
The Interplay Between High-Level Problems And
The Process Instances That Give Rise To Them⋆

Bianka Bakullari� 1[0000−0003−2680−0826], Jules van Thoor2,
Dirk Fahland2[0000−0002−1993−9363], and Wil van der Aalst1[0000−0002−0955−6940]

1 RWTH Aachen University, Germany
2 Eindhoven University of Technology, Netherlands

{bianka.bakullari, wvdaalst}@pads.rwth-aachen.de
d.fahland@tue.nl

Abstract. Business processes may face a variety of problems due to
the number of tasks that need to be handled within short time peri-
ods, resources’ workload and working patterns, as well as bottlenecks.
These problems may arise locally and be short-lived, but as the pro-
cess is forced to operate outside its standard capacity, the effect on the
underlying process instances can be costly. We use the term high-level
behavior to cover all process behavior which can not be captured in
terms of the individual process instances. The natural question arises as
to how the characteristics of cases relate to the high-level behavior they
give rise to. In this work, we first show how to detect and correlate ob-
servations of high-level problems, as well as determine the corresponding
(non-)participating cases. Then we show how to assess the connection
between any case-level characteristic and any given detected sequence of
high-level problems. Applying our method on the event data of a real
loan application process revealed which specific combinations of delays,
batching and busy resources at which particular parts of the process cor-
relate with an application’s duration and chance of a positive outcome.

Keywords: batch · workload · throughput time · outcome

1 Introduction

1.1 Motivation

Process mining techniques analyze event data stored in information systems in
order to get insights of real business processes [1]. Organizations strive to im-
prove their running processes by reducing cost and waste, improving resource
utilization and customer satisfaction, and so on. Many Key Performance Indi-
cators (KPIs) describe the process in terms of the individual process instances
(also called cases), e.g., by referring to the average time it takes for a case to
complete the process (the throughput time), the average accumulated cost or
positive outcome rate. Process instances, however, do not run in isolation. From
⋆ We thank the Alexander von Humboldt (AvH) Stiftung for supporting our research.

2 B. Bakullari et al.

Fig. 1. An illustration of the approach: On the left, a sketch of the performance spec-
trum [5] showing process instances running through segments (a, b), (b, c) and (c, d).
At each segment, several event pairs give rise to various patterns: high entering load at
(a, b) (top cloud), batching at (b, c) (middle cloud), and high work handover ratio at
(c, d) (bottom cloud). The cases which are involved in this pattern sequence are con-
sidered as “participating" w.r.t. that sequence. Given a case-level property, we analyze
how its value changes when comparing these cases (e.g., the process outcome of the
participating red case is negative) to the cases which visited the same locations where
the pattern emerged (here (a, b), (b, c), and (c, d)), but did not give rise to such pattern.

this viewpoint, cases that are simultaneously active in a process resemble cars
moving along traffic. Cars can cause traffic jams which, in turn, cause delays and
accidents. Similarly, cases may overload the process and the workers, leading to
congestion and delays. Moreover, when attending to multiple active cases, re-
sources may execute work in batches which, in turn, also influences the manner
in which process traffic moves forward. We refer to this kind of emergent pro-
cess behavior, which is not detectable at the level of the individual instances, as
high-level behavior. This behavior is dynamic; that is, it may arise locally and be
short-lived, but it can have an influence on the process runs of the cases active
at that time. Nevertheless, similar to traffic jams, there is always a specific set of
cases involved whenever such behavior emerges. On one hand, the characteristics
of a case may aggravate the emergence of high-level behavior, e.g., a demanding
case can block resources for longer time periods. On the other hand, the out-
come of a case can also be affected by high-level behavior occurring throughout
its run, e.g., a case may not receive the necessary attention if by chance it en-
ters the process in a busy period. There is obviously an interplay between the
high-level behavior that arises in the process and the cases which give rise to
it. Our method explores this interplay by detecting which patterns of high-level
behavior emerge surprisingly often from specific case types. The advantage of
possessing this knowledge can be manifold. Depending on the case property at
hand, one can adjust the process for specific types of cases in order to avoid
undesired but expected high-level problems, or one can make a better online
prediction of the progress of a case given its involvement in specific patterns of
high-level behavior.

High-level Problems and Their Underlying Process Instances 3

1.2 Example

Suppose that the red lines in Fig. 1 describe the process run of a case which ex-
ecutes activities ⟨a, b, c, d⟩. Assume that, in this process, it is unusual to observe
four cases entering segment (a, b) simultaneously in a short time frame (the lines
within the top yellow cloud). Moreover, multiple cases including the red case ex-
ecute activities b and c very close to each other with a very similar waiting time
in-between (the lines within the middle blue cloud). Later in the process, four
cases traverse segment (c, d) in a short time frame (the lines within the bottom
violet cloud) and work is handed over from four resources (four different colors
encircling the c events) to only two resources (only green and orange encircling
the four d events). Assuming that this work handover ratio is unusually high,
we can claim that in this example, the red case is involved in three patterns at
three different process segments it traverses: high enter load at (a, b), batching
at (b, c) and high work handover ratio at (c, d). Now suppose that the red case
turns out to have a negative outcome in the process (see the red case’s minus
sign and positioning in the right side of Fig. 1). The question arises whether par-
ticipating in this specific sequence of high-level patterns increases or decreases
the likelihood of a negative outcome in the process. In this study, we evaluate
whether a particular type of cases is disproportionately represented within the
case set that generates a specific episode of high-level behavior. When such a
situation occurs, we consider the connection between that specific episode and
case property as a valuable insight into the behavior of the process.

