
International Journal of Cooperative Information Systems
fc World Scienti�c Publishing Company

PROCLETS: A FRAMEWORK FOR

LIGHTWEIGHT INTERACTING WORKFLOW PROCESSES

W.M.P. VAN DER AALST∗

Department of Technology Management, Eindhoven University of Technology, P.O. Box 513

Eindhoven, NL-5600 MB, The Netherlands

P. BARTHELMESS

Department of Computer Science, University of Colorado at Boulder, Campus Box 430

Boulder, CO 80309-0430, USA

C.A. ELLIS

Department of Computer Science, University of Colorado at Boulder, Campus Box 430

Boulder, CO 80309-0430, USA

J. WAINER

Department of Computer Science, State University of Campinas, Caixa Postal 6176

Campinas, 13083-970, Brazil

Received (to be inserted

Revised by Publisher)

The focus of traditional work
ow management systems is on control
ow within one pro-

cess de�nition. The process de�nition describes how a single case (i.e., work
ow instance)

in isolation is handled. For many applications this paradigm is inadequate. Interaction

between cases to support communication and collaboration is at least as important. This

paper introduces and advocates the use of interacting proclets, i.e., lightweight work
ow

processes. By promoting interactions to �rst-class citizens it is possible to model complex

work
ows in a more natural manner. In addition, the expressive power and
exibility

are improved compared to the more traditional work
ow modeling languages.

Keywords: Work
ow management systems; Proclets; process modeling; Petri nets; in-

teraction mechanisms; work
ow agents

1. Introduction

In the last decade many work
ow management systems have become available.1

These systems allow for the explicit representation and support of business pro-

cesses and avoid the need to re-code applications every time a business process

changes. As the work
ow paradigm continues to in�ltrate organizations that need

to cope with complex administrative processes, it is becoming apparent that the

available work
ow management systems have diÆculties dealing with the increas-

∗Part of this work was done while visiting the Department of Computer Science of the University

of Colorado.

1

2 Proclets: A Framework for Lightweight Interacting Work
ow Processes

ingly dynamic and inter-organizational nature of today's business processes.2 As

we will argue in this paper, one of the core problems of the current generation of

work
ow languages and tools is the focus on isolated case-based processes.

Perspectives that are relevant for work
owmodeling and work
ow execution are:

(1) control-
ow (or process) perspective, (2) resource (or organization) perspective,

(3) data (or information) perspective, (4) task (or function) perspective, and (5)

operation (or application) perspective. (These perspectives are similar to the per-

spectives given by Jablonski.3) In this paper we primarily focus on the control-
ow

perspective. This does not imply that the other perspectives are less relevant. How-

ever, the problems addressed in this paper are mainly related to the control-
ow

perspective. In traditional work
ow management systems, the control-
ow per-

spective of a work
ow is described by one work
ow process de�nition (also called

work
ow schema). A work
ow process de�nition speci�es which tasks need to be

executed and in what order (i.e., the routing or control
ow). A task is an atomic

piece of work. Work
ow process de�nitions are instantiated for speci�c cases (i.e.,

work
ow instances). Examples of cases are a request for a mortgage loan, an insur-

ance claim, a tax declaration, an order, or a request for information. Since a case is

an instantiation of a process de�nition, it corresponds to the execution of concrete

work according to the speci�ed routing.

One of the authors of this paper has been involved in a detailed investigation

into the expressive power of existing work
ow products.4 This research is based

on a set of work
ow patterns. Each pattern corresponds to a typical control-
ow

construct frequently encountered in real-life work
ow processes. These patterns

have been used to evaluate 14 work
ow products (COSA, Visual Work
ow, Fort�e

Conductor, Meteor, Mobile, MQSeries/Work
ow, Sta�ware, Verve Work
ow, I-

Flow, InConcert, Changengine, SAP R/3 Work
ow, Eastman, and FLOWer) and

the results can be found on the work
ow patterns web site.5 This research shows that

most of the work
ow management systems support less than half of the work
ow

patterns. Clearly, work
ow languages limited to traditional building blocks such as

the AND/XOR-split/join are inadequate for supporting real-life processes.

Today's work
ow management systems predominantly focus on the control-
ow

within one process de�nition. This assumes that a work
ow process can be mod-

eled by specifying the life-cycle of a single case in isolation. For many real-life

applications this assumption is too restrictive. As a result, the work
ow process

is changed to accommodate the work
ow management system, the control-
ow of

several cases is arti�cially squeezed into one process de�nition, or the coordination

amongst cases is hidden inside custom built applications. Consider for example an

engineering process of a product consisting of multiple components. Some of the

tasks in this engineering process are executed for the whole product, e.g., the task to

specify product requirements. Other tasks are executed at the level of components,

e.g., determine the power consumption of a component. Since a product can have a

variable number of components and the components are engineered concurrently, it

is typically not possible to squeeze this work
ow into one process de�nition. This

International Journal of Cooperative Information Systems 3

is a direct consequence of the fact that, in most work
ow management systems, the

degree of parallelism is �xed in a work
ow process de�nition, i.e., it is not possible

to concurrently instantiate selected parts of the work
ow process a variable num-

ber of times. Using iteration one can instantiate parts a variable number of times.

However, this results in the sequential execution of inherently parallel tasks.

To solve these problems, we propose an approach based on proclets, performa-

tives and channels. Proclets are lightweight processes. Typically, a proclet repre-

sents only one aspect or one element of the whole work
ow. The interaction between

proclets is modeled explicitly, i.e., proclets can exchange structured messages, called

performatives, through channels. By adopting this approach the problems related

to purely case-based processes can be avoided.

The remainder of this paper is organized as follows. First, we motivate our ap-

proach by clearly identifying the problems encountered when modeling the paper

selection process of a conference. Then we present the framework which is based on

Petri nets6;7 and inspired by concepts originating from object-orientation8;9, concep-

tual modeling10, agent-orientation11, and the language/action perspective12;13;14;15.

In Section 4, we model the reviewing process of a conference using our framework.

Section 5 presents an additional example, the hiring of new employees. Finally, we

compare the framework with existing approaches and conclude with our plans for

future research.

2. Motivating Example: Paper Selection Process of a Conference

The process of selecting papers for a conference presents features that challenge

existing work
ow modeling languages. In brief, the goal of this process is to select

some papers out of a normally larger set, based on di�erent criteria (e.g., quality,

minimum and maximum number of papers). A set of people is invited to act as

program committee members, these people can accept or decline, additional people

can be invited, and, �nally, a call for papers is issued to prospective authors. These

authors submit papers that are then subject to review by peers (invited by program

committee members) and �nally a selection is made. A very brief and abstract

sequence of steps would be:

• Invite program committee (PC) members: these are going to be responsible

for the management of reviews.

• Issue a call for papers: this step announces the upcoming conference and asks

for submissions.

• Receive the submissions and check them: papers are accepted up until a

deadline. Submissions are checked for consistency with conference standards,

and so on.

• Distribution: after the submission deadline, each paper is assigned to multiple

PC members. These PC members will be responsible for �nding reviewers for

4 Proclets: A Framework for Lightweight Interacting Work
ow Processes

the papers assigned to them. The goal is to obtain at least a minimum number

of reviews, by di�erent people, for each paper.

• Review: reviewing starts with the assignment of a reviewer by a PC member.

The paper is made available for the reviewer and after a while a review is

produced.

• Selection: after the reviews are completed, papers are compared and ranked

according to the reviewer's recommendations and other subjective criteria

(e.g., desired number of papers, acceptable quality threshold).

• Noti�cation: authors are noti�ed either of acceptance or rejection of their

papers. In case of acceptance, �nal versions have to be sent in by the authors.

• Publication: �nal versions are assembled and sent for publication.

The process is complicated by a series of factors, which we list in a non-exhaustive

way:

• Prospective PC members and reviewers may accept or reject the invitation to

join the committee and to review one or more papers, respectively. Replace-

ments for those that rejected the invitation need to be found.

• Reviewers can fail to return the reviews on time. They may either declare that

they are not going to meet the deadline or simply forget about the deadline

altogether. As a result, some of the papers may lack enough reviews to allow

their fair evaluation.

• The distribution of the papers takes into account varied criteria, such as the

number of submitted papers, the number of available PC members, prefer-

ences and areas of expertise of PC member's groups, balance of the work load

assigned to each PC member (as compared to their availability) and so on.

The decision of how to split the papers needs to take into account the whole

set of available papers and cannot be performed in isolation.

• Selection is a yet more subjective task. Once again, this task can only be

performed on the whole set of available papers. Paper quality needs to gauged

against the quality of all the remaining papers, to a certain extent, or at least

to a set of related papers. If two or more papers discuss the same topic from

di�erent or opposing perspectives, this needs to be taken into account. Other

factors, such as the minimum and maximum number of desired papers (i.e.,

empty slots) also in
uence this task.

A modeler faces many problems translating these requirements. A �rst basic ques-

tion is what is to be considered the case† - the submission, the review, the \empty
†Work
ow instance.

International Journal of Cooperative Information Systems 5

slot" in the conference that one wants to �ll with a good quality paper, or is the

case the whole set of slots? The choice of each of these as the unit of modeling

causes problems. A closer examination of the tasks of such a process reveals that

while some of the tasks operate on each submitted paper individually, others are

based on the whole set of papers, and others still are related to individual reviews.

While tasks such as receiving and checking, for example, can be conducted at the

level of individual papers, tasks such as distribution to program committee members

and �nal selection are based on the whole set of papers. Review tasks operate on

each of the multiple reviews that are produced for each paper.

