
XRL/Woflan: Verification of an XML/Petri-net-based language for
inter-organizational workflows

H.M.W. VERBEEK*, W.M.P. VAN DER AALST h.m.w.verbeek@tue.nl

Faculty of Technology Management, Eindhoven University of Technology, the Netherlands

A. KUMAR akhil.kumar@colorado.edu

College of Business, CB 419, University of Colorado, Boulder, Co 80309, USA

Abstract. Internet-based technology, E-commerce, and the rise of networked virtual enterprises have fueled the need for inter-
organizational workflows. Although XML allows trading partners to exchange information, it cannot be used to coordinate
activities in different organizational entities. Therefore, we developed a workflow language named XRL (eXchangeable Routing
Language) for supporting cross-organizational processes. XRL uses XML for the representation of process definitions and Petri
nets for its semantics. Since XRL is instance-based, workflow definitions can be changed on the fly and sent across organizational
boundaries. These features are vital for today’s dynamic and networked economy. However, the features also enable subtle, but
highly disruptive, cross-organizational errors. On-the-fly changes and one-of-a-kind processes are destined to result in errors.
Moreover, errors of a cross-organizational nature are difficult to repair. In this paper, we present XRL/Woflan. XRL/Woflan is a
software tool using state-of-the-art Petri-net analysis techniques for verifying XRL workflows. The tool uses eXtensible Stylesheet
Language Transformations (XSLT) to transform XRL specifications to a specific class of Petri nets. The Petri-net representation is
used to determine whether the workflow is correct. If the workflow is not correct, anomalies such as deadlocks and livelocks are
reported.

Keywords: Workflow, Inter-organizational, verification, extensibility, XML, WF-net, XRL, Woflan

1. Introduction

Today’s corporations often must operate across organizational boundaries. Phenomena such as E-
commerce, extended enterprises, and the Internet stimulate cooperation between organizations. Therefore,
the importance of workflows distributed over a number of organizations is increasing [3, 4, 19, 26]. Inter-
organizational workflow offers companies the opportunity to re-shape business processes beyond the
boundaries of their own organizations. However, inter-organizational workflows are typically subject to
conflicting constraints. On the one hand, there is a strong need for coordination to optimize the flow of
work in and between the different organizations. On the other hand, the organizations involved are
essentially autonomous and have the freedom to create or modify workflows at any point in time. These
conflicting constraints complicate the development of languages and tools for cross-organizational
workflow support.

Recent development in Internet technology, and the emergence of the “electronic market makers”,
such as ChemConnect, Ariba, CommerceOne, Clarus, staples.com, Granger.com, VerticalNet, and
mySAP.com have resulted in many XML-based standards for electronic commerce. The XML Common
Business Library (xCBL) by CommerceOne, the Partner Interface Process (PIP) blueprints by RosettaNet,
the Universal Description, Discovery and Integration (UDDI), the Electronic Business XML (ebXML)
initiative by UN/CEFACT and OASIS, the Open Buying on the Internet (OBI) specification, the Open
Application Group Integration Specification (OAGIS), and the BizTalk Framework are just some examples
of the emerging standards based on XML. These standards primarily focus on the exchange of data and
not on the control flow among organizations. Most of the standards provide standard Document Type
Definitions (DTDs) or XML schemas for specific application domains (such as procurement). One of the
few initiatives that also address the control flow is RosettaNet. The Partner Interface Process (PIP)

* Corresponding author
1

blueprints by RosettaNet do specify interactions using UML activity diagrams for the Business
Operational View (BOV) and UML sequence diagrams for the Functional Service View (FSV) in addition
to DTDs for data exchange. However, the PIP blueprints are not executable and need to be predefined.
Moreover, like most of the standards, RosettaNet is primarily focusing on electronic markets with long-
lasting pre-specified relationships between parties with one party (such as the market maker) imposing
rigid business rules.

Looking at existing initiatives, it can be noted that:

(1) process support for cross-organizational workflow has been neglected since lion’s share of attention
has gone to data and

(2) only pre-specified standardized processes have been considered (such as, market places, procurement,
and so on).

