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Abstract. The Internet of Things (IoT) has empowered enterprises to
optimize process efficiency and productivity by analyzing sensor data.
This can be achieved with process mining, a technology that enables
organizations to extract valuable insights from data recorded during
process execution, referred to as event data in a process mining con-
text. In our case study, we aim to apply process mining to sensor data
collected within a logistic process at an air cargo terminal, specifically
from device-to-device communication. By representing the sensor data
as event data, we rectify them to accurately capture the movement of
package distribution in the logistic process. However, due to the commu-
nication dynamics, challenges arise from the presence of irrelevant data
that does not impact the process instance’s status. Moreover, issues such
as faulty sensor readings and ambiguous data interpretation further com-
pound these challenges. To overcome the obstacles, we collaborate with
domain experts to develop rules that take into account the context of
each event in a trace, enabling us to effectively capture package distri-
bution within the system. We present the results of our process mining
analysis, which have been validated by domain experts. This case study
contributes to the understanding and utilization of sensor data for pro-
cess mining in IoT environments, with a specific focus on data collected
from device-to-device communication.

Keywords: Process mining · IoT · Sensor data · Logistic process · Data
rectification · Device-to-device communication.
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1 Introduction

The Internet of Things (IoT), a network of interconnected devices exchanging
data through embedded sensors via the internet, has unlocked new possibilities
for modern enterprises to digitize and automate their business processes [19].
Sensors integrated into devices collect valuable data about various aspects of a
process such as machine conditions, location of an order, or individual health
metrics. By analyzing these data, companies can derive actionable insights to
improve efficiency and productivity in their processes [18].

Process mining is a data-driven technology that empowers organizations to
extract fact-based insights using event data generated and recorded in informa-
tion systems during process execution [1]. For example, process discovery unveils
the behavior of activities in a process [3, 5, 16], i.e., well-defined process steps,
while conformance checking compares the observed behavior against predefined
expectations [4,10,13]. By leveraging process mining on event data, organizations
gain valuable insights for enhancing the execution and design of their processes.

Process mining typically assumes event data organized based on process in-
stances (i.e., cases), with each event representing a status change within a case.
In our case study of a logistic process in an air cargo terminal, our goal is to ap-
ply process mining to sensor data and extract insights on package distribution
performance within the system. However, the sensor data collected primarily
serves the purpose of device-to-device communication to determine device avail-
ability for the distribution process. When directly applying process mining to
event data transformed from the sensor data, we may include events not directly
relevant to package distribution, i.e., an event that does not signify a status
change of package distribution within the system. Such misalignment between
the sensor data and the event data hinders the application of process mining.

Figure 1 exemplifies the challenges described, necessitating the rectification of
sensor data for process mining. The figure portrays the distribution of a package.
The process beings with a package residing on device A, which communicates
with device B to facilitate the package transfer. Following device A’s readiness
signal, the package is forwarded to device B. Subsequently, device B communi-
cates with device C in an attempt to transfer the package; yet the latter declines
to receive it. Consequently, the distribution proceeds to device D. Throughout
the process, the sensor data contain extraneous data unrelated to the package’s
movement within the system. One example is the presence of data originating
from device C, which the package never traversed. This example demonstrates
how the specific sensor data contribute to the analysis of package distribution,
which is the focus of this case study. In contrast, other data serve the purpose of
communication between the involved devices and are considered extraneous noise
that impedes the application of process mining. Such misalignment arises from
the inherent divergence in their respective purposes. The sensor data utilized in
our case study is primarily intended to support and enable device-to-device com-
munication, which stands as one of the fundamental objectives of sensors within
an IoT environment. Hence, to effectively apply process mining, it is crucial to
rectify and align the sensor data with the behavior of interest.
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(a) Misalignment between the sensor data and the event data indicating the package
movement in the system. The lower timelines depict data samples collected by sensors
on specific devices for a package distribution at a given point in time, labeled with
the signals (e.g., Arrived, Departed) that indicate the availability of the correspond-
ing device. The upper timeline displays the actual package movement. Dashed arrows
highlight the data samples that actually signify the package movement.