The class diagram (Figure 1) shows that di�erent tasks rely on information that

is at di�erent levels of aggregation - some of the tasks operate at the conference

level, that groups all papers, others at the paper level, and others yet at the lower

level of a single review. The choice of any of the possible aggregations as the main

one introduces problems whenever we have to deal with the others. One of the

major obstacles is, therefore, how to reconcile these multiple perspectives into one

model.

PC Member

Reviewer

Conference

Author Paper

Review

1..n

1..n

1..n
1..1

1..n

1..n

1..1

1..n

1..1

0..n

1..1
1..n

1..1
0..n

1..n

1..n

Figure 1: Review process class diagram.

Lacking the power to express di�erences in aggregation, most work
ow manage-

ment systems force one to depict the process at an arbitrarily chosen level (usually

the paper level), essentially ignoring the issues that are relevant at the conference

and to some extent at the review levels. The resulting models present some impor-

tant shortcomings:

• The models are arti�cially
attened, being unable to account for the mix of

di�erent perspectives that coexist in the real process. Given that work
ow

enactment is guided by what is speci�ed by the process model, the missing

perspectives will have to be handled and coordinated manually by the users

themselves, without further help from the system.

• Batch-oriented tasks are typically not supported. Batch-oriented tasks are

those that are based on groupings of lower aggregation elements, e.g., the

6 Proclets: A Framework for Lightweight Interacting Work
ow Processes

whole set of papers during distribution and selection, or the set of reviews for

a paper, while deciding if enough reviews are available. In other words, it is

usually not possible to handle higher aggregation tasks using lower aggregation

instances, e.g., conference level tasks within a paper level case.

• Handling lower aggregation tasks within higher aggregation ones is also hard

in most languages. Launching and then synchronizing a variable number of

reviews (lower aggregation) from a paper centered case, for instance, cannot

be usually represented in most languages.

• The interactions with the environment are usually abstracted away as well. An

important aspect in many processes is the exchange of messages between the

entities. Reviewers, for instance: receive invitations to review papers; respond

to them by either accepting or rejecting; must be noti�ed of approaching dead-

lines; send their completed reviews or sometimes send noti�cation of inability

to complete reviews. These interactions need to be re
ected in the process

model, but usually are not.

Conference review is not an atypical example, in the sense that one encounters

similar problems very frequently in other areas as well. We next list just a few

of the innumerable real world examples where interactions between instances and

di�erent levels of aggregation play a strong role:

• In engineering processes: processing of subparts may impact one or more

higher level components that make use of this common subpart. Conversely,

decisions at the higher level component processes may have an impact on

subpart processes. For example, an approaching deadline for a higher level

component may cause interruption of the process of certain subparts.

• In software development: software modules are composed of submodules,

which in turn may be composed of sub-submodules and so on. Considera-

tions at higher or lower levels of aggregation may in
uence other levels, e.g.,

the discovery of some speci�cation
aw at a lower level may have a ripple

e�ect on a variable number of modules at all other levels. Code that is shared

by multiple versions also introduces interactions that are hard to model.

• Processing of insurance claims: some claims may refer to the same accident.

Even though they may start out as independent instances, at some point in

time it is desirable that all related claims be merged so that a uniform decision

can be reached.

• Hiring new people: some job applications are received in response to an ad-

vertised open position. Candidates have to be evaluated and ranked with

respect to each other. Again, the interactions between the applications are

most relevant. Some applications are sent in independently of open positions.

International Journal of Cooperative Information Systems 7

In this situation, interesting applications may cause a position to be specially

created. Again, there is a strong interaction between two perspectives, that

of the application and of the position. Sometimes one is the central one,

sometimes it is the other.

In summary, we see as limitations of current modeling formalisms 1) the fact that

one is usually forced to choose to represent a process at one single level, even when a

problem space consists of entities with varying aggregations, 2) that the interactions

with the environment cannot be made explicit, even though a subjacent model may

be (and usually is) assumed.

3. Framework

The examples given in the previous section show that today's work
ow manage-

ment systems typically have problems dealing with work
ow processes that are not

entirely case-oriented. Squeezing the control
ow of a work
ow process into a single

process de�nition often results in unreadable work
ow speci�cations where essential

parts of the control
ow are hidden inside custom made application software. In

fact, there are plenty of examples where the work
ow process is changed in order

to �t the work
ow management system. Clearly, this is undesirable: Work
ow

technology should support rather than dictate work processes.

Inspired by these problems, we have developed a new framework for model-

ing work
ows. This framework is based on proclets. A proclet can be seen as a

lightweight work
ow process equipped with a knowledge base containing informa-

tion on previous interactions. One can think of proclets as objects equipped with

an explicit life-cycle (in the object-oriented sense8;9) or active documents (i.e., doc-

uments aware of tasks and processes16). Proclets interact via channels. A channel

is the medium to transport messages from one proclet to another. The channel

can be used to send a message to a speci�c proclet or a group of proclets (i.e.,

multicast). Based on the properties of the channel di�erent kinds of interaction are

supported, e.g., push/pull, synchronous/asynchronous, and verbal/non-verbal. In

order for proclets to �nd each other, there is a naming service. The naming service

keeps track of registered proclets and can be queried by any proclet. The concepts

proclet, channel and naming service constitute a framework for modeling work
ow

processes (see Figure 2).

Compared to existing work
ow modeling languages, complex case-based work-

ow de�nitions describing the control
ow of an entire process are broken up into

smaller interacting proclets, i.e., there is a shift from control to communication. The

framework is based on a solid process modeling technique (Petri nets6;7) extended

with concepts originating from object-orientation8;9, agent-orientation11, and the

language/action perspective12;13;14;15.

In the remainder of this section we present the four main components of our

framework: proclets, knowledge base, channels, naming service, and actors.

8 Proclets: A Framework for Lightweight Interacting Work
ow Processes

Create

end

*,1

1,*

channelproclettask

port

naming
service

Figure 2: Graphical representation of the framework.

3.1. Proclets

A proclet class describes the life-cycle of proclet instances. A proclet class can be

compared to an ordinary work
ow process de�nition or work
ow type.3 The class

describes the order in which tasks can or need to be executed for individual instances

of the class, i.e., it is the speci�cation of a generic process. Proclet instances can

be created and destroyed, and are executed according to a class speci�cation. At

any moment a proclet instance has a state. When no confusion is possible we will

simply use the term \proclet" instead of \proclet class" and/or \proclet instance".

To de�ne proclets, we introduce some preliminaries including some basic Petri

net concepts and terminology.

To specify proclet classes, we use a graphical language based on Petri nets. Petri

nets are an established tool for modeling and analyzing work
ow processes.17;18;19;20

On the one hand, Petri nets can be used as a design language for the speci�cation of

complex work
ows. On the other hand, Petri net theory provides for powerful analy-

sis techniques which can be used to verify the correctness of work
ow procedures.6;7

A (classical) Petri net is a directed bipartite graph with two node types called places

and transitions. The nodes are connected via directed arcs. Connections between

two nodes of the same type are not allowed. Places are represented by circles and

transitions by rectangles. A place p is called an input place of a transition t i� there

exists a directed arc from p to t. Place p is called an output place of transition

t i� there exists a directed arc from t to p. At any time a place contains zero of

more tokens, drawn as black dots. The state, often referred to as marking, is the

International Journal of Cooperative Information Systems 9

distribution of tokens over places. The number of tokens may change during the

execution of the net. Transitions are the active components in a Petri net: they

change the state of the net according to the following �ring rule:

(1) A transition t is said to be enabled i� each input place p of t contains at least

one token.

(2) An enabled transition may �re. If transition t �res, then t consumes one token

from each input place p of t and produces one token in each output place p of

t.

Petri nets can move from one state to another by �ring enabled transitions. A state

s is reachable if there is a sequence of transition �rings which leads from the current

state to state s. A Petri net in a given state is safe if for any reachable state no

place contains multiple tokens, i.e., the number of tokens per place is limited to 1.

A Petri net in a given state is live if for any reachable state s and for any transition

t it is possible to reach a state from s such that t is enabled. A transition t is called

dead if there is no reachable state enabling t. Reachable, safe, live, and dead are

standard concepts which can be found in any textbook on Petri nets.6

In this paper, we use a speci�c subclass of Petri nets. This subclass corresponds

to the so-called class of sound WF-nets.17‡ A WF-net has source and sink transi-

tions: A source transition has no input places and a sink transition has no output

places. Every node (i.e., place or transition) is on a path from some source transi-

tion to some sink transition. Moreover, any WF-net is connected, i.e., the network

structure cannot be partitioned in two unconnected parts. A WF-net becomes ac-

tivated if one of the source transitions �res. In the remainder we assume that a

WF-net becomes activated only once (single activation). A WF-net is called sound

if and only if the following requirements are satis�ed:

(1) safeness: each state reachable under the single activation assumption is safe.

(2) proper completion: �ring one of the sink transitions empties the net, i.e., after

�ring a sink transition no tokens are left.

(3) completion option: from any reachable state it is possible to reach a state

which enables one of the sink transitions, i.e., termination is always possible.

(4) dead transitions: there are no dead transitions.

These four requirements are quite reasonable in the context of work
ow manage-

ment: It should always be possible to terminate properly, there should be no

parts which cannot be activated, and, since the WF-net will model one proclet

instance, it should be safe. Soundness can be veri�ed using state-of-the-art analy-

sis techniques.17 Based on these techniques we have developed a work
ow veri�er

called Wo
an.21 See the Wo
an website for more information.22

‡For the readers familiar with WF-nets: For notational convenience we omit the unique source

and sink place.17

10 Proclets: A Framework for Lightweight Interacting Work
ow Processes

Most work
ow modeling languages primarily focus on control
ow inside one

process de�nition and (partly) abstract from the interactions between process def-

initions, i.e., coordination is limited to the scope of the process de�nition and

communication and collaboration are treated as second-class citizens. Therefore,

our framework explicitly models interactions between proclets. The explicit repre-

sentation of interactions is inspired by the language/action perspective
15;14 which

was introduced in the �eld of information systems by Flores and Ludlow12 in the

early 1980's and is rooted in speech act theory.23 In contrast to traditional views

of \data
ow" the language/action perspective emphasizes what people do while

communicating; how they create a common reality by means of language and how

communication brings about a coordination of their activities. The need for treat-

ing interaction as �rst-class citizens is also recognized in the agent community11.

