROVER Request For Payment APPROVED by BUDGET OWNER

Request For Payment APPROVED by ADMINISTRATION

Request For Payment FINAL_APPROVED by SUPERVISOR Request Payment

Request For Payment FINAL_APPROVED by BUDGET OWNER

Request For Payment FOR_APPROVAL by SUPERVISOR ■

Request For Payment REJECTED by EMPLOYEE

Request For Payment REJECTED by MISSING

Request For Payment SAVED by EMPLOYEE

Request For Payment SUBMITTED by EMPLOYEE

Request For Payment APPROVED by PRE_APPROVER

Payment Handled

Request For Payment FINAL_APPROVED by DIRECTOR

Request For Payment REJECTED by ADMINISTRATION

Request For Payment APPROVED by SUPERVISOR

●

Fig. 65: Model discovered using IMf 0.4 on BPI Challenge 2020 (Request for
Payment)

Revisiting the Alpha Algorithm 49

Request For Payment FINAL_APPROVED by SUPERVISOR

Request For Payment SUBMITTED by EMPLOYEE

Request For Payment APPROVED by PRE_APPROVER

Request For Payment APPROVED by ADMINISTRATION

Request For Payment REJECTED by SUPERVISOR

Request For Payment REJECTED by EMPLOYEE

Request For Payment APPROVED by BUDGET OWNER

Request For Payment REJECTED by ADMINISTRATION

Request Payment Payment Handled ■

●

Fig. 66: Model discovered using α Top10 on BPI Challenge 2020 (Request for
Payment)

Request For Payment SUBMITTED by EMPLOYEE Payment Handled ■Request PaymentRequest For Payment FINAL_APPROVED by SUPERVISORRequest For Payment APPROVED by ADMINISTRATION●

Fig. 67: Model discovered using α 10%Cov on BPI Challenge 2020 (Request for
Payment)

Request For Payment SUBMITTED by EMPLOYEE Request Payment

Request For Payment APPROVED by BUDGET OWNER

Payment Handled ■Request For Payment FINAL_APPROVED by SUPERVISORRequest For Payment APPROVED by ADMINISTRATION●

Fig. 68: Model discovered using α 50%Cov on BPI Challenge 2020 (Request for
Payment)

Request For Payment APPROVED by BUDGET OWNER

Request For Payment REJECTED by ADMINISTRATION

Payment Handled

■
Request For Payment SUBMITTED by EMPLOYEE

Request For Payment REJECTED by EMPLOYEE

Request For Payment FINAL_APPROVED by SUPERVISOR Request PaymentRequest For Payment APPROVED by ADMINISTRATION●

Fig. 69: Model discovered using α 80%Cov on BPI Challenge 2020 (Request for
Payment)

Request Payment

Request For Payment FOR_APPROVAL by ADMINISTRATION

Request For Payment APPROVED by BUDGET OWNER

Payment Handled

Request For Payment REJECTED by EMPLOYEE

Request For Payment FINAL_APPROVED by SUPERVISOR

Request For Payment APPROVED by SUPERVISOR

Request For Payment REJECTED by MISSINGRequest For Payment SUBMITTED by EMPLOYEE

Request For Payment REJECTED by SUPERVISOR

Request For Payment REJECTED by BUDGET OWNER

Request For Payment REJECTED by ADMINISTRATION
Request For Payment APPROVED by ADMINISTRATION

Request For Payment APPROVED by PRE_APPROVER

Request For Payment SAVED by EMPLOYEE

Request For Payment FINAL_APPROVED by BUDGET OWNER

Request For Payment REJECTED by PRE_APPROVER

Request For Payment FINAL_APPROVED by DIRECTOR

Request For Payment FOR_APPROVAL by SUPERVISOR

Fig. 70: Model discovered using α+++;2.0;b0.5;t0.5;r0.5 on BPI Challenge
2020 (Request for Payment)

