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Abstract. Process discovery algorithms learn process models from exe-
cuted activity sequences, describing concurrency, causality, and conflict.
Concurrent activities require observing multiple permutations, increasing
data requirements, especially for processes with concurrent subprocesses
such as hierarchical, composite, or distributed processes. While process
discovery algorithms traditionally use sequences of activities as input,
recently introduced object-centric process discovery algorithms can use
graphs of activities as input, encoding partial orders between activities.
As such, they contain the concurrency information of many sequences
in a single graph. In this paper, we address the research question of
reducing process discovery data requirements when using object-centric
event logs for process discovery. We classify different real-life processes ac-
cording to the control-flow complexity within and between subprocesses
and introduce an evaluation framework to assess process discovery algo-
rithm quality of traditional and object-centric process discovery based
on the sample size. We complement this with a large-scale production
process case study. Our results show reduced data requirements, enabling
the discovery of large, concurrent processes such as manufacturing with
little data, previously infeasible with traditional process discovery. Our
findings suggest that object-centric process mining could revolutionize
process discovery in various sectors, including manufacturing and supply
chains.

Keywords: Process Mining · Process Discovery · Object-Centric Pro-
cess Mining

1 Introduction

Throughout time, business endeavors have been supported by processes, ranging
from bookkeeping to production processes. With the advent of modern informa-
tion systems, data traces of process executions are recorded in the underlying
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Fig. 1: Categorization of different real-life processes based on inter- and intra-object
complexity.

databases [13]. While businesses mostly have some idea of how their processes
look like, analyzing the recorded data allows them to uncover their real execu-
tion. Algorithms transforming the data of process executions, i.e., event logs, into
process models are called process discovery algorithms [1].

A plethora of process discovery algorithms have been proposed over the last
two decades [8]. Process discovery techniques assume the existence of an extracted
event log composed of a set of event sequences (cases) describing different pro-
cess executions. In general, these algorithms project each event sequence to its
activity sequence and aim to uncover the sequentiality/causality, concurrency, or
conflict between activities. While causality and conflict can be uncovered using
relatively few activity sequences, concurrency needs to be confirmed using a large
set of observations. For example, four concurrent activities could manifest in
24 different sequences, and seven concurrent activities already in 5040 possible
sequences. The number of sequences grows factorial with the number of concur-
rent activities. Therefore, larger numbers of concurrent activities require more
observations for process discovery. This becomes infeasible for large numbers of
concurrent activities or event logs with very few cases.

Problems with highly concurrent behavior are especially present in processes
that are composed of multiple, concurrently running and lightly interacting sub-
processes. The amount of interaction between subprocesses is called the inter-
object complexity. High inter-object complexity indicates a tight coupling between
subprocesses, i.e., large amounts of shared control flow. Low inter-object complex-
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ity indicates concurrently running subprocesses. We depict an overview of typical
processes and their inter-object complexity in Fig. 1. As inter-object complex-
ity only captures control-flow complexity between subprocesses, we complement
this dimension with intra-object complexity, capturing the control-flow complexity
within subprocesses. We collect descriptions of typical real-life processes from the
literature and depict their mapping onto these two dimensions in Fig. 1. Specif-
ically, we show processes considered in traditional process mining (workflows
like ticketing processes and business process case management [5,28]), discrete
manufacturing systems [17] (job shop/mass customization [12], (flexible) assem-
bly lines [17]), and composite workflows (business process like P2P/O2C [30],
end-to-end order processing [27]), and supply chains [21]. Additionally, we depict
where a traditional, completely linear process would be positioned.

While traditional event logs record cases as sequences of events, Object-Centric
Event Logs (OCELs) [2] encode cases as graphs of events [7], preserving partial
orders between events. By extracting the event data of compound processes
as OCELs instead of traditional event logs, the concurrency between the sub-
processes can be preserved using these graph-based process executions. Object-
centric process discovery was recently introduced [4], using an OCEL as input
and discovering a model composed of multiple interacting subprocesses. This
enables process owners to discover a process directly from the graph-based pro-
cess executions, rather than forcing them into the sequential structure needed
for traditional process discovery and removing concurrency information.

