
XRL/Woflan: Verification and Extensibility of an XML/Petri-net based language for inter-
organizational workflows

W.M.P. van der Aalst1, H.M.W. Verbeek1, and A. Kumar2

1Faculty of Technology and Management,
Eindhoven University of Technology,

PO Box 513, NL-5600 MB, Eindhoven, The Netherlands
{w.m.p.v.d.aalst,h.m.w.verbeek}@tm.tue.nl

2College of Business, CB 419
University of Colorado

Boulder, Co 80309, USA
akhil@acm.org

Abstract

Internet-based technology, E-commerce, and the rise of networked virtual enter-
prises have fueled the need for inter-organizational workflows. Although XML
allows trading partners to exchange information, it cannot be used to coordinate
activities in different organizational entities. Therefore, we developed a workflow
language named XRL (eXchangeable Routing Language) for supporting cross-
organizational processes. XRL uses XML for the representation of process defini-
tions and Petri nets for its semantics. Since XRL is instance-based, workflow defi-
nitions can be changed on the fly and sent across organizational boundaries. These
features are vital for today’s dynamic and networked economy. However, these
features make cross-organizational workflows susceptible to errors. In this paper,
we present XRL/Woflan, a software tool using state-of-the-art Petri-net analysis
techniques for verifying XRL workflows. The tool uses XSL (Extensible Style
Language) Transformations (called XSLT) to translate XRL specifications to a
specific class of Petri nets called workflow nets. The Petri-net representation is
used to determine whether the workflow is correct. If the workflow is not correct,
anomalies such as deadlocks and livelocks are reported. This approach also makes
XRL extensible. Therefore, new, application-specific workflow patterns can be
created and incorporated into XRL by expressing their semantics in XSLT.

1 Introduction

Today’s corporations must often operate across organizational boundaries. Phenomena such as E-
commerce, extended enterprises, and the Internet stimulate cooperation between organizations.
Therefore, the importance of workflows distributed over a number of organizations is increasing
[2, 9, 14]. Inter-organizational workflows offer companies the opportunity to re-shape business
processes beyond the boundaries of their own organizations. However, the design and deployment
of inter-organizational workflows must address the following issues. On the one hand, there is a
strong need for coordination to optimize the flow of work, in and between, the different organiza-
tions. On the other hand, the organizations involved are essentially autonomous and have the free-
dom to create or modify workflows at any point in time. Therefore, these conflicting constraints
complicate the development of languages and tools for cross-organizational workflow support.

Recent development in Internet technology, and the emergence of the “electronic market
makers”, such as ChemConnect, Ariba, CommerceOne, Clarus, staples.com, Granger.com, Verti-
calNet, and mySAP.com has resulted in many XML-based standards for electronic commerce
such as xCBL, UDDI, ebXML, OBI, OAGIS, BizTalk, etc. These standards primarily focus on
the exchange of data and not on the flow of control among organizations. Most of the standards
provide standard DTDs or XML schemas for specific application domains (e.g. procurement).
One of the few initiatives which also addresses the control flow is RosettaNet. The Partner Inter-
face Process (PIP) blueprints by RosettaNet do specify interactions. However, the PIP blueprints
are not executable and need to be predefined. Moreover, like most of the standards, RosettaNet
primarily focuses on electronic markets with long-lasting pre-specified relationships with one
party (e.g., the market maker) imposing rigid business rules.

Looking at existing initiatives two things can be noted: (1) process support for cross-organi-
zational workflow has been neglected since the lion's share of attention has gone to data and
(2) only pre-specified standardized processes have been considered (e.g., market places, procure-
ment, etc.). Based on these observations, we developed the eXchangeable Routing Language
(XRL). The idea to develop a language like XRL was raised in [12] and the definition of the lan-
guage was given in [4]. XRL uses the syntax of XML, but contains constructs which embed the
semantics of control flow. Moreover, XRL supports highly dynamic one-of-a-kind workflow pro-
cesses. For example, we consider the “first trade problem”, i.e., the situation where parties have
no prior trading relationship [15]. To support such highly dynamic, one-of-a-kind workflow pro-
cesses, XRL describes processes at the instance level. Traditional workflow modeling languages
describe processes at the class or type level [10, 13]. On the other hand, an XRL routing schema
describes the partial ordering of tasks for one specific instance. The advantages of doing so are
that: (1) the workflow schema can be exchanged more easily, (2) the schema can be changed
without causing any problems for other instances, and (3) the expressive power is increased. In
our research on workflow patterns [3], we compared the expressive power of many contemporary
workflow management systems including COSA, HP Changengine, Forté Conductor, I-Flow,
InConcert, MQ Series Workflow, R/3 Workflow, Staffware, Verve, and Visual WorkFlo using a
set of workflow patterns1. Based on the workflow patterns supported by these systems, and their
relative use in practice, we carefully selected the most relevant constructs for XRL. Note that the
expressive power of XRL far exceeds that of each of the workflow management systems men-
tioned above.