(b) Relationship of devices in the system, with arrows indicating the possible direction
of package distribution on the devices.

Fig. 1: An example of sensor data for device-to-device communication in the
context of a package distribution. Consistent coloring is utilized to represent
information related to each device across the relationship of devices, the timelines
of signals sent by devices, and the timeline representing the package’s stay on
each device.

In this paper, we illustrate the rectification process applied to the collected
sensor data in our case study. Through careful analysis, we identified and exam-
ined the challenges arising from the misalignment between the communication
among the involved devices and the actual distribution of packages. Practical
challenges, such as legacy systems and the ambiguity in interpreting sensor data
(e.g., the departure of a package from a device may be signified by various sig-
nals like readiness or departed, as exemplified in Figure 1), further contribute
to the complexity of the rectification process. We overcome these challenges and
rectify the sensor data to align them with the package distribution within the
terminal. This collaborative effort involves leveraging the expertise of domain
professionals to ensure the reliability of the decisions made in the solutions. The
effectiveness of our approach is demonstrated through an analysis of the behav-
ior of package distribution using the rectified event data with process mining
techniques, leading to valuable and validated insights.
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Table 1: Every row represents a data sample from a sensor installed on a conveyor
device (DID) to exchange its status (Sig) in relation to a package (PID), which is
placed in a tray (TID) to be distributed at a specific point in time (Timestamp).
The device’s location is identified by its associated floor and zone, and the type
of device (Type), such as conveyor belt or lift shaft, is also provided.

TID PID Sig DID Timestamp Floor Type Zone ...

FFD541256 2365884459 Initiate KJDQ4414 12:05:23 9 LB J ...
FFD541256 2365884459 Ready KJDQ4414 12:05:24 9 LB J ...
FFD541256 2365884459 Ready KJDQ4414 12:14:30 9 LB J ...
FFD541256 2365884459 Decide BRMI1121 12:15:35 0 RS J ...
FFD541256 2365884459 Arrive BRMI1121 12:16:31 0 RS J ...
FFD541256 2365884459 Depart BRMI1121 12:17:25 0 RS J ...
FFD541256 2365884459 Arrive UGOI9833 12:17:26 2 CB J ...
FFD541256 2365884459 Arrive NXVR3307 12:17:35 2 CB J ...

The remainder of the paper is structured as follows. In Section 2, we intro-
duce the available sensor data and provide an example of rectification. Section 3
illustrates the challenges identified and the approach developed. In Section 4, we
apply process mining on the repaired sensor data and demonstrate the outcomes.
Section 5 presents related work in the field, while Section 6 concludes the paper
by summarizing the lessons learned from our case study.

2 Overview

In this section, we present a sample of sensor data provided and an example
illustrating the rectification.1

Representation of Sensor Data as Event Data. Table 1 presents an excerpt
of the sensor data collected. Each row corresponds to a data sample generated by
a sensor for communication between the devices. For example, the first row spec-
ifies that the package 2365884459 is in the tray FFD541256 on device KJDQ4414
with type LB, which initiates the package distribution in zone J (written as ZJ)
on floor 9 (written as F9) at 12:05:23.

We consider a data sample an event. A case consists of events describing
package distribution, identified by the package identifier PID. Except for TID,
which is a case attribute, other fields are assigned as event attributes. A trace is
a sequence of events in a case ordered based on their timestamps as visualized
in Figure 2, and an event log is the collection of traces.

1Due to confidentiality, the data are manipulated and anonymized, while preserving the relative
relationships between data samples to illustrate the observed behavior in the paper.
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Fig. 2: A visualization of a fragment of the trace based on Table 1, where every
chevron represents an event annotated with the corresponding attributes, i.e.,
timestamp and signal, and is colored based on its activity, i.e., device identifier.