Request For Payment REJECTED by BUDGET OWNER

Request For Payment FOR_APPROVAL by ADMINISTRATION

Request For Payment FOR_APPROVAL by SUPERVISOR

Request For Payment FINAL_APPROVED by DIRECTOR

Request For Payment APPROVED by SUPERVISOR

Request For Payment REJECTED by EMPLOYEE

Request For Payment SAVED by EMPLOYEE

Request For Payment REJECTED by ADMINISTRATION

Request For Payment APPROVED by PRE_APPROVER

Request For Payment REJECTED by MISSING

Request For Payment REJECTED by SUPERVISOR

Request For Payment SUBMITTED by EMPLOYEE

Request Payment
Request For Payment FINAL_APPROVED by SUPERVISOR

Request For Payment APPROVED by ADMINISTRATION

Request For Payment APPROVED by BUDGET OWNER

Payment Handled

Request For Payment REJECTED by PRE_APPROVER

Request For Payment FINAL_APPROVED by BUDGET OWNER

Fig. 71: Model discovered using α+++;2.0;b0.3;t0.7;r0.6 on BPI Challenge
2020 (Request for Payment)

50 Aaron Küsters, Wil van der Aalst

Request For Payment APPROVED by ADMINISTRATION

Request For Payment FOR_APPROVAL by ADMINISTRATION

Request For Payment REJECTED by PRE_APPROVER

Request Payment

Payment Handled

Request For Payment SAVED by EMPLOYEE

Request For Payment FINAL_APPROVED by DIRECTOR

Request For Payment FINAL_APPROVED by SUPERVISOR

Request For Payment FINAL_APPROVED by BUDGET OWNER

Request For Payment REJECTED by EMPLOYEE

Request For Payment APPROVED by BUDGET OWNER

Request For Payment REJECTED by SUPERVISOR

Request For Payment REJECTED by MISSING

Request For Payment REJECTED by ADMINISTRATION

Request For Payment SUBMITTED by EMPLOYEE
Request For Payment REJECTED by BUDGET OWNER

Request For Payment APPROVED by PRE_APPROVER

Request For Payment APPROVED by SUPERVISOR

Request For Payment FOR_APPROVAL by SUPERVISOR

Fig. 72: Model discovered using α+++;2.0;b0.2;t0.8;r0.7 on BPI Challenge
2020 (Request for Payment)

Request For Payment SAVED by EMPLOYEE

Request For Payment FOR_APPROVAL by SUPERVISOR

Request For Payment REJECTED by ADMINISTRATION

Request For Payment REJECTED by PRE_APPROVER

Request For Payment REJECTED by SUPERVISOR

Request For Payment REJECTED by EMPLOYEE

Request For Payment FOR_APPROVAL by ADMINISTRATION

Request For Payment REJECTED by MISSING

Payment Handled

Request Payment

Request For Payment APPROVED by BUDGET OWNERRequest For Payment APPROVED by ADMINISTRATION

Request For Payment FINAL_APPROVED by SUPERVISOR

Request For Payment FINAL_APPROVED by BUDGET OWNER

Request For Payment FINAL_APPROVED by DIRECTOR

Request For Payment APPROVED by PRE_APPROVER

Request For Payment REJECTED by BUDGET OWNER

Request For Payment SUBMITTED by EMPLOYEE

Request For Payment APPROVED by SUPERVISOR

Fig. 73: Model discovered using α+++;2.0;b0.2;t0.8;r0.8 on BPI Challenge
2020 (Request for Payment)

Request For Payment REJECTED by SUPERVISOR

Request For Payment REJECTED by MISSING

Request For Payment APPROVED by SUPERVISOR

Request For Payment FINAL_APPROVED by DIRECTOR

Request For Payment SUBMITTED by EMPLOYEE

Request For Payment APPROVED by PRE_APPROVER

Payment Handled

Request For Payment APPROVED by BUDGET OWNER

Request For Payment APPROVED by ADMINISTRATION

Request For Payment REJECTED by EMPLOYEE

Request For Payment FINAL_APPROVED by SUPERVISOR

Request Payment

Request For Payment SAVED by EMPLOYEE

Request For Payment FOR_APPROVAL by ADMINISTRATION

Request For Payment FOR_APPROVAL by SUPERVISOR

Request For Payment REJECTED by PRE_APPROVER

Request For Payment FINAL_APPROVED by BUDGET OWNER

Request For Payment REJECTED by ADMINISTRATION

Request For Payment REJECTED by BUDGET OWNER

Fig. 74: Model discovered using α+++;2.0;b0.1;t0.9;r0.9 on BPI Challenge
2020 (Request for Payment)