As shown in [4], the semantics of XRL can be expressed in terms of Petri nets [16, 17]. Based
on these semantics we developed a workflow management system, named XRL/Flower, to sup-
port XRL. XRL/Flower benefits from the fact that it is based on both XML and Petri nets. Stan-
dard XML tools can be deployed to parse, check, and handle XRL documents. The Petri-net
representation allows for a straightforward and succinct implementation of the workflow engine.
XRL constructs are automatically translated into Petri-net constructs. On the one hand, this allows
for an efficient implementation. On the other hand, the system is easy to extend: For supporting a
new routing primitive, only the translation to the Petri-net engine needs to be added and the
engine itself does not need to change.

Unfortunately, the Petri-net based semantics of XRL given in [4] results in Petri nets which
do not fit into the class of WorkFlow nets (WF-nets). WF-nets are a special subclass of Petri nets,
which possess an appealing correctness notion (the soundness property [1], strong theoretical

1. See http://www.tm.tue.nl/it/research/patterns/ for a list of workflow patterns.

results (e.g., the link between soundness, liveness, and boundedness [1]), and powerful software
(e.g., the tool Woflan [19]). The semantics given in [4] does not allow these theoretical results and
tools to be used directly. This limitation was recognized in [5]. In this paper, we present a direct
translation from XRL to WF-nets, i.e., the semantics of XRL is given in terms of WF-nets. The
translation has been implemented using XSL and resulted in a tool XRL/Woflan.

XRL/Woflan builds on the workflow verification tool Woflan [19, 20]. Developers of con-
temporary workflow management systems have virtually neglected correctness issues. As a
result, in most workflow management systems, it is possible to design workflows which suffer
from anomalies, such as deadlocks and livelocks, without any form of warning. Few tools provide
any form of workflow verification support. The tools Woflan [19] and Flowmake [18] are two
noteworthy exceptions. To complicate matters, more and more workflow management systems
are being used to support inter-organizational business processes, e.g., in the context of Business-
To-Business (B2B) E-commerce, where it is vital to guarantee that workflow process definitions
do not contain any logical errors. Therefore, XRL/Woflan, the verification tool presented in this
paper, is highly relevant for developers of inter-organizational workflows.

Figure 1 gives an overview of the toolset involving XRL/Flower and XRL/Woflan. XRL
routes, representing workflow instances, can be swapped in (e.g., received from another organiza-
tions or created) or swapped out (e.g., shipped to another organization after modification). An
XSL (Extensible Stylesheet Language) translator which is driven by the DTD (describing the syn-
tax of each XRL construct) and the Petri-net semantics (i.e., a graphical description of the behav-
ior of each construct) converts each XRL route onto a generic Petri-net based format. This format
can be used by both the enactment service, i.e., the workflow engine of XRL/Flower, and by the
verification tool XRL/Woflan.

The remainder of this paper is organized as follows. In Sections 2 and 3, we introduce XRL
and give an example of how a workflow can be represented in XRL. Section 4 introduces WF-
nets, a special sub-class of Petri nets, and gives their main properties. Then Section 5 shows how
the formal semantics of XRL can be expressed in terms of WF-nets. Based on these semantics, in
Section 6, we propose a verification procedure which exploits the structural properties of certain
XRL constructs and Petri-net based reduction rules [16]. Then we present our verification tool
XRL/Woflan. Finally, Section 7 concludes the paper.

2 XRL: An XML based routing language

The focus of this paper is on the verification and extensibility aspects of XRL [4]. Therefore, we
limit ourselves to only a brief introduction to XRL. XRL essentially gives a syntax for describing

XRL route
XSL

translator

Petri net
format
(PNML)

swap out

swap in

DTD of XRL
Petri net

semantics
of XRL

XRL/
Flower
engine

XRL/
Woflan

enactment

verification

Figure 1: Toolset for enactment and verification of XRL workflows.

workflows in XML. The syntax of XML documents is completely specified by the Document
Type Definition (DTD) [8] of the document. The DTD for XRL is shown in Figure 2. An XRL
route describing a workflow instance is a consistent XML document, i.e., a well-formed and valid
XML file with top element route (see Figure 2). XRL provides a rich set of constructs for model-
ing real workflows in XML as we discuss next.

