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Abstract. Conformance-checking is the field of process mining relating
modeled and observed behavior. State-of-the-art conformance checking
techniques do not scale for large process models and event logs, which
hampers its broader adoption.

In this paper, we present a polynomial-time method to compute the
markovian-based fitness and precision metrics for process trees. For that,
we first show that this is equivalent to the problem of computing the set
of substrings of length at most k of the model’s language. Then, we show
how to exploit the tree structure to compute this set in a compositional
way. The experimental evaluation shows that the proposed method out-
performs state-of-the-art conformance-checking techniques by orders of
magnitude, while still providing quality guarantees.
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1 Introduction

Conformance checking is the field of process mining relating desired and observed
behavior. Given an event log and a process model, conformance checking aims
at identifying and quantifying differences between the event log and the process
model. An important use-case for conformance checking is to assess the quality
of automatically discovered process models in the form of a single number evalu-
ation metric. For that, multiple conformance metrics with distinct runtime and
quality characteristics have been proposed in the literature [1,8,11]. Unfortu-
nately, most state-of-the-art methods still require a runtime that is exponential
on the number of activities or do not satisfy all the desired axioms for a confor-
mance metric [13].

A notable exception are the Projected Conformance Checking (PCC) fitness
and precision metrics [7], which provide strong runtime and quality guarantees
for certain classes of models (process trees with unique activities and no invisible
labels). Nevertheless, the PCC metrics require multiple passes over the event log,
which makes them expensive to compute for large datasets.

In this work, we focus on the problem of efficiently computing conformance
metrics for process trees. Process trees are a well-established modeling formalism
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in process mining because of its soundness guarantees and simple structure. For
instance, many state-of-the-art process discovery algorithms return process trees.
We provide two important contributions: First, we present a simplified, yet more
expressive, definition of the k-th order markovian abstraction first presented
in [2]. Next, we show how to compute the k-th order markovian abstraction of
a process tree in polynomial time by exploiting the tree structure. The method
achieves an improvement of orders of magnitude in computation time for models
with a high degree of parallelism. Furthermore, the method scales linearly with
the size of the event log, making it suitable for very large event-logs.

The remainder of the paper is organized as follows: Section 2 presents basic
notations and concepts from automata theory, which are the backbone of the
presented technique, Section 3 presents the general framework for computing
the k-th order markovian abstraction of a process tree, Section 4 compares the
approach to other state-of-the-art methods, Section 5 presents related work in
the field. Finally, Section 6 concludes the paper with directions for future work.

2 Preliminaries

This section presents the basic concepts upon which the method is based. For
a given finite alphabet X, X* is the set of all finite words of length k formed
with this alphabet and X* = [ J,-, X*. The projection of a word w € X* in
a set of symbols S € X is written wg. The concatenation of two words u, v is
written uv. Similarly, the concatenation of two languages U,V < X* is written
as UV = UueU,veV uv. Given a word w = wiwg---w, and 1 < ¢ < j < n,
w7 = wsw;;q1 - w; denotes a substring of w (written v £ w). We further
write prefk(w), su[fk('w), and subk(w) to denote the set of non-empty prefixes,
suffixes, and substrings of w with length less than or equal to k. The definitions of
pref®. suff®, and sub” are extended to languages too. Finally, the paper assumes
familiarity with basic algorithms of automata theory [5]. We provide common
notations for finite automata below:

Definition 1. (Labeled Directed Graph) A Labeled Directed Graph is a triple
G = (V,X,E) where V is the set of vertices, X is the set of labels and E =
V x X xV is the set of edges. Given an edge e = (v,1,v/), functions ms..(€) = v,
mige(€) = v!, and m(e) = 1 return its source and target vertices and its label
respectively

For this paper, all considered graphs are labeled directed graphs. A path
p in the a graph is a sequence of edges p = ejes---e, such that mg(e;) =
Tsre(€ir1) V1 < i < n. We define m;(p) = m(e1)m(ez) - -m(en) as the path’s

sre =0 .
labeling (= e if the path is empty). And 7,(p,i) = mare(e1) Z as the i-th
Tege(€s) >0

vertex visited by the path, where 7, (p,0) is the path’s start vertes.

Definition 2. (Nondeterministic Finite Automaton) Let ¢ be the empty
string. A Nondeterministic Finite Automaton (NFA) is a 5-tuple N = (Q, X, 4, qo,
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F), where Q is the set of states, X is the alphabet, § : Q x (X v {e}) > P(Q) is
the transition function, qq is the initial state and F' < Q) is the set of final states.

Any NFA N = (Q, X, 4, qo, F') is associated to a graph G = (Q, X u {€}, E)
where £ = {(q,l,q/)) € Q x (X U {e}) x Q | q/ € d(q,1)} (called the NFA’s
graph). Given ¢, q/ € Q, we define qlwyq/ = {p € E* | m(p) = w A my(p,0) =
q A m(p,|p|) = @’} as all the paths from ¢ to g/ labeled by w. If ¢ = qo, ¢/ € F,
and q[wyq! # O, then N accepts w and p is an accepting path. The accepted
language of N is defined as L(N) = {w e X* | IfeF s.t. go[w)f#F}. Similarly,
we denote g[wy yg/[wa gl = {p1p2 | p1 € q[w1)q! A p2 € ¢/[wa)gn}. Last, we define
qlw)y = {q’ € Q | qlw)q! # &} as the set of states reachable from ¢ by replaying
w.

