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Abstract—Traditional process mining assumes that each event
is related to precisely one case. This can be compared to
mainstream modeling notations using Petri nets (in particular
WF-nets), BPMN diagrams, directly-follows graphs, flowcharts,
or UML activity diagrams. These notations describe the life-
cycle of a process instance (often called case in process mining).
Currently, we see an uptake of Object-Centric Process Mining
(OCPM), where events can refer to any number of objects and
where objects can be related. OCPM includes process discovery
starting from Object-Centric Event Data (OCED) to produce
process models that describe different object types in a single
diagram. Since Colored Petri Nets (CPNs) have been around for
decades and have been widely used for modeling, verification,
and simulation, CPNs are an obvious target model for OCPM.
The transition from traditional process mining to OCPM can be
compared with the transition from classical Petri nets to CPNs.
However, it turns out to be very difficult to discover arbitrary
CPNs. This keynote paper summarizes what has been done before
and why it is challenging to discover CPNs. However, starting
from OCED, subclasses of CPNs can be discovered (which we
refer to as OCED2CPN). These insights are also relevant for
conformance checking and forward-looking forms of process
mining starting from OCED.

Index Terms—Colored Petri Nets, Object-Centric Process Min-
ing, Object-Centric Event Data, Process Mining

I. INTRODUCTION

Process-mining software provides unique opportunities to
improve processes in a data-driven manner. Process mining
starts from event data that need to be extracted from informa-
tion systems (e.g., SAP, Oracle, and Salesforce). These data
are used to discover the actual processes, check compliance,
diagnose problems, predict performance, and automatically
take action [1], [2]. There are over 40 commercial offerings
of process mining software and analyst firms like Garner now
consider this to be a new and substantial category of software
(see, e.g., the Gartner Magic Quadrant [3]). Starting point are
event data where each event should have a timestamp and an
activity label. In traditional process mining, it is also assumed
that each event refers to precisely one case. This simplifying
assumption helps to get started quickly. Also when people
model processes by hand, they typically describe the lifecycle
of a single case, i.e., most process models describe the ordering
of of activities seen from the viewpoint of a single case (e.g.,
an order, an application, a patient, or a loan). Although the
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simplifying assumption has many advantages, it also creates
some problems. In reality, events may refer to many objects.
For example, a “place order” event may refer to one order,
five items, and one customer, and a “deliver package” event
may refer to one package, three items, and one customer. The
package may contain items of different orders and items of
one order may end up in multiple packages. It is impossible
to pick a case notion that captures reality well. Picking orders,
items, or packages as case identifiers lead to distorted views
on a more complex reality [4], [5].
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Fig. 1. Object-Centric Event Data (OCED) are composed of typed events

and typed objects in a many-to-many relationship.

Object-Centric Process Mining (OCPM) takes a more holis-
tic and more comprehensive approach to process analysis and
improvement by considering multiple object types and events
that involve any number of objects. For OCPM, we extract
Object-Centric Event Data (OCED) described by the meta
model in Figure 1 [5]. An event may be related to any number
of objects and an object may be related to any number of
events. Cases in traditional process mining can be viewed as
objects which the additional requirements that (1) there is
just one type (i.e., the selected case notion) and (2) events
need to refer to precisely one object (i.e., the case). Both
events and objects are typed. We often use the term activity to
refer to an event type. There may be many events having the
same type. Events also have a timestamp and are considered
atomic. To model activity instances with an explicit duration,
one needs to record a start and complete event. Examples of
object types are orders, items, customers, suppliers, invoices,



resources, locations, patients, students, loans, etc. Events and
objects can have any number of additional attributes. Event
attribute values do not have an explicit timestamp, because the
corresponding event has a timestamp. Object attribute values
have a timestamp because for the same object the value of
an attribute may change over time (e.g., price or temperature).
Unlike traditional event data, OCED also allows for Object-to-
Object (020) relationships next to the Event-to-Object (E20)
relationships. As Figure 1 shows, both O20 and E20 relations
can be qualified (e.g. for a meeting event we can differentiate
between objects of type person, e.g., participants, presenters,
and the chair). Although the meta model in Figure 1 is rather
simple, it is very powerful and generic. All objects and events
of an organization can be stored systematically using this meta
model.