Emerging agent communication languages such as KQML24 demonstrate this need.

Inspired by these di�erent perspectives on interaction, we use performatives

to specify communication and collaboration among proclets. A performative is a

message exchanged between one sender proclet and one or more receiver proclets.

A performative has the following attributes:

(1) time: the moment the performative was created/received.

(2) channel: the medium used to exchange the performative.

(3) sender: the identi�er of the proclet creating the performative.

(4) set of receivers: the identi�ers of the proclets receiving the performative, i.e.,

a list of recipients.

(5) action: the type of the performative.

(6) content: the actual information that is being exchanged.

The role of these attributes will be explained later. At this point, it is important

to note the action attribute. This attribute can be used to specify the illocution-

ary point of the performative. The �ve illocutionary points identi�ed by Searle23

(assertive, directive, commissive, declarative, expressive) can be used to specify the

intent of the performative. Examples of typed performatives identi�ed by Wino-

grad and Flores are request, o�er, acknowledge, promise, decline, counter-o�er or

commit-to-commit.15 In this paper, we do not restrict our model to any single clas-

si�cation of performatives (i.e., a �xed set of types). However, at the same time we

stress the importance of using the experience and results reported by researchers

working on the language/action perspective.

Proclets combine performatives and sound WF-nets. A proclet class PC is de�ned

as follows:

(1) PC has a unique name. This name serves as a unique identi�cation of the

class which we will refer to as class id.

International Journal of Cooperative Information Systems 11

(2) PC has a process de�nition de�ned in terms of a sound WF-net. The transi-

tions correspond to tasks and the places correspond to state conditions.

(3) PC has ports. Ports are used to interact with other proclets. Every port is

connected to one transition.

(4) Transitions can send and receive performatives via ports. Each port has two

attributes: (a) its cardinality and (b) its multiplicity. The cardinality speci�es

the number of recipients of performatives exchanged via the port. The mul-

tiplicity speci�es the number of performatives exchanged via the port during

the lifetime of any instance of the class.

(5) PC has a knowledge base for storing these performatives: Every performative

sent or received is stored in the knowledge base.

(6) Tasks can query the knowledge base. A task may have a precondition based

on the knowledge base. A task is enabled if (a) the corresponding transition

in the WF-net is enabled, (b) the precondition evaluates to true, and (c) each

input port contains a performative.

(7) Tasks connected to ports have post conditions. The post condition speci�es

the outcome of the task in terms of performatives generated for its output

ports. The performatives which are generated may depend upon information

obtained from the naming service (i.e., proclet identi�ers).

A proclet class is a generic de�nition, i.e., it does not describe the behavior and

properties of a speci�c proclet. Proclet (instances) are created by instantiating the

proclet class and have a unique identi�cation which we will refer to as proc id. Note

that for a concrete proclet all elements, i.e., the process de�nition, knowledge base,

ports, and tasks, are instantiated. For example, the tokens in the WF-net specifying

the process de�nition refer to one proclet instance, i.e., tokens of di�erent proclet

instances are not merged into one WF-net. (Recall that a sound WF-net is safe.)

Moreover, each proclet instance has its own private knowledge base. However,

proclet instances can share performatives with all other instances of the same class.

This means that part of the knowledge base is public and part of the knowledge

base is private. The public part is identical for all instances of the class, i.e.,

e�ectively this part resides at the class level. The private part exclusively resides at

the instance level. Whenever a performative is sent or received, the corresponding

proclet decides whether it should be stored in the public or in the private part.

A performative has by de�nition one sender, but can have multiple recipients.

The sender is always represented by a proc id, i.e., the identi�er of a proclet instance.

However, the list of recipients can be a mixture of proc id's and class id's, i.e., one

can send performatives to both proclet instances and proclet classes. A performative

sent to a proclet class is received by all proclet instances of that class. Note that the

naming service can be used to obtain the desired proclet identi�ers (cf. Section 3.4).

12 Proclets: A Framework for Lightweight Interacting Work
ow Processes

Invite
for

meeting

Send
agenda

Meeting

Receive
respons

e

*,1

1,*

Create
meeting

Finish
meeting

*,1

Decide

Skip
meeting

Create
entry

Finish
entry

Personal
entry

1,1

Plan to
attend

Receive
agenda

Remind
er

1,?

1,?

E-mail

Mail

1,?

Figure 3: Example of two proclet classes: Meeting and Personal entry.

To illustrate the framework we use the example shown in Figure 3. There are two

proclet classes. Both classes are used to organize meetings. Proclet class Meeting is

instantiated once per meeting. Proclet class Personal entry is instantiated for every

potential participant of a speci�c meeting. The instance of class Meeting �rst sends

an invitation to all potential participants. The proc id's are used to multicast the

invitation performative to a speci�ed set of instances of class Personal entry. Note

that the cardinality of the port connected to task Invite for meeting is denoted by

a star ∗. This star indicates that the invitation is sent to an arbitrary number of

potential participants, i.e., the performative has multiple recipients. We will use

∗ to denote an arbitrary number of recipients, + to denote at least one recipient,

1 to denote precisely one recipient, and ? to denote no or just a single recipient.

Performatives with no recipients are considered not to have occurred, i.e., only

performatives with a positive number of recipients are registered in the knowledge

base. The multiplicity of the output port connected to task Invite for meeting is

denoted by the number 1. This means that during the lifetime of an instance of class

Meeting exactly one performative is sent via this port. The invitation performative

is sent though the channel E-mail (The role of channels is explained in Section 3.3).

The performative creates a proclet for each recipient, i.e., creation task Create

entry is triggered. Creation tasks are depicted by squares with a black top. The

input port connected to Create entry has cardinality 1 and multiplicity 1. Every

input port has by de�nition cardinality 1, i.e., from the perspective of the receiving

proclet there is only one proclet receiving the performative. Input ports connected

International Journal of Cooperative Information Systems 13

to a creation task (i.e., a source transition) have by de�nition a multiplicity of 1

or ?: An instance can be created only once. Since there is just one creation task

in Personal entry, the multiplicity is 1. After an instance of the class Personal

entry is created a decision is made (task Decide). Based on this decision either task

Skip meeting or Plan to attend is executed. In both cases a performative is sent to

the instance of the proclet class Meeting. The performative is either a con�rmation

(Plan to attend) or a noti�cation of absence (Skip meeting). Note that each instance

of the class Personal entry sends such a performative. These performatives are sent

through channel E-mail. Note that the ports connected to Plan to attend and

Skip meeting both have cardinality 1 (i.e., one recipient) and multiplicity ? (one

performative is sent via one of the two ports). Task Receive response is executed

once for every \con�rmation/noti�cation of absence" performative. Therefore, the

corresponding port has multiplicity ∗. After some time, as indicated by the clock

symbol17, task Send agenda is executed. In this small example we assume that all

potential participants respond before this time-out occurs. Send agenda generates

one performative: the agenda of the meeting. This performative is sent to all

proclets that con�rmed the invitation. This performative has multiple recipients,

i.e., the cardinality of the corresponding output port is ∗. Since the agenda is sent
only once the multiplicity is 1. The proclets that con�rmed the invitation receive

the agenda (task Receive agenda) and a timer for the task Reminder is set. Finally,

all proclets are destroyed by executing the �nishing tasks Finish meeting and Finish

entry. The �nishing tasks (i.e., sink transitions) are depicted by squares with a black

bottom.

3.2. Knowledge base

A proclet can use knowledge in its knowledge base to make routing decisions. This

knowledge can range from simple data to beliefs about other proclets. Building a

good knowledge base is not a trivial task. First of all, there has to be an ontology

to characterize the intended meaning of terms and concepts. Then, the scope and

knowledge acquisition process have to be identi�ed.

In this paper, we use a more restrictive de�nition of a knowledge base. We

simply see the knowledge base as a set of relevant performatives. The knowledge

base of a proclet contains all the performatives that it sent and received. Some

of these performatives are visible to all proclets in the class. These performatives

are called public. The remaining performatives are private and only visible by the

corresponding proclet.

The knowledge base could be extended with more knowledge than performa-

tives. However, to simplify the presentation of the proclet framework, we use this

restricted view.

To illustrate the role of the knowledge base, we use the model presented in

Figure 3. If we instantiate this model, we get concrete proclets. Figure 4 shows

two proclets: A proclet of class Meeting and a proclet of class Personal entry. The

14 Proclets: A Framework for Lightweight Interacting Work
ow Processes

Invite
for

meeting

Send
agenda

Meeting MT
5-5

Receive
respons

e

*,1

1,*

Create
meeting

Finish
meeting

*,1

Decide

Skip
meeting

Create
entry

Finish
entry

PE-Anna

1,1

Plan to
attend

Receive
agenda

Remind
er

1,?

1,?

E-mail

Mail

1,?

time channel sender receivers action content scope direction
1000 - - Meeting

MT 5-5
Create … Private IN

1010 E-mail Meeting
MT 5-5

PE-John
PE-Suzan
PE-Clark
PE-Anna

Request Will you come
to the meeting
on May 5 th?