In this paper, we address the following research question: How do data require-
ments reduce when using object-centric process discovery instead of traditional
process discovery? Specifically, we want to break down the effect of employing
object-centric discovery for different groups of processes with respect to their
control-flow complexity between and within subprocesses, mapping the reduction
in data requirements back to real-life processes.

We tackle these research questions through two main contributions: First, we
formally define inter- and intra-object complexity and an evaluation framework
that can exactly assess the discovered model quality based on the sample size
of an event log. We instantiate this evaluation framework with 45.000 model
and sample size combinations and compare the quality of the discovered model
between traditional discovery and object-centric discovery. We map the results
back to the dimension of inter- and inter-object complexity and assess which
processes have the highest data requirement reduction when using object-centric
process discovery. Second, we complement this experimental evaluation with a
large-scale case study. Since the experimental evaluation is very computation
heavy, it is only applicable to smaller models. Our case study shows the successful
application of object-centric process discovery on a large real-life manufacturing
process with hundreds of activities. It also shows that traditional process discovery
fails to deliver the same quality.

The remainder of this paper is structured as follows. We introduce the related
work on process discovery and object-centric process mining in Sec. 2. The
preliminaries on traditional and OCELs and discovery are presented in Sec. 3.
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We propose an experimental framework comparing discovery on object-centric
and flattened event data in Sec. 4. We discuss these results in Sec. 5. A case
study for the advantages of object-centric discovery is presented in Sec. 6. We
conclude this paper in Sec. 7.

2 Related Work

Object-centric process mining addresses the problem of distinguishing multiple
objects involved in a process. These objects can be used to identify subprocesses.
In the past, this problem has extensively been studied from the modeling side. Dif-
ferent process modeling languages/notations to capture object-centric processes
have been proposed, such as artifact-centric process models [11], Object-Centric
Behavioral Constraints (OCBC) [3], proclets [15], DB-Nets [23], COA-Nets [16],
and t-PNIDs [29]. Some of these modeling techniques have been accompanied by a
data format that is able to capture event data for processes of this kind. Artifact-
centric event logs [24,22], and eXtensible Object-Centric event logs XOC [20]
have been proposed. Furthermore, Esser and Fahland have recently proposed a
general-purpose graph database to store object-centric event data [14]. Object-
centric process mining tackles the problem of object-centricity with the modeling
language of object-centric Petri nets [4] and the accompanying data format of
OCELs [2]. Both of these approaches have been developed to improve the com-
plexity and scalability issues of existing modeling and data storage formats.

The core motivation of process discovery is the uncovering of as-is processes
from real-life data. As such, process-discovery techniques aim to connect event
data with process models. For the case of object-centric process mining, discovery
techniques have been proposed for the modeling languages where data storage
formats exist, namely artifact-centric discovery [24] and OCBC discovery from
XOC [19]. Van der Aalst and Berti have introduced a general approach for discov-
ering object-centric Petri nets from object-centric event data [4]. Subsequently,
these process models are utilized in other data-driven process mining tasks, such
as conformance checking [6] or enhancement [25]. This approach applies a tradi-
tional process discovery to each object type and merges the resulting models at
interaction points. Any traditional process discovery algorithm can be employed
in object-centric discovery.

Traditional process discovery describes the problem of mapping a set of ac-
tivity sequences to a process model [1]. Many different techniques have been
proposed [8], where the Split Miner [9] and the Inductive Miner [18] remain
among the most popular algorithms. In our paper, we use the inductive miner
due to its guarantee of sound workflow nets for every individual object type. This
paper provides a quantitative and qualitative study as to how much process dis-
covery results can be improved by individually discovering and merging process
models for each object type rather than discovering one model on the flattened
event data of all object types.
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Fig. 2: An object-centric event log (a) and its flattened counterpart (b).