A routing element is an important building block of XRL for constructing workflow enact-
ments. It can be any one of the following: task (a step to be performed), sequence (a set of routing
elements to be done in a specific order), any_sequence (a set of routing elements to be done in any

<!ENTITY % routing_element "task|sequence|any_sequence|choice|
condition|parallel_sync|parallel_no_sync|parallel_part_sync|
parallel_part_sync_cancel|wait_all|wait_any|while_do|terminate">
<!ELEMENT route (%routing_element;)>
<!ATTLIST route name ID #REQUIRED
 created_by CDATA #IMPLIED
 date CDATA #IMPLIED>
<!ELEMENT task (event*)>
<!ATTLIST task name ID #REQUIRED
 address CDATA #REQUIRED
 role CDATA #IMPLIED
 doc_read NMTOKENS #IMPLIED
 doc_update NMTOKENS #IMPLIED
 doc_create NMTOKENS #IMPLIED
 result CDATA #IMPLIED
 status (ready|running|enabled|disabled|aborted|null) #IMPLIED
 start_time NMTOKEN #IMPLIED
 end_time NMTOKEN #IMPLIED
 notify CDATA #IMPLIED>
<!ELEMENT event EMPTY>
<!ATTLIST event name ID #REQUIRED>
<!ELEMENT sequence ((%routing_element;|state)+)>
<!ELEMENT any_sequence ((%routing_element;)+)>
<!ELEMENT choice ((%routing_element;)+)>
<!ELEMENT condition (true|false)*>
<!ATTLIST condition condition CDATA #REQUIRED>
<!ELEMENT true (%routing_element;)>
<!ELEMENT false (%routing_element;)>
<!ELEMENT parallel_sync ((%routing_element;)+)>
<!ELEMENT parallel_no_sync ((%routing_element;)+)>
<!ELEMENT parallel_part_sync ((%routing_element;)+)>
<!ATTLIST parallel_part_sync number NMTOKEN #REQUIRED>
<!ELEMENT parallel_part_sync_cancel ((%routing_element;)+)>
<!ATTLIST parallel_part_sync_cancel number NMTOKEN #REQUIRED>
<!ELEMENT wait_all (event_ref|timeout)+>
<!ELEMENT wait_any(event_ref|timeout)+>
<!ELEMENT event_ref EMPTY>
<!ATTLIST event_ref name IDREF #REQUIRED>
<!ELEMENT timeout (%routing_element;?)>
<!ATTLIST timeout time CDATA #REQUIRED type
(relative|s_relative|absolute) "absolute">
<!ELEMENT while_do (%routing_element;)>
<!ATTLIST while_do condition CDATA #REQUIRED>
<!ELEMENT terminate EMPTY>
<!ELEMENT state (event+)>

Figure 2: The DTD of XRL.

order), choice (any one routing element out of a set of routing elements), condition (test a condi-
tion and determine next routing element based on result of the test), parallel_sync (start multiple
parallel routing elements and later join them), parallel_no_sync (start multiple parallel routing
elements that do not have to join), parallel_part_sync (start multiple parallel routing elements,
some of which must join), parallel_part_sync_cancel (start multiple parallel routing elements,
some of which must join, while the remaining ones are withdrawn if possible), wait_all (insert a
wait step to wait for the completion of a group of events), wait_any (insert a wait step to wait for
the completion of any one of a group of events), while_do (enable repetition of a routing element
while a condition is true), and terminate (end this workflow instance). The DTD also describes
attributes associated with each element. The attributes describe various properties or aspects of an
element. For example, there are several attributes associated with the task element. The address
attribute gives a URL of the location where the task is to be performed. The doc_read, doc_update
and doc_create attributes give the names of documents which may be read, updated and created,
respectively during the performance of the task. The other attributes are self-explanatory.

It is important to note that the constructs of XRL are based on a thorough analysis of the
workflow patterns supported by leading workflow management systems. In the next section, we
show how the various constructs of XRL can be used to design a real workflow, which is consis-
tent with the DTD.

3 Example: An electronic bookstore

In this section we illustrate XRL using an example inspired by electronic bookstores, such as
Amazon [6] and Barnes and Noble [7]. A typical order flow is shown by the activity diagram in
Figure 3. This figure gives the four parties or organizations involved (i.e., customer, bookstore,
publisher and shipper), and the steps performed by each one. The arrows show the sequence in
which these steps are carried out. Some of the details are omitted from this diagram to prevent
clutter.

The workflow represented by the activity diagram is described in XRL in Figure 4. The XRL
rendition covers the typical order flow of Figure 3, and also some more details. First, the customer
places an order (task place_c_order). This customer order is sent to and handled by the bookstore
(task handle_c_order). The electronic bookstore is a virtual company that has no books in stock.
Therefore, the bookstore transfers the order of the desired book to the first appropriate publisher
(task place_b_order). We will use the term “bookstore order” for the transferred order. The book-
store order is next evaluated by the publisher (task eval_b_order). The publisher, in turn, informs
the bookstore about the availability of the book. If the book was not available, the bookstore
decides (task decide) to either search for an alternative publisher (task alt_publ) or to reject the
customer (task c_reject). If the customer receives a negative answer (task rec_decl), the workflow
terminates. If the book is available (task c_accept), the customer is informed (task rec_acc) and
the bookstore continues processing the customer order. The bookstore sends a request to the ship-
per (task s_request), the shipper evaluates the request (task eval_s_req) and either accepts (task
s_accept) or rejects (task b_reject). If the bookstore receives a negative answer, it searches for
another shipper.