In an NFA N, a state is dead if it is not reachable from the start state and
it is a trap if there is no path g leading from the state to a final state. We say
that an NFA is trimmed if it has no dead or trap states. For any trimmed NFA,
any path p in its graph is such that m;(p) is a substring of L(N).

Definition 3. (Deterministic Finite Automaton (DFA)) A Deterministic
Finite Automaton (DFA) is an NFA where §(q,€) = & Vg € Q and |6(q,1)| <
1Vge@Q,leX.

Every DFA has the property that two paths in its graph starting from the
same node are equal if and only if their labelings are the same, i.e. |g[w)| < 1.
We will abuse notation and write g[w)q/ to refer to the single element of this set
(when it exists). Given an NFA N, there exists an unique (up to isomorphism)
DFA D with a minimal number of states such that £(N) = £(D) that can be
obtained via determinization. This can be achieved via the powerset construction
followed by a minimization step [5]. In the worst case, D has exponentially many
more states than N. If the DFA’s graph is acyclic, we call it a Deterministic
Acyclic Finite State Autornaton (DAFSA). Given a finite language L < X*| it
is possible to construct a minimal DAFSA accepting L in linearithmic time [4].

While finite automata can be used to represent any regular language, process
analysts need a compact and understandable modeling formalism. Among which,
process trees [3] stand out for their soundness guarantees and block structure.
Process trees are graphs with a tree structure. In a process tree, the leaf nodes
represent activities in X or skips (7) and the internal nodes represent one of four
possible operators: ezclusive (x), sequence (—), loop (O), and parallel (A). The
tree’s accepted language is defined recursively as follows:

Definition 4. (Process Trees Semantics) Let LU be the shuffle product of two
wle=eWw = {w} we X*

words, defined as:
i zuWyv = {z}(uwyv) U {y}H(zuwv) z,ye X Au,veX*

For languages A, B, define AlWWB = UwaeAwheB wq Wwy. Then, the accepted
language of a process tree is recursively defined as:

= L(r) = {¢}
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- L) - (o} )

= L(X(T1,-+, Tn)) = U;— £(T3)

= L(=>(Th,-- 1)) = L(T1)L(T3) - - L(T7)

- E(O(Tla ' 7T’n)) :‘C(Tl)([’(X<T2a 7Tn))£(T1))*
LT Th)) = L(T) W L(To) W - (0 £(T)

Given a process tree T, there exists a unique minimal DFA D such that
L(T) = L(D) [3]. However, the size of D might be exponential with the size of
T. This exponential blow-up is the bottleneck for most conformance checking
techniques, including the metrics based on the k-th order markovian abstraction
presented in [2]. This paper focuses on improving the runtime for computing the
k-th order markovian abstraction. For this, we use a slightly different definition
than the one originally introduced in [2], based on the set of k-trimmed substrings
of a language:

Definition 5. (K-Trimmed Substrings) Let X be an alphabet and k > 2.
Given a word w € X*, the set of k-trimmed substrings s*(w) is defined as:

() - {{w} if ol < k

{w= L1 <i< Jw|—k+ 1} otherwise

We extend the definition of s* to languages as s*(L) = |, s"(w). Con-
sider languages X = {abc} and Y = {i,ijk} (these will serve as a running ex-
ample for the remainder of the paper), then s'(X) = {a,b,c}, s*(X) = {ab, bc},
and s*(X) = {abc} for k = 3 and s'(Y) = {i,j,k}, s(Y) = {i,ij,jk}, and
s®(Y) = {i,ijk} for k > 3. The k-th order markovian abstraction (defined be-
low) is similar to the set of k-trimmed substrings, but with special start/end
markers (+/—) to track the language’s prefixes/suffixes.

Definition 6. (The Modified k-th Order Markovian Abstraction) Let ¥
be an alphabet, +/— ¢ X be special start/end markers, and k = 2. Given a word
w € X*, the k-order markovian abstraction of w is defined as follows:

mk(w) = sk(+w—)

Similarly, m* of a language L < X* is defined as | J,,.; m"(w). In prin-
ciple, m* is defined for arbitrary languages, but throughout the rest of this
work we focus on computing mF for regular languages. We will always assume
that +,— ¢ ¥ and write X* = ¥ U {+,~} and +L— = {+}L{-}. For any
language L < X* m"(L) represents a finite set of finite words and thus can
be associated to a unique minimal DAFSA (written MF). Figure la shows
the minimal DAFSAs M3 and M3 accepting m3(X) = {+ab,abc,bc—} and
m3(Y) = {+i—, +ij,ijk, jk—} respectively. In general, M¥ has a very specific
structure, detailed below:

Proposition 1. (Basic Properties of MX) Let X be an alphabet, L. < X*
be an arbitrary language, k = 2, and M¥ = (Q, X,5,qo, F') the minimal DAFSA
accepting mF (L), then:
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(a) M% and M3

Fig. 1: M% and M5 for X = {abc} and Y = {ijk,i} and their sequence and loop
concatenations. Start states are colored orange, final states are colored green,
dead states are gray, states in @~ are hatched, and e-transitions are represented
as dashed lines.

Lom*(L) € m*(Z%) = (Upgiapor +2°—) v (+ZF ) o (ZF 1) v IF

2. MY has only one final state, i.e. F' = {qs}

3. MF has exactly one edge labeled +. This edge has qo as its source and we
write g7 to represent its target, i.e. §(qo, +) = {q*}

4. All —-labeled edges in M7 lead to its unique final state. We define Q~ =
{ee@Qlqredlg,-)}

5. For every v € subk(JrLf), there exists a path p in M¥ such that m(p) = v,
and for every path p in M¥, there exists v € sub®(+L—) such that v = m(p).