Private OUT

1020 E-mail PE-John Meetin g
MT 5-5

Promise I will come. Private IN

1030 E-mail PE-Suzan Meeting
MT 5-5

Decline Sorry, I will
not be there

Private IN

time channel sender receivers action content scope direction
1010 E-mail Meeting

MT 5-5
PE-Anna Request Will you come

to the meeting
on May 5 th?

Private IN

Figure 4: A proclet of class Meeting and a proclet of class Personal entry.

International Journal of Cooperative Information Systems 15

proclet Meeting MT 5-5, i.e., the meeting of the management team planned on

the �fth of May, is in the state after sending the invitation and before sending the

agenda. The proclet PE-Anna corresponds to the personal entry of Anna who is a

member of the management team. Anna is about to decide whether she will attend

the meeting of the management team on the �fth of May.

time channel sender receivers action content scope direction
1000 - - Meeting

MT 5-5
Create … Private IN

1010 E-mail Meeting MT
5-5

PE-John
PE-Suzan
PE-Clark
PE-Anna

Request Will you
come to the
meeting on
May 5th?

Private OUT

1020 E-mail PE-John Meeting
MT 5-5

Promise I will come. Private IN

1030 E-mail PE-Suzan Meeting
MT 5-5

Decline Sorry, I will
not be there

Private IN

1035 E-mail PE-Anna Meeting
MT 5-5

Promise OK, I will be
there

Private IN

1040 E-mail PE-Clark Meeting
MT 5-5

Promise I will
definitely
come.

Private IN

1100 Mail Meeting MT
5-5

PE-John
PE-Clark
PE-Anna

Inform 9.00
Opening
9.30
Presentation
10.00
Discussion

Private OUT

time channel sender receivers action content scope direction
1010 E-mail Meeting

MT 5-5
PE-Anna Request Will you come

to the meeting
on May 5th?

Private IN

1035 E-mail PE-Anna Meeting
MT 5-5

Promise OK, I will be
there

Private OUT

1100 Mail Meeting
MT 5-5

PE-Anna Inform 9.00 Opening
9.30
Presentation
10.00
Discussion

Private IN

Figure 5: The knowledge base of both proclets after sending the agenda.

Figure 4 shows the knowledge base of both proclets. The knowledge base of

proclet PE-Anna contains only one performative which corresponds to the invitation

to the meeting. This performative was received at time 1010 via E-mail and is

only visible by PE-Anna. This performative triggered the creation of the personal

entry for Anna. The knowledge base of proclet Meeting MT 5-5 contains four

performatives. The �rst performative is the creation of Meeting MT 5-5. The

second one contains the invitation to the four members of the management team,

i.e., John, Suzan, Clark, and Anna. The action associated to this performative is a

request. The other two performatives correspond to responses to this request. John

promises to come and Suzan declines the invitation. If Anna declines or accepts the

invitation to come to the meeting, a performative is added to the knowledge base

of Meeting MT 5-5. Assume that Suzan is the only one not attending the meeting.

The resulting situation after sending the agenda is shown in Figure 5.

Figures 4 and 5 illustrate the evolution of two knowledge bases. The example

does not show the actual use of this knowledge. As indicated before, pre and

16 Proclets: A Framework for Lightweight Interacting Work
ow Processes

post conditions can be based on the knowledge stored in the knowledge base. The

simple choice between two alternative tasks may be based on the presence of a given

performative in the knowledge base. For example, we could extend the proclet class

Meeting with an additional task named cancel meeting. This task would have the

precondition that there should be less than two performatives of type Decline, i.e.,

a majority of the management team has to be present. In this paper we do not

propose a concrete syntax for these pre and post conditions: Di�erent types of

languages can be used for this purpose.

3.3. Communication Channels

Communication channels are used to link proclets. Channels transmit messages

containing performatives from sending proclets to receiving proclets. There are

many di�erent categories of channels de�ned by channel properties such as medium

type, reliability, security, synchronicity, closure, and formality. These properties are

brie
y explained:

• Medium Type

This can be point-to-point or broadcast, or some form of limited multicast.

Recall that performatives can be sent to an individual proclet instance (point-

to-point), a set of proclets (multicast), or an entire proclet class (broadcast).

Common media include postal mail, telephone, and electronic mail. Di�erent

media satisfy di�erent communication requirements. We are also concerned

with media of face-to-face communication such as sound waves of spoken voice,

gestures, and body language. The framework presented in this paper, assumes

that there is only one sending proclet. However, there are situations where

a group e�ort results in a single performative (e.g., orchestral performances).

In fact there are many examples that could not be accomplished by a single

person or proclet (e.g., collaborations modeled as single acts such as lifting a

heavy object). Such group e�orts can be modeled by introducing a so-called

proxy proclet. This proclet coordinates and consolidates the group e�ort.

• Reliability

Some channels are very reliable; some are unreliable. For some electronic

channels, we assume that the technology is robust, and that error detection

and retransmission are implemented at lower layers of the communication

protocols. In this case, we need not be concerned with these details in our

higher level modeling. Thus, channels built upon TCP/IP are more reliable

than those built upon UDP. A problem of dial-in data channels in some lesser

developed countries is that the channel (the phone lines) are inherently un-

reliable. Thus, sometimes the data gets sent, and sometimes not. Similar

unreliability is sometimes exhibited by postal services. A di�erent channel

available from the postal service is registered mail, where the cost of mailing

a letter is higher, and the reliability is also higher.

International Journal of Cooperative Information Systems 17

• Security

At times the content of a performative is considered to be quite valuable and

secret. In such cases, the transmission should be via highly secure channels.

In electronic transmission, encoding and encryption are sometimes used to

implement secure channels.

• Synchronicity

This is concerned with the time delay of message delivery and acknowledg-

ment. Some channels are used for real time communications in which each

party expects to get rather immediate feedback from recipient parties. This

requires synchronous channels. Face-to-face spoken conversation falls into this

category. In other cases, the expectation is that the recipient will not instanta-

neously receive the message content. In the case of an asynchronous channel,

the sender usually is not waiting for an immediate response. For example,

when email is sent, there is usually no expectation of immediate response.

When a UNIX talk session is initiated, there is expectation of immediate

response.

• Closure

Channels can be classi�ed as open or closed channels. When a channel is open,

the sender does not know exactly who, and how many recipients are connected.

When a channel is closed, the exact identity of all recipients is speci�ed in

advance. A radio broadcast, and a notice posted on a bulletin board are

respectively examples of synchronous and asynchronous communications in

which the medium is open because the senders do not exactly know who are

their recipients.

• Formality

Some channels convey much more formality in the messages delivered than

others. Performatives can be very formally speci�ed, or can be informal and

exible. Generally, business letters are much more formal than chat rooms.

A scheduled meeting with a rigid agenda is much more formal than a casual

conversation over co�ee. A careful record is kept of formal channel transmis-

sions, whereas informal channels are usually not recorded; they are \o� the

record."

The various properties of the communication channels are often neglected in exist-

ing modeling languages. Consider for example asynchronous communication versus

synchronous communication. Setting the date for a meeting through synchronous

communication has the drawback that it may not be possible to reach the partic-

ipants at a given time. However, if it is possible to reach a participant, then it is

possible to set a date immediately. The latter is not possible through asynchronous

communication. We all experienced situations where a long sequence of e-mails was

needed to be exchanged to set a date. Clearly, channel properties and performative

18 Proclets: A Framework for Lightweight Interacting Work
ow Processes

types are closely related, i.e., for a given performative certain properties are ap-

propriate while others are not. For example, for the performative \You are �red!"

a point-to-point, reliable, secure, synchronous, closed, and formal channel is most

appropriate. For the performative \Happy bithday!" a point-to-point, synchronous,

and informal channel is more appropriate. In the latter case, reliability, security,

and closure are of less importance.

3.4. Naming service

All interaction is based on proclet identi�ers (proc id's) and class identi�ers (class -

id's). These identi�ers provide the handles to route performatives. By sending a

performative using a class id, all instances of the corresponding class receive the

performative. Only if a proclet knows the proc id's of the recipients of the perfor-

mative, it is able to communicate with speci�c proclets. In many situations the

sending proclet does not know the proc id's of all receiving proclets. Therefore,

we introduce the concept of the naming service. The naming service keeps track

of all proclets and can be queried to obtain proc id's. There are many ways to

implement such a naming service. Consider for example the services provided by

the object request brokers developed in the context of CORBA. In this paper, we

only consider the desired functionality and abstract from implementation details

(e.g., distribution of the naming service over multiple domains).

The naming service provides the following primitives: register, parent, child,

update, unregister, query, and forward.

The function register is called by the proclet the moment it is created. There-

fore, the execution of one of the create tasks (i.e., source transitions) coincides with

the execution of the register primitive. The primitive has the following parameters:

creator (i.e., the proc id of the calling proclet), time (i.e., the time the function is

called), class name (i.e., the name of class of the created instance), owner (i.e., the

identity of the actor responsible for the proclet) and attributes (i.e., the characteris-

tic properties of the created proclet) and returns a new unique proc id. The proc id

is returned by the naming service in order for the proclet to know its own identity.

Proclets can be created by other proclets. Consider for example Figure 3. The

create task Create entry is triggered by a performative sent by a Meeting proclet.

The performative is created by the task Invite for meeting. This implies that the

task Invite for meeting already registered the new Personal entry proclet. The new

proclet is already registered by the meeting proclet because the meeting proclet

needs a handle to the newly created proclet. Since proclets can be created by other

proclets, there are parent-child relationships. The functions parent and child can be

used to navigate though the naming service. Both functions have a proc id param-

eter. The parent function returns a proc id (if any) and the child function returns

a set of proc id's.