After a shipper is found, the publisher is informed (task inform_publ), the publisher prepares
the book for shipment (task prepare_b), and the book is sent from the publisher to the shipper
(task send_book). The shipper prepares the shipment (task prepare_s) and ships the book to the
customer (task ship). The customer receives the book (task rec_book) and the shipper notifies the

bookstore (task notify). The bookstore sends the bill to the customer (task send_bill). After receiv-
ing both the book and the bill (task rec_bill), the customer makes a payment (task pay). Then the
bookstore processes the payment (task handle_payment) and the inter-organizational workflow
terminates.

The XRL route shown in Figure 4 just illustrates some of the XRL routing constructs. The
description is far from complete, e.g., the detailed description of tasks and conditions have not
been added. Please note that, since an XRL route specifies the life cycle of a particular workflow
instance (i.e., work case), any instance can be modified without reference to some underlying
workflow schema type.

Based on XRL, we have developed a prototype named XRL/Flower [4]. XRL/Flower can
handle XRL files arriving through e-mail or ftp. An incoming XRL file, i.e., workflow instance, is
parsed and translated into a Petri net. The Petri-net description drives the workflow engine, which
calculates enabled tasks. The enabled tasks are offered to the proper workers through role-based
worklists. Whenever a task is executed, the engine calculates newly enabled tasks. The engine or
an authorized user can also decide to migrate a running instance to another workflow engine. For
migration, an XRL file is created with entries for the current workflow state and shipped through
e-mail or ftp.

Figure 3: Typical order flow of the electronic bookstore.

customer bookstore publisher shipper

handle_paymentpay

send_bill notify

ship

send_book

inform_publ

eval_s_reqs_request

eval_b_order

handle_c_orderplace_c_order

place_b_order

b_acceptc_acceptrec_acc

s_accept

rec_book

rec_bill

prepare_b

prepare_s

<route name="e-bookstore" created_by="H.M.W. Verbeek" date="June 11, 2001"><sequence>
 <task name="place_c_order" address="customer"/>
 <task name="handle_c_order" address="bookstore"/>
 <while_do condition="No publisher found yet"><sequence>
 <task name="place_b_order" address="bookstore"/>
 <task name="eval_b_order" address="publisher"/>
 <condition condition="No publisher found yet">
 <true><sequence>
 <task name="decide" address="publisher"/>
 <condition condition="Try alternative publisher">
 <true><task name="alt_publ" address="publisher"/></true>
 <false><sequence>
 <task name="b_reject" address="publisher"/>
 <task name="c_reject" address="bookstore"/>
 <task name="rec_decl" address="customer"/>
 </sequence></false>
 </condition>
 </sequence></true>
 <false><sequence>
 <task name="b_accept" address="publisher"/>
 <task name="c_accept" address="bookstore"/>
 <parallel_sync>
 <task name="rec_acc" address="customer"><event name="accept"/></task>
 <sequence>
 <while_do condition="No shipper found yet"><sequence>
 <task name="s_request" address="bookstore"/>
 <task name="eval_s_req" address="shipper"/>
 </sequence></while_do>
 <condition condition="Shipper found">
 <true><sequence>
 <task name="s_accept" address="shipper"/>
 <task name="inform_publ" address="bookstore"/>
 <task name="prepare_b" address="publisher"/>
 <task name="send_book" address="publisher"/>
 <task name="prepare_s" address="shipper"/>
 <task name="ship" address="shipper"/>
 <parallel_sync><sequence>
 <task name="notify" address="shipper"/>
 <task name="send_bill" address="bookstore"/>
 <wait_all><event_ref name="accept"/></wait_all>
 <task name="rec_bill" address="customer"/>
 </sequence><sequence>
 <wait_all><event_ref name="accept"/></wait_all>
 <task name="rec_book" address="customer"/>
 </sequence></parallel_sync>
 <task name="pay" address="customer"/>
 <task name="handle_payment" address="bookstore"/>
 </sequence></true>
 <false><task name="s_reject" address="shipper"/></false>
 </condition>
 </sequence>
 </parallel_sync>
 </sequence></false>
 </condition>
 </sequence></while_do>
</sequence></route>

Figure 4: The XRL route for processing a customer order
(many attributes were omitted for brevity).

4 Workflow nets

As shown in [4], the semantics of XRL can easily be expressed in terms of Petri nets. XRL/
Flower is a prototype that uses a Petri-net engine to interpret and execute XRL routes. However, it
was observed in [5] that the translation given in [4] does not result in WorkFlow nets (WF-nets), a
special class of Petri nets. Consequently, the strong theoretical results for WF-nets cannot be used.
Moreover, it is difficult to deploy our workflow verification tool Woflan [19] which was devel-
oped independently from XRL. In this paper we present a new approach that allows us to integrate
the XRL and Woflan technologies. In order to do so, the semantics presented in [4] has been mod-
ified and the resulting Petri nets are WF-nets which allows us to use the results presented in [1,
20]. Moreover, the robustness and extensibility of XRL is increased by the new semantics. Before
we present this new mapping, we briefly introduce some of the concepts related to WF-nets. We
give a brief introduction to Petri nets next and refer the reader to [16, 17] for more details.