1.3 Approach

As shown in the previous example, diverse types of high-level patterns can emerge
at different locations and times within the process. To be able to compute how
strongly cases’ participation in high-level behavior correlates with any particu-
lar case characteristic, we first need to define what high-level behavior may look
like (the clouds in Fig. 1). In this work, we introduce different types of high-level
behavior at the segment level that relate to load (enter and exit rates), resource
busyness (handover ratio and workload), and working patterns (batches and de-
lays). We use the idea introduced in previous work [2] and conceptualize each
outlier observation of such behavior using high-level events. It is worth empha-
sizing that multiple concurrently active cases can give rise to various forms of
high-level behavior. This behavior can refer not only to process traffic and work-
load but also e.g., compliance with regulations which guide how the process
should be executed given any particular set of active cases. Within this work, we
outline high-level behavior that is specifically related to congestion as it is com-
monly observed across different process domains. The method could, however, be
easily extended to any other type of high-level problem that arises from a set of
cases that pass through a process segment in close time proximity. Given a high-
level event, we determine what qualifies a case as “(non-)participating” (where to
assign each case w.r.t. the sets depicted as circles in the right side of Fig. 1). Any
two high-level events with sufficient overlap in time, location and underlying case

4 B. Bakullari et al.

sets are assumed to be correlated, leading this way to sequences of subsequently
connected high-level events (such as the sequence consisting of the three clouds
in Fig. 1). A case participates in such a high-level path whenever its events are
involved in each high-level event comprising the path. In Fig. 1, these are the
cases whose black lines are caught up in all three clouds, such as the red case.
In order to investigate the correlation between a case-level characteristic and
a case’s participation in a given high-level path, we compare the participating
cases only to those cases which visit the same locations in the process where the
high-level behavior was observed. In the example from Fig. 1, these would be
segments (a, b), (b, c), and (c, d) in this order. Hence, in this work, we define the
“non-participating” cases to be those case which are not participating, but could
have participated from a control-flow perspective.

2 Related Work

Many of the recently developed process mining techniques acknowledge that the
progress of cases in a process is influenced by the coexistence of other cases with
which they must share process capacities. In [3], the authors aim to improve the
rate of positive outcomes in the process. They propose appropriate interventions
on changeable case aspects after having identified which treatments have a high
causal effect on which case types. This idea is taken further in [4] where the
appropriate time for applying a given time reducing intervention on a running
case is determined. This decision is based on the causal effect of the intervention
which, in turn, includes the number of active cases as an additional feature in
the learning process. Results in [15] show that the prediction of case delay at a
certain activity is improved when the model is either a transition system whose
state space is extended with system load information, or the model is based on
queueing theory. The method proposed in [13] shows how information regarding
workload and resource availability can be extracted from raw event data and en-
coded into congestion graphs. From these congestion graphs, congestion-related
features can be extracted which are then used for predicting the time until next
activity. Inter-case dependencies are also acknowledged in [14] where the current
case prediction also factors in the predictions of the cases coexisting with the
current one. All these approaches acknowledge that process instances do not run
in isolation and as such, integrating dedicated features which capture conges-
tion to train time prediction models improves their accuracy. While many of the
high-level patterns we analyze in this work relate to process congestion, we do
not encode our observations as additional features describing our running cases
for prediction purposes. Instead, each sequence of recurring outlier observations
represents an explicit variant of high-level behavior which is a trait of the process
itself. We then look back into the “low-level” cases which were part of these ob-
servations to reason on whether a specific case type is over- or underrepresented
in this group.

The performance spectrum [6] clearly showed that processes—even within
the same segment—exhibit non-stationary behavior which is not observable un-

High-level Problems and Their Underlying Process Instances 5

der aggregation. The emerging patterns can reveal batching behavior [8] which
can have an influence on performance. In [9], the authors use visual analytics
techniques based on the performance spectrum to demonstrate how errors in re-
maining time prediction are reduced when information on batching behavior is
encoded in the learning process. Our method conceptualizes many of the patterns
that can be seen in the performance spectrum—including batching—through
dedicated events, which can then be mined for further automated analysis.

Several recent methods have been developed which analyze how resources
handle tasks from concurrently active cases within a process. In [16], the authors
provide insights into how resources prioritize their work by employing specific
queueing disciplines when processing individual tasks. In [10], the authors de-
tail the detection of batching behavior not only at the level of individual tasks
but also across several linked activities. Moreover, the approach outlined in [11]
considers various batch behaviors concerned with multiple perspectives such as
activities, resources, and data perspectives as well as allowing for batch detection
even when batching is temporarily interrupted. In [18], the authors introduce an
enhanced resource profiling technique that considers not only the executed ac-
tivities, but also the context (duration, case attributes) as well as multitasking.
In our work, we incorporate the resource dimension within the high-level events
that describe outlier observations concerning batching and workload in specific
process segments. However, these observations are local and temporary and their
emergence becomes relevant only in relation to the types of cases involved.

In [7], the authors introduce the concept of contextual association, wherein
a group of cases exclusively exhibits concept drift whenever a shared object is
subject to a change. In our work, cases which give rise to high-level behavior
are contextually associated due to their shared location and time in which the
behavior is observed. In this scenario, the term “context" solely represents the
coordinate of a temporary observation in the process.

The idea of conceptualizing outlier behavior related to load and delays as
events themselves was first introduced in [17]. In that work, the emerging system-
level events from a Baggage Handling System (BHS) were connected based on
time and place proximity. The resulting cascades revealed how undesired system-
level behavior arose and propagated throughout the BHS. Similar work extending
this idea was done in [19] where DBSCAN is used to find frequent sequences of
anomalies arising at the system-level.

