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ABSTRACT

Machine learning models are routinely integrated into process mining pipelines to carry out tasks
like data transformation, noise reduction, anomaly detection, classification, and prediction. Often,
the design of such models is based on some ad-hoc assumptions about the corresponding data
distributions, which are not necessarily in accordance with the non-parametric distributions typically
observed with process data. Moreover, the learning procedure they follow ignores the constraints
concurrency imposes to process data. Data encoding is a key element to smooth the mismatch
between these assumptions but its potential is poorly exploited. In this paper, we argue that a deeper
insight into the issues raised by training machine learning models with process data is crucial to
ground a sound integration of process mining and machine learning. Our analysis of such issues is
aimed at laying the foundation for a methodology aimed at correctly aligning machine learning with
process mining requirements and stimulating the research to elaborate in this direction.

Keywords Process Mining · Machine Learning

1 Introduction

Process Mining (PM) is a consolidated discipline grounded on data mining and business process management. The
exploitation of traditional PM tasks (discovery, conformance checking, and enhancement) is today a reality in many
organizations [1, 2]. In the last decade, a wave of new results in artificial intelligence has triggered the interest of the
PM research community in using supervised or unsupervised Machine Learning (ML) techniques for gaining insight
into business processes and providing advice on how to improve their inefficiencies.

In today’s practice, ML models are routinely integrated into PM data pipelines [3] to carry out tasks like data
transformation, noise reduction, anomaly detection, classification, and prediction. For example, ML is playing a key
role in the interface between PM and sensor platforms. Advances in sensing technologies have made it possible to
deploy distributed monitoring platforms capable of detecting fine-grained events. The granularity gap between these
events and the activities considered by classic PM analysis has often been bridged using ML models [4, 5] that compute
virtual activity logs, a problem which is also known as log lifting [6]. ML has been proposed as a key technology
to strengthen existing techniques, for example, using trace clustering to reduce the diversity that a process discovery
algorithm must handle in analyzing an event log [7, 8, 9, 10], to simplify the discovered models [11, 12, 13], or to
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support real-time analysis on event streams [14, 15, 16]. ML is adopted to apply predictive models to the executing
cases of a process. This research area, known as predictive process monitoring, exploits event log data to foresee future
events, remaining time, or the outcome of cases, in support of decision making [17, 18, 19]. Root cause analysis [20]
and data explainability [21] are other tasks that can be applied to event log data using ML techniques, in order to
improve our understanding of a business process. ML models have also been used in addition to (or in lieu of) classic
linear programming [22] to optimize business processes’ resource consumption and to provide insights to process
re-design [23]. Computational support for PM tends to converge with the one available for ML models also from the
technology standpoint [24, 25]. This makes their integration seem straightforward.

In fact, it is not. When PM tasks are mapped to ML tasks, business process-specific assumptions should drive the
construction of training functions and hyperparameters selection. Some of these assumptions stem from the very
nature of human social systems. For example, it is well known that process variants are shaped by non-parametric
distributions [26]. Quite the contrary, data normality is beneficial for many ML models, moreover, if the data distribution
is skewed, ML models may be biased toward a particular outcome. In addition, the ML view on event log data is often
oversimplified. The correct encoding of the procedural nature of event log traces is challenging. Often, the sequence
of executed events is simply captured by a prefix of fixed length. Even more problematic is encoding concurrency
and the interactions constraining the events in the business process. Encoding event log data into a feature space
compatible with ML algorithms is a critical design choice in other concerns [27]. It impacts the sample complexity,
the data distribution, and the relevance of the features to put under analysis, for example, to detect concept drift or to
support zero-shot learning [28].

Today, much of the research on integrating ML with PM focuses on developing ML models to attain high performance
in specific business process management scenarios. Less attention has been paid to designing a general methodology
to select and adapt ML models based on the nature of the PM problem, taking into account the specific properties
of the process data. We argue that, when using ML models in PM pipelines, it is important to prevent any mismatch
between the assumptions on input data distributions underlying the ML models and the statistics of the event logs used
to feed them [29]. Arbitrarily selecting algorithms leads to unfair evaluation and sub-optimal solutions. For example, a
given model cannot be compared with another if their implementations consider different feature spaces [30]. It is also
important to make sure that ML models are exposed to process-specific information, such as the processes’ control-flow
constraints. In this paper, we attempt to identify some of the causes of this mismatch and suggest how to remove them,
with the aim of fostering research on a sound methodology to address the integration between PM and ML.

We believe that an effort on these aspects must be jointly made by the PM and Artificial Intelligence research
communities. This call to collaboration is valid in general but particularly in business process management, where
data analysis has to leave the safe harbor of experimental science to sail into the open sea of decision science. In this
paper, we discuss the challenges in a specific direction, i.e., from PM to ML. More specifically, in Section 2 we discuss
the issues leading to the PM-to-ML mismatch. In Section 3 we introduce some basic PM notions. In Section 4 we
link them to ML principles. Section 5 clarifies the discussion by presenting a couple of samples. Section 6 proposes
research lines for advancing in the direction of a general methodology that integrates ML models into PM pipelines.
Section 7 closes the paper.