Request For Payment FOR_APPROVAL by ADMINISTRATION

Request Payment

Request For Payment FINAL_APPROVED by DIRECTOR

Request For Payment APPROVED by SUPERVISOR

Request For Payment FINAL_APPROVED by BUDGET OWNER

Request For Payment REJECTED by EMPLOYEE

Request For Payment REJECTED by PRE_APPROVER

Request For Payment SAVED by EMPLOYEE

Request For Payment SUBMITTED by EMPLOYEE

Request For Payment REJECTED by MISSING

Request For Payment FINAL_APPROVED by SUPERVISOR

Request For Payment APPROVED by PRE_APPROVER

Request For Payment APPROVED by ADMINISTRATION

Payment Handled

Request For Payment REJECTED by ADMINISTRATION

Request For Payment APPROVED by BUDGET OWNER

Request For Payment REJECTED by SUPERVISOR

Request For Payment FOR_APPROVAL by SUPERVISOR

Request For Payment REJECTED by BUDGET OWNER

Fig. 75: Model discovered using α+++;4.0;b0.5;t0.5;r0.5 on BPI Challenge
2020 (Request for Payment)

Request For Payment APPROVED by SUPERVISOR

Request For Payment APPROVED by ADMINISTRATION

Request For Payment REJECTED by BUDGET OWNER

Request For Payment APPROVED by BUDGET OWNER
Request For Payment REJECTED by EMPLOYEE

Request For Payment REJECTED by ADMINISTRATION

Request For Payment REJECTED by SUPERVISOR

Request For Payment FOR_APPROVAL by ADMINISTRATION

Payment Handled

Request For Payment APPROVED by PRE_APPROVER

Request Payment

Request For Payment FINAL_APPROVED by DIRECTOR

Request For Payment FINAL_APPROVED by SUPERVISOR

Request For Payment REJECTED by PRE_APPROVER

Request For Payment SUBMITTED by EMPLOYEE

Request For Payment SAVED by EMPLOYEE

Request For Payment REJECTED by MISSING

Request For Payment FINAL_APPROVED by BUDGET OWNER

Request For Payment FOR_APPROVAL by SUPERVISOR

Fig. 76: Model discovered using α+++;4.0;b0.3;t0.7;r0.6 on BPI Challenge
2020 (Request for Payment)

Revisiting the Alpha Algorithm 51

Request For Payment APPROVED by ADMINISTRATION
Request Payment

Request For Payment REJECTED by PRE_APPROVER

Request For Payment SAVED by EMPLOYEE

Payment Handled

Request For Payment REJECTED by EMPLOYEE

Request For Payment APPROVED by BUDGET OWNER

Request For Payment FOR_APPROVAL by SUPERVISOR

Request For Payment FINAL_APPROVED by BUDGET OWNER

Request For Payment FOR_APPROVAL by ADMINISTRATION

Request For Payment REJECTED by SUPERVISOR

Request For Payment APPROVED by PRE_APPROVER

Request For Payment SUBMITTED by EMPLOYEE

Request For Payment REJECTED by ADMINISTRATION

Request For Payment FINAL_APPROVED by SUPERVISOR

Request For Payment FINAL_APPROVED by DIRECTOR

Request For Payment REJECTED by MISSING

Request For Payment REJECTED by BUDGET OWNER

Request For Payment APPROVED by SUPERVISOR

Fig. 77: Model discovered using α+++;4.0;b0.2;t0.8;r0.7 on BPI Challenge
2020 (Request for Payment)

Request For Payment REJECTED by SUPERVISOR

Request For Payment SUBMITTED by EMPLOYEE

Request For Payment FINAL_APPROVED by BUDGET OWNER

Request For Payment FOR_APPROVAL by SUPERVISOR

Request For Payment REJECTED by EMPLOYEE Request For Payment FINAL_APPROVED by DIRECTOR