The method we propose in this paper fits in the high-level event mining
framework we introduced in [2]. Each high-level event consists of the type of
behavior detected, the entity involved and the time of detection. In this work,
we extend the types of high-level events that can be observed at the segment-
level and propose a more refined way of correlating them. Ultimately, we take a
look at the underlying process instances and explore whether associations exist.

6 B. Bakullari et al.

3 Preliminaries

Definition 1 (Power set, Sequence, Suffix). Given a set A, P(A) is the
power set of A and A∗ are the finite sequences over A. For any s, s′ ∈ A∗, we
say s′ = ⟨a′1, ..., a′m⟩ is a suffix of s = ⟨a1, ..., an⟩ (denoted s′ ⪯ s) if and only if
there is some i ∈ {0, ..., n−m} such that for j = 1, ...,m it holds that a′j = ai+j.

Definition 2 (Events, Event log). Uev is the universe of events and Act ,
Case, Res are the sets of activity names, case identifiers and resource names,
respectively. T is the totally ordered set of timestamps. L = (E,Attr , π) is an
event log where E ⊆ Uev is a finite set of events, {act , case, res, time} ⊆ Attr is a
set of attribute names and π ∈ E ×Attr ̸→ Val a (partial) function that assigns
each event e a value π(e, att) or is undefined (written π(e, att)=⊥). For any
e ∈ E, π(e, act) ∈ Act , π(e, case) ∈ Case, π(e, res) ∈ Res, and π(e, time) ∈ T .

For any attribute att ∈ Attr , we write att(e) instead of π(e, att) when the event
log is clear from the context. Moreover, we assume that any two events of the
same case never have identical timestamps.

Definition 3 (Traces, Steps, Segments). The cases of an event log L =
(E,Attr , π) are cases(L) = {case(e) | e ∈ E}. For any case c ∈ cases(L) with
corresponding event set Ec = {e ∈ E | case(e) = c}, the trace of c is the sequence
σ(c) = ⟨e1, ..., e|Ec|⟩ ∈ E∗

c containing all events from Ec ordered by time, i.e.,
∀1≤i<j≤|Ec| time(ei) < time(ej). A step is a pair of directly following events in
a case in L. More precisely, the steps of L are steps(L) = {(e, e′) ∈ E × E |
∃c∈cases(L) σ(c) = ⟨..., e, e′, ...⟩}. Moreover, we define S(L) = {(act(e), act(e′)) |
(e, e′) ∈ steps(L)} as the segments of L.

A step is a pair of events which happened directly after each other in the same
case. A segment is a pair of activities that directly follow each other in the log.

Definition 4 (Framing, Time Windows). A framing is a function ϕ ∈ T → N
mapping timestamps to numbers such that ∀t1,t2∈T t1 < t2 ⇒ ϕ(t1) ≤ ϕ(t2). Each
w ∈ rng(ϕ) represents time window −→w = [wstart , wend], where wstart = min{t ∈
T | ϕ(t) = w} and wend = max{t ∈ T | ϕ(t) = w}.

Given an event log L = (E,Attr , π) and a framing ϕ, set WL,ϕ = {w ∈ N |
min{ϕ(time(e)) | e ∈ E} ≤ w ≤ max{ϕ(time(e)) | e ∈ E}} contains all time
windows of L w.r.t. framing ϕ. Note that for any e ∈ E, ϕ(time(e)) = w whenever
e occurred within −→w .

4 Method

4.1 Detecting High-Level Behavior Using High-Level Events

The example in Sec. 1.2 illustrated three important components which comprise
high-level behavior: the type of behavior observed, the location in the process
where it emerges and the time aspect related to it. We call each pair of location
and time information a coordinate.

High-level Problems and Their Underlying Process Instances 7

Definition 5 (Coordinates). Given log L = (E, attr , π) and window set WL,ϕ

w.r.t framing ϕ, let W 2
L,ϕ = {(w1, w2) ∈ WL,ϕ | w1 ≤ w2}. The set CO(L, ϕ) =

S(L)×(WL,ϕ∪W 2
L,ϕ) contains the coordinates of log L w.r.t. ϕ. Each coordinate

co = (s, θ) ∈ CO(L, ϕ) refers to a position in space (segment s) and time (window
if θ ∈ WL,ϕ and window pair if θ ∈ W 2

L,ϕ).

Each outlier observation we considered in Sec. 1.2 emerged from a specific set
of steps. Which steps were involved in the observation depended on the type of
behavior we were looking for. For instance, the steps in the first cloud in Fig. 1
represent the incoming load at segment (a, b) within a particular time window.
Next, we conceptualize the colored clouds and the steps that are involved in
them using high-level features. Each high-level feature consists of its type and a
pattern. One can think of the type being the color of the cloud and the pattern
being the function which determines which subset of steps occurring in a given
coordinate may give rise to that type of feature.

Definition 6 (Pattern, Feature type). Given a log L = (E, attr , π) and
framing ϕ, a pattern is a (partial) function ρL,ϕ ∈ CO(L, ϕ) ̸→ P(E × E) × R
which assigns a set of event pairs and a number to each coordinate of L and ϕ. A
high-level feature w.r.t. L and ϕ is a pair hlf = (type, ρL,ϕ) where type ∈ Utype

is a feature type from the universe Utype of feature types and ρL,ϕ is its pattern.

In the remainder, given log L and framing ϕ, we write ρtypeL,ϕ to refer to the pattern
of the high-level feature of type type.