2 The Issues Landscape

An important problem underlying our discussion is how to take into account process data specificity in ML model
selection and (hyper-) parameter tuning. Of course, processing event logs poses all the usual challenges of data pre-
processing and preparation. We will not discuss standard data pre-processing techniques such as outlier removal [31, 32],
noise filtering [33, 34], and missing entries recovery [35] as they can be tackled by current statistical techniques. Rather,
we will focus on issues that are specific to process data, including their statistical distribution and event concurrency.
Indeed, careless assumptions on the encoding of input data may result in biased models with reduced generalization
capability.

2.1 Data Distribution

When choosing an ML model for a PM task, it is tempting to assume that the process data fed to the model will
follow a normal distribution. Indeed, data normality is beneficial for many types of ML models. Models like Gaussian,
naive Bayes, logistic and linear regression explicitly rely on the assumption that the data distribution is bi-variate or
multivariate normal. Many phenomena of interest for business process analysis, such as the duration of some activities,

2



Tailoring Machine Learning for Process Mining

are known to follow normal or log-normal distributions 1. For other PM data, however, assuming normality is not
always advisable. For example, process variants are specific activity sequences that occur through a process from start
to end. Variants’ occurrence in an activity log is typically following a non-parametric trend that complies with the
Pareto principle [26]. A normal distribution cannot always be assured also for the pairwise dependency relationship
between activities, a key statistical information exploited by process discovery algorithms [36]. Indeed, in this case,
the normality assumption has been verified for some event logs, including some popular benchmarks we will discuss
in Section 5 (the “Road traffic fines” [37] and “Receipt phase of an environmental permit application process” [38]).
However, the normality of dependencies in less regular, “spaghetti” like, processes is not observed, as in the “BPI
Challenge 2015 Municipality 1”[39]. There are reasons to believe that dependencies in loosely specified logs may
follow some power-law trend as well, and require careful parameter fitting in statistical analysis. Imbalanced data sets
or non-stationary environments may also cause serious difficulties. For example, if the training data is skewed towards a
particular class or outcome, the model may be more likely to predict that class or outcome even when it is not the most
likely one. Independent component analysis [40] provides ways to reveal Gaussianity and non-Gaussianity. Of course,
non-normal distributions can be transformed to normal ones using Box-Cox transformations [41], and unbalanced data
sets can be balanced [42, 43] but, as we shall see, such data transformations should be applied with caution, as they
have consequences on the performance of the models.

In any case, PM data regarding distributions of variants cannot be expected to always follow a Gaussian behavior,
demanding estimation techniques to sample from the sequential process underlying log generation. Markov Chain Monte
Carlo (MCMC) techniques are sometimes used for sampling from an unknown probability distribution (for instance,
the distribution of variants) by using data to construct a Markov chain whose equilibrium distribution approximates the
unknown one. MCMC techniques can be combined with Kalman filtering[44] to control uncertainty. Of course, an
explicit estimate of the data distribution may not even be necessary. Some ML models work well also in the case of
non-normally distributed data. Simple yet effective ML models like decision trees and random forests do not assume
any normality and work reasonably well on raw event data. Also, linear regression is statistically effective if the model
errors are Gaussian, an assumption less stringent for process data than the normality of the entire data set. Kernel
methods, e.g., Gaussian processes and support vector machines, provide flexible models that are practical to work with
but require proper hyperparameter variables to fit the data.

2.2 Concurrency

Another key attention point is concurrency. How to use ML to predict the behavior of highly concurrent systems and
processes is still an open problem, and the research done in the AI community has only scratched its surface (see
[45] for a recent review). Most ML approaches view event logs as merely sequential data [46], rather than sequential
manifestations of a concurrent system. This may lead to under-sampling the log space and to insufficient training to
handle apparently out-of-order event sequences [47]. To address this issue, it is important to provide ML models with
control-flow information about the iterative or concurrent execution of tasks as additional context alongside event logs.
One approach that has been explored is the use of Bi-directional Long-Short Term Memory (BiLSTM) architectures.
Thapa et al. [48] leveraged BiLSTM to detect concurrent human activities in a smart home environment. Additionally,
Thapa et al. [49] adapted the LSTM algorithm into a synchronous algorithm called sync-LSTM, enabling the model to
handle multiple parallel input sequences and generate multiple synchronized output sequences. The field of predicting
the behavior of highly concurrent systems using ML is rapidly evolving, as indicated by the recent survey conducted by
Neu et al. [50]. Researchers are actively exploring new techniques and methodologies to improve the understanding
and prediction of concurrency in various domains.