Rectification of Event Data for Package Movement. Our objective is to
align event data with the package movement throughout its distribution. We
aim to determine the specific device on which the package resides and the cor-
responding timeframe. Figure 3 presents an excerpt of the rectification. The
package 2365884459 was on KJDQ4414 from 12:05:23 to 12:14:30, which is in-
ferred by the first and last events among the continuous events of KJDQ4414.
Next, the package arrived and departed BRMI1121 at 12:16:31 and 12:17:25, re-
spectively, as indicated by the events of the arrival and departure of the package
on BRMI1121. Then, the package arrived UGOI9833 at 12:17:26; without another
event for the package on UGOI9833, we assume that the departure occurred at
the same time as it arrived at the next device, i.e., 12:17:35. In this example,
we demonstrate some rectification performed, involving renaming the signals,
filtering out communication overhead, and creating an artificial event.

We present a sample of the provided sensor data and illustrate the rectifi-
cation conducted through an example. By showcasing the raw sensor data and
its corresponding repair, this section highlights the necessity of rectifying sensor
data within the context of this case study.

3 Event Data Rectification

We identified several challenges in aligning the event data with the package move-
ment. To address the challenges, we drew on domain knowledge and developed
a rectification process to repair the event data.

Fig. 3: Rectifying event data based on the sensor data presented in Table 1. The
top figure depicts the trace fragment in Figure 2. The bottom one illustrates the
rectified trace fragment that aligns with the package movement in the system.
Different arrow types are used to distinguish the implemented solutions.
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3.1 Challenges

We analyzed the event data and discovered some challenges specific to sensors
and the system. In the IoT environment, device-to-device communication facil-
itates information exchange. However, this communication dynamic also intro-
duces a challenge where some events derived from the transformed event data
are not directly related to the physical movement of a package. For instance, the
events labeled with Decide in Figure 1 and Table 1 are specifically transmitted
to assess the suitability of the respective device for package reception. Another
example is depicted by the second Arrive from device A in Figure 1, which is
regarded as timeout noise resulting from an unexpectedly extended duration of
stay on the device.

Furthermore, we discovered an improbable situation depicted in Figure 4a,
where a package appeared to be simultaneously present on two devices, as indi-
cated by its arrival at CJYB3150 before its departure from OVTI3564. Collaborat-
ing with domain experts, subsequent investigation revealed that this unrealistic
behavior was due to faulty sensors – CJYB3150 detects the arrival of the package
before OVTI3564 signifies its departure. To address this issue, we implemented a
solution by interchanging the timestamps, as illustrated in Figure 4b.

Finally, the devices in our case study exhibit varying communication pat-
terns, where not all devices are capable of sending all types of messages. This
diversity in programming logic among the devices results in different combi-
nations of signals being transmitted, as illustrated in Figure 2. Additionally,
when a package distribution encounters obstacles and a device along its path is
not ready for package dispatch or reception, further communication is required.
However, the communication pattern may not be universally applicable to other
devices in the system. As a result, the interpretation of a signal extends beyond
its literal meaning and relies on the contextual information associated with the
corresponding event. For instance, in Figure 3, the second Ready is aligned to the
departure from KJDQ4414 since no events are labeled as Depart from KJDQ4414

before the package arrives on BRMI1121.
The challenges encountered in our case study have implications that extend

beyond our specific scenario and are relevant to various IoT settings involving
sensor data and physical object movement. First, the presence of extraneous data

(a) Event data with sensor fault, where a
package arrives on the next device before
departing the previous device.

(b) Repaired event data with sensor fault,
where the timestamps of the implausible
arrival and departure are swapped.

Fig. 4: Repairing event data with sensor fault. We highlight the corrective mea-
sures implemented on the observed behavior in Figure 4a, resulting in the be-
havior depicted in Figure 4b.
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resulting from device-to-device communication dynamics can introduce noise in
process mining. For instance, an online order or a package delivery experiences
repeated notifications of waiting or delayed status for several days, despite the
absence of any meaningful progress or updates from the business perspective.
Second, the presence of faulty sensors is not limited to our case study. In different
contexts, such as logistics or manufacturing, faulty sensors can produce mislead-
ing readings, causing a discrepancy between the perceived status of a case and
its actual condition. Finally, the existence of different programming logic among
sensors introduces additional challenges in process mining. This challenge is not
limited to legacy systems, as demonstrated in our case study, but also extends
to IoT environments encompassing devices from different manufacturers. These
challenges emphasize the importance of rectifying sensor data in IoT environ-
ments to ensure the reliability of the insights obtained through process mining.