6. For every path p in M¥, + € m(b) < m(p) € pref*(+L—). Similarly,
—em(p) < m(p) e suff*(+L—)

7. 1Ql < [T 42

Finally, Definition 7 presents the (modified) markovian-based fitness and
precision metrics. The metrics return almost the same (but not the same) values
as the ones presented in [2], because the original definition counts words of length
smaller than k twice. However, monotonicity still holds for our definition of m*,
ie.if A < B = mF(A) € m*(B), such that the proofs of the axioms presented
in [2] are still valid.

Definition 7. (Markovian-Based Fitness and Precision with the Bi-
nary Cost Function) Let L be an event log with language L < X*, P be a
process model with language P = X*, k = 2, and #1(v) the number of occur-

. . k _ 1 ek @pmkpy) #L()
rences of substring v in L. Then MAF*(L,P) =1 v ke and

MAPF(L,P) =1~ % are the markovian-based fitness and precision

metrics respectively.

The metrics are the set difference of the languages’ substrings. The fitness
metric is normalized by the substring frequency. Since that the current setting
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does not consider any notion of trace frequency for process models, the precision
metric is normalized by 1/|mF(P)|. It is possible to obtain a variation of the
metric by changing the cost function (see [2]). The markovian-based fitness and
precision metrics were empirically shown to agree with other state-of-the-art
conformance metrics such as escaping edges and PCC. However, the original
method for computing m* requires the computation of the process model’s DFA
and thus does not scale for larger models. In the next section, we show how to
compute m” for process trees without computing its state space, hence improving
scalability.

3 General Framework

This section shows how to efficiently compute m”* for arbitrary process trees.
First, we present a method to compute s* for arbitrary regular languages. Next,
we show a compositional approach to compute mF for binary and uniquely-
labeled process trees which works by recursively computing m* for each tree
node from the m”* of its child nodes. Last, we show how to generalize it for
arbitrary process trees.

3.1 Computing s* of a Regular Language

This section presents a method to compute s¥(L) from a DFA accepting L.

Definition 8. (All-Substrings NFA) Given a trimmed DFA D = (Q, X, , qo,
F), its all-substrings NFA is defined as Subp = (Qu{d}, X, 0,4, Qu{d}), where
6 1is defined as follows:

(g, l) fleX Aqe@
6(g; 1) =4 @ ifl=enqg=q
%) otherwise

Notice that Subp accepts all substrings of DFA D. This can be used to
efficiently compute s* as follows:

Lemma 1. (Computing s¥) Let L < X* be a regular language and D =
(Q,%,0,q0, F) a DFA accepting L. Then s*(L) can be computed in O(|Q||X|*).

Proof. We assume D to be trimmed, otherwise D can be trimmed in O(|Q)).
We define s=%(L) = {w e s*(L) | |w| = k} and s=F(L) = s*(L)\s=*(L). Notice
that s<*(L) can be computed in O(|X|*~1) time by running BFS from the start
node with a maximum depth of & — 1. We prove that £(Subp) n X* = s=F(L):

(S) Any w € L(Subp) n X* is such that there exists an accepting path
p € qle)gi[w)gi+x in Subp. And since D is trimmed, there exists u,v € X* such
that qo[uyq; # & and qiyk[v)f # O, f € F. Hence, qo[u)q:[w)qirr[v)f # & =
uwv e L = we s™F(L).
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(2) For any w € s*(L), 3t € L | t = uwwv, s0 p = qo[u)qi[w)gi+k[v)qn is a path
in D. But this directly implies that there exists a unique path p € §[e)q;[w)q; 1k
and that p is an accepting path of Subp. And since that w € X%, then w €
(L(Subp) n XF).

The runtime bound is achieved by computing £(Subp) n X* without deter-
minizing Subp. The product construction builds a DAFSA. Tt expands at most
|X|* nodes, where each node expansion has cost bound by |Q|. o

3.2 Leaf And Exclusive Nodes

This section shows how to compute m* for leaf and exclusive nodes, which do
not require any special constructs:

{+-} k=2 a=c¢
Lemma 2. (Leaf Nodes) Fora € Yu{e}, m*(a) = { {+a,a—} k=2, aeX
{+a—} k>2 aeX

Proof. Follows directly from Definition 6. m]
Lemma 3. (Exclusive Node) Let A, B < X* be arbitrary languages. Then:
m*(A U B) = m*(A) umF(B)

Proof. From Definition 6, m*(A U B) = s*(+(Au B)—) = s*(+A—u+ B—) =
sk(+A-) U s¥(+B—) = m*(A) um*(B). O

3.3 Sequence Node

For the sequence node, m” is computed based on automata operations. For that,
we first define the markovian sequence concatenation O as follows:

Definition 9. (Markovian Sequence Concatenation) Let A, B be arbitrary
languages with disjoint alphabets Y4, Xg, and M¥% = (QA,EZ—UéA?qoa, {ara})
and MY = (Qp, 25,08, q0, {qsp}) be the minimal DAFSAs accepting mF(A)
and m*(B) respectively. The markovian sequence concatenation M% O MFy
builds the DFA (Qa v Qp,(Xa U Z‘B)%é,q()a7 {qfa>qpp}) where 5 is defined as
follows:
d4(g,1) qeEQa,leXsu{+}
A 6B(qon,1) ¢ =qoa,l € X5
6(Qvl>= 5B(QJ7Z) qu;UZEEBU{_}
68(q,l)  qeQp,leXE
%] otherwise