2.3 Non-stationary Behaviour

Even when the process data distributions can be fitted precisely, running processes, especially the ones involving
resources that learn and age like people and equipment, change over time. This gives rise to non-stationary behavior.
This problem is a critical one since ML models’ learning capacity decreases under non-stationary conditions [16].
Concept drift detection techniques are therefore required. In traditional data mining applications, concept drift is
identified when, at two separate points in time, a concept, i.e., the relation between a data instance and its associated
class, changes [51]. In PM, many aspects of drift should be carefully monitored, including the appropriateness of the
event trace with respect to the model, the dependency relationship between activities, and the interdependence between
the activities and the available resources or cycle time. Each aspect should be appropriately encoded and monitored
using statistical analysis [52].

1See, for instance, the “lunch break” duration distributions at https://www.statista.com/statistics/995991/
distribution-of-lunch-breaks-by-length-in-europe/
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2.4 Zero-shot Learning

A related topic is using ML models to identify solutions never observed during training, the so-called zero-shot
learning [53]. There are several zero-shot learning approaches, but a commonality is that unstructured auxiliary
information is encoded during the training process instead of using explicit labels. The training process aims to learn to
connect new input elements to encodings that have the greatest similarity in terms of auxiliary information. In this
way, the system can propose an outcome never observed during the training stage. Zero-shot is relevant in PM when
the availability of labeled process data is limited, as the process may be recently developed, unused, or its outcomes
inaccessible. In these situations, relying on historical observations to guide learning tasks is insufficient or erroneous.
This scarcity has drawn the attention of the PM community to contrastive learning, a manner of unsupervised learning
that learns representations by contrasting positive and negative pairs. Graph-related contrastive learning methods apply
this notion to all types of graph data. Some popular unsupervised representation learning methods imply the idea of
contrastive learning. For instance, DeepWalk [54] and node2vec [55] generate Markov chains of nodes based on random
walking on graphs, forcing the neighboring nodes of a graph to have similar representations. More recent proposals
such as DGI [56] and InfoGraph [57] combine contrastive learning with ordinary supervised training to maximize the
mutual information of node and graph levels.

Much work is also being done on generative engines for logs based on likelihood-based models, like auto-encoders
and Generative Adversarial Networks (GANs)[58]. However, ordinary GANs show some limitations when applied to
generate “clean” process data, where low confidence variants are due to failures of the monitoring context rather than to
adversarial constructions [59]. In addition, the GANs’ objective function, i.e. the difference between the generated
and the original distribution of traces in the event log, is not always suitable for evaluating the quality of the generated
process variants, and even less for comparing different generators. Performance measures should be used instead, and
the trained algorithms should be able to provide an answer with different information details, for example, predicting a
performance result knowing or not the availability of resources currently in use.

2.5 Data Encoding

Supervised ML algorithms are trained on collections of examples, each encoded as a vector in a multidimensional
feature space. An appropriate encoding method can reduce the sample complexity and reduce the space or time
complexity of the model [27]. In PM, even more, than selecting individual features, it is important to capture the
interconnections between the different process dimensions. The event logs analyzed in PM contain information from
several complementary dimensions, such as event data, executing traces, resource consumption, and cycle time. Each
event can be described as a multidimensional object, but its value for the process execution lies in the interdependence
with the other events composing the process case instance, the resources available in the system, and the temporal limits
constraining the case, which in turn depend on the other cases executed, executing, or to be executed in the system.
Therefore, capturing the constraints due to the alternative, optional or mandatory dependency between events is crucial
in PM. Encoding methods should also identify features subject to concept drift. Extracting insights from this type of
functional data is not straightforward; covariance control[60] is needed to take into account the hidden relationships
between the different dimensions.

Despite all this, little effort has been spent by the PM community to study the impact of encoding methods on the
performance of PM pipelines. Only a few comparative studies are available [61, 27, 62, 63]. Basic techniques, such as
the one-hot encoding scheme [64] or frequency-based encoding [9], are often adopted. For numerical attributes, general
statistics have been used, such as average, maximum, minimum, and sum [18]. The k-gram encoding schema [8] is
also quite popular. Each activity in the trace is represented as the sequence of k activities executed to reach it. As an
alternative, arrays encoding traces as the frequency of their activities at each position have been proposed [65]. These
encoding techniques can incorporate some control-flow information, but cannot fully account for concurrency. To better
capture dependency between activities, techniques borrowed from other domains have been proposed, including text
mining [66, 67] and graph embedding [68, 69]. Graph embedding methods emerged from the necessity of representing
graphs as low-dimensional vectors to be exploited by downstream ML models. These methods rely themselves on ML
models (usually, supervised learners) to compute highly informative but low-dimensional vectors of fixed length [70].
When applied to event logs encoding, such methods outperform the others, at the cost of higher time complexity
and loss of transparency, as the resulting vectors are organized in a latent space losing any reference to the event log
attributes or their statistical properties [71]. In any case, the representation of the control-flow is purely sequential and
concurrency is not captured by these methods too. Recently, emerging attention on techniques for encoding control-flow
information into a feature space is observed, for example by representing the degree of parallelism or optionality of
activities [72, 73]. Another trend is aimed at constructing multi-perspective views of traces, representing the data-flow
and control-flow into the same encoding [74, 75]. However, the application of these methods is still limited.
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Generally speaking, the encoding procedures used to map PM data to ML models are not documented enough in the
PM literature. Sometimes, the feature space selected is not explicitly presented, the steps followed to encode data
are not well specified, or the adopted code is not shared. Ablation studies, removing parts of the data representation
and studying the removal’s impact on performance, are still the exception rather than the norm. We argue that the
formalization of the encoding procedure allows explaining this key design choice to be justified by the specific analytical
goals and the assumptions applying to the algorithms considered. We will propose such a formalization in Section 4.