Request For Payment SAVED by EMPLOYEE

Request For Payment APPROVED by SUPERVISOR

Payment Handled

Request For Payment REJECTED by MISSING

Request For Payment FOR_APPROVAL by ADMINISTRATION

Request For Payment REJECTED by ADMINISTRATION

Request Payment

Request For Payment APPROVED by PRE_APPROVER

Request For Payment REJECTED by BUDGET OWNER

Request For Payment APPROVED by ADMINISTRATION

Request For Payment FINAL_APPROVED by SUPERVISOR

Request For Payment APPROVED by BUDGET OWNER

Request For Payment REJECTED by PRE_APPROVER

Fig. 78: Model discovered using α+++;4.0;b0.2;t0.8;r0.8 on BPI Challenge
2020 (Request for Payment)

Request For Payment REJECTED by BUDGET OWNER

Request For Payment FINAL_APPROVED by DIRECTOR

Request For Payment APPROVED by PRE_APPROVER

Request For Payment REJECTED by ADMINISTRATION

Request For Payment APPROVED by ADMINISTRATION

Request For Payment FINAL_APPROVED by SUPERVISOR

Request For Payment FOR_APPROVAL by SUPERVISOR

Payment Handled

Request For Payment FINAL_APPROVED by BUDGET OWNER

Request For Payment SUBMITTED by EMPLOYEE

Request For Payment SAVED by EMPLOYEE

Request For Payment REJECTED by MISSING

Request For Payment REJECTED by SUPERVISOR

Request Payment

Request For Payment FOR_APPROVAL by ADMINISTRATION

Request For Payment REJECTED by PRE_APPROVER Request For Payment REJECTED by EMPLOYEE

Request For Payment APPROVED by BUDGET OWNER

Request For Payment APPROVED by SUPERVISOR

Fig. 79: Model discovered using α+++;4.0;b0.1;t0.9;r0.9 on BPI Challenge
2020 (Request for Payment)

52 Aaron Küsters, Wil van der Aalst

C.5 BPI Challenge 2020 (Domestic Declarations)

Declaration REJECTED by MISSING
Declaration REJECTED by ADMINISTRATION

Declaration FINAL_APPROVED by SUPERVISOR

Declaration REJECTED by EMPLOYEE Declaration SUBMITTED by EMPLOYEE

Payment Handled ■
Declaration SAVED by EMPLOYEE

Declaration FOR_APPROVAL by SUPERVISOR

Request Payment

Declaration APPROVED by BUDGET OWNER

Declaration FOR_APPROVAL by PRE_APPROVER

Declaration APPROVED by ADMINISTRATION

●

Fig. 80: Model discovered using IMf 0.1 on BPI Challenge 2020 (Domestic Dec-
larations)

Declaration REJECTED by MISSING

Declaration REJECTED by BUDGET OWNER

Declaration REJECTED by ADMINISTRATION

Declaration SUBMITTED by EMPLOYEE
Declaration APPROVED by ADMINISTRATIONDeclaration FOR_APPROVAL by PRE_APPROVER

Declaration REJECTED by PRE_APPROVER

Declaration SAVED by EMPLOYEE

Declaration FOR_APPROVAL by SUPERVISOR

Declaration FINAL_APPROVED by SUPERVISOR

Declaration APPROVED by BUDGET OWNER

Payment Handled ■Request Payment

Declaration REJECTED by SUPERVISOR

Declaration REJECTED by EMPLOYEE

●

Fig. 81: Model discovered using IMf 0.2 on BPI Challenge 2020 (Domestic Dec-
larations)

Declaration REJECTED by MISSING

Declaration SAVED by EMPLOYEE

Declaration REJECTED by EMPLOYEE

Declaration SUBMITTED by EMPLOYEEDeclaration REJECTED by PRE_APPROVER Declaration APPROVED by BUDGET OWNER

Declaration REJECTED by BUDGET OWNER

Declaration FINAL_APPROVED by SUPERVISOR

Declaration FOR_APPROVAL by PRE_APPROVER

Declaration FOR_APPROVAL by SUPERVISOR Declaration REJECTED by SUPERVISOR

Payment Handled ■
Declaration REJECTED by ADMINISTRATION

Declaration APPROVED by ADMINISTRATION

Request Payment

●

Fig. 82: Model discovered using IMf 0.3 on BPI Challenge 2020 (Domestic Dec-
larations)