Figure 1b shows M3 ©F M3, which accepts {+ab, abe, beij, bei—, ijk, jk—}.
Intuitively, the markovian sequence concatenation is merging the transition func-
tion of state ¢; into the transition functions of states in Q7. Notice that s3(L(M3%
OF M3)) = {+ab, abc, bei, cij, ci—, ijk, jk—} = m*(XY). Lemma 4 below for-
malizes this fact, which can be used to compute m”* for the sequence node:



8 Eduardo Goulart Rocha and Wil M.P. van der Aalst

Lemma 4. (m* of Language Concatenation) Let A, B be arbitrary lan-
guages with disjoint alphabets X4, Xp, and M = (QA,E:\—F,dA,qu, {¢ra}) and
ME = (Qp, X%5,08, 900, {qs}) the minimal DAFSAs accepting m*(A) and m*(B)
respectively. Then:

mF(AB) = s"(L(M§ ©F M)

Proof. (<) For any w € +AB—, there exists w, € A,w, € B such that w =
414y —. Then for any «y € s*(+,10,—) one of the following holds:

Ya Yo E +q
Y=9% Vb E Wp—
YoV Va € suff*(+10a), b € pref* (i, —)

For Case 1, the condition implies |vy,| = k and so v, € m*(A). Let p be the
path in Mﬁ accepting 7,. Since that — ¢ ~,, and that only —-labeled edges were
removed from M}f‘, then p is also an accepting path in Mf‘ of Mg.

Similarly for Case 2, |v,| = k and v, € m*(B). Let p = qob[V6)qss be the path
in M% accepting v,. Then p = qou[75)q/s is an accepting path in M5 ©F ME.

For Case 3, the condition implies |v4|, || < k, 74— E +tq— and +7; &
+1p—. And since |y, — |, | + V5| < k then there exists ag, 8y such that a,v,— €
sk (+,—) € mF(A) and +yp8p € s*(+1ip—) € mF(B) (Proposition 1-5), and so
Pa = Qoala)da[Va)qs [—)dfa and py = qob[+)a; [15)d6[B6)q s are accepting paths
in M% and ME. Then p = qoa[ca)da[Va)qs [15)d6[Bsy is a path in M%OE ME such
that m(p) = 4B, and since |y| = k, then v € s*(a,vBy) S s*(L(MEO* ME)).

(2) Notice that M% ©* ME is acyclic. Therefore, for every accepting path
p in M% ©F ME accepting m;(p) = w € LM% ©F M%), there exists 0 < j < n
such that m4(p,i) € Qa Vi < j and 75(p,i) € Qp Vi > j. If j = 0, then
w e s*(+B—) and + ¢ w = w € sub®(B—). If j = n, then w € s*(+A—) and
— ¢ w = w e sub®(+A). In both cases, |w| = k, thus w € s*(+AB—).

If0 < ] < n, it holds that €; = (qj_l,wj,qj) where gj—1 € QZ, W
Yp, and ¢; € 0g(q) ,wj). So w'=I71— € s¥(+A-) and +w/™" € sF(+B—
(Proposition 1-6). Which implies that w is a substring of + AB—. Now if |w|
k, then +,— € w, which implies that w € +AB— and thus {w} = s*(w)
sk(+AB-). If |w| > k, then it follows directly that s*(w) < s*(+AB-).

m

~—

a in

M%E ©* ME is a DAFSA with |Qal| + |Q5| € O(| X4 u X5|*) states. From
Lemma 1, it follows that m*(AB) can be computed in O(| X4 U Xg|*).

3.4 Loop Node

In Section 3.3, we have seen how to concatenate two DAFSAs to compute mF”
for language concatenation. Similarly, we define the loop concatenation as a
construct to compute m* for the loop node’s language. We first define an NFA
constructed from both markovians’ DAFSAs and show how this relates to the
markovian of the loop node. Then, we show that determinizing this construct is
polynomial-time due to its specific structure, thus still being efficient.
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Definition 10. (Markovian Loop Concatenation) Let A, B be arbitrary
languages with disjoint alphabets ¥4 and X and M% = (Qa, Eﬁ, 34,900, {qfa})
and M¥ = (QB,Eg,cSB,qob, {qsv}) the minimal DAFSAs accepting mF(A) and
mF(B) respectively. The markovian loop concatentation MA ok M’C builds the
NFAN = (QauQp, (XauXp)T, 8, qoas {qfa>qsp}) where 5 is defined as follows:

1) quA,leZJj{
B\40b, ) qu;alze

(g,
(

A(QOa;+) qEQl_aa l=c¢
(
(

S O

B(q,1) q€Qp, le Ypu{+}
0B(qob,1) ¢ =qoa, 1€ XB
otherwise

Q

\

Figure 1c shows M3 (OF M3 accepting {+ab, abc, be—, beij, beiab, ijk, jkab}.
Notice that s3(L(M3 (& M3)) = {+ab, abc, bc—, bei, cij, cia, iab, ijk, jka, kab}
= m3(A(BA)*). Lemma 5 below formalizes this fact, which can be used to
compute m* for loop nodes:

Lemma 5. (m* of the Loop Node) Let A, B be arbitrary languages with
disjoint alphabets X4 and X, and M5 = (Qa, X%, 04,00, {q5a}) and ME =
(QB,E;%,(;B,qOb,{qu}) the minimal DAFSAs accepting m*(A) and m*(B) re-
spectively. Then:
mP(A(BA)*) = Sk(ﬁ(fo OF Mp))

Proof We define sets A = {w, € A | |wa| < k—2} and B = {wp € B | [wp| <

— 2}. The graph of M% (O ME is such that for every 1, € A, there exists
¢; € Q7 such that g} [i,)q; # & (analogous for B).