Using OCPM, it is possible to view all operational activities
from any perspective while establishing a single source of
truth. It allows organizations should steer away from system-
specific event logs (OCED are intended to be system agnostic).
It is possible to “flatten” OCED by promoting one object type
to become the selected case notion. This way it is possi-
ble to use all existing process mining tools and algorithms.
However, when doing this, one should be aware of the well-
known convergence and divergence problems [4], [5]. Events
referring to multiple objects of the type selected as the case
notion need to be replicated, possibly leading to unintentional
duplication (called convergence). The replication of events can
thus lead to misleading diagnostics. After flattening, there may
be multiple events that refer to the same case and activity,
but that differ with respect to one of the non-selected object
types (called divergence). As a result, events referring to
different objects of a type not selected as the case notion
become indistinguishable. These are the usual problems one is
confronted with when extracting traditional event data directly
from the source systems. However, then it is hidden and
also more time-consuming because one needs to redo the
extraction when new questions emerge and the view changes.
This is inflexible and prevents reuse. Using OCED, there is
no need to extract the data when changing the viewpoint.
This allows for flexibility using “on demand” process-mining
views. OCPM also provides novel and valuable improvement
opportunities for problems that live at the intersection points
of processes and organizational units [5]. However, existing
process mining techniques need to be extended to relax the
single-case assumption. To this end, we developed techniques
to discover Object-Centric Petri Nets (OCPNs) [6], [7]. In
OCPNs, each place refers to an object type. This leads to
the main question addressed in this keynote paper: How does
OCPM relate to Colored Petri Nets?

Colored Petri Nets (CPNs) are an established formalism
based on classical Petri nets to model and analyze concur-
rent processes involving different types of objects [8]-[10].
In classical Petri nets, objects are represented by tokens,
but these are indistinguishable. Therefore, CPNs associate
data values to tokens such that they become “colored” and
distinguishable. Places are typed using so-called color sets.

These color sets can be compared to object types in OCED.
Given the similarities between events in OCED and transition
occurrences in a CPN and the similarities between typed
objects in OCED and colored tokens in a CPN, we elaborate
on the relation between CPNs and OCPM. We will show that
it is possible to discover subclasses of CPNs starting from
OCED. We refer to such techniques as OCED2CPN. However,
it is impossible to discover arbitrary CPNs. By discussing the
relationship between CPNs and OCPM, we provide interesting
insights guiding the further development of the process-mining
discipline.

The remainder is organized as follows. Section II briefly
introduces Colored Petri Nets (CPNs) using a few examples.
Section III summarizes existing discovery approaches to learn
CPNs using traditional event logs focusing on a single case
notion. Section IV shows the challenges when trying to learn
arbitrary CPNs. Section V sketches how to discover a restricted
class of CPNs based on OCED. Section VI concludes the

paper.
II. COLORED PETRI NETS

Petri nets are the oldest and still best-known formalism to
model and analyze concurrent processes [11], [12]. A classical
Petri net is a bipartite directed graph composed of transitions
(represented by squares) and places (represented by circles). A
place may contain tokens (shown as black dots). A marking is
a distribution of tokens over places and represents the state of
the process. A transition is enabled when each of the input
places contains a token. An enabled transition may occur
(called firing), removing a token from each input place and
producing a token for each output place.

In a classical Petri net, tokens are indistinguishable (so-
called “black tokens”). For many applications, it is meaningful
to attach a value to a token. Such tokens are called colored
tokens because now they can be distinguished based on their
values. This leads to so-called Colored Petri Nets (CPNs) [8],
[9] supported by tools such as CPN Tools (cf. cpntools.org).
We use two small examples to explain some of the basics of
CPNs.
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Fig. 2. CPN model to generate all Fibonacci numbers below 10000.