3.2 Rectification Process

We develop a rectification process based on three principles identified during the
analysis. This section outlines the process and we further illustrate the principles.

Overview. With the aim of reducing ambiguities, we developed a rectification
process outlined in Figure 5. The process consists of three phases. First, we
process the event data using explicit business rules to handle the data quality
issues arising from the data extraction process. Second, we address ambiguities
and filter out noise, which includes events that are not directly associated with
the physical movement of a package, as well as events that exhibit improbable
behavior resulting from sensor malfunctions. Finally, we merge the consecutive
events from the same device and relabel the events for the arrival and departure
of a package on each device.

Principles. We demonstrate the principles that we applied for the rectification
of the event data in the process.

1. Signal category. There are eight different signals. We categorize them
based on their literal meaning, which is described in Table 2. The first cate-
gory, physical movement, includes signals that primarily indicate the physical

Fig. 5: Schematic diagram of the rectification process. First, we process the event
data based on explicit rules. Next, we filter the events solely for communication
messages and noises. Then, we merge and relabel events to indicate the stay
of a package on a device. The resulting rectified event data signify the package
movements in reality.
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Table 2: Categories of signals based on their literal meaning and domain knowl-
edge.

Category Description Signal Values (Sig)

Physical Movement Mostly indicating the physical movement of a package Arrive, Depart
Communication Often for exchanging the status of the device Decide, Ready, Initiate

Package Distribution Always updating the distribution of a package Cancel, Insert, Change

movement of a package. Next, the category of communication consists of sig-
nals that often show the status of a device. Lastly, the category of package
distribution comprises signals that indicate the distribution of a package,
e.g., a package distribution is canceled with an event labeled with Cancel.

2. Certainty based on signals. Due to the challenges identified, the cate-
gories defined are insufficient to determine the actual arrival or departure of
a package on a device Hence, in collaboration with domain experts, we es-
tablish a ranking of the certainty, i.e., whether an event indicates the actual
movement of a package, based on its signal, taking into account the context
of the event in a trace. This ranking is separately defined for the arrival and
departure of a package, allowing us to demonstrate the relative certainty
associated with each event in relation to its context.
– Certainty for arrival: Arrive, Initiate, Decide, Ready
– Certainty for departure: Depart, Ready, Decide, Initiate

Note that an Arrive only signifies the arrival of a package on a device,
and a Depart indicates the departure; hence, they are not considered in the
complementary ranking.

3. Interpretation based on the context. In addition to the literal meaning
of the signals, whether an event indicates actual package movement depends
on the context of the event. For instance, in the case of the second Ready

from KJDQ4414 in Figure 3, it is considered as indicating actual movement
because there are no events labeled as Depart from KJDQ4414.

Due to the large number of devices involved, it is impractical to identify and
resolve all the ambiguities with the assistance of domain experts. Moreover, as
the system was constructed long ago and some of the original domain experts
are no longer associated with the organization, the available domain knowledge
for addressing these ambiguities is limited. Reprogramming all the sensors solely
for the purpose of process mining is not a viable option due to time and budget
constraints. Hence, we define these principles to guide the rectification of various
solutions in each phase of the process, incorporating limited domain knowledge
and effectively addressing the ambiguities.

3.3 Application of Principles

In this section, we present examples that demonstrate the application of the
principles in each phase of the rectification process. The implementation of the
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solutions follows a rule-based and automated approach, which has been devel-
oped through rigorous testing and iterative refinement. We carefully define the
rules through extensive analysis of the event data, along with discussions and
validation with domain experts. Our objective is to minimize the potential for
false corrections during the automated rectification process. This iterative ap-
proach allowed us to continually enhance the effectiveness and accuracy of the
automated solutions, ensuring the reliable of the results.

For simplicity, we adopt the same expression to represent a trace fragment,
without displaying the timestamp or device identifier. First, we address the data
quality issues arising from the collection and extraction of sensor data.