(©) For every w € +A(BA) —, then w = +wg 1Wp,1Wq,2 + -+ Wa n— 8.5. Wq; €

A Vi<i<nand wy; € B V1 < ¢ < n. We distinguish between two cases:
Case 1: (Jw| < k) Then | + w,,; — | < k for every i < n, which implies that
+wa,i— € L(ME). Therefore, pa.i = qoa[+)q} [Wa,i)q; ;[—)qra in MY is such that
Qo € Q. Similarly for B, forevery 1 <i <n—1,pp; = qob[+>q; [wb’i>qb_7i[—>qu
is such that g, ; € Q. Thus, the set goa[+)q; [wa,i)q, [€)q [w.i)a, ;[ s is
not empty and contains paths p in M% (5t ME such that m,(p) = +wa ;wp,—
This can be continued to find a path p in M% (OF ME such that m;(p) = w. And
since |w| < k, then w € s*(L(M% OF ME)).

Case 2: (Jw| > k) Then for every v € s¥(w), it holds:

suff (+A)BA({U§) preff(A-)
suff¥(+A)(BA)* ref( )
suff * (B)(AB)*pref*(A-)
VN (BAB Ay pres(B) W
sk(—|—A )
s*(B)
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For the first 4 cases, it is possible to apply an argument similar to Case 1, observ-
ing that preﬁxes/sufﬁxes of A and B lead to ¢} /Q and g, /QB (Propos1t10n 1-
6). For the fifth case, since that M¥ is fully contained in M% (J* ME, then v €
mF(A) € mk(L(ME Oi M%)). For the sixth case, +, — ¢ v which implies that
there exist path gop[v! 711 [v2~")gpp in ME. And so qoa[v 741 [V g #
& in the graph of Mff" o* M}%.

(2) We first show that every w = wyws - - - w,, € L(M% (OF ME) is a substring
of +A(BA)*—. For that, consider all accepting paths p in M% (OF ME. If p
only passes through edges in M¥%, then m;(p) € m*(A) < m*(A(BA)*). Else, if
w; € Y and p does not pass through an e edge, then p € goq[w1)G[wW* ")y
in M% OF ME and so qop[w1)G[w?™™)qsp is a path in M} = w e mF(B). And
since that p does not pass through an +/—-labeled edge (they were removed from
ME), then |w| = k, which implies w € m*(A(BA)x). Else, if p passes through
an € edge, then one of the following holds:

90a[va1 0 [ [0, (€65 [as) - 45 [Ya )4
oalVar )00 [y (Y000, (€05 [Vaz) - @y [w.)d50 @
q0al 00, (003 [Var )00 [ [W2) 42 [Va: Y10
9008, [©65 (V0000 [0 [ve.) - @ w00
We only prove the ﬁrst case (the other cases are analogous). For this case,
it holds that va, € suff*(+A), 74, € pref¥(A—) and % e AVl < j < iand
T, € B V1 < j < i. This all implies that w € suff*(+A)B(AB)*pref*(A—)
(notlce the correspondence to the first case of (1)) and that w is a substring of
+AB(AB)*A— < +A(BA)*—. Now if |w| = k, then w € m*(+A(BA)*—). Else
if |lw| < k, then |y, | < k—1= |7, — | < k: and since that vy, — € mF(A),
then + € 7,, . Similarly, we derive that — € ,, and thus w € +A(BA)*— = we
mk(+A(BA)*-). O

pE

Lemma 5 shows that s*(L(M%5 O0F ME) = m*(A(BA)*). But M% o ME
is an NFA and the algorithm from Lemma 1 requires a DFA as input. NFA
determinization is worst-case exponential in its size. The following lemma shows
that this does not happen for Mf‘ o M}_?g due to its specific structure. The basic
idea is that the e transitions are the only source of non-determinism and that
tokens of non-determinism "die" after at most k steps.

Lemma 6. (Determinizing the Markovian Loop Concatenation Does
Not Explode) Let A, B be arbitrary languages with disjoint alphabets X4, Xp,
and M]X = (QAa E,%ra 6A7 qoas {qfa}) and Mg = (QB7 ZgaéBa qob, {qu}) the min-
imal DAFSAs accepting m*(A) and m*(B) respectively, Qap = Qa U Qp and
Yap = XYa U Xp. Then runtime to determinize M% OF ME is in O(k|Qap|")-

Proof. Start by noticing that all e-edges in M% (& ME lead to either ¢ or
¢ . That means, that the e-closure S of any state S < @Qap reached dur-
ing the powerset construction is such that ScSu {qF ,q; }. Furthermore,
the construction is such that for any reachable state ¢ € Qap, and [, € E:{,
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if 10(q,1s)| # &, then §(¢,l,) < Q4 and similarly for every state ¢ € Qap
and I, € g, if |6(¢,ly)] # &, then §(¢q,ly) = Qp. This implies that ev-
ery reachable state S in the powerset construction is such that either S <
Qa or S © @p. Therefore, any path in the powerset construction is such
that 7rS(p) = (Sal,lsalﬁ T Sa1,n,1 )(Sb1,1Sb1,2 T Sbl,ml )(5112,15‘(12‘2 T SaQ,'n,2) T
where S,, , € P(Qa), Sb,, € P(Qp), and [Sq, .| =[Sy, .| = 1.