Figure 2 shows a CPN in CPN Tools generating a prefix
of the Fibonacci sequence which is a sequence in which each



number is the sum of the two preceding ones. The model
generates all Fibonacci numbers below 10000, i.e., 0, 1, 1, 2,
3,5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597,
2584, 4181, and 6765. For example, 6765 is the sum of the
two previous numbers: 2584 and 4181. The places prev and
current represent the two last numbers. Initially, these contain
the numbers 0 and 1 respectively. Place seq contains a token
that corresponds to a sequence of numbers. Initially, the value
of the token in place prev is the sequence containing the first
number in the sequence (i.e., 0). Transition incr consumes a
token with value y from place prev, a token with value x from
place current, and a token with value s (which is a sequence)
from place seq. The transition produces a token with value x
for place prev, a token with value = + y for place current,
and a token for place seq (its value is the sequence composed
of the old sequence extended with z). Transition incr has a
guard stating that = needs to be smaller than 10000. Figure 2
shows in green the marking after 20 transition occurrences.
Place seq indeed contains a token with the Fibonacci sequence
until 6765. Although the CPN in Figure 2 has little to do with
operational processes, it reveals some of the basic concepts.
Note that each place is typed by a color set. The places prev
and current are of type INT (see the color set declaration on
the left-hand side). Place seq is of type SEQ which is a list of
integers. The arc inscriptions (e.g., x+y on the arc connecting
transition incr to place current) specify how consumed tokens
are related to produced tokens.

Figure 3 shows another CPN Tools screenshot. There are
three color sets: Order (to model orders represented by an
integer), Resource (to model resources represented by a string),
and OrdRes (the combination of an order and resource). The
left part models the creation of orders. Transition create order
consumes a token from place counter with value ord and
returns a token with value ord+1 to the same place with a
delay sampled from a negative exponential distribution having
an expected value of 5 time units. All places are now timed.
Transition create order also produces a token for place ol
representing a new order and has a guard ensuring that pre-
cisely 100 orders are created. For each order, two production
steps need to be performed. Transition start assembly models
the start of the assembly process which requires a resource
from place freel. Transition complete assembly models the
end of the assembly process and returns a resource to place
freel. Note that a token in place or/ models the combination
of an order and a resource. Transition start painting models
the start of the painting process and transition complete
painting models the end. Note that there are three resources
for assembly (Pete, Mary, and John) and two resources for
painting (Kate and Sue). Simulating the process to the end
results in a marking with 100 tokens in place 05 modeling the
completed orders.

The last example CPN is shown in Figure 4. This example
is relevant for object-centric process mining where a variable
number of objects may be involved in an event. The CPNs
shown in Figures 2 and 3 consume a fixed number of tokens.
This is not the case for transitions unpack and pack in Figure 4.

There are two color sets: Item and Items (to present a collec-
tion of items). Place init contains three example item sets.
Therefore, transition unpack will occur three times. Transition
unpack produces one token for place inprod and a variable
number of tokens for place i/. Note that the arc inscription is
on the arc from unpack to il is of type Items, but place il is of
type Item. Hence, if is represents a collection of four items,
then one token is produced for inprod and four tokens are
produced for i/. Transitions checkl and check2 both consume
and produce one token of type Ifem. Transition pack consumes
one token from place inprod and a variable number of tokens
from place i3. Actually, the items consumed from i3 need to
match the value of the token consumed from inprod. If the
token is consumed from inprod represents a collection of four
items, then precisely these four tokens need to be consumed
from i3.

Figures 2, 3, and 4 illustrate that CPNs can be used to
describe any discrete dynamic system. However, we would
like to relate this to process mining: Is it possible to discover
CPNs from the event data in information systems? To answer
this question, we first consider traditional event data using a
single case notion.

III. LEARNING COLORED WORKFLOW NETS

Figure 1 describes Object-Centric Event Data (OCED).
However, most process mining techniques do not allow for
multiple object types. In the classical setting, each event
relates to precisely one case and a process model describes
the lifecycle of individual cases in isolation. Each case is
described by a sequence of events. In terms of Petri nets
this relates to the class of WorkFlow nets (WF-nets) [13].
WF-nets are related to notations used in industry such as
the BPMN (Business Process Model and Notation) standard
[14]. Most process mining techniques focus on process models
comparable WF-nets (e.g., BPMN, DFGs, process trees, and
activity diagrams). After introducing CPNs, we can explain
the limitations of WF-nets using the example in Figure 5.