A Petri net (or place-transition net) is represented graphically by rectangles and circles. The
rectangles are called transitions and the circles representing the state are called places. The arrows
between places and transitions are used to specify causal relations. Figure 5 shows a Petri net
composed of six places and six transitions1. A place p is called an input place of a transition t if
and only if there exists a directed arc from p to t. Place p is called an output place of transition t if
and only if there exists a directed arc from t to p. At any time a place contains zero or more
tokens, drawn as black dots. The state of the net, often referred to as marking, is the distribution of
tokens over places. In Figure 5, only place p1 contains a token. The number of tokens may change
during the execution of the net. Transitions are the active components in a Petri net: They change
the state (or marking) of the net according to the following firing rule:

• A transition is said to be enabled if and only if each input place contains at least one token.
• An enabled transition may fire. If a transition fires, then it consumes one token from each

input place and produces one token for each output place.

In Figure 5, when transition t1 fires, it will remove the token from place p1 and put one token
each in places p2 and p3, which are the output places of t1. A token in place p3 may cause either
transition t3 or t4 to fire but not both. When there are tokens in places p4 and p5, one of two tran-
sitions may occur: either t6 may fire (consuming the tokens in p4 and p5) and put a token in place
p6, or t2 may fire and place a token in place p2. In this way, it is possible to model complex coor-

1. In general, the number of places and number of transitions are not the same.

p1

p2

p3

p4

p5

p6
t1

t2

t3

t4

t5

t6

Figure 5: An example Petri net.

dination constraints using Petri nets. A Petri net like the one in this figure may be represented as
follows:

In this form, P is the set of places, T is the set of transitions and F is the flow relation or the set of
connections between places and transitions. In the context of workflows, the transitions corre-
spond to various tasks to be executed, such as place an order, process an order, ship order, etc. A
Petri net which models the control-flow aspect of a workflow is called a WF-net. A WF-net speci-
fies the dynamic behavior of a single case in isolation, and it may be defined formally as follows.

Definition 1 (WF-net) A Petri net is a WF-net (Workflow net) if and only if:

(i) There is one source place , i.e., one place without any predecessors.

(ii) There is one sink place , i.e., one place without any successors.

(iii) Every node is on a path from i to o.

A WF-net has one input place (i) and one output place (o) because any case handled by the proce-
dure represented by the WF-net is created when it enters the workflow management system and is
deleted once it is completely handled by the workflow management system, i.e., the WF-net spec-
ifies the life-cycle of a case. The third requirement in Definition 1 has been added to avoid ‘dan-
gling tasks and/or conditions’, i.e., tasks and conditions that do not contribute to the processing of
cases.

The three requirements stated in Definition 1 can be verified statically, i.e., they only relate to
the structure of the Petri net. However, there is another termination requirement which should be
satisfied:

For any case, the procedure will eventually terminate, and upon termination, there
is a token in place o and all the other places are empty.

Moreover, there should be no dead tasks, i.e., it should be possible to execute an arbitrary task by
following the appropriate route though the WF-net. These two additional requirements corre-
spond to the so-called soundness property.

Definition 2 (Sound) A procedure modeled by a WF-net is sound if and only if:
(i) For every state M reachable from state i, there exists a firing sequence leading from state M

to state o.
(ii) State o is the only state reachable from state i with at least one token in place o.
(iii) There are no dead transitions in state i.

Note that the soundness property relates to the dynamics of a WF-net. The first requirement in
Definition 2 states that starting from the initial state (state i), it is always possible to reach the state

PN P T F, ,()=

P p1 p2 p3 p4 p5 p6, , , , ,{ }=

T t1 t2 t3 t4 t5 t6, , , , ,{ }=

F p1 t1,() t1 p2,() t1 p3,() p2 t3,() p3 t4,() p3 t5,() t2 p2,() … t6 p6,(), , , , , , , ,{ }=

PN P T F, ,()=

i P∈
o P∈

x P T∪∈

PN P T F, ,()=

with one token in place o (state o). The second requirement states that the moment a token is put
in place o, all the other places should be empty. The last requirement states that there are no dead
transitions (tasks) in the initial state i.

In [1] it is shown that there is an interesting relation between soundness and well-known
properties such as liveness and boundedness. A Petri net is bounded if and only if the number of
reachable states is finite. A Petri net is live if and only if, no matter what happens, every transition
can be enabled again. A WF-net is sound if and only if the short-circuited net (i.e., the net
obtained by linking the sink place to the source place) is live and bounded. This result illustrates
that standard Petri-net based analysis techniques can be used to verify soundness.