Let qq,, and g, , be the single elements of S,, , and Sy, ;. Now consider the
path Sai,l[wa>Sai,ni’ w, € (X%)* in the powerset construction. Then Sa;n, S
Ga, 1 [Wa) U Uy <icn @ [wi™™) (in M%). But since that M% is a DAFSA with
maximum word length k, then ¢ [wi~") = & if |[wi™"| > k, which implies that
[Sa,n| < k. A similar argument applies for w;, € X%. Therefore, the powerset
construction expands at most |Q4p|* nodes, with each node expansion costing
at at most k, where |Qap| < |Za|*~! + |X4|*~! + 2 (Proposition 1-7). O

From Lemma 1, it follows that m* of the loop node can be computed in
(’)(k\2|k2). This exponent seems very high at first, but in practice it does not
happen. This is related to the fact that if one of the subtrees does not accept
the empty word, then there is no real non-determinism in M% (78 ME.

3.5 Parallel Node

Finally, we consider the parallel node. Parallel nodes largely contribute to the
original method’s inefficiency because they inevitably lead to an explosion in the
state space’s size. Before presenting the construction for the parallel node, we
must define the parallel composition of two languages [5]:

Definition 11. (Parallel Composition) Given languages A < X%, B < X},
the parallel composition A || B € (X4 u Xp)* is such that:

weA|B < wx,€A A wy,€B

The parallel composition is closely related to the shuffle product. In fact, if
YanXp =, then A| B = AwB. Lemma 7 shows how to exploit this relation
to compute m* for parallel nodes:

Lemma 7. (m* of the Shuffle Product) Let A, B be arbitrary languages
such that X4 n Xp =, and X ap = Xy v Xg. Then:

mF(A W B) = sub™(m*(A)) || sub®(m*(B)) | m*(Z4p)
which can be computed in O(|Xap|*).
Proof. Observe that ¥4 n ¥p = @& = mF(Aw B) = s*(+(Aw B)-) =
s*(+A— || +B—) and that sub®(m*(A)) = sub”(+A—) (Proposition 1-5).

(S) Consider w € +A— || +B—. Then for every v € s*(w), it holds that
Vot E Wyt And since Wyt € +A— and |y| < k, then Vs € subk(+A7),
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Analogously, Vst € sub®(+B—). Finally, since v = Vet and v € s*(4+(A w
B)—) € mF(Z% ), then v € sub™(+A—) || sub®(+B—) || m* (% ).

(2) For every v € sub™(+A—) || sub®(+B—) || m*(5%p), there exists w, =
aa’yzfﬁa € +A— and wy = awzgﬁb € +B—. Notice that + is only present at
most once in v and v € Vst [ Tsts therefore + € a, < + € 3. Similarly,
— € B, < — € (. Also notice that + ¢ ag,ap implies o, = ap = € and
— & Ba, By implies B, = B = €.

If + € ag, then + € ap = oy = +&q4, ap = +ap and we define o = +a, Q.
Else, if + ¢ a, then a = €. Similarly, we define 8 = ﬁaﬁbf or 3 = e. In all cases,
ayB € +A— | +B— = sf(ayB) € s*(+A— || +B—). Notice that if || = k =
v € s*(apy). And that if |y| < k, then a = 8 = € (since that v € mF (%)),
= v € s¥(ayB). Putting it together, v € s*(ayB3) < s*(+A— || +B-).

For the runtime bound, notice that sub®(m*(A)) and sub®(m*(B)) can be
computed in O(|X45|?*) and that the computation of the network automaton [5]
associated to sub®(m*(A)) || sub®(m*(B)) || m*(X% ), expands at most |Zap|*
states. O

Total Runtime Boundary As shown above, computing m” for each tree node
is in O(k| 2% ) For a process tree T containing n operator nodes, the runtime

to compute m*(T) is in O(kn|X|*"). Oftentimes, n is linear with | ).

3.6 Handling Arbitrary Process Trees

The previous sections have shown how to compute m* for binary process trees
with unique visible label nodes. Notice that any process tree can be transformed
into a binary tree accepting the same language (hence having the same m*). For
trees with repeated labels, the results below show that it suffices to first map
each visible label node in the tree T’ to a unique label, and then map m*(L£(T))
back to the original labels.

Lemma 8. (m*¥ of a Remapped Language) Let A < X% and B < X% be
arbitrary languages and X : g — X4 s.t. A = \(B), then s*(A) = \(s*(B)).

Proof. Notice that for all w,,wp such that w, = A(ws), then Vg, wi=i e
sP(w,) = wy 7 € s*(wy).

(S) For any w, € A, there exists w, € B s.t. w, = A(wy,). For all 7, € s*(w,),
Yo = w'™7 for some i < j. Thus, 7, = )\(w;fj) and since |w,| = |wp|, then
w7 € sF(wp) = 8" (wa) € A(sF(wy)) € A(s*(B)).