3 Traditional and Object-Centric Process Discovery

We introduce the foundations of object-centric and traditional event data and
process discovery in this section. We link OCELs to traditional event logs and
define the flattening of a traditional event log. Analogously, we introduce object-
centric Petri nets and their relationship to traditional Petri nets.

3.1 Linking Object-Centric and Traditional Event Data

First, we introduce some notations used throughout this paper. E is the universe
of event identifiers, OT is the universe of object types, and O is the universe of
objects. Each object is associated with exactly one object type through πtype :
O → OT . T denotes the universe of event timestamps and A the universe of
event activities. We denote the powerset of a set X, the set of all subsets, with
P(X). A sequence of length n ∈ N orders elements of a set X and is denoted with
σ : {1, . . . , n} → X and σ = ⟨x1, . . . , xn⟩. The set of directly follows relationships
in a sequence is denoted by df (⟨x1, . . . , xn⟩) = {(xi, xi + 1) | i ∈ {1, . . . , n − 1}}.

Definition 1 (Object-Centric Event Log). An object-centric event log is a
tuple L = (E, O, OT, πact , πtime, πtrace) consisting of

• events E ⊆ E, objects O ⊆ O, object types OT = {πtype(o) | o ∈ O},
• activities πact : E → A, timestamps πtime : E → T , and
• ordering πtrace : O → E∗ mapping each object to a sequence of events such

that ∀o∈O πtrace(o) = ⟨e1, . . . , en⟩ ∧ ∀i∈{1,...,n−1} πtime(ei) ≤ πtime(ei+1)

Each event is linked to objects πobj(e) = {o ∈ O | e ∈ πtrace(o)}.

An example of an OCEL is depicted in Fig. 2. Each row is an event associated
with objects of different types, an activity, and a timestamp. Each object is
associated with a sequence of events, e.g., πtrace(Tire2 ) = ⟨e2, e7, e10⟩.
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Fig. 3: Top: A graph-based process execution from the object-centric event log of Fig. 2
a) and the sequential process execution from the flattened, traditional event log of Fig. 2
b). Bottom: The process models discovered from both of these process executions.

A traditional event log is a special case of an OCEL where objects are all of
the same type and an event is associated with exactly one object.
Definition 2 (Traditional Event Log). An object-centric event log L=(E, O,
OT, πact , πtime, πtrace) is a traditional event log iff |OT |=1 ∧ ∀e∈E |πobj(e)|=1.

An event log consists of different executions of the same process. Each execu-
tion contains multiple events. In traditional process mining, a process execution is
called a case and is a sequence of events for one object. We generalize this notion
such that a process execution is a graph of events for multiple, connected ob-
jects [7]. The graph describes a partial order of events induced by the precedence
constraints of each πtrace of the involved objects.
Definition 3 (Process Executions [7]). Let L = (E, O, OT, πact , πtime, πtrace)
be an object-centric event log. The object graph of object co-appearances is de-
fined by OGL = (O, I) with I = {{o, o′} | o ̸= o′ ∧ ∃e∈E {o, o′} ⊆ πobj(e)}.
The set of interdependent object sets are the connected components of the object
graph cc(L) = {O′ ⊆ O | O′ form a connected component in OGL}. One set of
dependent objects X ∈ cc(L) spans a process execution. A process execution is
a graph pX = (EX , DX) of nodes EX = {e ∈ E | πobj(e) ∩ X ≠ ∅} and edges
DX = {(e, e′) ∈ EX × EX | ∃o∈X (e, e′) ∈ df (πtrace(o))}. The set of all process
executions of an event log is defined by px(L) = {pX | X ∈ cc(L)}.
The upper left part of Fig. 3 contains an example of the object-centric process
execution contained in Fig. 2. The process execution shows the production of
different parts that run concurrently and are assembled in a bottom-up way.
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An OCEL can be transformed into the traditional event log format by flat-
tening [2] it. This involves the choice of a case notion and the sequentializing
of events for each object of that case notion. The case notion can be chosen
freely, typically either a single object type is chosen or a set of connected objects.
Flattening transforms a graph-based structure of process executions into a less
expressive sequential structure of process execution, therefore, some information
loss will never be preventable. We choose to flatten with all connected objects,
i.e., flattening a process execution from a graph into a sequence. By doing this,
we prevent events from disappearing or being duplicated as it would be the case
if one would flatten on a single object type [2].