5 Semantics of XRL in terms of WF-nets

The DTD shown in Figure 2 only describes the syntax of XRL and does not discuss the semantics
pertaining to each construct. In this section, we show that each XRL construct has a correspond-
ing representation in terms of Petri nets. Moreover, replacing each construct by its Petri-net
equivalent produces a workflow net (WF-net) as discussed above. Our goal is to show that the
Petri-net representations we give produce a WF-net which is sound. Although each construct of
Section 2 has Petri-net representation, for brevity, here we restrict ourselves1 to two of the most
complex constructs: parallel_part_sync_cancel and while_do.

Before discussing the constructs, it should be noted that an XRL route has a tree-like struc-
ture. A route consists of routing elements such as task, sequence, any_sequence, choice, etc. Most
of these routing elements contain other routing elements. Only task and terminate are atomic. It is
also important to note, that, although a route is mapped onto a WF-net, it is not feasible to map
individual routing elements onto WF-nets.

5.1 Petri-net representation of parallel_part_sync_cancel construct

Figure 6 shows the semantics of the parallel_part_sync_cancel. This routing element starts a
number (N) of child routing elements (RE1 to REN) and synchronizes after K child routing ele-
ments have completed. Note that this K corresponds to the obligatory number attribute. After syn-
chronizing, the remaining routing elements may be cancelled. Note that this construct is
similar to the K-out-of-N construct proposed in [10].

Place prev is the input place of any routing element. The parent routing element can put a
token in this place, which corresponds to activating the element. Place next is the output place. A
token put into this place indicates completion and can be removed by the parent (so the parent can
continue). Note that, due to the possible presence of the constructs parallel_no_sync,
parallel_part_sync and parallel_part_sync_cancel, this does not necessarily mean that the
descendant routing elements have completed. There may still be ongoing work in one of the N
child elements. Therefore, in addition to place next, the semantics of every routing element con-
tains a place done indicating (to the parent) that all descendants have completed too. Place free
ensures that the parallel_part_sync_cancel and its descendants have completed before it can start
again, say, if it were nested somewhere within a while_do construct. Both transitions begin and
end are part of the semantics of the top element route. This route is defined in such a way that fir-

1. See http://www.tm.tue.nl/it/staff/wvdaalst/workflow/xrl for the Petri-net mappings of all the other con-
structs.

N K–

ing the begin transition starts the (only) child of the route, and only when this element and its
descendants have completed, i.e., only when its next and done place are marked, the end transition
fires and puts a token in next. When K children have completed, place count contains K tokens
and transition end can fire, i.e., the parallel_part_sync_cancel can complete. The remaining

 children are either cancelled or ignored, after which the construct signals that all descen-
dants have completed too by firing term and putting a token in done.

5.2 Petri-net representation of while_do construct

Figure 7 shows the semantics of the while_do. Initially, X tokens are put into place RE/done and
one token is put into place RE/next. Note that these places are in fact the places next and done of
the child RE, i.e., they signal completion of RE and its descendants. Every time there is a token in
RE/next, a choice is made. If the condition evaluates to “true”, true fires and another iteration
takes place; if it evaluates to “false”, end fires, i.e., the while_do completes. Because a while_do
can complete before its descendants have completed, several iterations can be active at the same
time. The number X is an upper bound for the number of iterations active at the same time: If X
iterations are active, then RE/done is empty and no new iteration can start. When verifying the
workflow, it is necessary to restrict the number of active iterations by some upper bound X
because otherwise the state space could potentially be infinite.

Figure 6: The Petri-net semantics of the routing element parallel_part_sync_cancel.

prev next done

begin end term

RE1 RE2 REN

exec sig

count
K N-K

route
begin end

free

count2
cancel2

prev prev prev
next next next

done done done

begin begin beginend end endterm term term

exec exec execsig sig sig

cancel1 cancelNcount1
countN

N K–

5.3 Discussion

Figures 6 and 7 specify the semantics of the parallel_part_sync_cancel and while_do constructs.
These two constructs were chosen because they are more complex and, therefore, more interest-
ing for the reader than the others. The other constructs of XRL also have equivalent Petri-net rep-
resentations that have been specified in a similar fashion. By starting with the XRL route and
recursively replacing each child routing element by its corresponding Petri-net semantics, one
obtains a WF-net. As a result, we can check the important soundness property discussed in the
previous section.

As an example of this mapping process, the XRL route shown in Figure 4 is mapped to a WF-
net containing 303 places and 275 transitions. These numbers indicate that the dynamic behavior
of the XRL route presented in Section 3 is complex. However, this complexity is hidden from
both the designer and the user.

6 Verification of XRL

With the semantics specified in terms of WF-nets, described in the previous section, the theory
and tools for WF-nets can be deployed in a straightforward manner. This allows us to use Woflan
for verifying the correctness of an XRL route using criteria such as the soundness property.
Unfortunately, XRL routes with a lot of parallelism tend to have a large state space, thus compli-
cating verification from a computational point of view. Therefore, we propose a verification pro-
cedure that consists of two optimization steps. In the first step, the XSL translator, which
translates the XRL route to a WF-net, reduces the WF-net by using structural properties of XRL.
In the second step, Woflan reduces the WF-net by applying the well-known liveness and bound-
edness preserving reduction rules for Petri nets [16].