(2) For any w;, € B, there exists w, € A s.t. w, = A(wp). For all 7, € s*(wy),

it holds that v, = wy, e for some ¢ < j. Thus, )\(fyb) = w!™7 and since |w,| = |wp|,
then wi™7 € sF(w,) = sF(A) 2 sF(w,) 2 )\( *(wp)). o

The result above can be extended to m* by defining A* : X% — YT such that

M) — {?(” ii{sz}  Then +A— — M (+B—) = mF(A) = AX(mk(B)).

This mapping function can always be constructed for a process tree as follows:
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Lemma 9. (m* of Arbitrary Process Trees) For an arbitrary process tree
T with alphabet X4 and visible label nodes N = {nq,---n;}. Given an alphabet
Y'p such that |Xg| = k and a bijective mapping r : N — X' defining a map
A:Xp — Y as A(b) = L(r~1(b)), then the process tree T obtained by relabeling
each visible node n of T with r(n) is such that L(T) = M(L(T)).

Proof. It follows directly from Definition 4 by noticing that A(AB) = A(A)A(B)
and A(Aw B) = M\(A) W A(B). O

The results from this Section show that it is possible to compute m* for
arbitrary process trees in polynomial time. It is also possible to compute m* for
event logs in linear time. Thus, the markovian conformance metrics (Definition 7)
can also be computed in polynomial time.

4 Experimental Evaluation

This section compares the proposed method with the previous approach de-
scribed in [2] and state-of-the-art techniques in terms of runtime and the induced
metrics. For a fair comparison, all techniques are implemented in pure Python?.

4.1 Effect of Parallelism

The first experiment measures the influence of parallelism in the runtime. For
that, we generate artificial process trees with a fixed number of activities (30)
and varying degrees of parallelism (0.2 to 0.5). For each configuration, 50 process
trees are generated. For each tree, an event log consisting of 2000 distinct variants
is sampled and a small amount of noise is injected into the logs by adding,
removing, and swapping activities.

We compare the runtime to compute three types of conformance artifacts:
trace alignment (align), the model and log projections required by the PCC
framework (PCC), and the markovian abstraction. For the latter two metrics,
we vary their k£ parameter, indicating the projection size and substring size
respectively, from 2 to 4 and break down the runtime for each method by the
time taken to process the log and the model. For the markovian abstraction,
we compare the method originally presented in [2] (m*-orig) and the proposed
method (mF-opt). For each experiment run, we set a timeout of 20 minutes.

The results are summarized in Table 1. Trace alignment is by far the slowest
method, with an average execution time of over five minutes and multiple time-
outs. For comparison, none of the other methods timed out. PCC is arguably
the second-slowest method, being the slowest in all but two scenarios. m*-opt is
the fastest method in all scenarios.

For models with little parallelism, m*-orig and m*-opt perform similarly
well, with m”-opt being slightly faster. This is explained by the fact that these

3The datasets and experiment results can be found at:
github.com/EduardoGoulartl/efficient-mk /
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Table 1: The effect of parallelism on the runtime required to compute confor-
mance artifacts, broken down by log and model processing times (if applicable).
The number of timeouts (if any) is indicated in parenthesis.

Time(s) [Log | Model]

k|Method par=0.2 par=0.3 par=0.4 par=0.5

| align | 3434 (14) 368.4 (10) 454.2 (10) 439.9 (18)
PCC [ 0.262 0.054 | 0.228  0.050 | 0.310  0.051 [ 0.258  0.048
2|mF-orig 0.108 0.320 0.564 1.465
m*-opt 0009 g og9 | 0009 34 | OO0 ggur | 0010 505
PCC [ 4376  0.507 | 3.424  0.476 | 5.442  0.487 [ 3.976  0.445
3|mF-orig 0.358 0.895 1.727 4.127
mF-opt 0.010 143 | 0009 o | OO g5y | 000 uee
PCC [ 41.704 3.388 | 36.459 3.133 [ 36.795 3.207 [ 37.661  2.909
4|\mF-orig 2.005 4.327 8.751 20.408
mF-opt 0011 g5 | 0010 503 | 0012 560 | OO 563

models have a small and linear state-space. However, increasing the amount of
parallelism from 0.2 to 0.5 causes a tenfold increase in the runtime for mF-orig,
while for mF-opt it increases by a factor of at most 4, to which we conclude
that m”-opt can better handle large models. In comparison, PCC is unaffected
by the degree of parallelism. Instead, its runtime is dominated by the event log
projections.

In general, the experiment shows the shortcomings of trace alignment and
the PCC framework in terms of runtime, especially considering large event logs.
It also shows that m”*-orig struggles to process large models. m*-opt emerged as
the clear winner in terms of performance. For event logs, m”*-opt can be up to
400 times faster than PCC. At the same time, computing m* for process models
takes roughly the same time as computing the tree projections.

4.2 Real Datasets

Next, we evaluate the markovian-based conformance metrics on two real-world
datasets: the Italian Road Fines event log, and the BPI Challenge 2015 event
log (BPIC-15). We filter the BPIC-15 log for the municipality 1, subprocess 8,
and remove repeated activities. This preprocessing is needed as otherwise the
used process discovery methods would only return flower constructs. For each
event log, we mine four process trees with the Inductive Miner infrequent variant
with noise thresholds of 02 and 05 (IMf02 and IMf05 respectively), the Inductive
Miner incomplete variant (IMc) and the flower miner. We use alignment-based
trace fitness [1] (AL) as the ground-truth fitness measure and escaping edges pre-
cision [9] (ETC) as the ground truth precision measure. We vary the respective
k parameter of PCC, MAF, and MAP from 2 to 4. The results are summarized
in Table 2.
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The first thing to notice is that the basic property that language inclusion
implies fitness of 1.0 is fulfilled by metrics for the IMc and Flower models for
both datasets. Next, for both datasets, PCC and MAF generate the same fitness
rankings as the ground truth alignment-based fitness measure (AL) for all k-s. As
k increases, the difference in fitness between models IMf02 and IMf05 increases.