Example 1: Identify incomplete cases. The presence of Arrive is assigned with
significantly higher importance compared to other signals. A package is consid-
ered more likely to actually reach a device when an Arrive is sent from the
device. By prioritizing Arrive, we address the completeness of cases by consid-
ering those without an Arrive event as incomplete.

Example 2: Reorder events with identical timestamps. We observed a peculiar
behavior in which a package appears to be rapidly shuttled back and forth be-
tween two pieces of devices within an unreasonably short duration (less than a
second). This behavior is impossible within the normal operation of the system.
The anomaly may stem from the arrival of data samples at the data lake in
an order that does not correspond to the package movement. We address it by
reordering such events based on their context as shown in Figure 6.

Next, we resolve the ambiguities arising from the challenges discussed in
Section 3.1 and filter out noises. The following examples illustrate the solution
implemented to address four types of noise caused by ineffective cancellations,
timeouts, communication, and sensor faults.

Example 3: Detect effective cancellations. Cancellation of package distribution
occurs due to business reasons. The cancellation can be reversed by an Insert.
When a cancellation is retracted, we consider the associated events as noise.
However, the relationship between a Cancel and an Insert is undefined. To
establish their relation, we determine their proximity in a trace. Retraction is
considered effective within a distance of 2 in the trace as depicted in Figure 7.

(a) Swap events based on surrounding de-
vice identifiers.

(b) Reorder events while preserving the
order for the other events.

Fig. 6: Reorder events of identical timestamps based on the context. Events shar-
ing the same timestamp are grouped and highlighted, with additional emphasis
on the correction focus.
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Fig. 7: Detection of retraction of cancellation, noise (the second Insert), and
effective cancellation (the last Cancel since there is no subsequent Insert).

Example 4: Remove timeout noise. Events labeled with the same signal from
the same device are classified as timeout noise and are eliminated based on the
defined ranking. For instance, in the case of Arrive, the timeout noise refers
to those that are not the first occurrence among consecutive events from the
same device. The timeout noise for Depart is defined symmetrically. Figure 8
highlights the events as timeout noise under other different conditions.

(a) First Ready is timeout
noise due to Arrive from
the same device.

(b) Last Ready is timeout
noise due to Depart from
the same device.

(c) Last Initiate is time-
out noise based on Ready in
the certainty ranking.

Fig. 8: Identification of timeout noise across various scenarios. We identify time-
out noise based on the context and the defined certainty ranking, which are
highlighted with arrows.

Example 5: Filter communication noises. According to the ranking of certainty,
we identify communication noise based on context. If an event is surrounded
by other events with signals that rank higher according to the defined ranking,
we classify it as communication overhead and exclude it from the event data.
The examples in Figure 9 demonstrate the mechanism and the identification of
communication noise across various scenarios.

(a) Both Decide and Ready are considered
as communication overhead due to the ex-
istence of both Arrive and Depart.

(b) Decide is regarded as communication
overhead while Ready is not due to the
presence of Arrive and the absence of
Depart.

Fig. 9: Recognition of communication noise based on category and certainty rank-
ing. We point out the communication overhead with arrows.
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Example 6: Swap timestamps for faulty sensors. Based on the high confidence
placed on Arrive for the actual arrival, we identify noise caused by malfunction-
ing sensors and address it by swapping the timestamps, as explained in Figure 4.

This phase of the process heavily relies on the context to identify and elim-
inate noise. As the context evolves, we iteratively apply the solutions to reduce
the communication overhead. This process continues until no further events can
be removed. Once the communication overhead is eliminated, in the next phase,
we relabel and create artificial events to align them with the package movement
and ensure the consistency of event format per device.

Example 7: Relabel events. Suppose only two events of a device remain that
exhibit a clear logical order in a trace; relabeling is not required or is straight-
forward. In situations where only one Arrive is sent, we create an artificial event
to represent the departure, using the timestamp of the next device’s arrival in the
package distribution. If only a Depart exists, the implementation follows a sym-
metrical approach. Figure 3 demonstrates the scenarios described. Note that
these decisions are based on context and category. If only communication sig-
nals exist, we assume the package never reaches the device and consequently
remove the associated events. For example, in Figure 1, the events from device
C are appropriately eliminated during this step due to the absence of signals in
the category of physical movement.