X

prev next done

begin end term

RE

sig

Xtrue

prev next done

termendbegin

sigexec

Figure 7: The Petri-net semantics of the routing element while_do.

6.1 Two-Step Reduction

Step 1: Reduction by the XSL translator based on structural properties of XRL. Figures 6 and 7
show a place named done to accommodate the situation where completion of a routing element
does not automatically yield completion of its descendants. This situation can only occur if the
routing element contains some parallel_no_sync, parallel_part_sync, or
parallel_part_sync_cancel routing element. In all other cases, there is no need to model things
related to these done places. Assuming RE in Figure 7 has no done place allows us to remove
almost half of the Petri net (i.e., sig, term, and done). Similar simplifications are possible if no
events are used. Moreover, we can apply the result presented in [5]: A routing element without
any event, wait_all, wait_any, or terminate is sound and can therefore be considered to be atomic.
Therefore, there is no need to model the internal structure of these routing elements. When these
reduction rules are applied, the XRL route shown in Figure 4 is mapped to a WF-net that contains
only 108 places and 105 transitions. Compared to the original WF-net, the reduced WF-net is con-
siderably smaller and less complex. Note that several routing elements can be abstracted from,
and that the WF-net need not contain any done places.

Step 2: Reduction by Woflan based on liveness and boundedness preserving reduction rules. Frag-
ments of various routing elements are connected by transitions. This introduces a lot of transitions
that are not relevant for the verification but introduce transient states. These and other parts of the
WF-net can be reduced enormously without losing information relevant for the verification. In
Section 4, it was pointed out that soundness corresponds to liveness and boundedness [1]. This
allows us to apply the well-known liveness and boundedness preserving reduction rules for Petri
nets [16]. After these reduction rules are applied, the reduced WF-net mentioned under Step 1
contains only 21 places and 18 transitions and is shown in Figure 8.

input output

place_c_order

place_b_order

alt_publ

no accept

accept

c_accept s_accept

rec_book

rec_bill

pay

s_reject

rec_acc

Figure 8: The WF-net of the bookstore example after a reduction based on
liveness and boundedness preserving reduction rules.

6.2 XRL/Woflan Verification Tool

Using standard Petri-net based analysis tools, or dedicated tools such as Woflan, it is easy to show
that Figure 8 is sound. Therefore, the XRL route shown in Figure 4 is correct, i.e., free of dead-
locks, livelocks and other anomalies. Note that Figure 8 is obtained after applying both types of
reduction.

XRL/Woflan is based on our workflow verification tool Woflan [19, 20]. Woflan1 is designed
as a workflow-management-system-independent analysis tool. In principle, it can interface with
many workflow management systems. At present, Woflan can interface with the workflow prod-
ucts COSA (Thiel Logistic AG/Software Ley), METEOR (LSDIS), and Staffware (Staffware),
and the BPR-tool Protos (Pallas Athena). Furthermore, Woflan can read Petri Net Markup Lan-
guage (PNML) files. PNML is a Petri-net file format based on XML [11]. Therefore, it is natural
to use XSL to automatically translate an XRL route into a PNML representation that can be diag-
nosed using Woflan. We have implemented this translation using XSL and the two types of reduc-
tion rules presented in this section. These two types of reduction rules allow us to verify large
XRL routes containing hundreds of tasks.

7 Conclusion

XRL is an XML based language for describing workflow enactments. Woflan is a tool for verifi-
cation of Petri-net workflows. In this paper we showed how these two technologies can be com-
bined together to create a powerful toolset for designing, verifying and implementing workflows.

We presented a novel way to verify the correctness of XRL routes by automatically translat-
ing them into WF-nets using XSL (Extensible Style Language) Transformations. As a result,
Woflan can be used to verify the correctness of the XRL route. The analysis procedure is opti-
mized by exploiting dynamic properties of XRL constructs and by using standard reduction rules
at the Petri-net level [16]. We consider these verification capabilities essential for inter-organiza-
tional workflows. As was argued in the introduction, contemporary workflows need to be changed
on the fly and sent across organizational boundaries. Unfortunately, cross-organizational work-
flows are more susceptible to errors than intra-organizational workflows. Moreover, one-of-a-
kind processes and on-the-fly changes further exacerbate the problem. Finally, errors of a cross-
organizational nature are also very difficult to repair. Therefore, a language such as XRL (i.e., a
language with formal semantics) and verification tools such as XRL/Woflan are highly relevant
for today’s dynamic and networked economy.

The approach presented in this paper also makes XRL extensible. Therefore, it is possible to
create new application-specific workflow patterns by writing XSLT routines that describe the
semantics of the pattern. The patterns can then be incorporated into the DTD of XRL after they
have been tested and verified with Woflan. We are currently working on developing a complete
methodology for extensibility.