For the Road Fines datasets, all metrics induce different precision rankings.
ETC is assigning a higher precision to the flower model than to the IMc model.
For k = 2,3, PCC and MAP agree on their rankings, but assign IMc as being
more precise than IMf02. This is counter-intuitive since that the IMc model has
a lot more parallelism and self-loops. For & = 4, PCC even assigns IMc as the
most precise model. For the BPIC 2015 datasets, all metrics agree on the model
rankings. However, the PCC metric will assign a relatively high precision for
models such as IMc and the Flower model.

In summary, the experiment shows that MAF and MAP induce similar fitness
and precision rankings as other state-of-the-art techniques. Notice that for both
datasets, as k increases, MAP tends towards zero. This is expected from the
definition of MAP, which does not consider any notion of substring frequency.

Table 2: Quality evaluation of fitness and precision metrics.

Miner Road Fines BPIC 2015
IMf02 IM£05 IMc Flower IMf02 IMf05 IMc Flower

AL 0.982 0.784 1.0 1.0 0.899 0.773 1.0 1.0
PCC2| 0.986 0.857 1.0 1.0 0.985 0.962 1.0 1.0
% PCC3| 0.976 0.755 1.0 1.0 0.977 0.937 1.0 1.0
£/ PCC4| 0.967 0.664 1.0 1.0 0.968 0.912 1.0 1.0
=MAF2| 0.965 0.953 1.0 1.0 0.881 0.737 1.0 1.0
MAF3| 0.936 0.826 1.0 1.0 0.833 0.475 1.0 1.0
MAF4| 0.899 0.745 1.0 1.0 0.805 0.422 1.0 1.0

ETC | 0.895 0.653 0.318 0.325 0.497 0.817 0.261 0.127
PCC2| 0.946 0.949 0.931 0.593 0.735 0.924 0.660 0.635
PCC3| 0.814 0.838 0.831 0.497 0.624 0.824 0.551 0.534
PCC4| 0.658 0.703 0.718 0.423 0.529 0.722 0.462 0.451
MAP2| 0.735 0.949 0.830 0.542 0.549 0.729 0.316 0.225
MAP3| 0.277 0.389 0.353 0.134 0.115 0.411 0.047 0.020
MAP4| 0.082 0.122 0.106 0.020 0.015 0.199 0.005 0.001

Precision

5 Related Work

Conformance checking is the field of process mining focused on comparing a
process’ desired to its observed behavior. The process model describes the de-
sired behavior. It is often encoded as a Petri net or any equivalent model with
execution semantics (YAWL, Process Trees, etc.).
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Conformance-checking is especially challenging because computing the pro-
cess model’s behavior has often worst-case exponential time due to the state
explosion problem. Hence, most state-of-the-art methods such as token-based
replay [11], alignments [1], entropia [10], or Earth mover’s distance [8] have
worst-case exponential time. This also includes the original method for comput-
ing markovian-based conformance metrics presented in [2].

A notable exception is the Projected Conformance Checking framework (PCC
framework) [7] which uses projections on subsets of activities to significantly al-
leviate the state explosion problem. In fact, for certain classes of process trees the
runtime is polynomial. Nevertheless, PCC requires multiple passes over the event
log, which is impractical for large production datasets, as shown in Section 4.

The idea of exploiting the tree structure to speed up computations is not
new. In [12] a method is presented to approximate alignments by constructing
an equivalent optimization problem from the tree structure. In [14], a method
is presented to repair alignments for iterative scenarios, for the use-case where
alignments need to be computed for similar process trees. Our work differs from
them in which we provide a speed up in computation time without the need
to approximate. Finally, in [15] a method is presented to compute trace proba-
bilities by transforming the tree into a probabilistic context-free grammar, this
transformation is only possible because of the process tree’ structure.

Last, sampling techniques [6] can be orthogonally applied to any confor-
mance method, including our technique. However, sampling only provides a lin-
ear speed-up and previously exponential techniques will remain exponential. In
production settings, where controllable runtime is important, exponential factors
are rarely a good idea.

6 Conclusion

This paper provides two important contributions. First, we presented an alterna-
tive definition of the markovian abstraction that can be more easily manipulated
using techniques from automata theory. Next, we showed how to exploit the tree-
structure of process trees to perform polynomial-time conformance checking with
guarantees. The experimental evaluation shows an improvement of multiple or-
ders of magnitude in the runtime compared to the original approach presented
in [2] and other state-of-the-art conformance checking techniques, while at the
same time still generating similar fitness and precision rankings. Most impor-
tantly, the runtime of the approach is bounded by a polynomial, making it more
controllable.

As future work, we plan to apply the proposed technique to optimization-
based discovery techniques such as the evolutionary tree miner [3], which requires
repetitive computation of conformance metrics. We also plan to explore the
stochastic perspective, by computing the probability of each substring in the
process tree’s language, to address the problem of vanishing precision values for
MAP.
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