Definition 4 (Flattening). Let L = (E, O, OT, πact , πtime, πtrace) be an object-
centric event log. Lflat = (E, O′, OT ′, πact , πtime, π′

trace) is the flattened event log
with three modified elements:

• a new, single object type OT ′ = {ot} for an ot ∈ OT ∧ ot /∈ OT .
• new object identifiers O′ ⊆ {o ∈ O | πtype(o) ∈ OT ′} associated with the

objects of the process executions cc(L) through a bijection πflat : O′ → cc(L).
• event sequences for the new objects π′

trace(o′) = ⟨e1, . . . , en⟩ with {e1, . . . , en} =⋃
o∈πflat(o′) πtrace(o) and πtime(e1) ≤ · · · ≤ πtime(en) for o′ ∈ O′.

We show the flattened event log in Fig. 2 b). The corresponding process execution,
a sequence, is depicted in the upper right of Fig. 3. The concurrency information
from the graph-based process execution is lost when flattening to a sequence.

3.2 Object-Centric Process Models

A process can be represented as a process model, typically a Petri net. Object-
centric processes are represented using an object-centric Petri net [4], a Petri net
with places of different types and variable arcs which are able to consume more
than one token.

Definition 5 (Object-Centric Petri Net). An object-centric Petri net is a
tuple OCPN = (P, πpt , Fvar) of

• a Petri net P = (T, P, F, l) consisting of transitions T , places P , arcs F ⊆
(T × P ) ∪ (P × T ), and a labeling function l : T ↛ A,

• a type function mapping each place to an object type πpt : P → OT , and
• a set of variable arcs Fvar ⊆ F .

We define the following notations for object-centric Petri nets:

• the preset of a transition •t={p∈P | (p, t)∈F} for t ∈ T .
• the postset of a transition t•={p∈P | (t, p)∈F} for t ∈ T .
• tpl(t)={πpt(p) | p∈•t∪t•} are the object types associated to transition t ∈ T .
• tplnv(t)={πpt(p)|p∈P ∧ {(p, t), (t, p)}∩(F\Fvar) ̸=∅} are the object types with

non-variable arcs associated to transition t ∈ T .
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An example of an object-centric Petri net is depicted in the lower left of Fig. 3.
Places of different types are depicted with different colors, variable arcs are
depicted with double lines. Please note that we dropped the output places of an
object type’s last transition for presentation purposes.

Analogously to object-centric and traditional event logs, a traditional Petri
net is a special case of an object-centric Petri net where all places have the same
type and no variable arcs exist. The bottom right of Fig. 3 depicts a traditional
Petri net.

Definition 6 (Traditional Petri Net). An object-centric Petri net OCPN =
(P, πpt , Fvar) is a traditional Petri net iff |range(πpt)| = 1 ∧ Fvar = ∅.

We describe the state of an object-centric Petri net with a marking.

Definition 7 (Marking). Let OCPN = ((T, P, F, l), πpt , Fvar) be an object-
centric Petri net. A token associates an object with a place. The set of tokens is
define by QOCPN = {(p, o) ∈ P × O | πpt(p) = πtype(o)}. A marking is a multiset
of tokens M ∈ B(QOCPN ).

Given a marking, a transition can be enabled. If it is enabled, it can be executed.
The execution of a transition is bound to objects. These are consumed in the
input places and produced in the output places.