In this work, we consider feature types enter , exit , workload , handover , batch,
and delay . For each of these feature types, we now show how their patterns are
determined. Let co = (s, w) ∈ S(L)×WL,ϕ be a coordinate from log L with time
windows from framing ϕ. Let Is = {(e, e′) ∈ steps(L) | (act(e), act(e′)) = s} be
the event pairs (steps) that traverse segment s in the process and let Iw = {e ∈
E | time(e) ∈ −→w } be the events that occur within time window w. Feature
type enter is concerned with the steps that enter segment s during −→w and thus
ρenterL,ϕ (co) = (Ienter , val) where Ienter = {(e, e′) ∈ Is | e ∈ Iw} and val = |Ienter |.
Feature type exit is concerned with the steps that exit segment s during −→w and
thus ρexitL,ϕ (co) = (Iexit , val) where Iexit = {(e, e′) ∈ Is | e′ ∈ Iw} and val = |Iexit |.
Feature type workload is concerned with the steps that exit segment s dur-
ing −→w for which it is the same resource executing both activities of s. Thus,
ρworkload
L,ϕ (co) = (Iwld , val) where Iwld = {(e, e′) ∈ Is | e′ ∈ Iw ∧ res(e) = res(e′)}

and val = |Iwld |. Conversely, feature type handover is concerned with the steps
that exit segment s during −→w for which there were two different resources
executing the activities of s (and so real work handover took place). Hence,
ρhandoverL,ϕ (co) = (Ihdo , val) where Ihdo = {(e, e′) ∈ Is | e′ ∈ Iw∧res(e) ̸= res(e′)}
and val = |Ihdo |.

The time aspect of steps which are handled in batches refers to two time win-
dows. Let (w,w′) ∈ W 2

L,ϕ be a pair of time windows and let co = (s, (w,w′)) ∈
S(L) × W 2

L,ϕ be a coordinate. Let Iw,w′ = {(e, e′) ∈ steps(L) | time(e) ∈
−→w ∧ time(e′) ∈

−→
w′} be the set of event pairs (steps) where the first event oc-

curs during w and the second event occurs during w′. Feature type batch is

8 B. Bakullari et al.

concerned with the steps that enter segment s during −→w and exit s during
−→
w′.

Thus, ρbatchL,ϕ (co) = (Is ∩ Iw,w′ , |Is ∩ Iw,w′ |). Given a window distance δ ∈ N, the
delay w.r.t. to δ is concerned with the steps that together experience a similar
delay which is at least δ. I.e., ρdelayL,ϕ (co) = (Idelay , val) where val = |Idelay | and
Idelay = Is ∩ Iw,w′ if w′ − w ≥ δ and ∅ otherwise.

Definition 7 (High-level event). Let L be an event log, ϕ a framing and
Type ⊆ Utype a set of feature types. Let thr ∈ Type × S(L) → R be a func-
tion assigning a threshold to any type-segment pair. We observe high-level event
h = (type, co) ∈ Type × CO(L, ϕ) with co = (s, θ) if and only if ρtypeL,ϕ (co) =

(Itype , val) and val ≥ thr(type, s). Moreover, we call C(h) ⊆ cases(L) the cases
of h and for any c ∈ cases(L), it holds that c ∈ C(h) if and only if there exists a
step (e, e′) ∈ Itype with case(e) = c. The set HL,ϕ,Type,thr contains all high-level
events observed w.r.t. L, ϕ, Type, and thresholds from thr .

For any of the six feature types described above, a high-level event of type type is
observed at coordinate co if and only if the number of event pairs that comprise
the pattern related to type at that coordinate is higher than a given threshold.
Note that we propose the threshold to be determined based on both the feature
type and the segment. For instance, for any segment s, one observes a high-level
event of type exit at coordinate (s, w) whenever the number of steps leaving s
during w is above the pth percentile of all numbers of steps which leave s in any
given window throughout the process.

In the remainder of this work, we fix L, ϕ, Type and thr and set
H = HL,ϕ,Type,thr .

4.2 Connecting High-Level Events

The various high-level events observed throughout the process are not inde-
pendent of each other. As each high-level event relates to a time and place of
occurrence, one can reason about time and space proximity. Moreover, many of
the steps in the patterns that give rise to them may belong to the same cases.
It seems natural to connect the three high-level events of types enter, batch and
handover observed in Fig. 1 into a single episode of high-level behavior. That
is because going from one high-level event to the next, one can notice that the
cases involved have high overlap (1), and the first high-level event “stops” at the
same place (2) and at the same time period (3) where the second one “begins”.
We use the terms case overlap, location overlap, and time overlap to refer to
these connection criteria and we introduce them formally in this section.

Definition 8 (Start Spread, End Spread). Let h = (type, co) ∈ H be a
high-level event and let ρtypeL,ϕ (co) = (Itype , val). We refer to time period

start(h) = [min{time(e) | (e, e′) ∈ Itype},max{time(e) | {(e, e′) ∈ Itype}]

as the start spread of h. Similarly, we refer to

end(h) = [min{time(e′) | (e, e′) ∈ Itype},max{time(e′) | {(e, e′) ∈ Itype}]

High-level Problems and Their Underlying Process Instances 9

Fig. 2. For λ = 0.5, each figure shows an example where one overlap criterion from
Def. 9 is not satisfied. In the left figure, high-level events (enter , ((a, b), w2)) and
(handover , ((b, c), w2) have no time overlap. In the middle figure, (exit , ((a, b), w2))
and (handover , ((b, c), w3) have no sufficient case overlap. In the right figure,
(enter , ((a, b), w1)) and (batch, ((c, d), (w2, w3))) have no location overlap.

as the end spread of h.

In other words, given a high-level event related to segment (a, b), the start spread
covers the time period between the first and the last executions of a from the
steps in the corresponding pattern. Similarly, the end spread covers the time
period between the first and the last executions of b from those same steps.