The proclet attributes registered in the naming service describe the essential

characteristics, e.g., role and group attributes, links to actors, etc. The set of

International Journal of Cooperative Information Systems 19

attributes is not �xed and may vary from one class to another. During the life cycle

of the proclet these attributes may change. The function update with parameters

proc id and attributes can be used to change existing or add new attributes.

Based on the attributes, proclets can query the naming service using the function

query. The function has one parameter describing a Boolean expression in terms of

attributes and returns a set of proc id's, i.e., all proclets satisfying the expression.

Entries in the naming service can be removed using the function unregister.

Executing a �nish task (i.e., a sink transition in the WF-net) results in a call to

unregister. Function unregister has one parameter: The proc id of the proclet to be

destroyed.

Sometimes there is a need to merge proclets. Consider for example two proclets

corresponding to the same traÆc accident. If two police oÆcers �le a report on the

same traÆc accident, two proclets are created. If after executing some steps it turns

out that both proclets correspond to the same traÆc accident, then it does not make

sense to execute the remaining tasks for both proclets. Therefore, we propose to

merge the two proclets by destroying one of them and redirecting all performatives

to the remaining one. For this purpose we propose the function forward. This

function has two proc id parameters: one for the destroyed proclet and one for the

remaining proclet. As a result of calling this function, all performatives intended

for the destroyed proclet are redirected to the remaining proclet.

3.5. Actors

Proclets have owners. Owners are the actors responsible for the proclet. Actors

can be automated components, persons, organizations (e.g., shipping department),

or even whole companies. Owners are speci�ed at proclet registration time and

this information is kept by the naming service (see Section 3.4). Ownership can be

transferred by updating the naming service information.

The owner will sometimes be the executor of proclet tasks him or herself -

in the example of Figure 3, for instance, the owner of the personal entry will most

probably be the one that will perform the tasks, essentially the decision of attending

or skipping the meeting. Roles may be speci�ed for each task, in which case the

executor can be di�erent from the owner. We assume that the usual role resolution

mechanisms25 are employed in this latter case.

We propose to model as external proclets those actors (in the broad sense of

the word) that interact with proclets in a more complex way. External proclets are

useful to model those interactions that go beyond the simple model assumed by

the usual role mechanism, e.g., when a request for service may be either accepted,

rejected or counter-proposed. External proclets, as the name implies, represent

entities that are outside of the scope of the work
ow process, whereas internal

proclets are those under the control of the work
ow system enactment service. Both

types of proclets are modeled in a similar way - by describing expected interactions

with other proclets. Note that external proclets are not instantiated by the work
ow

20 Proclets: A Framework for Lightweight Interacting Work
ow Processes

management system. The entities they represent exist independent of the work
ow

considered. Detailed examples of both internal and external proclets are presented

in Section 4.

4. Example Revisited

We now revisit the conference paper selection process, this time using proclets.

The multiple perspectives of conference, paper and review that were identi�ed in

Section 2 as being one of the obstacles for representation are taken into account and

integrated into a seamless model. The resulting model has a much broader scope

than the ones usually found in the literature. In particular, interactions with the

environment are made explicit.

The model is composed of six proclets, with well de�ned interfaces, that corre-

spond to the class diagram entities previously presented (Figure 1). Three of the

proclets correspond to internal proclets (Figures 6, 7, 8) and the other three are

external (Figures 9, 10, 11).

The Conference proclet groups tasks that act upon or require access to the set of

all submitted papers, e.g., the distribution among PC members and �nal selection of

papers. For each Conference proclet, there will exist many related Paper proclets -

one instance per paper. Each Paper proclet will in turn be associated to someReview

proclets. There will be as many Review proclets as there are reviews. The multiple

instances of Paper and Review proclets directly re
ect the multiple cardinality of the

relationships between conference, paper and review as shown in the class diagram

(Figure 1). Author, PC member and Reviewer are external proclets and specify the

details of the interactions between these actors and the internal proclets.

We now analyze in more detail the Conference proclet (Figure 6). The �rst few

tasks in this proclet deal with the staÆng of the program committee (PC). Invite

PC member sends out a multicast message to prospective PC members. These

invitations will either be accepted or rejected. In case of rejection, a new round

of invitations can take place. Note that here the responses to the illocutionary act

invite are explicitly included in the model. The single multicasted invitation will be

responded to asynchronously by the persons that were invited, so the tasks Accepted

and Rejected are enabled in a loop and receive multiple messages, one at a time, as

indicated by the cardinality 1 and multiplicity ∗ of the associated ports.

The task Replace rejected should obviously only �re if one or more rejection

performatives were received. This part of the model therefore illustrates the need

and use of knowledge bases. Replace rejection has a pre-condition that queries the

knowledge base and only allows �ring if at least one rejection has been received.

Similarly, as soon as a certain number of PC members have accepted the invitation,

the pre-condition for the task Call for papers will enable it to �re.

After the committee is sta�ed, a call for papers is issued, multicasted to many

prospective authors. In practice the recipients of this multicast performative will

be mailing lists and individuals whose identities are stored in some database. Once

International Journal of Cooperative Information Systems 21

Invite
PC

member

Call for
Papers

Conference

Accepted

,

Replace
rejected

Distribute

Select

Receive
reviewed

paper

Notify
results

PC Member

PC Member

Paper

Paper

Paper

Receive
Paper

Author

Author

Receive
Final

version
Paper

*,1

*,1

*,1

1,*

1,*

1,*

1,*

Not
received

1,* Paper

Rejected

Create

Publish

PC Member1,*

Paper1,*

Figure 6: Conference proclet.

22 Proclets: A Framework for Lightweight Interacting Work
ow Processes

again, the responses will be received one by one, in separate asynchronously gen-

erated messages. Receive paper therefore is enabled in a loop that receives the

submissions and that sends a performative that creates new instances of Paper pro-

clets. The result is that there will eventually exist as many Paper proclet instances

as there are submissions.

The Distribution task of the Conference proclet corresponds to the decision

making as to which paper should be handled by which PC members. Once this

decision is made, a performative informs each Paper proclet (Figure 7) about the

identity of assigned PC members. The Paper proclet, in turn, generates a second

multicast, this time to create as many Review proclets (Figure 8) as needed (one

for each assigned PC member). The performative to each Review proclet informs

about the identity of the responsible PC member. This illustrates one basic design

principle - work is distributed through the proclets in such a way that each proclet

deals only with tasks that are at the same aggregation level. The Conference proclet,

for instance, groups tasks that operate on the whole set of submitted papers, while

Paper proclets handle work at the individual paper level. Review proclets group

tasks that pertain to each of the multiple individual reviews a paper has.

Back in the Conference proclet, Selection decides whether papers should be

accepted or rejected based on their relative merits. The �nal decision is multicasted

to the Paper proclets, that notify the authors and then wait for the reception of

�nal versions of those papers that were accepted.

The tasks in the remaining part of the Conference proclet collect the �nal ver-

sions of the papers and deal with problem reports originating from the Paper proclet.

Publish is the �nal step in the proclet.

To make the communication between the internal proclets and the environment

explicit, we model authors, pc members, and reviewers as external proclets. Each of

the corresponding proclets describes the \state of mind" of the respective actors with

respect to the conference at some point in time. External proclets are lightweight

in the sense that they do not imply that the environment conduct business in

that speci�c manner, only that it is compatible with the speci�ed communication

behavior. Typically, external proclets do not correspond to an executing object, and

usually just re
ect the fact that in the environment there is an actor that can be

expected to behave according to some communication protocol. External proclets

allow us to make these assumptions explicit, making them visible and veri�able,

through inspection and/or simulation.

Initially, authors receive the call for papers (or hear about it from a friend), sub-

mit papers (or not), receive acknowledgments and provide requested information (if

any) until the submission deadline. These possible interactions are modeled by the

Author proclet (Figure 9). From the point of view of this proclet, there are no ex-

plicit constraints on the order in which these messages will be generated/received.

Note that one author can submit multiple papers for the same conference. There-

fore, acknowledgments, submissions, etc., can be interleaved.

In a similar way, PC member and Reviewer proclets (Figures 10 and 11) model

International Journal of Cooperative Information Systems 23

Acknowl-
edge

Check

Paper

Request
informa-

tion

Distribute

Receive
informa-

tion

Send for
selection

Conference

Review

Receive
review

Conference

1,*

1,1

1,*

1,*

1,1

1,1 Author

Author

Author

*,1

Review

Receive
and

notify
result

1,1 Author

1,? Author

1,1 Conference

1,1 Conference

1,? Conference

Rejected

Receive
final

version

Notify not
received

Create

Not
received
on time

1,? Conference

Figure 7: Paper proclets.

24 Proclets: A Framework for Lightweight Interacting Work
ow Processes

Review

Request
reviewer

Receive
assign-
ment

Rejected

Accepted

Paper

Warn of
deadline 1,*

1,1

1,1 PC Member

1,* PC Member

Request
service

1,* Reviewer

Reviewer1,1

Reviewer

1,? Reviewer

PC Member

1,? Paper

1,? PC Member

1,?

Create

Review
received

Bailed
out

Notify not
returned

Reviewer1,*

1,? Reviewer

No
reviewer

found

Figure 8: Review proclet.

International Journal of Cooperative Information Systems 25

Author

Receive
Call for
Papers

Submit
paper

1,*

1,?

Conference

Conference

Receive
acknowl-
edgement

1,*

Receive
informa-

tion
request

1,*

Send
info

1,* Paper

Paper

Paper

Submis-
sion

Deadline

Receive
results

Send
final

version
Paper1,*

1,* Paper

Create

Not
interested

End
proclet

Figure 9: Author proclet.