Definition 8 (Binding Execution). Let OCPN = ((T, P, F, l), πpt , Fvar) be
an object-centric Petri net. BOCPN ={(t, b) ∈ T×(OT ↛P(O)) | dom(b)=tpl(t) ∧
∀ot∈tplnv(t)|b(ot)|=1} defines the set of all possible bindings. The consumed tokens
of a binding (t, b)∈BOCPN are defined by cons(t, b)=[(p, o)∈QOCPN | p∈•t ∧
o∈b(πpt(p))] and the produced tokens are defined by prod(t, b)=[(p, o)∈QOCPN |
p∈t•∧o∈b(πpt(p))]. A binding (t, b)∈B in marking M ∈ B(QOCPN ) is enabled if
cons(t, b) ≤ M . Executing an enabled binding in M leads to marking M ′=M −
cons(t, b)+prod(t, b). Executing an enabled binding (t, b) ∈ BOCPN in marking M

is denoted with M
(t,b)−−−→M ′. Multiple subsequent enabled bindings can be encoded

as a binding sequence σ=⟨(t1, b1), . . . , (tn, bn)⟩∈B∗
OCPN . A sequence that starts

in marking M0 and results in marking Mn is encoded as M0
σ−→Mn.

To define a process model that allows certain behavior, we need start and
end points. These are sets of marking for an object-centric Petri net.

Definition 9 (Accepting Object-Centric Petri Net). Let OCPN = ((T, P,
F, l), πpt , Fvar) be an object-centric Petri net and let Minit , Mfinal ⊆ B(QOCPN )
be initial and final markings of the object-centric Petri net. OCPN A = (OCPN ,
Minit , Mfinal) is an accepting object-centric Petri net.

All binding sequences that lead from an initial marking to a final marking
define the possible end-to-end behavior of the accepting object-centric Petri net.
We define the language of the accepting object-centric Petri net as the set of
all possible visible loop-free label sequences in the end-to-end behavior of the
object-centric Petri net. In this way, we exclude binding sequences with loops
that would render the language of the model infinite.
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Definition 10 (Petri Net Language). Let OCPN A = (OCPN , Minit , Mfinal)
be an accepting object-centric Petri net. All loop-free valid binding sequences of
the object-centric Petri net are given by S(OCPN A) = {⟨(t1, b1), . . . , (tn, bn)⟩ ∈
B∗

OCPN | ∃Mi∈Minit ∃Mf ∈Mfinal Mi
(t1,b1)−−−−→ · · · (tn,bn)−−−−→Mf ∧ ∀i,j∈{1,...,n}∧i ̸=jMi ≠

Mj}. The language of the object-centric Petri net is the set of visible transi-
tion firing sequences Σ(OCPNA) = {⟨l(t1), . . . , l(tn)⟩ | ⟨(t1, b1), . . . , (tn, bn)⟩ ∈
S(OCPN A)}

An accepting object-centric Petri net can be discovered from an OCEL using
the general approach introduced by van der Aalst and Berti [4]. A Petri net is
discovered for each object type. Given the cardinalities of different objects, the
individual Petri nets are merged into one object-centric Petri net, connecting
the individual nets at interconnecting transitions (transitions including multiple
object types). Place types and variable arcs are assigned according to the types
and cardinalities stemming from the individual subnets.

Definition 11 (Process Discovery). Let L = (E, OT , O, πact , πtime, πtrace) be
an object-centric event log. A process discovery algorithm d(L) = OCPN A returns
an accepting object-centric Petri net for the object-centric event log.

This general approach discovers a traditional Petri net if a traditional event log is
the input. The object-centric Petri nets in Fig. 3 are discovered from the OCEL
and the flattened event log of Fig. 2.

3.3 Inter- and Intra-Object Complexity

In this section, we formally define the inter- and intra-object complexity which
were already informally introduced in the introduction. We later use these di-
mensions in our experimental framework to differentiate which process charac-
teristics and, therefore, which real-life processes benefit most from employing
object-centric discovery.

Definition 12 (Inter-Object Complexity). Let OCPN A = (((T, P, F, l), πpt ,
Fvar), Minit , Mfinal) be an accepting object-centric Petri net. We define the fol-
lowing model attributes:

• numt(OCPN A) = |{t ∈ T | t ∈ dom(l)}| the number of non-silent transitions,
• numot(OCPN A) = |range(πpt)| the number of object types, and

• inter(OCPN A) = 1
max(1,|OT |−1)

∑
t∈T

|{πpt(p)|p∈•t}|−1
|T | is the inter-object com-

plexity of the model.