Definition 9 (Overlap, Propagation). Let h = (type, co), h′ = (type ′, co′) ∈
H be two high-level events with co = (s, θ) and co′ = (s′, θ′). Given some λ ∈
[0, 1], we say pair (h, h′) has case overlap w.r.t. λ (denoted h

case
⇝λ h′) if and only

if |C(h1)∩C(h2)|
|C(h1)∪C(h2)| ≥ λ. We say pair (h, h′) has location overlap (denoted h

loc
⇝ h′)

if and only if s = (a, b), s′ = (a′, b′) and b = a′. Moreover, we say pair (h, h′)

has time overlap (denoted h
time
⇝ h′) if and only if either end(h1) ⊆ start(h2)

or start(h2) ⊆ end(h1). Ultimately, we say there is propagation from h to h′

w.r.t. λ (denoted h⇝λ h′) if and only if the pair (h, h′) has case overlap w.r.t.
λ, location overlap and time overlap. More precisely:

∀h,h′∈H h⇝λ h′ ⇔ h
case
⇝λ h′ ∧ h

loc
⇝ h′ ∧ h

time
⇝ h′.

Two high-level events have time overlap whenever the end spread of the first one
is contained in the start spread of the second one or the other way around. Fig. 2
depicts examples of high-level event pairs that satisfy two of the overlap criteria,
but not the third one. Whenever a pair of high-level events are close in time and
space and their cases overlap sufficiently, we assume that their observations are
correlated and we say that the first high-level event propagates to the second
one. Subsequent pairs of high-level events for which propagation occurs can lead
to sequences which we call high-level episodes.

Definition 10 (High-level episode). Given high-level event set H and some
case overlap threshold λ, any sequence of high-level events ε = ⟨h1, ..., hn⟩ ∈ H∗

creates a high-level episode if and only if ∀1≤i<n hi ⇝λ hi+1 and
⋂

h∈ε C(h) ≥ λ.
The set E(H, λ) contains all such high-level episodes.

10 B. Bakullari et al.

In order to reason about recurring behavior, we abstract from the time com-
ponent describing the high-level event and focus instead only on the type and
location of the corresponding observation (the high-level activity). Moreover,
we lift this concept to episodes and call the projection of an episode onto its
high-level activities a high-level path.

Definition 11 (High-level path). Let H be a set of high-level events and
λ ∈ [0, 1]. For any h = (type, co) ∈ H with co = (s, θ), the high-level activity
of h is h↑ = (type, s). For any episode ε = ⟨h1, ..., hn⟩ ∈ E(H, λ), the sequence
ε↑ = ⟨h1↑, ..., hn↑⟩ is its corresponding high-level path. Multiset P (H, λ) = [ε↑ |
ε ∈ E(H, λ)] contains all such high-level paths.

Note that while each episode is unique because the high-level events are unique,
the high-level paths may be recurring for different episodes. It is for these recur-
ring paths that we want to investigate the correlation with the properties of the
cases involved.

4.3 Case Participation in High-Level Behavior

The participating cases of a given high-level path are those which are involved
in all high-level events of an episode that executes the corresponding path. The
non-participating cases are those which are not participating, but which traverse
the process segments underlying the path throughout their process run.

Definition 12 ((Non-)participating cases). Given high-level event set H
and case overlap threshold λ, let p = ⟨h1, ..., hn⟩ ∈ P (H, λ) be a high-level path
and for each i ∈ {1, .., n− 1}, let si = (ai, ai+1) be the segment where the high-
level event hi was observed. The participating cases of p are Cp = {c ∈ cases(L) |
∃ε∈E(H,λ) ε↑ = p ∧ c ∈

⋂
h∈ε C(h)}. The non-participating cases of p are Cp =

{c ∈ cases(L) \Cp | σ(c) = ⟨e1, ..., ek⟩ ∧ ⟨a1, a2, ..., an⟩ ⪯ ⟨act(e1), ..., act(ek)⟩}.

To measure the correlation of a case-level attribute and a high-level path, the
set of cases Cp ∪ Cp is additionally partitioned according to the chosen case at-
tribute value (see Table 4.3). The correlation is then computed using the χ2 test
of independence on these two partitions. The χ2 test measures the difference be-
tween the observed and expected frequencies for each combination of the values
of two categorical variables. The null hypothesis states that there is no relation-
ship between case participation in a given high-level path and the chosen case
attribute. We consider the correlation as being statistically significant, and thus
reject the null hypothesis, if the corresponding p-value of the result is smaller
than 0.05.

5 Evaluation

To evaluate our method, we used the BPI Challenge 2017 log3, which corresponds
to a loan application process performed in a financial institution. Each case in
3 https://data.4tu.nl/articles/dataset/BPI_Challenge_2017/12696884

High-level Problems and Their Underlying Process Instances 11

Table 1. Given some high-level path p, the participating and non-participating case
sets Cp and Cp are further split based on the chosen categorical attribute values (here:
category 1 and category 2). The correlation between the attribute and the high-level
path is computed using the χ2 test of independence on the row partition (the chosen
case-level attribute) and on the column partition ((non-)participation in the high-level
path).

Case-level attribute Participating Cp Non-participating Cp

category 1 n1 n2

category 2 n3 n4

n1 + n3 = |Cp| n2 + n4 = |Cp|

this event log is an application. The applications can result in being successful or
unsuccessful. Moreover, the duration of applications varies from less than 10 days
to over 30 days. In this section, we analyze which sequences of high-level activities
are strongly associated with the case attributes outcome and throughput time.
In the following, we briefly describe the event log, the setup of our experiments
and some general statistics over the detected high-level events. Afterwards, we
comment on some of the high-level paths which showed a statistically significant
correlation with the outcome and the throughput time of cases. The method
together with the evaluation script is available as a Python implementation4.