3 Basic Notions in PM

To make this paper self-contained, in this section we recall some of the basic concepts of PM. An event log is a collection
of events generated in a temporal sequence and stored as tuples, i.e., recorded values from a set of attributes. Events
are aggregated by case, i.e., the end-to-end execution of a business process. For the sake of classification, all cases
following the same trace, i.e., performing the same sequence of business process activities, can be considered equal as
they belong to the same process variant.

Definition 1 (Event, Attribute) Let Σ be the event universe, i.e., the set of all possible event identifiers; Σ∗ denotes
the set of all finite sequences over Σ. Events have various attributes, such as TIMESTAMP, ACTIVITY, RESOURCE,
ASSOCIATED COST, and others. Let AN be the set of attribute names. For any event e ∈ Σ and attribute A ∈ AN , the
function #A(e) returns the value of the attribute A for event e.

The set of possible values of each attribute is restricted to a domain. For example, #ACTIVITY : Σ → A, where A is
the set of the legal activities of a business process, e.g. A = {a, b, c, d, e}. If e does not contain the attribute value
for some A ∈ AN , then #A(e) = ⊥. It follows that an event can also be viewed as a tuple of attribute-value pairs
e = (A1, ...,Am), where m is the cardinality of AN .

Definition 2 (Sequence, Sub-sequence) In a sequence of events σ ∈ Σ∗, each event appears only once and time is
non-decreasing, i.e., for 1 ≤ i ≤ j ≤ |σ| : #TIMESTAMP(ei) ≤ #TIMESTAMP(ej). Thus ⟨e1, e2, e3⟩ denotes three subsequent
events. A sequence can also be denoted as a function generating the corresponding event for each position in the
sequence: σ(i → n) 7→ ⟨ei, ..., en⟩, with en the last event of a sequence. In this way, we can define a sub-sequence as
a sequence σ(i → j) where 0 ≤ i < j < n.

Definition 3 (Case, Event Log) Let C be the case universe, that is, the set of all possible identifiers of a business case
execution. C is the domain of an attribute #CASE ∈ AN . We denote a case c ∈ C as ⟨e1, e2, e3⟩c, meaning that all
events are in a sequence and share the same case. For a case ⟨e1, e2, e3⟩c we have #CASE(e1) = #CASE(e2) = #CASE(e3)
= c. An event log L is a set of cases L ⊆ Σ∗ where each event appears only once in the log, i.e., for any two different
cases, the intersection of their events is empty. When the case identifier is not used as a grouping attribute, an event log
L̂ can be simply viewed as a set of events, thus L̂ ⊆ Σ.

Definition 4 (Variant, Event Log) The cases c1 and c2 follow the same variant if ⟨e1, e2, e3⟩c1 and ⟨e4, e5, e6⟩c2 have
the same sequence of activities, e.g. #ACTIVITY(e1) = #ACTIVITY(e4) = a, #ACTIVITY(e2) = #ACTIVITY(e5) = b, #ACTIVITY(e3)
= #ACTIVITY(e6) = a. We call this sequence a trace. This implies an event log can also be viewed as a multi-set of traces.
We denote an event log as a multi-set by writing L = [⟨a, b, c⟩3, ⟨a, b, a⟩11, ⟨a, c, b, a⟩20]. The superscript number of a
trace details the number of cases following this variant. For example, ⟨a, b, a⟩11 means we have a variant with 11 cases
following the trace ⟨a, b, a⟩.

4 A Formalisation of PM Data Encoding

Despite the variety of encoding methods discussed in Section 2, we argue that available approaches fail to capture
key process-level information such as the interplay between cases, or between activity execution and availability of
resources. Most of the encoding methods in use today focus on the control-flow, according to an inter-case view.
Methods focusing on the intra-case view have been proposed but are rarely applied [76]. Similarly, proposals for
encoding the data-flow [77] are available in the literature, but never adopted in comparative studies or surveys. Another
recent trend is stressing the need of capturing constraints connected to concurrency [72, 73]. In this section, we discuss
in detail how PM data is encoded to suit ML models’ training procedures. For the sake of space, we limit our discussion
to supervised learning, probably the most widely applied ML approach. Generally speaking, supervised techniques
train models to compute functions f : Rd → Rd′

where the input is a d-dimensional vector x and the output is a
d′-dimensional vector y. Each dimension is a measurable piece of data, a.k.a feature or attribute. For popular ML
tasks, the output is mono-dimensional. In regression, the output is a real-valued scalar value, while in classification,
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the output is a natural number indexing a “class”. However, nothing prevents having multidimensional vectors in
output. In structured learning, input and output may be a structure like a block matrix, divided into sub-matrices to
represent algebraic entities such as graphs, tensors, etc. The training process to approximate f requires a set of examples
{(x1,y1), ..., (xn,yn)} where inputs and outputs are paired. We can then define this training set as an example matrix
X := [x1, ...,xn]