26 Proclets: A Framework for Lightweight Interacting Work
ow Processes

expected interactions. An important di�erence is that explicit responses from these

actors are expected, speci�cally regarding the invitations to join the process. While

authors will not typically inform the PC that they are not interested in submitting

papers, acceptance or rejection of invitations on the part of prospective PC members

and reviewers have a direct impact on the process - acceptance implies commitment

to perform required work, and rejection causes actions to �nd replacements.

PC Member

Receive
Invitation 1,1 Conference

Review

Accept

Receive
(re)assign-

ment
request

Assign
reviwer

Deadline

1,*

1,*

Review

Conference1,?Reject

End
proclet

Create

Review
Receive 'no

review'
warning

1,*

Conference1,?

Review
Receive
'bail out'
warning

1,*

Figure 10: PC member proclet.

Another aspect worth examining is the way by which reviewers are invited to

review a paper. Each of the multiple instances of the Review proclet will execute

task Request reviewer, asking the responsible PC member to assign a reviewer. After

an assignment is received, the Review proclet requests service from this prospective

International Journal of Cooperative Information Systems 27

Reviewer

Receive
service
request

Review
Receive
deadline
warning

Send
review

1,*

1,*

Bail out
notice

Accept Review1,*

Review1,*

Review

End
proclet

Create

Review1,*

1,* Review

Reject

Figure 11: Reviewer proclet.

28 Proclets: A Framework for Lightweight Interacting Work
ow Processes

reviewer, by sending a request performative. In case of rejection, the proclet itself

manages the request for a replacement. These steps are repeated until either a

willing reviewer is found or time runs out.

Note that the model presented here includes aspects that cannot be represented

by other modeling languages. In particular:

• The di�erent perspectives, corresponding to the three di�erent level of aggre-

gation, conference, paper, and review, that were identi�ed in the class diagram

(Figure 1) are explicitly represented.

• The transition between these di�erent levels of aggregation are cleanly speci-

�ed as communication between proclets.

• Launching of variable number of instances of lower aggregation elements, and

their synchronization - grouping and ungrouping - can be easily and clearly

represented.

As motivated in the introduction, traditional work
ow management systems are

unable to deal with these issues. As a result, the work
ow process is changed to

accommodate the work
ow management system, the control-
ow of several cases is

arti�cially squeezed into one process de�nition, or the coordination amongst cases

is hidden inside custom built applications. These unsatisfactory \patches" can be

avoided by adopting the framework presented in this paper. The framework also

encourages broadening the scope of what is represented, making explicit some of

the usually hidden assumptions:

• External proclets can be used to represent actors that are part of the environ-

ment. These are typically omitted from models, which makes them harder to

verify.

• Performatives o�er a mechanism to more precisely model message content.

Speech-act theory can be used to clarify and regulate the semantics of inter-

actions.

• Channels o�er a way to explicitly represent (and eventually support at enact-

ment) di�erent media and their attributes.

It is also important to realize that, even though much more is represented, the

resulting model is composed of small modules with clear-cut interfaces to the envi-

ronment. Furthermore, these modules have a one-to-one correspondence with the

entities of the class diagram, which can, therefore, be used as a guideline for proclet

development. This is usually not the case in existing modeling languages: models

often are monolithic and large; there is usually no close connection between the

resulting models and the problem space, as mapped, for instance, by a class dia-

gram. All these features come in addition to the full expressive power of Petri nets,

International Journal of Cooperative Information Systems 29

a formalism that has proven to be especially adequate for representing processes in

general and work
ows in particular.

5. Another Example: Hiring New Employees

The example in the previous section illustrated the use of proclets to deal with

multiple levels of granularity/aggregation (conference, paper, and review). In this

section, we consider an example which is not characterized by multiple levels of

aggregation but by two complementary aspects. The example shows a possible

hiring process, that considers both advertised and non-advertised job applications:

(1) Advertised applications: hiring is normally started by the creation of a new

position to be �lled in a department. New positions are advertised and can-

didates send in applications that are evaluated and lead to a �nal selection.

Typically, multiple candidates apply for one position.

(2) Non-advertised applications: it is also possible that candidates will send in

applications even if no position has been advertised. Depending on the qual-

i�cations of a candidate and interest of some department, a new position can

be created just so that this candidate can be hired.

Again, multiple perspectives can be identi�ed in such a process. One can choose

either position, or application as the central concept, but either choice causes rep-

resentation problems, due to the fact that, again, some tasks need to consider the

whole set of applications for a position (e.g., �nal selection of the candidate that

will �ll the position), while others consider each individual application (e.g., the

screening of each application).

Using proclets, both perspectives can be represented, along with external pro-

clets that make clear the roles of candidates, departments and Personnel. Therefore,

the model involves �ve proclet classes: (1) Position, (2) Application, (3) Depart-

ment, (4) Candidate and (5) Personnel. Figures 12 through 16 display the �ve

proclets. Transitions are colored with three shades of gray to show the occasions in

which they might be enabled:

• White transitions can be enabled both when advertised and non-advertised

applications are being processed;

• Light gray transitions correspond to ones that deal with the situation where

a position is advertised;

• Darker gray marks transitions that are used to handle non-advertised appli-

cations.

These colors have no semantic signi�cance. Colors are there for the sole bene�t of

the human readers. As always, tasks are enabled if (a) the corresponding transition

30 Proclets: A Framework for Lightweight Interacting Work
ow Processes

in the WF-net is enabled, (b) the precondition evaluates to true, and (c) each input

port contains a performative (see Section 3.1).

We start by analyzing the situation where a position is advertised. In terms of

diagram colors, we will examine those parts that are white and light gray. The �rst

step in the processing of an advertised position is taken by a department, which

creates a new position. Create Position, in the Department proclet (cf. Figure 12),

is responsible for that. The performative generated by this transition causes the

creation of a new instance of a Position proclet (cf. Figure 13).

Department

Receive
opinion
request

Application

Send
opinion

1,* Application

1,*

Receive
announce
ment of

non-adv.

1,*

Notify
interest 1,* Application

Application

Create

Create
Position

Position1,*

Figure 12: Department proclet.

Necessary processing for a new position is handled by the Position proclet that,

through interaction with other proclets, coordinates the process of �lling the po-

sition. The �rst step consists of a multicast that advertises the new position to

potential candidates (Advertise in Figure 13). Similar to the conference example,

it is assumed that there is some mechanism to inform potential candidates, i.e., we

assume that for each potential candidate there is a corresponding proclet and the

performative sent by the Position proclet is received by each of these proclets. This

assumption is not very realistic. However, since the Candidate proclet is external

and not really a part of the work
ow process being considered this abstraction is

acceptable. Note that we can model the process of triggering candidates in more

detail to get a more accurate model, e.g., we can add newspaper proclets and peo-

ple subscribing to these newspaper proclets. However, for this example it seems

reasonable to use the abstraction presented.

International Journal of Cooperative Information Systems 31

Advertise

Position

Deadline

Select

Receive
analyzed

application

Notify
results Application

Receive
application

Candidate

Candidate

*,1

*,1

1,*

Department1,1

Personnel1,1

Application1,*

Application1,*

Hiring
preparation

Create

Create

Hire

Application1,1

Figure 13: Position proclet.

32 Proclets: A Framework for Lightweight Interacting Work
ow Processes

Applications from interested parties are received in a loop following the ad-

vertisement. For each application that is received, a performative that creates an

Application proclet is generated. As we can see, the pattern here is similar to the

one employed in the Conference proclet (Figure 6): there, paper submissions were

received in a similar loop that followed a multicasted call-for-papers. After a dead-

line is reached, reception of the analysis of each application is enabled. The analysis

itself is performed in the Application proclet as we will examine momentarily. Once

the analysis of all applications have been received or a deadline has been reached,

the selection takes place. Similarly to what happens in the Conference proclet with

respect to the papers, selection of a candidate to �ll a position demands that all

available applications are considered as a whole.

Once selection has been concluded, Position multicasts a performative back to

the multiple Application proclets, to have them notify the results (approval or not)

of each candidate. Finally, after some preparation, a performative requesting hiring

of the selected candidate is sent to Personnel, and the proclet �nishes. In this

simple model, we assume a suitable candidate will always be chosen. The proclet

can be easily adapted to handle the case where all candidates might fail.

Having examined how processing at the Position level takes place, we now turn

our attention to the Application proclet (Figure 14), which deals with the bulk of

the processing, namely, that of each individual application for a position. The Ap-

plication proclet has two Create transitions. Recall that under the single activation

assumption (Section 3.1), only one of these will �re (once) for each proclet instance.

We are concerned at the moment with the Create that is enabled as a response to

a performative originating from Position (the left one in the diagram). The other

Create has its origin in a Personnel proclet and corresponds to the processing of a

non-advertised application, which we will analyze later in the text.

After being created as a response to a performative sent by Position, each adver-

tised application is analyzed according to di�erent phases that we describe generi-

cally as Phase 1, Phase 2 and so on. The details of such phases may vary depending

on the organization policy regarding selection and hiring. Each phase can cause the

application to be immediately rejected, in which case all others are skipped. For

illustrative purposes, we included a phase where departments are consulted regard-

ing the adequacy of an application. One or more departments can be requested to

review an application and send back an opinion. This request is sent by Consult

departments and corresponds to a multicasted performative (as indicated by the ∗
cardinality). Given that an early rejection might take place before the proclet ever

reaches this state, the multiplicity is ?, indicating that zero or one performatives

will be generated during the life-cycle of this proclet.

After an interview takes place (or not), the result of the analysis is sent back to

the Position proclet were, as we already examined, all applications for a position

are considered and selection is made. The result of this selection is received back

at the Application proclet, and candidates are noti�ed of the outcome.

Candidate proclets (Figure 15) are external proclets that represent interactions

International Journal of Cooperative Information Systems 33

Application

Phase 1

Phase 2
...

Consult
departm

ents

Receive
result

Position 1,?