5.1 The BPI Challenge 2017 Event Log

The Application log of the BPIC 2017 contains a total of 31509 applications
from January 2016 to February 2017. The general control-flow of an applica-
tion can be described as follows: first, a request for a loan is made. Then, the
submitted application is assessed. If a credit offer can be made, the bank com-
poses the offer and sends it to the customer. Some time later, a bank employee
calls the customer to remind them about the offer and answer any possible
questions. The customer sends all necessary documents to the bank which in
turn has to validate them. If the documents are incomplete, the customer is in-
formed by a bank employee that that they have to resend the documents. If the
documents are complete, the bank either composes another offer, or it makes
the ultimate decision to either accept or deny the application. The activities of
this process are divided into three categories: Application State Changes (pre-
ceded by A_), Offer State Changes (preceded by O_), and Workflow Events
(preceded by W_). The workflow events additionally contain lifecycle infor-
mation (e.g. schedule, start, suspend, resume, complete, ate_abort/withdraw).
As the steps where cases move from one state of a workflow event to another
make up for a significant amount of waiting time and rework in the process,
we classify workflow related activities using both the event type and its lifecy-
cle information. This results in activities like W_Call after offers|SUSPEND or
W_Call after offers|RESUME.

4 https://github.com/biankabakullari/hlem-framework

12 B. Bakullari et al.

Table 2. The total number of observed high-level events in the loan application log. For
each feature type, one can see the absolute and relative number of high-level events of
that type, the number of distinct segments where those high-level events were observed
and the segment where they were observed most often.

feature
type # hle (%) # distinct

segments most frequent segment

workload 1103 (20,82 %) 36 (W_Call incomplete files|schedule,
W_Call incomplete files|start)

handover 214 (4,04%) 10 (W_Call incomplete files|suspend,
W_Call incomplete files|resume)

enter 1394 (26,31%) 43 (A_Create Application, A_Submitted)
exit 1377 (25,99%) 43 (A_Create Application, A_Submitted)

batch 1048 (19,78%) 11 (W_Call after offers|suspend,
W_Call after offers|ate_abort)

delay 162 (3,06%) 5 (W_Validate application|suspend,
W_Validate application|resume)

5.2 Experimental Setting and General Statistics

Before applying our method on the event log, we projected the traces onto the 43
most frequent segments. We split the time scope of the event data onto 398 win-
dows, each corresponding to exactly one day. We evaluated the patterns related
to feature types enter, exit, workload, handover, batch and delay throughout the
entire coordinate space. Moreover, for workload and handover, we only consid-
ered human resources. Here, it means that we removed User_1 which was a
system resource, and considered only real employees of the bank (User_2 to
User_149). Each observation counted as a high-level event whenever the mea-
sured number in the corresponding pattern was at least as high as the 90th
percentile of all the values obtained for that same type-segment pair. For delays,
we chose a δ based on the 70th percentile of the days it takes to traverse a partic-
ular segment. This resulted in a total of 5298 high-level events. Table 5.2 shows
the absolute and relative frequencies of high-level events for each feature type,
together with the number of distinct segments where that type of high-level
events was observed. One can notice how the activities related to application
files being incomplete (W_Call incomplete files), the communication with the
customers (W_Call after offers) and the application validation (W_Validate
application) are most often subject to high-level behavior.

We connected the high-level events into episodes using a case overlap thresh-
old of λ = 0.5. This generated 102060 episodes, which corresponded to 68538
distinct high-level paths. For these paths, we investigated the correlation with
the outcome and throughput time of cases.

5.3 Outcome: Success Rate

The success rate refers to the number of times an application results in a positive
outcome (customer accepts an offer and the loan is granted) divided by the total

High-level Problems and Their Underlying Process Instances 13

outcome Cp Cp

successful 1087 (51,06%) 11106 (53,48%)
unsuccessful 1042 (48,94%) 9661 (46,52%)
Total: 22896 |Cp| = 2129 |Cp| = 20767

Fig. 3. The participating (Cp) and non-participating (Cp) cases of the high-level
path p = ⟨(exit , (a, b)), (enter , (b, c))⟩ where a = A_Complete, b = W_Call after
offers|SUSPEND, and c = W_Call after offers|RESUME. This path was observed 14
times in the event log. Here, χ2 ≈ 4, 55 and p = 0, 0329.

outcome Cp Cp

successful 368 (72,73%) 7160 (77,93%)
unsuccessful 138 (27,27%) 2028 (22,07%)
Total: 9694 |Cp| = 506 |Cp| = 9188

Fig. 4. The participating (Cp) and non-participating (Cp) cases of the high-level path
p = ⟨(batch, (a, b)), (workload , (b, a))⟩ where a = W_Validate application|SUSPEND
and b = W_Validate application|RESUME. This path was observed 10 times in the
event log. Here, χ2 ≈ 7, 48 and p = 0, 0063.

number of applications. In our event log, a successful case translates into its trace
containing activity A_Pending. In total, 17228 (54.85%) cases are successful and
the other 12183 (45.15%) cases are unsuccessful. The latter are the cases where
the loan is either denied by the bank or cancelled by the customer.

Next, we show four frequent high-level paths which showed a statistically
significant correlation with the case success rate. For the two possible outcomes
of success, a significant correlation is observed whenever χ2 ≥ 3.841.