The inter-object complexity is defined as the amount of shared transitions between
objects. The more transitions are shared between objects, the more the object’s
control flows are interwoven with each other. Based on the definition, we make
two observations.
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Observation 1 High inter-object complexities point to many shared transitions.
In the extreme case, all objects share all transitions. This would make objects
redundant, as they all describe the same control flow. Only one object is necessary
to encode the control flow, i.e., a process with an inter-object complexity of 1 is
equivalent to a traditional process described by a Petri net.

Observation 2 A traditional process has an inter-object complexity of 1, as the
single object of the process is involved in all transitions.

The inter-object complexity only describes the complexity of control flow between
objects. To fully capture the complexity of the control flow, we further define
the intra-object-complexity, capturing the control flow within objects.

Definition 13 (Intra-Object Complexity). Let OCPN A = (((T, P, F, l), πpt ,
Fvar), Minit , Mfinal) be an accepting object-centric Petri net. For an object type
ot ∈ range(πpt), we retrieve the subnet OCPN A,ot = (Pot , Tot , Fot , lot) with

• Pot = {p ∈ P | πpt(p) = ot},
• Tot = {t ∈ T | ∃p∈•t∪t• πpt(p) = ot},
• Fot = {(s, t) ∈ F | (s ∈ Pot ∧ t ∈ Tot) ∨ (s ∈ Tot ∧ t ∈ Pot)}, and
• lot(t) = l(t) for t ∈ Tot.

We define the intra-object complexity for an individual type as tioc(OCPN A,ot) =
|Σ(OCPNA,ot)|

numt(OCPNA,ot)! . The intra-object complexity of the model is defined as the aver-
age intra-object complexity of all object types intra(OCPN A) = 1

numot(OCPNA) ·∑
ot∈range(πpt) tioc(OCPN A,ot).

The intra-object complexity quantifies the objects’ average deviation from a
completely linear control flow. An intra-object complexity of 0 means that all
objects follow a strictly linear control flow, while an intra-object complexity of 1
means that all objects would have a completely concurrent control flow.

4 Experimental Framework

This section introduces the experimental setup to compare process discovery
on object-centric and flattened event data which is depicted in Fig. 4. The
experimental framework consists of three steps: Model generation, event log
sampling, and discovery quality assessment.

Model Generation We use a process model called the system model resembling a
ground truth process. To cover a wide range of combinations of inter- and intra-
object complexity, we generate a large set of different models. We depict the
distribution of our generated system model along with some exemplary models
in Fig. 5. In total, we have randomly generated 44570 system models with 6-8
visible activities (additionally, they can have silent transitions to model AND
constructs) and two object types. These models do not have loops, as this would
conflict with the next part of the framework, the event log sampling. We address
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Fig. 4: Experimental framework. We generate many different system models with
varying characteristics.

this limitation in the threats to validity section at the end of Sec. 5. The model
sizes are limited to maximum 8 visible transitions, as larger models would produce
so many possible traces that an exact computation of the model language, as
described in the next section, would become infeasible. However, we complement
the experiments with a case study on a large production process, showing the
applicability and improvements of discovery also for very large models.

Event Log Sampling We extract an event log by sampling from the language of
the system model. To do so, we compute the language of the system model, i.e.,
all possible process executions. We sample a subset of this language to simulate
extracting an event log that only contains a part of the possible behavior.

Definition 14 (Event Log Extraction). Let OCPN A=(OCPN , Minit , Mfinal)
be an accepting object-centric Petri net and s ∈ [0, 1] be an extraction sampling
rate. sample(OCPN A, s) ⊆ Σ(OCPNA) samples a subset of the Petri net lan-
guage corresponding to the sampling rate s. The language subset is mapped to an
OCEL by gen(sample(OCPN A, s), OCPN A) = (E, O, OT, πact , πtime, πtrace).