The WF-net in Figure 5 describes the handling of request
for compensation within an airline (the example is taken
from [1]). Each case corresponds to a request. The process
starts with activity register request and ends with activity pay
compensation or activity reject request. There are two types of
examination. One of these is done concurrent to checking the
ticket. Then a decision is made. It is also possible to reinitiate
the request. All the places in Figure 5 are of type Case, i.e., a
token always refers to a case. Note that activity register request
produces two tokens with the same identifier. Activity decide
consumes two tokens that need to refer to the same case. WF-
nets have a clear starting point and a clear end (here the source
place start and the sink place end respectively). In a WF-net,
cases flow from start to end which corresponds to the fact
that in the event data each case is described by a sequence of
events. Note that in Figure 5 we could drop the arc inscriptions
and color sets of places because they are fixed anyway (i.e.,
c and Case respectively).
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A range of process discovery approaches using the “single-
case assumption” have been proposed [2]. These can be
grouped in “bottom-up” approaches like the Alpha algorithm
and region-based techniques [1], [15]-[19] and ‘top-down”
approaches like the inductive mining techniques [20], [21].
See [22] for a recent survey of process discovery techniques.

Note that we focus here on control-flow only. However,
we can add the other perspectives easily. Each event has a
timestamp and the differences between two subsequent events
for the same case can be used to learn the time distribution.
Consider for example place c/ in Figure 5. We can measure the
time difference between register request or reinitiate request
putting a token in ¢/ and examine thoroughly and examine

causally removing a token from c/. Using this information, we
can add time distributions to the CPN model. It is also possible
to add additional attributes to events and cases. In [23], it is
shown how the different perspectives can be combined. The
implementation described in [23] shows how ProM can be
used to discover the control-flow and then add decision rules,
resources, probabilities, and time. The result is a CPN model
that can be simulated using CPN Tools.

This earlier work shows that it is possible to discover CPNs
from event data under the assumption of a specific case notion.
However, just like in Figure 5, tokens need to refer to cases
rather than arbitrary objects. There are no relations between
different objects (i.e., cases) and each transition occurrence



refers to one case instead of a collection of objects.

IV. LEARNING ARBITRARY CPNs

As [23] convincingly shows, it is possible to discover CPNs
from traditional event logs covering control-flow, data-flow,
resources, probabilities, and time. However, it is impossible
to discover arbitrary CPNs. To explain this, let us try to
understand what it means to be able to discover the WF-
net shown in Figure 5. For simplicity, we limit ourselves
to control-flow. Think now of the following rediscoverability
experiment. Simulate the process model and create an event
log that has some level of completeness. Since the model has a
loop, we cannot expect to see all possible traces. However, we
can assume that we see all directly-follows relations (i.e., if
activity a; can be followed by activity as, we should see it at
least once). The event log can be seen as a multiset of traces
where each trace is a sequence of activities. Based on such
information, we would like to rediscover the WF-net shown in
Figure 5 or at least a WF-net that has the same behavior (e.g.,
modulo renaming places). The place names are not relevant
and the arc inscriptions and color set are fixed. All the classical
discovery algorithms mentioned before [15]-[21] will be able
to rediscover the WF-net. However, Figure 5 is not an arbitrary
CPN and we carefully represented the event log as a multiset
of traces.

Now consider Figures 2, 3, and 4. What would be suitable
event logs for these three models? If transition occurrences
correspond to events, we could describe each event by the
transition name, the time at which the transition fired, and
the values of the variables used for the arc inscriptions.
For example, if we abstract from time, the first transition
occurrence of the CPN in Figure 2 could be described by
incr(zx = 1,y = 0,s = [0]). The next four transition
occurrences are: incr(x = 2,y = 1,5 = [0,1]), incr(z =
3,y =2,8 =10,1,2]), incr(z = 5,y = 3,s = [0,1,2,3]),
and incr(x = 8,y = 5,8 = [0,1,2,3,5]). This triggers
three challenges: (1) it is not reasonable to assume that this
information is stored in existing information systems, (2) it
is impossible to directly observe the markings (i.e., tokens in
places), and (3) it is impossible to learn arbitrary functions
relating the different variables (note that any function can be
defined and used in the CPN). To address the second challenge,
more information needs to be stored in the event log. This
is unrealistic because this would imply that the event log is
already showing parts of the model and the model is not
really learned. When learning form data, one always needs
to assume a target representation, e.g., a linear function in
linear regression or a decision tree in decision tree learning.
In a CPN, functions can be arbitrarily complex, e.g., the
Ackermann function could have been applied to = and y in
Figure 2.