The path in Fig. 3 shows that the success rate is lower for the cases which
in large groups simultaneously go from having completed the application into
the part where the bank initiates communication with them. Moreover, it seems
that for many cases in the process, the activities W_Validate application and
W_Call incomplete files are first suspended, then resumed and afterwards sus-
pended again. Suspending after resuming seems to be associated with high re-
source workload (both paths in Fig. 4 and 5). This high workload is preceded by
batching behavior (Fig. 4) and high work handover ratio (Fig. 5). Participation
in both these high-level paths seems to also be negatively associated with the
case success rate. Additionally, cases whose validation is resumed in batches with
a long waiting time after the suspension (Fig. 6) seem to also show lower success
rates than the cases whose validation is suspended and then later resumed with
a shorter period in-between.

14 B. Bakullari et al.

outcome Cp Cp

successful 852 (79,04%) 10668 (85,05%)
unsuccessful 226 (20,96%) 1875 (14,95%)
Total: 13621 |Cp| = 1078 |Cp| = 12543

Fig. 5. The participating (Cp) and non-participating (Cp) cases of the high-level
path p = ⟨(handover , (a, b)), (workload , (b, a))⟩ where a = W_Call incomplete
files|SUSPEND and b = W_Call incomplete files|RESUME. This path was observed
16 times in the event log. Here, χ2 ≈ 27, 54 and p ≈ 1, 53 · 10−7.

outcome Cp Cp

successful 928 (72,22%) 7822 (76,81%)
unsuccessful 357 (27,78%) 2362 (23,19%)
Total: 11469 |Cp| = 1285 |Cp| = 10184

Fig. 6. The participating (Cp) and non-participating (Cp) cases of the high-level
path p = ⟨(delay , (a, b))⟩ where a = W_Validate application|SUSPEND and b =
W_Validate application|RESUME. This path was observed 66 times in the event log.
Here, χ2 ≈ 13, 28 and p = 0, 0002676.

5.4 Throughput Time

The throughput time of a case is the time elapsed between the case’s first and last
event. According to [12], one can notice clear trends in the progress among the
applications which take between 10-30 days to complete, and the applications
which finish faster or pass the 30 days mark. We use these throughput time
categories to analyze the influence of our high-level paths on case duration. In
total, 7454 (23,73%) cases finish in less than 10 days, 12963 (41,27%) cases take
between 10 and 30 days, and 10994 (35,00%) cases spend longer than 30 days in
the process.

Next, we show three high-level paths which showed a strong association with
the case throughput time. While it is unsurprising that high-level problems delay
the progress of cases, our analysis reveals more detailed insights into what type of
subsequent problems emerging at which process segments show particularly high
association with the case duration. For the three throughput time categories, a
significant correlation is observed whenever χ2 ≥ 5.991.

Similarly to Fig. 3, the path in Fig. 7 shows that the cases which simulta-
neously transition from having completed the application into a part where the
bank attempts to communicate with them in batches, also suffer longer through-
put times. One can notice that there are more cases that pass the 30 days’ mark
and less cases that finish in under 10 days from the group of participating cases
than from the group of non-participating cases. Moreover, having overloaded
employees taking care of the communication process with the customers (the

High-level Problems and Their Underlying Process Instances 15

thr. time Cp Cp

≤ 10 days 273 (13,75%) 3860 (18,46%)
10-30 days 848 (42,72%) 8984 (42,96%)
≥ 30 days 864 (45,53%) 8069 (38,58%)

Total: 22898 |Cp| = 1985 |Cp| = 20913

Fig. 7. The participating (Cp) and non-participating (Cp) cases of the high-level
path p = ⟨(exit , (a, b)), (batch, (b, c))⟩ where a = A_Complete, b = W_Call after
offers|SUSPEND, and c = W_Call after offers|RESUME. This path was observed 15
times in the event log. Here, χ2 ≈ 33, 61 and p ≈ 5, 04 · 10−8.

thr. time Cp Cp

≤ 10 days 224 (18,73%) 6709 (23,20%)
10-30 days 550 (45,99%) 12006 (41,53%)
≥ 30 days 422 (35,28%) 10197 (35,27%)
Total: 30108 |Cp| = 1196 |Cp| = 28912

Fig. 8. The participating (Cp) and non-participating (Cp) cases of the high-level path
p = ⟨(workload , (a, b)), (workload , (b, c)), (workload , (c, d))⟩ where a = W_Call after
offers|SCHEDULE, b = W_Call after offers|START, c = A_Complete, and d =
W_Call after offers|SUSPEND. This path was observed 15 times in the event log.
Here, χ2 ≈ 15, 47 and p = 0, 000437.

path in Fig. 8) also correlates with longer case throughput times (especially as
the ratio of cases finishing in under 10 days decreases). The path in Fig. 9 covers
the scenario when a case is validated, an offer is returned, but then the validat-
ing process has to be suspended. It seems that for the cases which experience
batching and high workload in this process part, the throughput time worsens.

To conclude, we noticed that participation in high-level behavior was nega-
tively associated with both outcome and throughput time as the participating
cases showed lower success rates and higher throughput times compared to the
non-participating cases.

6 Conclusion

In this work, we aimed to explore the interplay between high-level problems
in the process and the process instances which underlie them. These problems
were related to observations of high loads, busy resources, batching behavior and
delays in particular locations in the process throughout different points in time.
We conceptualized each single outlier observation as a high-level event and we
connected these high-level events into episodes whenever they were close enough

16 B. Bakullari et al.

thr. time Cp Cp

≤ 10 days 448 (26,18%) 5067 (30,28%)
10-30 days 1019 (59,56%) 9542 (57,02%)
≥ 30 days 244 (14,26%) 2125 (12,70%)
Total: 18445 |Cp| = 1711 |Cp| = 16734

Fig. 9. The participating (Cp) and non-participating (Cp) cases of the high-level path
p = ⟨(exit , (a, b)), (workload , (b, c))⟩ where a = A_Validating, b = O_Returned, and
c = W_Validate application|SUSPEND. This path was observed 14 times in the event
log. Here, χ2 ≈ 13, 40 and p ≈ 0, 000123.

in time, space, and when the cases giving rise to them were similar. For a given
sequence of (outlier) observations, we wanted to investigate whether the cases
that participate in that high-level behavior differ significantly from the cases
which do not. For the comparison to be as meaningful as possible, the control
group contained only the cases which were similar to the participating cases from
a control-flow perspective. Our experiments showed that for the loan application
process, there were several examples of high-level behavior at particular segments
which were negatively associated with the case outcome (loan application success
rate) and throughput time.