⊤ ∈ Rn×d and a label matrix Y := [y1, ...,yn]
⊤ ∈ Rn×d′

, given by the number n of vectors and the
number d of dimensions in the vector space.

In their original format, PM log entries do not belong to a vector space. This is because the events in an event log are
grouped by case and this grouping is essential to keep a connection with business process execution.

Our goal here is to formalize the procedure to encode the cases into vectors in a way that can be used as a template to
describe the specific encoding chosen for a PM application. Our starting point is L̂ ⊆ Σ, a log view as a set of event
identifiers. This representation can be mapped into a vector space X by applying a suitable transformation function
grouping event by case and returning vectors of size equal to or less than the event size.

Definition 5 (Encoding function) Given an event log L̂ ⊆ Σ, an encoding function Γ : Σ → Xn×d represents L̂ in
the vector space X. The encoding function Γ is valid if it defines a transformation where two elements of Σ, ei and ej
are aggregated on the same element x ∈ Rd if #CASE(ei) = #CASE(ej), with n ≤ |C|, i.e. the vectors in X are a subset
of the cases in C.

We propose a canonical representation of Γ as a composition of a filtering function π, a dimensioning function ρ, a
grouping function η, and a valuation function ν, i.e., Γ = ν ◦ η ◦ρ ◦π. One or more of these components can implement
the identity function with null effects.

In particular, π : Σ → Σα imposes a condition on the events’ attributes or the attributes’ values, ∀e ∈ L̂ ∧ A ∈
AN : P (#A(e)), where P is a predicate, thus |Σα| ≤ |Σ|. For example, filtering the events by their timestamp
∀e ∈ L̂ : YYYY-MM-DD ≥ #TIMESTAMP(e) ≤ YYYY-MM-DD. The function ρ : Σα → D defines the dimensions of the
vector space, creating new dimensions based on a range of values in the original dimensions or, less commonly,
grouping multiple dimensions into a single one. Often, the set D is the union of multiple attribute domains, i.e.
D = Ak=1 ∪Ak=2 ∪ · · ·Ak=l. The function η : Σα → Xn×d

α , with d = |D|, assigns to Xα the values of the attributes
in e and groups events by case so that ∀x∀Ak : xi,j = #Ak

(e) ⇐⇒ #Ak
(e) = Dj ∧#CASE(e) = ci. The number of

elements in the vector space equals the number of cases to include in the example matrix, thus n ≤ |C|. Because the
sets Σα and D can be view as columnar matrices Mn×1

Σα
and Md×1

D , the size of Xα is equal to MΣα
×M⊤

D , i.e. the set
of events we selected with π is multiplied by the dimensions we identified with ρ. It is worth mentioning that, when
grouping is applied, each vector component becomes an array of attribute values rather than a single value. The function
ν aims at transforming these arrays of attribute values into real-valued scalar values. We define ν : Xn×d

α → Xn×d to
clarify the components of the two matrices are valuated differently.

For example, the basic one-hot encoding schema corresponds to a null π, a ρ with D =
⋃l

k=1 Ak, an η for grouping
the events of a same case, and a ν : Xn×d

α → {0, 1}n×d, returning xi,j = 1 if at least a value #Ak
(e) = Dj is

observed for the case #CASE(e) = ci, and 0 if not. The popular activity profile schema [7] encodes an event log into a
vector of activity values by simply counting all events of a case that include that activity. The encoding function maps
the events in L̂ into X by executing the four canonical transformations as follows. First, it verifies to consider only
events associated with activity values ∀e ∈ Σ : #ACTIVITY(e) ̸= ⊥. Then it defines the dimensions of X with ρ so that
D = A, where A is the set of legal business process activities. Third, it aggregates the data by case with η. Finally, it
performs the evaluation with ν, assigning the count of the components in xi,j for each case ci. For instance, the log
L = [⟨a, b, c⟩3, ⟨a, b, a⟩11, ⟨a, c, b, a⟩20], is transformed in the first matrix in 1 with π, in the second matrix with ρ, in
the third matrix in with η, to finally get the fourth matrix in 1 with ν.

e1
e2
e3
e4
e5
...


[
a
b
c

]
a b c
a b c
a b c

[a, a] b ⊥
[a, a] b ⊥
...