Declaration REJECTED by BUDGET OWNER
Declaration REJECTED by ADMINISTRATION

Declaration APPROVED by ADMINISTRATION

Request Payment

Declaration REJECTED by EMPLOYEE

Declaration FINAL_APPROVED by SUPERVISOR

Declaration SAVED by EMPLOYEE

Declaration REJECTED by PRE_APPROVER

Declaration SUBMITTED by EMPLOYEE
Declaration APPROVED by BUDGET OWNER

Declaration FOR_APPROVAL by SUPERVISOR

Declaration REJECTED by MISSING

Declaration FOR_APPROVAL by PRE_APPROVER

Declaration REJECTED by SUPERVISOR

Payment Handled ■

●

Fig. 83: Model discovered using IMf 0.4 on BPI Challenge 2020 (Domestic Dec-
larations)

Revisiting the Alpha Algorithm 53

Request Payment Payment Handled ■Declaration SUBMITTED by EMPLOYEE

Declaration APPROVED by BUDGET OWNERDeclaration REJECTED by ADMINISTRATION

Declaration REJECTED by EMPLOYEE

Declaration REJECTED by PRE_APPROVER

Declaration REJECTED by SUPERVISOR

Declaration APPROVED by ADMINISTRATION

Declaration FINAL_APPROVED by SUPERVISOR

Declaration APPROVED by PRE_APPROVER

●

Fig. 84: Model discovered using α Top10 on BPI Challenge 2020 (Domestic Dec-
larations)

Declaration FINAL_APPROVED by SUPERVISORDeclaration SUBMITTED by EMPLOYEE Request Payment Payment Handled ■Declaration APPROVED by ADMINISTRATION●

Fig. 85: Model discovered using α 10%Cov on BPI Challenge 2020 (Domestic
Declarations)

Payment Handled ■
Declaration APPROVED by BUDGET OWNER

Declaration FINAL_APPROVED by SUPERVISOR Request PaymentDeclaration SUBMITTED by EMPLOYEE Declaration APPROVED by ADMINISTRATION●

Fig. 86: Model discovered using α 50%Cov on BPI Challenge 2020 (Domestic
Declarations)

Request Payment

Declaration SUBMITTED by EMPLOYEE

Declaration APPROVED by ADMINISTRATION

Payment Handled ■
Declaration APPROVED by BUDGET OWNER

Declaration FINAL_APPROVED by SUPERVISOR

●

Fig. 87: Model discovered using α 80%Cov on BPI Challenge 2020 (Domestic
Declarations)

Declaration REJECTED by BUDGET OWNER

Declaration REJECTED by ADMINISTRATION

Declaration APPROVED by BUDGET OWNER

Request Payment

Payment Handled

Declaration APPROVED by ADMINISTRATION Declaration FINAL_APPROVED by SUPERVISOR

Declaration SUBMITTED by EMPLOYEE

Declaration REJECTED by EMPLOYEE

Declaration FOR_APPROVAL by SUPERVISOR

Declaration SAVED by EMPLOYEE

Declaration REJECTED by PRE_APPROVER

Declaration FOR_APPROVAL by ADMINISTRATION

Declaration REJECTED by SUPERVISOR

Declaration APPROVED by PRE_APPROVER

Declaration FOR_APPROVAL by PRE_APPROVER

Declaration REJECTED by MISSING

Fig. 88: Model discovered using α+++;2.0;b0.5;t0.5;r0.5 on BPI Challenge
2020 (Domestic Declarations)

Declaration REJECTED by SUPERVISOR

Declaration FOR_APPROVAL by PRE_APPROVER
Declaration SUBMITTED by EMPLOYEE

Declaration REJECTED by EMPLOYEE

Declaration APPROVED by PRE_APPROVER

Declaration APPROVED by ADMINISTRATION

Declaration APPROVED by BUDGET OWNER

Payment Handled

Declaration REJECTED by MISSING

Declaration SAVED by EMPLOYEE

Declaration FINAL_APPROVED by SUPERVISOR Request Payment

Declaration FOR_APPROVAL by SUPERVISOR

Declaration REJECTED by BUDGET OWNER

Declaration REJECTED by PRE_APPROVER

Declaration REJECTED by ADMINISTRATION

Declaration FOR_APPROVAL by ADMINISTRATION

Fig. 89: Model discovered using α+++;2.0;b0.3;t0.7;r0.6 on BPI Challenge
2020 (Domestic Declarations)