Building upon the principles, we have effectively devised solutions to tackle
the challenges discussed in Section 3.1. These solutions have been seamlessly in-
tegrated into our project partner’s information system, enabling the computation
of proprietary key performance indicators. By leveraging the rectified event data
extracted through our proposed solutions, we have enabled empowered analysis
and facilitated process mining activities, as presented in the next section.

4 Process Mining

The rectified event data consists of approximately 5,000 unique device identifiers
and 20,000 distinct variants. Given the complexity of the event data, validating
every path with the physical situation in the terminal is not feasible. Meanwhile,
the classical discovery and conformance-checking algorithms fall short in terms
of scalability. Hence, we abstract the event data based on the device attributes to
uncover process models and validate the insights obtained from process mining
outcomes instead. The models are discovered through inductive mining tech-
niques and further enhanced with domain knowledge [11, 12], which are colored
with the relative frequency of the distribution and annotated with labels for
readability. The abstraction is performed as in Figure 10, where we merge and
rename the events based on floor. Abstraction based on other attributes is
performed in a similar manner.
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Fig. 10: Abstracting event data based on floor attribute. The top trace show-
cases a fragment of rectified trace and the bottom one is the corresponding
abstracted fragment based on floor.

Figure 11 and 12 present the models discovered based on the location infor-
mation. Figure 11 reveals that most of the package distributions are initiated on
F9 but can end up on different floors, mainly exiting on F0. Except for F0, most
floors are rarely revisited. It is also worth noting that not all the data samples
from the sensors on lift shaft (LS) are received when packages are distributed
across floors, indicating missing sensor readings. Figure 12 demonstrates the dis-
tribution based on zones in F0. Two stages are identified. In the first stage, no
dominant paths across zones are identified; meanwhile, some zones are closely re-
lated based on their values, which reflects the geographical naming conventions.
In the second stage, the distributions leave the F0 from zones U, K and R.

Figure 13 presents another aspect of package distribution. Similarly, we see
the combination of device types that are often applied together. Moreover, it
shows a sequential pattern across the 3 stages of distribution: the beginning,
during, and end on F0. Besides packages arriving from lift shafts (LS), some
packages are stacked in storage-type devices, i.e., hand-operated lift (HL) and
lifting boom (LB), before being distributed throughout the floor.

We evaluate the fitness [2] and the precision [15] of the models based on
the event data before and after rectification. At the floor level, the fitness is
approximately 0.7 for both datasets, while the precision is 0.97 and 0.93 for the
pre- and post-rectification datasets, respectively. We assume that the models
in Figure 12 and 13 represent behavior on all floors and compare them against
the package distribution on other floors. Figure 14 presents the results. The
metrics do not differ much at the floor and zone levels. However, regarding
device type, the fitness increases for most floors, while the change in precision

Fig. 11: Package distribution based on floors. Since lift shafts (device of type LS)
is used for distributing packages across different floors, we do not classify them
to any floors.
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Fig. 12: Package distribution based on zones on F0.

varies depending on the floor. In most cases, F-Score is enhanced. Moreover, the
metrics for F9 exhibit lower fitness values due to the limited device types on the
floor, which primarily serves as the entry floor for package distribution.

5 Related Work

Sensor data in the context of the IoT present unique challenges in terms of qual-
ity and reliability. Extensive research has been conducted to address these chal-
lenges. Teh et al. conducted a systematic review focusing on the quality-related
issues of physical sensor data, categorizing eight types of sensor data errors and
discussing existing solutions for error detection and correction [17]. Similarly,
Gaddam et al. provided a comprehensive review that specifically examined the
detection of sensor faults in the IoT [8]. Additionally, Mansouri et al. identified
and discussed various IoT data quality issues based on existing research [14].
These issues align closely with the challenges encountered in our case study,
including the misalignment arising from faulty sensors, inconsistencies due to
different sensor programming logic, redundancy owing to device-to-device com-
munication, and ambiguity in data interpretation. However, while these existing
techniques aim to tackle general data quality issues in IoT, they may not directly
address the specific challenges encountered in our case study, which focuses on
analyzing and extracting insights from package distribution within the system.