To properly define a discovery task, we need to fix the
input representation (e.g., a multiset of traces) and the class
of possible target models (e.g., WF-nets). We cannot assume
that the input representation reveals the underlying structure
of the model (e.g., places or arc inscriptions). Also, we need

to limit the class of models. Therefore, we picked OCED and
Object-Centric Petri Nets (OCPNs) as a starting point [6], [7].

V. LEARNING OBJECT-CENTRIC PETRI NETS

As discussed, it is impossible to discover arbitrary CPNs.
Therefore, it makes sense to return to the OCED meta model
in Figure 1. It is natural to think of events as transition
occurrences. It is also natural to think of objects as tokens
in places. We assume that each place has a type (like in
CPNs) and corresponds to an object type. We also assume that
transitions do not create, merge, or destroy objects. Objects are
created by the environment. This limits the possibilities and
results in so-called Object-Centric Petri Nets (OCPNs). In an
OCPN each place corresponds to an object type. There are
two types of arcs: normal arcs consuming and producing one
token (i.e., object) and variable arcs consuming and producing
a variable number of objects. For variable arcs, cardinalities
can be specified (at least one, at most five, etc.)

Figure 6 shows an OCPN represented as a CPN. There
are three object types (Order, Item, and Package) and six
event types (place order, pick item, send invoice, pack items,
receive payment, and deliver package). The arcs with the
arc inscription items are variable. For example, an event
of type place order may refer to multiple items. Events
of type pack items and deliver package may also refer to
multiple items. An OCPN is deliberately ‘“underspecified”
and only provides typing and cardinality constraints. Objects
of different types are related (e.g. a order refers to items)
but this is in the data and does not need to be specified.
It is impossible to provide more details here. Therefore, we
refer to [6] where the approach is described. This discovery
approach was also implemented in our open-source tools, e.g.,
the “OCELStandard” package in ProM (promtools.org), the
OC-PM tool (ocpm.info), and Object-Centric Process Insights
(ocpi.ai). Celonis Process Sphere uses similar ideas and was
the first commercial implementation of OCPM [24].

VI. CONCLUSION

In this keynote paper, we related Colored Petri Nets (CPNs)
to Object-Centric Process Mining (OCPM). CPNs, and re-
lated models such as predicate/transition nets [25], have been
around for over 40 years [8], [9]. Various tools and analysis
techniques have been developed for CPNs. When combining
Petri nets with different types of objects, one naturally ends
up with CPNs. However, CPNs have been mostly considered
for modeling, verification, and simulation. There are very few
approaches to discover CPNs and [23] is a notable exception.
However, also this paper does not consider multiple types of
objects and assumes a single case notion. Given the uptake
of OCPM it makes sense to revisit the relation. What is the
class of CPNs we can discover using Object-Centric Event
Data (OCED) as defined by the meta model in Figure 1?

Answering this question is relevant as OCPM provides
important advantages. Using OCPM data extraction is con-
figured only once and does not need to be adapted when
changing viewpoints or answering new questions. Redundancy
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is avoided because there is no need to create a data model
per process. This provides more flexibility and makes data
extraction less time-consuming. Using OCPM interactions
between different types of objects can be analyzed. Many
performance problems involve multiple interrelated objects.
For example, in an assemble-to-order process, customer orders
may be delayed due to unreliable suppliers for selected parts
or the lack of production or transportation capacity. Often
multiple processes are competing for resources. Therefore, the
scope of analysis should not be limited to one type of objects.
OCPM also helps to transition from “data push” to “data pull”
using system-agnostic data models. Ideally, one would like to
record events and objects at the business level and not at the
database level. Distortions such as convergence and divergence
are avoided by staying close to reality and it is possible to view
events and objects from any angle without going back to the
source systems.
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