54 Aaron Küsters, Wil van der Aalst

Declaration FOR_APPROVAL by PRE_APPROVER

Declaration APPROVED by PRE_APPROVER

Request Payment

Declaration FINAL_APPROVED by SUPERVISOR

Payment HandledDeclaration SAVED by EMPLOYEE

Declaration REJECTED by EMPLOYEE

Declaration APPROVED by BUDGET OWNER

Declaration REJECTED by ADMINISTRATION

Declaration APPROVED by ADMINISTRATION

Declaration REJECTED by BUDGET OWNER

Declaration REJECTED by PRE_APPROVER

Declaration REJECTED by SUPERVISOR

Declaration FOR_APPROVAL by SUPERVISOR

Declaration REJECTED by MISSING

Declaration FOR_APPROVAL by ADMINISTRATION

Declaration SUBMITTED by EMPLOYEE

Fig. 90: Model discovered using α+++;2.0;b0.2;t0.8;r0.7 on BPI Challenge
2020 (Domestic Declarations)

Declaration APPROVED by ADMINISTRATION

Declaration APPROVED by BUDGET OWNER

Declaration REJECTED by PRE_APPROVER

Declaration REJECTED by SUPERVISOR

Declaration FOR_APPROVAL by SUPERVISOR

Declaration FOR_APPROVAL by PRE_APPROVER

Declaration REJECTED by MISSINGDeclaration REJECTED by ADMINISTRATION

Declaration SAVED by EMPLOYEE

Declaration FINAL_APPROVED by SUPERVISOR

Declaration APPROVED by PRE_APPROVER

Declaration SUBMITTED by EMPLOYEE

Payment Handled

Declaration REJECTED by EMPLOYEE

Request Payment

Declaration FOR_APPROVAL by ADMINISTRATION

Declaration REJECTED by BUDGET OWNER

Fig. 91: Model discovered using α+++;2.0;b0.2;t0.8;r0.8 on BPI Challenge
2020 (Domestic Declarations)

Declaration REJECTED by EMPLOYEE

Declaration SAVED by EMPLOYEE

Declaration APPROVED by PRE_APPROVER

Request Payment

Declaration FOR_APPROVAL by PRE_APPROVER

Declaration REJECTED by PRE_APPROVER

Declaration REJECTED by ADMINISTRATION

Declaration APPROVED by BUDGET OWNER

Declaration FOR_APPROVAL by SUPERVISOR

Declaration FOR_APPROVAL by ADMINISTRATION

Declaration FINAL_APPROVED by SUPERVISOR

Declaration SUBMITTED by EMPLOYEE

Declaration APPROVED by ADMINISTRATION

Declaration REJECTED by SUPERVISOR

Declaration REJECTED by MISSING

Declaration REJECTED by BUDGET OWNER

Payment Handled

Fig. 92: Model discovered using α+++;2.0;b0.1;t0.9;r0.9 on BPI Challenge
2020 (Domestic Declarations)

Declaration APPROVED by BUDGET OWNER

Request Payment

Declaration REJECTED by EMPLOYEE

Declaration FOR_APPROVAL by PRE_APPROVER

Declaration FOR_APPROVAL by ADMINISTRATION

Declaration REJECTED by ADMINISTRATION

Declaration FINAL_APPROVED by SUPERVISOR

Declaration REJECTED by PRE_APPROVER

Declaration FOR_APPROVAL by SUPERVISOR

Declaration REJECTED by BUDGET OWNER

Payment Handled

Declaration APPROVED by PRE_APPROVER

Declaration SUBMITTED by EMPLOYEE

Declaration APPROVED by ADMINISTRATION

Declaration REJECTED by MISSING

Declaration REJECTED by SUPERVISOR

Declaration SAVED by EMPLOYEE

Fig. 93: Model discovered using α+++;4.0;b0.5;t0.5;r0.5 on BPI Challenge
2020 (Domestic Declarations)