References

[1] W.M.P. van der Aalst. The Application of Petri Nets to Workflow Management. The Journal
of Circuits, Systems and Computers, 8(1):21-66, 1998.

1. See http://www.tm.tue.nl/it/woflan for information on Woflan.

[2] W.M.P. van der Aalst. Process-oriented Architectures for Electronic Commerce and Interor-
ganizational Workflow. Information Systems, 24(8):639-671, 2000.

[3] W.M.P. van der Aalst, A.H.M. ter Hofstede, B. Kiepuszewski, and A.P. Barros. Advanced
Workflow Patterns. In O. Etzion and P. Scheuermann, editors, 7th International Conference
on Cooperative Information Systems (CoopIS 2000), volume 1901 of Lecture Notes in Com-
puter Science, pages 18-29. Springer-Verlag, Berlin, 2000.

[4] W.M.P. van der Aalst and A. Kumar. XML Based Schema Definition for Support of Inter-
organizational Workflow. (Technical report, accepted by ISR), 2000.

[5] W.M.P. van der Aalst, H.M.W. Verbeek, and A. Kumar. Verification of XRL: An XML-based
Workflow Language. In W. Shen, Z. Lin, J.-P. Barthès, and M. Kamel, editors, Proceedings
of the Sixth International Conference on CSCW in Design (CSCWD 2001), pages 427-432,
London, Ontario, Canada, July 2001.

[6] Amazon.com, Inc. Amazon.com. http://www.amazon.com, 1999.

[7] Barnes and Noble. bn.com. http://www.bn.com, 1999.

[8] T. Bray, J. Paoli, C.M. Sperberg-McQueen, and E. Maler. eXtensible Markup Language
(XML) 1.0 (Second Edition). http://www.w3.org/TR/REC-xml, 2000.

[9] P. Grefen, K. Aberer, Y. Hoffner, and H. Ludwig. CrossFlow: Cross-organizational Work-
flow Management in Dynamic Virtual Enterprises. International Journal of Computer Sys-
tems, Science, and Engineering, 15(5):277-290, 2001.

[10] S. Jablonski and C. Bussler. Workflow Management: Modeling Concepts, Architecture, and
Implementation. International Thomson Computer Press, London, UK, 1996.

[11] M. Jungel, E. Kindler, and M. Weber. The Petri Net Markup Language. In S. Philippi, edi-
tor, Proceedings of AWPN 2000 - 7thWorkshop Algorithmen und Werkzeuge für Petrinetze,
pages 47-52. Research Report 7/2000, Institute for Computer Science, University of
Koblenz, Germany, 2000.

[12] A. Kumar and J.L. Zhao. Workflow Support for Electronic Commerce Applications. (http://
spot.colorado.edu/~akhil/, to appear in DSS), 1999.

[13] P. Lawrence, editor. Workflow Handbook 1997, Workflow Management Coalition. John
Wiley and Sons, New York, 1997.

[14] A. Lazcano, G. Alonso, H. Schuldt, and C. Schuler. The WISE Approach to Electronic Com-
merce. International Journal of Computer Systems, Science, and Engineering, 15(5):345-
357, 2001.

http://www.cscwid.org/cscwd2001/
http://www.cscwid.org/cscwd2001/

[15] R.M. Lee. Distributed Electronic Trade Scenarios: Representation, Design, Prototyping.
International Journal of Electronic Commerce, 3(2):105-120, 1999.

[16] T. Murata. Petri Nets: Properties, Analysis and Applications. Proceedings of the IEEE,
77(4):541-580, 1989.

[17] W. Reisig and G. Rozenberg, editors. Lectures on Petri Nets I: Basic Models}, volume 1491
of Lecture Notes in Computer Science. Springer-Verlag, Berlin, 1998.

[18] W. Sadiq and M.E. Orlowska. Analyzing Process Models using Graph Reduction Tech-
niques. Information Systems, 25(2):117-134, 2000.

[19] H.M.W. Verbeek and W.M.P. van der Aalst. Woflan 2.0: A Petri-net-based Workflow Diag-
nosis Tool. In M. Nielsen and D. Simpson, editors, Application and Theory of Petri Nets
2000, volume 1825 of Lecture Notes in Computer Science, pages 475-484. Springer-Verlag,
Berlin, 2000.

[20] H.M.W. Verbeek, T. Basten, and W.M.P. van der Aalst. Diagnosing Workflow Processes
Using Woflan. The Computer Journal, 44(4):246-279. British Computer Society, 2001

	XRL/Woflan: Verification and Extensibility of an XML/Petri-net based language for inter- organiza...
	1 Introduction
	2 XRL: An XML based routing language
	3 Example: An electronic bookstore
	4 Workflow nets
	5 Semantics of XRL in terms of WF-nets
	5.1 Petri-net representation of parallel_part_sync_cancel construct
	5.2 Petri-net representation of while_do construct
	5.3 Discussion

	6 Verification of XRL
	6.1 Two-Step Reduction
	6.2 XRL/Woflan Verification Tool

	7 Conclusion