Candidate1,1

Reject

Reject

Announce
application

Department*,?

Receive
opinion Department1,*

Invite for
interview

Reject

Send for
selection

Candidate1,?

Decide
on hiring

1,? Position

Personnel1,?

Department*,?

Receive
interest
notice

Department1,*

Start
verification Candidate1,?

Interview

No show

 Decide
on

interest

Reject
Create
non-

advertised

Create Create

Notify

Notify

Position1,1

Position1,1

Figure 14: Application proclet.

34 Proclets: A Framework for Lightweight Interacting Work
ow Processes

with candidates. Candidates receive advertisements and either do not respond, if

not interested, or submit applications. In the case of advertised positions, Position

is the recipient of a performative containing the application sent by a candidate, in

which case processing follows the sequence that we described so far. As mentioned

before, candidates can also submit applications even if a position has not been

advertised. We now describe how such non-advertised applications are dealt with

by the proclets (in transitions that are painted dark gray).

Candidate

Receive
advertise-

ment

Submit
advertised

applic
1,*

1,*

Position

Position

Receive
interview
invitation

1,* ApplicationDeadline

Receive
results

1,* Application

Submit
non-

advertised
1,* Personnel

End
proclet

Create

Not
interested

Figure 15: Candidate proclet.

Submission of non-advertised applications are received by a Personnel proclet

(Figure 16). This external proclet describes interactions of this business unit with

respect to hiring. Besides receiving requests for hiring, Personnel is also responsible

for handling the initiation of processing in case of non-advertised applications. This

processing consists of generating a performative that causes an Application proclet

instance to be created. Note that unlike the advertised situation we examined so

far, this Application proclet instance is not related to any Position proclet yet.

This shows the
exibility of the proposed framework, that can handle very di�erent

initiation paths with just a few extra and alternative steps added to the proclets

already examined (those painted dark gray in the diagrams).

Recall that Application (Figure 14) has two distinct Create transitions. We now

analyze the sequence that takes place when the creation has its origin as a response

to a performative generated by Personnel, that correspond to those transitions

International Journal of Cooperative Information Systems 35

painted dark gray.

The �rst step after creation of a non-advertised application as a response to

a performative sent by Personnel is to announce internally the arrival of a new

application. Since there is not a speci�c department opening a position, this an-

nouncement is broadcast to departments and a loop collects responses. In case

one or more departments show interest in the application, veri�cation is started,

following the usual steps that were examined in the context of advertised positions.

Processing of a non-advertised application takes a di�erent route right after the

interview. Instead of sending for selection, which only makes sense in cases where a

Position has been advertised (and therefore already exists as a proclet), the decision

on hiring takes place in the Application proclet itself. Such decision can be reached

in the context of the Application, given that there are no competing candidates that

need also to be considered. If the application is considered to be acceptable, Create

non-advertised sends a performative that causes the creation of a new Position.

Additional processing in the Position proclet (Figure 13) consists just of this extra

creation transition, that shortcuts processing, including only the �nal steps that

concern hiring of this (approved) candidate.

Personnel

Receive
non-

advertised
applic.

Candidate

Create
applicati

on
1,* Application

1,*

Create

Hire 1,* Position

Figure 16: Personnel proclet.

In this section, we showed that proclets can be used to represent a work
ow

process which can handle two di�erent types of cases: advertised and non-advertised

positions. The resulting model is quite natural and reuses as much as possible, i.e.,

due to the proclet structure there is no duplication of process parts.

The reader familiar with the work on WF-nets17 will have noticed that the

department proclet (Figure 12) and the personnel proclet (Figure 16) do not cor-

respond to a WF-net in a technical sense. These proclets are considered persistent

and therefore no �nishing tasks (i.e., sink transitions) have been added. These tasks

36 Proclets: A Framework for Lightweight Interacting Work
ow Processes

can be added to obtain a WF-net. Apart for this technicality, each proclet class

presented in this paper corresponds to a WF-net. Moreover, each of these WF-nets

is sound (see Section 3.1). In fact these diagrams have been veri�ed using our work-

ow veri�er Wo
an.21 The ability to verify these nets using Wo
an illustrates the

added value of having Petri-nets as a starting point.

6. Related work

Petri nets have been proposed for modeling work
ow process de�nitions long before

the term \work
ow management" was coined and work
ow management systems

became readily available. Consider for example the work on Information Con-

trol Nets, a variant of the classical Petri nets, in the late seventies.19;20 Since then

many work
ow models and languages have been developed ranging from approaches

based on other formal models such as state charts26 to the vendor-speci�c diagram-

ming techniques used in the many commercial work
ow management systems avail-

able today. Work
ow models described in the literature focus on various aspects2

such as transactional concepts27,
exibility28, analysis17, and cross-organizational

work
ows29;30, etc. Any attempt to give a complete overview of these models is

destined to fail. Therefore, we only acknowledge the work that extended work
ow

models to accommodate the problems identi�ed in Section 2.

Zisman presents a paper refereeing example that involves Petri-nets and allows

multiple instantiation of the reviewer net.31

In work
ow literature, many authors have observed the problems related to

multiple instances of a task.32;33;34;35 The concept of a so-called batch-oriented

task32 has been proposed to allow for a task that is executed for multiple instances

at the same time. To support batch-oriented tasks, independent cases need to be

synchronized. As an example, consider the task of selecting papers for a conference

(task select in the example): All papers are considered at the same time. The need

to deal with the batch-oriented clustering of instances was also recognized in the

Wide model.33 A similar extension is proposed by Casati et al. using so-calledmulti-

tasks.34 A multi-task is a task in a process which can be instantiated an arbitrary

number of times. The multi-task completes the moment that the corresponding task

is completed for each instance, or for some number of those instances (the quorum).

A similar mechanism has been implemented for the Regatta system by Fujitsu.36

In this system, multiple instances are created, according to the number of actors

available to perform them. In Spade-1, a process-centered software engineering

environment (PCSEE), it is possible to instantiate dynamically the same activity

a variable number of times, generating di�erent execution threads for the activity,

called active copies.37 Other work
ow languages supporting similar constructs are

IBM's FlowMark (the bundle it is no longer available in MQSeries/Work
ow) and

FLOWer (through the so-called dynamic subplan).

The idea to promote interactions to �rst-class citizens was proposed in di�erent

settings. For example, in the context of the language/action perspective12;13;14;15,

International Journal of Cooperative Information Systems 37

Action Technologies developed a work
ow tool38 where each step in the process

is characterized by four phases: preparation, negotiation, performance and accep-

tance. The transition from one phase to another is mainly driven by interactions

between actors. In the more systems-oriented domains there have also been some

proposals for inter-process communication. Consider for example Opera39, a process

support system kernel (i.e., a rudimentary work
ow management system), which

supports the interaction between di�erent processes.

The language-action perspective is also employed in the context of agent techno-

logy.13 Speech-acts form the basis for performatives in agent interaction languages,

e.g. KQML.24 The use of agents for implementing work
ow systems is explored,

e.g., in the Bond multi-agent system.40 Petri-nets are used in Bond as an interme-

diate representation of work
ows.41 Another example of the application of agents

to work
ow is the the so-called \worklets" model and architecture.42 Worklets are

scripted mobile work
ow agents that can \hop" from one component to another.

Worklets are similar to proclets in the sense that they are lightweight work
ow

processes. However, the emphasis is on mobility rather than interaction.

Another line of research related to the results presented in this paper is the

work on so-called work
ow patterns.4 The work
ow patterns home page5 also in-

cludes patterns for dealing with multiple instances, i.e., multiple levels of granular-

ity/aggregation. This work extends the work on work
ow patterns.35 Some of the

ideas presented in the related work mentioned in this section have been adopted by

our framework: batch-oriented operation, multi-tasks, and inter-process communi-

cation can be handled easily by the framework. In addition, the framework employs

concepts such as performatives, channels, ports, knowledge bases, naming services,

and the rigor of a Petri-net basis which allows for various forms of analysis and a

straightforward and eÆcient implementation.

7. Conclusion

In this paper, we presented a framework which advocates the use of interacting

proclets, i.e., lightweight work
ow processes communicating by exchanging perfor-

matives through channels. As was demonstrated in this paper, the framework can

solve many of the traditional modeling problems resulting from the case-oriented

paradigm.

If we compare the proclet framework with traditional work
ow languages, the

following di�erences can be observed.

• A work
ow model in terms of proclets is closer to reality since it is not nec-

essary to squeeze the description into a single process de�nition.

• There is a natural link between class diagrams presenting a static view on the

work
ow and the proclets representing a dynamic view on the work
ow.

• Proclets are more expressive than traditional work
ow languages, e.g., prob-

lems related to multiple instances can be resolved without resorting to coding.

38 Proclets: A Framework for Lightweight Interacting Work
ow Processes

• Multiple work
ows may share proclets. Therefore, reuse is supported and

duplication of process information is avoided.

It should be noted that a work
ow model in terms of proclets is of about the same

size as a traditional work
ow model if we de�ne the size as the total number of

nodes/tasks. However, the size of one proclet class is typically much smaller that

the overall work
ow process. This allows for a \divide and conquer" approach at

the level of work
ow processes.

In the future, we plan to explore the relation between channels and performa-

tives. We are also compiling a list of interaction patterns. In our view, the inter-

action between proclets typically follows a number of well-de�ned patterns, e.g., a

request performative is followed by an accept or reject performative. For structuring

these patterns we can use the notion of inheritance of dynamic behavior.43 Finally,

we plan to build a prototype to support the framework. One idea is to provide a

proof of concept by experimenting with ExSpect.44 ExSpect is a Petri-net-based

prototyping environment which can be used to simulate work
ows.