1 1 1
1 1 1
1 1 1
2 1 0
2 1 0
...

 (1)

We believe that if the PM community would get used to clarifying the definition of the following functions when
defining an encoding procedure, the literature will benefit in terms of the comparability of the results. For example, a
data-fow approach will require clarifying the contribution of the different dimensions in encoding cases. An intra-case
approach will require modifying the η function to encode multiple cases into a single vector.

6



Tailoring Machine Learning for Process Mining

Cases Number of Variants Coverage of Cases

56482 1 37,6%
102853 2 68,4%
132758 4 88,3%
142926 7 95,0%
148887 17 99,0%
150270 131 99,9%
150370 231 100,0%

Table 1: Managing Road Traffic Fines Event Log

(a) Unbalanced event log (b) Balanced event log

Figure 1: Two decision trees generated from our sample event log. In 1a the data in input conforms to the case
distribution observed in the event log. As a consequence, the most frequent variants take the lion’s share and the
numeric feature amount decides multiple split points. In 1b data is balanced oversampling those variants with low
occurrence. The split points in the tree use categorical features only. Decision tree is an example of an algorithm
significantly affected by uncritical training using the case distribution of event logs.
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(a)

(b)

Figure 2: (a) The Heuristic Miner Algorithm [79] was used to discover a model from the “Road Traffic Fines” [37]
event log. The discovered model specifies alternative routes that can be followed to complete the process. In particular,
executing Payment or Send Fine implies the following alternative paths. (b) The Heuristic Miner Algorithm [79] is
used to discover a model from the “Artificial Patient Treatment” [80] event log. The discovered model specifies that
Blood test, X-ray scan, and Physical test are executed in parallel. Any order can be followed in executing
these activities.

5 Illustrative Examples

We will now use two examples to illustrate the concepts introduced above.

The first example refers to the real-live event log of road traffic fines [37]. The events captured in the event log
include creating a fine notice, recording the penalty amount, verifying if the payment is received, registering an
appeal to the prefecture, and others. The reader interested in more details is referred to [78]. As illustrated in
Table 1, the occurrence of trace variants follows a Pareto distribution with only 4 variants covering more than
88% of the recorded cases and with 100 variants that have a single occurrence. The most occurring variant is
⟨Create F ine, Send Fine, Insert F ine Notification, Add Penalty, Send for Credit Collection⟩56482, the
second is ⟨Create F ine, Payment⟩46371, the third is ⟨Create F ine, Send Fine⟩20385, and so on.

Let us now try to develop predictive analytics on this event log. For example, we could ask ourselves why certain
cases exhibit a duration that is significantly longer than others. To study the problem, we are interested in searching for
patterns correlated to long duration. Using encoding, we can represent the cases in the event log as vectors composed
of categorical data, such as the executed activities, and of numerical data such as the number of penalties and the
trace duration2. A decision tree can then be used to highlight the factors influencing case duration. We express it as a
simple binary problem: being below or above a threshold of 200 days. Figure 1 illustrates the results we obtain. Figure
1a presents a decision tree conforming to the case distribution observed in the event log. The entire set of cases in
L is encoded in X . As a consequence, the most frequent variants take the lion’s share of the examples used to train
the decision tree. Figure 1b presents the decision tree obtained by balancing the case distribution among variants,
oversampling those variants with low occurrence. This is, for example, achieved by creating X taking an equal number
of occurrences to the traces in L.

Because the split points of the tree are chosen to best separate examples into two groups with minimum mixing, the
cases with low occurrence tend to be ignored. Indeed, the tree in Figure 1a relies on the numeric feature amount to
decide on multiple split points. On the contrary, the tree in Figure 1b defines the split points using categorical features
only. This is due to the fact that the variants not associated with a penalty amount were quite rare, and by increasing
their representation for balancing the data set we prevented the algorithm to use the penalty amount as a discrimination
feature.

It is important to note that, in general, we cannot say if proactive balancing is better than using data as they are, and
even which is the correct balancing factor to be applied. The strategy to be preferred strongly depends on our goal. If
we want to analyse an event log in order to identify procedures that can be automated and learn the decision rule to be
used, our interest is in the frequent behaviour. The real distribution of the event log, or even a distribution pruned from
rare examples [26], must address the learning procedure we adopt. If our goal is anomaly detection [81] or root cause
analysis [82] rare examples have to be represented.