The presented approach allows us to quantify a sampling rate, i.e., how much of
the possible model behavior is contained in the event log. Since we computed the
full system model language, we can also compare the language of a discovered
model to the language of a system model, quantifying how well the discovered
model corresponds to the ground-truth system model given the sampling rate.
This is explained in the next paragraph

Quantifying Discovered Model Quality We compare the quality of discovered
process models from the object-centric and flattened event logs. Starting from
the OCEL, we discover a model before and after flattening the event log using
Inductive Miner [18]. The model quality is defined as the recall/precision of the
discovered model language with respect to the language of the system model.
When the model is discovered from a sampled event log of the system model, the
fitness defined here also measures the generalization capabilities of the discovery
technique [26].
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Fig. 5: Distribution of generated model characteristics and example models for different
combinations.

Definition 15 (Model Quality). Let OCPN A = (OCPN , Minit , Mfinal) be a
system model and s ∈ [0, 1] be a sampling rate. The sampled OCEL is given by
L = d(gen(sample(OCPN A, s), OCPN A). The discovered model on the object-
centric event log is denoted with OCPN d

A = d(L) and the discovered model
on the flattened event log is denoted with OCPN flat,d

A = d(Lflat). For any of
the two discovered models PN ∈ {OCPN d, OCPN flat,d}, we define the fitness
fit(OCPN A, PN ) = |Σ(OCPNA)∩Σ(PN)|

|Σd(OCPNA)| and the precision prec(OCPN A, PN ) =
|Σ(OCPNA)∩Σ(PN)|

|Σ(PN)| .

Using this setup, we retrieve the discovered model quality for traditional and
object-centric process discovery for different combinations of inter-object com-
plexity, intra-object complexity, and sample sizes.

5 Experimental Results

We present our experimental results in this section. The implementation is pub-
licly available5. We present the dependency between discovered model quality
and event log sample size for traditional and object-centric discovery on system
models with varying inter- and intra-object complexity, as described in Sec. 4.
The results are depicted in Fig. 6 (fitness) and Fig. 7 (precision).
5 https://github.com/jn-adams/ObjectCentricDiscovery

https://github.com/jn-adams/ObjectCentricDiscovery
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Fig. 6: Discovered model fitness depending on the sample size of the event log for the
four different quadrants of our process taxonomy.

We split the models according to their characteristics using low/high inter- and
intra-object complexity. The decision for low and high values are made according
to Fig. 5, i.e., an inter-object complexity of more than 0.2 is considered high and
an intra-object complexity of less than 0.15 is considered to be low. We choose
both values for the following reasons: First, high inter-object complexity indicates
high redundancies between object types, i.e., the system model is behaviorally
very close to a traditional Petri net. By choosing a low threshold we single out
system models that are significantly different from traditional process models.
Second, high intra-object complexity models indicate a lack of structure in the
process, i.e., no order is enforced. By choosing a low threshold, we can single
out system models that show high degrees of sequentiality in one bin and less
structured models in the other bin.

The highest quality differences can be observed when the system model
exhibits low levels of inter-object complexity, especially when the intra-object
complexity is also low, i.e., each object has a relatively sequential path and only
some interaction points with other objects. In this case, the average fitness of
the discovered process model for extracted OCELs with a low sample rate is
already 0.9. The fitness of the discovered model from the flattened event log
is very low, starting at almost 0. Mapping this back to the initial taxonomy
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Fig. 7: Discovered model precision depending on the sample size of the event log for
the four different quadrants of our process taxonomy.

depicted in Fig. 1, object-centric discovery can significantly reduce the data
required for manufacturing processes, supply chains, and composite workflows.
Especially for processes with relatively sequential subprocesses, like assembly
lines, object-centric discovery allows for discovery with much less data compared
to traditional discovery. This means, that discovery for larger models, which
was prohibitive due to the data requirements in traditional discovery, is now
enabled using object-centric discovery. We will also see this in the case study in
Sec. 6. Models with high inter-object complexity cannot benefit that much from
switching to object-centric discovery. Since high inter-object complexity points
to redundant control flows and is, in the extreme case, equivalent to traditional
process models, these results are not surprising. It is notable, that – within this
evaluation – object-centric discovery does not worsen results.