While the same method can be applied w.r.t. any process property at the
case-level, the discovered significance in the connection between the emerging
process behavior and the process instances underlying it is bidirectional. In fu-
ture work, one could explore the cause-effect relationship behind these correla-
tions. For intrinsic case properties (e.g., credit score of applicant), one could
argue that it is the property itself which triggers certain kinds of high-level
behavior. For extrinsic case properties (such as throughput time, or assigned
resource for a specific task), a cause-effect discussion needs to consider the time
when that property’s value was set and when the high-level behavior emerged.
Moreover, we cannot exclude the presence of confounding variables, that is, pro-
cess aspects which influence both case participation and the case characteristic
considered.

A further improvement to the method could be in the automatic segment
selection. The experiments showed that some particular activities are run sub-
sequently in an automatic way, so that reasoning about e.g., delays or work
handover for these activity pairs makes less sense. Moreover, one could extend
the method with a way of evaluating and ordering the detected high-level be-
havior by how surprising or interesting it is for the process at hand. Lastly, this
method could be integrated in an interactive tool where the user selects the
case property as well as high-level feature types and as a result, a list of most
significant and interesting high-level behaviors w.r.t. that property is shown.

High-level Problems and Their Underlying Process Instances 17

References

1. van der Aalst, W.M.P.: Process Mining: Data science in Action. Tech. rep. (2014)
2. Bakullari, B., van der Aalst, W.M.P.: High-level event mining: A framework. In:

ICPM (2022)
3. Bozorgi, Z.D., Teinemaa, I., Dumas, M., La Rosa, M., Polyvyanyy, A.: Process

mining meets causal machine learning: Discovering causal rules from event logs.
In: ICPM (2020)

4. Bozorgi, Z.D., Teinemaa, I., Dumas, M., Rosa, M.L., Polyvyanyy, A.: Prescriptive
process monitoring for cost-aware cycle time reduction. In: ICPM (2021)

5. Denisov, V., Belkina, E., Fahland, D., van der Aalst, W.M.P.: The performance
spectrum miner: Visual analytics for fine-grained performance analysis of processes.
In: BPM (2018)

6. Denisov, V., Fahland, D., van der Aalst, W.M.P.: Unbiased, fine-grained description
of processes performance from event data. In: BPM (2018)

7. Dubinsky, Y., Soffer, P., Hadar, I.: Detecting cross-case associations in an event
log: toward a pattern-based detection. Software and Systems Modeling (2023)

8. Klijn, E.L., Fahland, D.: Performance mining for batch processing using the per-
formance spectrum. In: BPM Workshops (2019)

9. Klijn, E.L., Fahland, D.: Identifying and reducing errors in remaining time predic-
tion due to inter-case dynamics. In: ICPM (2020)

10. Martin, N., Pufahl, L., Mannhardt, F.: Detection of batch activities from event
logs. Information Systems 95, 77–92 (2021)

11. Pika, A., Ouyang, C., ter Hofstede, A.: Configurable batch-processing discovery
from event logs. ACM Transactions on Management Information Systems 13, Ar-
ticle number: 28 (2022)

12. Rodrigues, A.M.B., Almeida, C.F.P., Saraiva, D.D.G., Felipe, B., Moreira,
Spyrides, G.M., Varela, G., Krieger, G., Igor, T., Peres, Dantas, L.F., Lana, M.,
Alves, O.E., França, R., Ricardo, Neira, A., Gonzalez, S.F., Fernandes, W., Bar-
bosa, S.D.J., Poggi, M., Lopes, H.C.V.: Stairway to value : mining a loan applica-
tion process (2017)

13. Senderovich, A., Beck, J., Gal, A., Weidlich, M.: Congestion graphs for automated
time predictions. Proceedings of the AAAI Conference on Artificial Intelligence 33,
4854–4861 (2019)

14. Senderovich, A., Francescomarino, C.D., Maggi, F.M.: From knowledge-driven to
data-driven inter-case feature encoding in predictive process monitoring. Informa-
tion Systems 84, 255–264 (2019)

15. Senderovich, A., Weidlich, M., Gal, A., Mandelbaum, A.: Queue mining for delay
prediction in multi-class service processes. Information Systems 53, 278–295 (2015)

16. Suriadi, S., Wynn, M., Xu, J., van der Aalst, W., ter Hofstede, A.: Discovering
work prioritisation patterns from event logs. Decision Support Systems 100, 77–92
(2017)

17. Toosinezhad, Z., Fahland, D., Köroglu, Ö., van der Aalst, W.M.P.: Detecting
system-level behavior leading to dynamic bottlenecks. In: ICPM (2020)

18. van Hulzen, G.A., Li, C.Y., Martin, N., van Zelst, S.J., Depaire, B.: Mining context-
aware resource profiles in the presence of multitasking. Artificial Intelligence in
Medicine 134, 102434 (2022)

19. Wimbauer, A., Richter, F., Seidl, T.: Perrcas: Process error cascade mining in trace
streams. In: Process Mining Workshops (2022)