Fig. 13: Discovering package distribution on F0 at the abstraction level of device
type.
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(a) Metrics based on the model in Fig-
ure 12.

(b) Metrics based on the model in Fig-
ure 13.

Fig. 14: The fitness, precision, and F-score of the models based on F0, which are
compared against two datasets per floor: raw (before rectification) and rectified.
The metrics are color-coded consistently, with the hue differentiating datasets.

Our approach rectifies sensor data by considering the real-world behavior of
package distribution and addresses the ambiguity in data interpretation through
the context of an event in a case. The customized approach bridges the gap
between the data used for process mining and the specific data quality consider-
ations of our case study. These findings highlight the relevance and the potential
applicability of our work in addressing the broader challenges in IoT.

Process mining has emerged as a prominent technology in the IoT domain,
enabling the analysis of sensor data collected in IoT environments. For in-
stance, Dreher et al. explored the feasibility and application of process mining in
manufacturing-related processes [6]. Considering the similarities between logistic
processes and manufacturing processes, where the efficient flow of goods and ser-
vices is a crucial objective, the research gap identified in manufacturing-related
processes is also relevant to our case study. Specifically, the paper acknowledges
the research gap we aim to address in this case study, stating that ”implement-
ing process mining in manufacturing faces a significant disconnect between the
physical flow of materials and the digital information flow” [6]. Janssen pro-
posed a technique to discretize sensor data into event data suitable for process
mining by correlating events, discovering activities, and abstracting events [9].
The work focuses on elevating the sensor data to the business level. Similarly,
van Eck et al. conducted a study where they abstracted sensor data by map-
ping temperature and acceleration measurements from a smart baby bottle to
human activities and identifying process instances through activity grouping [7].
By applying process mining to the transformed data, their work demonstrated
the value of process mining in facilitating the design process of smart products.
Our case study shares the same objective, aiming to identify significant events
or sensor data that represent meaningful status changes within a case, facilitat-
ing analysis at the business level. However, our study specifically addresses the
challenges posed by device-to-device communication and focuses on resolving
the ambiguity in data interpretation based on contextual information.
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In conclusion, our case study addresses the specific challenges that arise from
device-to-device communication in the context of process mining. While exist-
ing techniques for addressing sensor data issues in IoT environments may not
directly apply to our case study, we have developed customized rules tailored
to the challenges observed in the real-world package distribution scenario. This
tailored approach benefits from the iterative discussions and presentations with
stakeholders and domain experts, ensuring the effectiveness and reliability of our
approach. Moreover, existing research in process mining predominantly focuses
on identifying key concepts such as activities and cases from sensor data cap-
turing continuous measurements. In contrast, our case study fills an important
gap by proposing an approach to address the integration of sensor data from
device-to-device communication within the process mining framework.

6 Lesson Learned and Opportunities

Sensor data present unique challenges in applying process mining to extract
business-level insights. In addition to the high volume of data points typically
found in sensor data, we identified various inherent challenges including sensor
malfunctions, missing readings, and communication overhead in the case study.
Furthermore, the limited availability of domain knowledge in a legacy system
adds to the complexity, with uncertainties arising in the interpretation of sen-
sor data. Meanwhile, conducting a simulation on a large system is expensive.
To tackle these challenges, we developed a rectification process based on the
principles identified and discussed throughout our analysis. The solutions were
implemented specifically tailored to the identified conditions, to effectively re-
pair sensor data and align them with the package movement. We demonstrate
the effectiveness of the proposed solutions with the validated process mining
outcomes based on the rectified event data. For future work, although the im-
plemented solutions have been customized to achieve optimal quality, there is an
opportunity to apply them to a broader range of IoT use cases. By utilizing the
certainty ranking and conducting repeated checks on the contextual information
of events, a general solution is to be developed to match event pairs for every
package distribution on a device to enhance the applicability and effectiveness
of our approach.
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