2The methods used for encoding the event log in a vector space are available in the PM4PY library https://pm4py.fit.
fraunhofer.de/documentation#decision-trees
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Our next example is related to the need of capturing concurrency (Section 2). While cases included in an event log are
described as sequences of activities, the behaviour they describe should be interpreted differently based on the model
that generated them. To capture control-flow behaviour, one needs to encode the dependency relationships in event logs.
By executing the Heuristic Miner algorithm [79] on the “Road Traffic Fines” [37] event log, we observe alternative
paths can be followed to complete the process. If a case includes the execution of the Payment activity, it will not
include Send Fine and the following activities. The same algorithm applied to the “Artificial Patient Treatment” [80]
will reveal the concurrent execution of the Blood test, X-ray scan, and Physical test activities. All these
activities are required to complete the diagnostic stage, except for X-ray scan, which may be skipped, but the order of
execution is not relevant. Thanks to process models, PM techniques do consider concurrency. Two sequences ⟨a, b, c⟩
and ⟨a, c, b⟩ can have the same conformance to the model if the model describes b and c as concurrent activities, while
the conformance value will be different if b and c are in sequence or relate to alternative paths. Unfortunately, most ML
models view event logs merely as sequential data. When cases get encoded into a vector space, the inference the ML
model can produce is based on the distance in this space. The distance between ⟨a, b, c⟩, and ⟨a, c, b⟩ is accounted in the
same way in the vector space, and we cannot differentiate between the sequences based on the reference process model.
This limitation impairs capturing concurrent behaviour that is not detected by simply matching the two sequences. In
terms of our example, an ML procedure could effectively predict the lead time of a case knowing that the Payment
activity was executed. Training an ML algorithm to predict the conformance to the diagnostic protocol of a delivered
treatment is more complex, and will require a higher amount of training data, as the ML model needs to incorporate
examples on the equivalence of the different orders of execution of the Blood test, X-ray scan, and Physical
test activities. Encoding this equivalence in vector space spaces, for example, defining suitable pictograms to feed a
CNN, is still an open challenge.

6 Toward an Integrated Methodology

Guided by the above considerations about encoding, we will now outline the strategy to be used to properly integrate
PM and ML. In the previous sections, we argued that when PM tasks are mapped to ML tasks, PM-specific assumptions
should drive the construction of training functions and hyper-parameters selection. Simple ML classification and
regression algorithms model the data by a single Gaussian grounded on mean and co-variance. On the other hand,
kernel methods like Gaussian Processes and Support Vector Machines, have opened the possibility of flexible models
that are practical to work with, but require non-trivial hyper-parameter tuning to fit behavioural data[83].

Figure 3 provides a synoptic view of mapping PM tasks to ML ones.

As an example of non-trivial mapping, let us consider the non-linear relationship between data samples and the expected
outcomes addressed by robust ML algorithms with adjusted hyper-parameters. At this point, linear projections as
PCA are not effective as t-SNE visualisation [84] to obtain insights from the data. Other challenges with moderate
difficulty are related to label availability and imbalanced scenarios [81]. In this case, semi-supervised ML techniques
and generative models can tackle the label issue, as well as sampling or synthesising methods are the second ones.
Problems related to data quality, in which the difficulty is to build an approximation to have a proper data distribution
accentuated, can be solved by enlarging the training data and by a proper tuning of the ML algorithm. Alternatively, the
training process can be enriched using generative models [85]. To handle the difficulties outlined in Section 1, when
using non-pictorial traces representation “process-friendly” GANs can be considered, like Sequence GANs (SGANs),
in which the adversarial samples are designed from discrete sequences, like events. The application of GANs is not
limited to data augmentation, as it can be used also for improving data quality for process model generalisation [85].
Preliminary results are available on using GAN-generated data to improve predictive tasks (e.g., lead time of incomplete
cases) under an adversarial framework [86].

Coming from non-stationary process behaviour, sampling methods are a promising way to reduce the impact of
non-stationary distributions of event log data [87]. After bringing the data to at least a near-stationary behaviour, the
business process can naturally change its pattern over time, leading to a burdensome problem called concept drift
[88, 89, 52, 16]. In dealing with this problem, a significant part of the PM community has focused on detecting and
managing its onset. Regardless of the success of these attempts, we still consider this problem an open issue, since the
event data stream is modelled as a complete trace stream, known from the start to the end activity. In reality, the drift
onset occurs at an arbitrary position of the event stream, well before the endpoint is reached and the rest of the trace
is known. Some researchers are addressing this information deficiency by using statistical adaptations based on the
Hoeffding Bounds [90]. In principle, it is possible to rely on statistical assumptions about the confidence interval of the
data to make a decision on the drift onset. In other words, it is possible to create ML models and perform predictions
supported by an approximated conjecture about the future, obtained from the available event log data. The use of
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Figure 3: From task to Task, an overview of PM and ML relationship

“stateful” ML models with memory, in particular, Deep Learners based on the LSTM architecture, could enable handling
drifts. However, this kind of challenge demands experienced ML practitioners and a robust computational structure.