When considering the precision of discovered models, the quality differences
are larger for models with high intra-object complexity, although precision levels
for low intra-object complexity are, generally, higher. This can be explained by
low levels of intra-object complexity allowing more concurrent behavior, such
that the discovery of flower-like models will be more precise than for more restric-
tive system models. In general, we observe that the high amounts of sequences
produced by concurrent behavior push the discovery algorithm to discover flower
models for the flattened event logs, significantly reducing the precision.

5.1 Threats to Validity

As our experimental framework computes the exact languages of the models, it is
computationally quite demanding, leading us to restrict the system model genera-
tion in two major ways: without loops and only limited to eight visible transitions.
These are also the main limitations of this experimental framework: First, our
results cannot be generalized to process models containing many loops. Second,
our generated models only cover relatively small models of 8 visible transitions.
While the results are already very clear and the difference should only increase
for larger models, our experiments cannot prove this claim. Therefore, we comple-
ment the experiments with a case study performing object-centric discovery on
a large-scale production process and comparing the results to traditional process
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Fig. 8: Discovered process model of a production process using an OCEL. Different
components follow their individual paths and are assembled into a merged component.

discovery. We aim to mitigate the limitations of our experimental framework
using this case study, as it shows that object-centric discovery is feasible for large
processes and provides better results than traditional discovery.

6 Case Study

We use object-centric event data from a production process in the German man-
ufacturing company Heidelberger Druckmaschinen AG [10]. The confidential
original event log contains hundreds of process executions with more than 800
activities. Object-centric discovery can be applied to the original event log, how-
ever, the resulting visualization is too large for human comprehension. Therefore,
we limit our analysis to a subprocess of 105 activities. Our sublog contains 13
process executions. We, first, apply object-centric process discovery and, second,
flatten the event log and apply traditional process discovery. Even though we
do not know the true ground truth process to provide an exact sample rate, it
would be close to 0 given the large number of concurrent activities and the low
number of process executions. The results are depicted in Fig. 8 and Fig. 9.

The structure of the process can be rediscovered using object-centric discov-
ery: Individual concurrent object paths are visible, ending up in one assembly
activity that combines individual components into an output component. This
output component follows its individual path afterward. The low number of pro-
cess executions is not an issue when using object-centric discovery, it can still
rediscover the concurrency between objects. This is not the case for process dis-
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Fig. 9: Discovered process model of a production process using the flattened object-
centric event log. The process is mostly a flower model and the screenshot only shows
part of the width of this flower model.

covery on flattened event data. The flattened process discovery algorithm shows
a flower model, i.e., the structure of the process is completely lost. Furthermore,
it is generally infeasible to expect that a flattened event log would contain enough
process executions such that concurrency could completely be rediscovered: 100
partly concurrent activities can generate a large number of possible activity se-
quences, such that the data requirements of traditional process discovery would
be beyond any feasible amount of produced products, i.e., the available sample
size.

7 Conclusion

In this paper, we investigated the data requirement reduction that object-centric
process discovery yields over traditional discovery. We categorize different real-life
processes according to control-flow complexity across and within subprocesses,
and formally define these dimensions. We define an experimental framework that
generates models across these dimensions and assess the reduction in data re-
quirements when using object-centric discovery over traditional discovery. We
can show that the data requirements are drastically reduced, especially for low
inter-object complexity processes models like production processes or supply
chains. To address limitations of the experimental framework w.r.t. the size of
generated models we complement our evaluation with a large-scale production
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process case study. We show, that object-centric discovery captures the produc-
tion process much better than traditional process discovery. In this case, the
data requirements of traditional discovery would even exceed the number of pro-
duced items, rendering traditional process discovery infeasible. Our results have
significant implications for the application of process discovery to large-scale
processes: Areas once infeasible for discovery due to large data requirements are
now accessible using object-centric process mining. This will foster the adaption
of process discovery in the future.
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