Revisiting the Alpha Algorithm 55

Declaration FOR_APPROVAL by PRE_APPROVER

Declaration FOR_APPROVAL by ADMINISTRATION

Declaration REJECTED by ADMINISTRATION

Payment Handled

Declaration REJECTED by PRE_APPROVER

Declaration FINAL_APPROVED by SUPERVISOR

Declaration APPROVED by BUDGET OWNER

Declaration REJECTED by SUPERVISOR

Declaration REJECTED by BUDGET OWNER

Declaration APPROVED by ADMINISTRATION

Declaration SAVED by EMPLOYEE

Declaration REJECTED by EMPLOYEE

Declaration FOR_APPROVAL by SUPERVISOR

Request Payment

Declaration REJECTED by MISSING

Declaration APPROVED by PRE_APPROVER

Declaration SUBMITTED by EMPLOYEE

Fig. 94: Model discovered using α+++;4.0;b0.3;t0.7;r0.6 on BPI Challenge
2020 (Domestic Declarations)

Request Payment

Declaration REJECTED by SUPERVISOR

Declaration FOR_APPROVAL by ADMINISTRATION

Declaration REJECTED by BUDGET OWNER

Declaration FINAL_APPROVED by SUPERVISOR

Declaration FOR_APPROVAL by PRE_APPROVER

Declaration SUBMITTED by EMPLOYEE

Declaration APPROVED by ADMINISTRATION

Declaration FOR_APPROVAL by SUPERVISOR

Declaration REJECTED by EMPLOYEE

Declaration SAVED by EMPLOYEE

Declaration REJECTED by ADMINISTRATION

Declaration REJECTED by MISSING

Declaration APPROVED by PRE_APPROVER

Declaration REJECTED by PRE_APPROVER

Declaration APPROVED by BUDGET OWNER
Payment Handled

Fig. 95: Model discovered using α+++;4.0;b0.2;t0.8;r0.7 on BPI Challenge
2020 (Domestic Declarations)

Declaration REJECTED by MISSING

Declaration APPROVED by ADMINISTRATION
Declaration SAVED by EMPLOYEE

Declaration FOR_APPROVAL by SUPERVISOR
Declaration REJECTED by BUDGET OWNER

Declaration FOR_APPROVAL by PRE_APPROVER

Declaration REJECTED by EMPLOYEE

Declaration REJECTED by SUPERVISOR

Declaration REJECTED by ADMINISTRATION

Declaration SUBMITTED by EMPLOYEE

Declaration APPROVED by PRE_APPROVER

Payment HandledRequest Payment

Declaration REJECTED by PRE_APPROVER

Declaration APPROVED by BUDGET OWNER

Declaration FOR_APPROVAL by ADMINISTRATION

Declaration FINAL_APPROVED by SUPERVISOR

Fig. 96: Model discovered using α+++;4.0;b0.2;t0.8;r0.8 on BPI Challenge
2020 (Domestic Declarations)

Declaration REJECTED by ADMINISTRATION

Declaration SUBMITTED by EMPLOYEE

Declaration REJECTED by EMPLOYEE

Declaration REJECTED by MISSING

Declaration FOR_APPROVAL by SUPERVISOR

Declaration FOR_APPROVAL by PRE_APPROVER

Declaration REJECTED by SUPERVISOR

Declaration APPROVED by ADMINISTRATION

Declaration SAVED by EMPLOYEE

Request Payment

Payment Handled

Declaration FOR_APPROVAL by ADMINISTRATION

Declaration FINAL_APPROVED by SUPERVISOR

Declaration APPROVED by BUDGET OWNER

Declaration REJECTED by PRE_APPROVER

Declaration APPROVED by PRE_APPROVER

Declaration REJECTED by BUDGET OWNER

Fig. 97: Model discovered using α+++;4.0;b0.1;t0.9;r0.9 on BPI Challenge
2020 (Domestic Declarations)

	Revisiting the Alpha Algorithm To Enable Real-Life Process Discovery Applications – Extended Report