References

1. P. Lawrence, editor. Work
ow Handbook 1997, Work
ow Management Coalition.

John Wiley and Sons, New York, 1997.

2. A.P. Sheth, W.M.P. van der Aalst, and I.B. Arpinar. Processes Driving the Networked

Economy: ProcessPortals, ProcessVortex, and Dynamically Trading Processes. IEEE

Concurrency, 7(3):18{31, 1999.

3. S. Jablonski and C. Bussler. Work
ow Management: Modeling Concepts, Archi-

tecture, and Implementation. International Thomson Computer Press, London, UK,

1996.

4. W.M.P. van der Aalst, A.H.M. ter Hofstede, B. Kiepuszewski, and A.P. Barros. Ad-

vanced Work
ow Patterns. In O. Etzion and P. Scheuermann, editors, 7th Interna-

tional Conference on Cooperative Information Systems (CoopIS 2000), volume

1901 of Lecture Notes in Computer Science, pages 18{29. Springer-Verlag, Berlin,

2000.

5. Work
ow Patterns Home Page. http://www.tm.tue.nl/it/research/patterns/.

6. W. Reisig and G. Rozenberg, editors. Lectures on Petri Nets I: Basic Models, volume

1491 of Lecture Notes in Computer Science. Springer-Verlag, Berlin, 1998.

7. W. Reisig and G. Rozenberg, editors. Lectures on Petri Nets II: Applications, volume

1492 of Lecture Notes in Computer Science. Springer-Verlag, Berlin, 1998.

8. G. Booch, J. Rumbaugh, and I. Jacobson. The Uni�ed Modeling Language User

Guide. Addison Wesley, Reading, MA, USA, 1998.

9. J. Rumbaugh, I. Jacobson, and G. Booch. The Uni�ed Modeling Language Reference

Manual. Addison Wesley, Reading, MA, USA, 1998.

10. R. Hull and R. King. Semantic database modeling: Survey, applications, and research

issues. ACM Computing Surveys, 19(3):201{260, 1987.

11. N. Jennings and M. Wooldridge, editors. Agent Technology : Foundations, Applica-

tions, and Markets. Springer-Verlag, Berlin, 1998.

12. F. Flores and J.J. Ludlow. Doing and Speaking in the OÆce. In Decision Support

Systems: Issues and Challenges, pages 95{118. Pergamon Press, New York, 1980.

International Journal of Cooperative Information Systems 39

13. E.M. Verharen, F. Dignum, and S. Bos. Implementation of a cooperative agent architec-

ture based on the language-action perspective. In Intelligent Agents, volume 1365 of

Lecture Notes in Arti�cial Intelligence, pages 31{44. Springer-Verlag, Berlin, 1998.

14. T. Winograd. Special Issue on the Language Action Perspective - Introduction. ACM

Transations on OÆce Information Systems, 6(2):83{86, 1988.

15. T. Winograd and F. Flores. Understanding Computers and Cognition: A New

Foundation for Design. Ablex, Norwood, 1986.

16. A. LaMarca, W.K. Edwards, P. Dourish, J. Lamping, I. Smith, and J. Thornton. Taking

the Work Out of Work
ow: Mechanisms for Document-Centered Collaboration. In Pro-

ceedings of the Sixth European Conference on Computer-Supported Cooperative

Work (ECSCW'99), 1999.

17. W.M.P. van der Aalst. The Application of Petri Nets to Work
ow Management. The

Journal of Circuits, Systems and Computers, 8(1):21{66, 1998.

18. N.R. Adam, V. Atluri, and W. Huang. Modeling and Analysis of Work
ows using Petri

Nets. Journal of Intelligent Information Systems, 10(2):131{158, 1998.

19. C.A. Ellis. Information Control Nets: A Mathematical Model of OÆce Information

Flow. In Proceedings of the Conference on Simulation, Measurement and Modeling

of Computer Systems, pages 225{240, Boulder, Colorado, 1979. ACM Press.

20. C.A. Ellis and G.J. Nutt. Modelling and Enactment of Work
ow Systems. In M. Ajmone

Marsan, editor, Application and Theory of Petri Nets 1993, volume 691 of Lecture

Notes in Computer Science, pages 1{16. Springer-Verlag, Berlin, 1993.

21. H.M.W. Verbeek and W.M.P. van der Aalst. Wo
an 2.0: A Petri-net-based Work
ow

Diagnosis Tool. In M. Nielsen and D. Simpson, editors, Application and Theory of

Petri Nets 2000, volume 1825 of Lecture Notes in Computer Science, pages 475{484.

Springer-Verlag, Berlin, 2000.

22. Wo
an Home Page. http://www.tm.tue.nl/it/wo
an.

23. J.R. Searle. Speech Acts. Cambridge University Press, Cambridge, 1969.

24. T. Finin, J. Weber, G. Wiederhold, and et. al. Speci�cation of the KQML Agent-

Communication Language , 1993.

25. M. zur M�uhlen. Evaluation of work
ow management systems using meta models. In

Proceedings of the 32nd Hawaii International Conference on System Sciences

- HICSS'99, pages 1{11, 1999.

http://www.computer.org/proceedings/Hiccs2/0001/00010198Babs.htm.

26. P. Muth, D. Wodtke, J. Weissenfels, A. Dittrich, and G. Weikum. From Centralized

Work
ow Speci�cation to Distributed Work
ow Execution. Journal of Intelligent

Information Systems, 10(2), 1998.

27. D. Georgakopoulos, M. Hornick, and A. Sheth. An Overview of Work
ow Manage-

ment: From Process Modeling to Work
ow Automation Infrastructure. Distributed

and Parallel Databases, 3:119{153, 1995.

28. M. Reichert and P. Dadam. ADEPT
ex: Supporting Dynamic Changes of Work
ow

without Loosing Control. Journal of Intelligent Information Systems, 10(2):93{129,

1998.

29. W.M.P. van der Aalst. Interorganizational Work
ows: An Approach based on Mes-

sage Sequence Charts and Petri Nets. Systems Analysis - Modelling - Simulation,

34(3):335{367, 1999.

30. W.M.P. van der Aalst. Process-oriented Architectures for Electronic Commerce and

Interorganizational Work
ow. Information Systems, 24(8):639{671, 2000.

31. M. D. Zisman. Use of production systems for modeling asynchronous concurrent pro-

cesses. Pattern-Directed Inference Systems, pages 53{68, 1978.

32. P. Barthelmess and J. Wainer. Work
ow systems: a few de�nitions and a few sug-

40 Proclets: A Framework for Lightweight Interacting Work
ow Processes

gestions. In N. Comstock and C.A. Ellis, editors, Proceedings of the Conference on

Organizational Computing Systems - COOCS'95, pages 138{147, Milpitas, Califor-

nia, September 1995. ACM Press.

33. F. Casati, P. Grefen, B. Pernici, G. Pozzi, and G. Snchez. Wide work
ow model and

architecture. Technical report, Dipartimento di Elettronica e Informazione, Politecnico

di Milano, 1996. http://dis.sema.es/projects/WIDE/Documents/ase30 4.ps.gz.

34. F. Casati, S. Ceri, B. Pernici, and G. Pozzi. Conceptual modeling of work
ows. In

Proceedings of the OOER International Conference, Gold Cost, Australia, 1995.

35. W.M.P. van der Aalst, P. Barthelmess, C.A. Ellis, and J. Wainer. Work
ow Modeling

using Proclets. In O. Etzion and P. Scheuermann, editors, 7th International Confer-

ence on Cooperative Information Systems (CoopIS 2000), volume 1901 of Lecture

Notes in Computer Science, pages 198{209. Springer-Verlag, Berlin, 2000.

36. K. Swenson. Collaborative planning: Empowering the user in a process environment.

Collaborative Computing, 1(1), 1994. ftp://ftp.ossi.com/pub/regatta/JournalCC.ps.

37. S. Bandinelli, M. Braga, A. Fuggetta, and L. Lavazza. Cooperation support in the

spade environment: a case study. In Proceedings of the Workshop on Computer

Supported Cooperative Work, Petri nets, and Related Formalisms (14th Interna-

tional Conference on Application and Theory of Petri Nets), Chicago, June 1993.

ftp://ftp-se.elet.polimi.it/dist/Papers/ProcessModeling/CSCWPN93.ps.

38. Action Technologies. ActionWork
ow Enterprise Series 3.0 User Guide. Action

Technologies, Inc., Alameda, 1996.

39. C. Hagen and G. Alonso. Beyond

the black box: Event-based inter-process communication in process support systems

(extended version). Technical report, ETH Z�urich, July 1997. Technical Report No.

303. http://www.inf.ethz.ch/department/IS/iks/publications/�les/ha98c.pdf.

40. Purdue University. Bond. the distributed object multi-agent system.

http://bond.cs.purdue.edu, 2000.

41. K. Palacz and D.C. Marinescu. An agent-based work
ow management system. In

Proc. AAAI Spring

Symposium Workshop "Bringing Knowledge to Business Processes", Standford

University, CA, March 1999. http://bond.cs.purdue.edu/docs/papers/awfms.ps.

42. G. Valetto, G.E. Kaiser, and G.A. Kc. A Mobile Agent Approach to Process-Based

Dynamic Adaptation of Complex Software Systems. In V. Ambriola, editor, Proceed-

ings of the 8th European Workshop on Software Process Technology, volume 2077

of Lecture Notes in Computer Science, pages 102{116. Springer-Verlag, Berlin, 2001.

43. W.M.P. van der Aalst and T. Basten. Inheritance of Work
ows: An approach to tackling

problems related to change. Theoretical Computer Science, 2001 (to appear).

44. Deloitte & Touche Bakkenist. ExSpect Home Page. http://www.exspect.com.