6.1 Hyper-parameter Tuning

Once a class of ML models has been chosen, hyper-parameter tuning must be performed to instantiate the ML model
that delivers the desired accuracy (and possibly some required non-functional properties, like explainability). Searching
the model space by trial and error can be burdensome. Automated Machine Learning (AutoML) is a reasonable
alternative to tackle these problems grounded on sharing previous knowledge for similar tasks. AutoML can help to
handle the classification problems called Zero-shot [91, 92] or Cold-start [93], for which little context information (and
even the complete list of classes) may not be available at the start of the training, by taking advantage of meta-features
and information on similar models, akin to how human experts start an old-fashioned search for desirable models driven
by their experience on related tasks [94]. Some PM research works based on AutoML discuss how to find a suitable
PM pipeline by recommending steps. For example, [95] proposed a solution to suggest the encoding method, since
the higher number of methods might lead to a tricky selection. Furthermore, there are encoding methods able to fit
particular data. It is remarkable that traditional process mining tasks can be leveraged when matched with intelligent
decision support approaches.

6.2 Final Recommendations

In this final section, we present a set of recommendations that aim to be valuable for both PM practitioners and
researchers.
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6.2.1 RECOMMENDATION 1: Choose data representation carefully

When working with PM data structures, it is crucial to carefully translate them into a metric feature space that can
be manipulated by ML algorithms. Additionally, it is important to preserve context information, such as control-
flow constraints, which are essential for process analysis. The choice of encoding techniques should align with
problem-specific goals and constraints.

6.2.2 RECOMMENDATION 2: Fit the data distributions

PM often deals with non-Gaussian, non-stationary distributions. To achieve optimal performance in production, it is
advisable to estimate the data distribution instead of relying on the best Gaussian mix approximation. Building training
sets interactively poses a significant challenge in PM. Leveraging ML approaches such as AutoML and Active Learning
can help reduce the manual burden and improve the process.

6.2.3 RECOMMENDATION 3: Do not assume the availability of a labelled training set

In business process environments, obtaining pre-existing labelled training sets for PM tasks is uncommon. Constructing
a training set by correctly sampling the data space is essential, particularly due to the high diversity of process execution
conditions in PM tasks.

6.2.4 RECOMMENDATION 4: Consider zero-shot learning

During the training of ML models, the complete set of possible outcomes (co-domain of f ) may only be partially known.
For instance, in process optimisation, the cost of certain sequences may not be available at the time of training the
regression model. It is essential to assess the completeness of the available information when formulating the problem
statement to ensure the quality of model inference.

6.2.5 RECOMMENDATION 5: Ensure minimum ML quality at an early stage via constraints

As the estimation of data distribution converges over time, an extended convergence period is unacceptable as it results
in a high model error during training. It is possible to impose control flow constraints on ML models when they are
known in advance based on domain requirements and regulations.

6.2.6 RECOMMENDATION 6: Incorporate domain knowledge

Domain knowledge plays a critical role in effective PM. Integrating domain-specific information and constraints into
ML models can significantly enhance their performance and interpretability. It is important to actively involve domain
experts in the feature engineering and model validation processes.

6.2.7 RECOMMENDATION 7: Evaluate model interpretability

PM tasks often require interpretable models to gain insights into process behaviour and make informed decisions. It is
essential to evaluate the interpretability of ML models and choose algorithms that provide transparent explanations of
their predictions. This becomes particularly crucial when dealing with critical processes or compliance and regulatory
requirements.

6.2.8 RECOMMENDATION 8: Continuously monitor and update ML models

Process environments are dynamic, and changes over time can impact the performance of ML models. Establishing a
framework for monitoring and evaluation allows the assessment of models’ performance and facilitates their timely
updates as needed. Continuous learning and retraining of models ensure their accuracy and relevance in evolving
process scenarios.

6.2.9 RECOMMENDATION 9: Share knowledge and best practices

Promote knowledge sharing and collaboration within the PM community. Encourage the dissemination of successful
case studies, research findings, and best practices to foster learning and advancement in the field. Engage in conferences,
workshops, and online forums to connect with fellow practitioners and researchers and stay updated with the latest
developments in PM.

By following these recommendations, PM practitioners and researchers can improve the effectiveness and efficiency of
process mining applications, enabling better process understanding, optimisation, and decision-making.
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7 Conclusions

The growing use of ML methods in PM necessitates a robust and comprehensive methodology for integrating these
algorithmic techniques. This paper aimed to address the challenges associated with the ML/PM mapping and identify the
fundamental principles for establishing a methodological foundation in this field. Through the analysis conducted in this
study, we have provided a set of recommendations that can guide practitioners and researchers in effectively applying
ML to PM tasks. These recommendations encompass various aspects of the PM process, from data representation to
model evaluation and monitoring. By following these recommendations, PM practitioners and researchers can enhance
the effectiveness and efficiency of their ML-driven process mining applications. It is important to acknowledge that the
field of ML in PM is constantly evolving, and new challenges and opportunities will continue to arise. As such, ongoing
research and collaboration among practitioners and researchers are crucial to refine and expand upon the proposed
recommendations. By embracing a methodological foundation that integrates ML techniques in PM, we can unlock
the full potential of process mining and leverage the power of data-driven insights to drive process understanding,
optimisation, and decision-making in various domains and industries.
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