Based on these observations, we developed the eXchangeable Routing Language (XRL). The idea to
develop a language like XRL was raised in [24] and the definition of the language was given in [8]. XRL
uses the syntax of XML, but contains constructs that embed the semantics of control flow. Moreover, XRL
supports highly dynamic one-of-a-kind workflow processes. For example, we consider the “first trade
problem,” that is, the situation where parties have no prior trading relationship [27]. Clearly, the “first-
trade problem” is the extreme case of highly dynamic one-of-a-kind workflow processes and therefore also
the most difficult. To support highly dynamic one-of-a-kind workflow processes, XRL describes processes
at the instance level. Traditional workflow modeling languages describe processes at the class or type level
[21, 25]. An XRL routing schema describes the partial ordering of tasks for one specific instance. The
advantages of doing so are that:

(1) the workflow schema can be exchanged more easily,
(2) the schema can be changed without causing any problems for other instances, and
(3) the expressive power is increased.

Note that workflow-modeling languages typically have problems handling a variable number of parallel or
alternative branches [6]. In our research on workflow patterns [6], we compared the expressive power of
many contemporary workflow management systems including COSA, HP Changengine, Forté Conductor,
I-Flow, InConcert, MQ Series Workflow, R/3 Workflow, Staffware, Verve, and Visual WorkFlo using a set
of workflow patterns (See http://www.tm.tue.nl/it/research/patterns/). Based on the workflow patterns
supported by these systems, and their relative use in practice, we carefully selected the most relevant
constructs for XRL. Note that the expressive power of XRL far exceeds that of each of the workflow
management systems mentioned above.

As was shown in [8], the semantics of XRL can be expressed in terms of Petri nets [32, 33]. Based on
these semantics, we developed a workflow management system, named XRL/Flower, to support XRL.
XRL/Flower benefits from the fact that it is based on both XML and Petri nets. Standard XML tools can be
deployed to parse, check, and handle XRL documents. The Petri-net representation allows for a
straightforward and succinct implementation of the workflow engine. XRL constructs are automatically
transformed into Petri-net constructs. On the one hand, this allows for an efficient implementation. On the
other hand, the system is easy to extend:

For supporting a new routing primitive, only the transformation to the Petri net format needs to
be added and the engine itself does not need to change.

Unfortunately, the Petri-net-based semantics of XRL given in [8] results in Petri nets that do not fit into the
class of so-called WorkFlow nets (WF-nets). WF-nets are a special subclass of Petri nets which possess an
appealing correctness notion (the soundness property [1]), are based on strong theoretical results (such as,
the link between soundness, liveness, and boundedness [1]), and are supported by powerful software (such
as, the tool Woflan [38]). The semantics given in [8] does not allow for a direct use of these theoretical
2

results and tools. This limitation was recognized in [9]. In this paper, we present a direct transformation
from XRL to WF-nets, that is, the semantics of XRL is given in terms of WF-nets. The transformation has
been implemented in XSLT (eXtensible Stylesheet Language Transformations) and resulted in the tool
XRL/Woflan.

XRL/Woflan builds on the workflow verification tool Woflan [37, 38]. Developers of contemporary
workflow management systems have virtually neglected correctness issues. As a result, in most workflow
management systems, it is possible to design workflows which suffer from anomalies such as deadlocks
and livelocks without any form of warning. Few tools provide any form of workflow verification support.
The tools Woflan [38] and Flowmake [36] are two noteworthy exceptions. To complicate matters, more
and more workflow management systems are used to support inter-organizational business processes, for
example, in the context of Business-To-Business (B2B) E-commerce. Especially for open E-commerce
(that is, doing business among parties having no prior trading relationship), the workflow support should
be trustworthy in the sense that trading partners who do not know each other, and may even come from
different countries and cultures, may conduct business with the assurance that their interests will be
protected in the event that “things go wrong”, whether by accident, negligence, or intentional fraud [27].
One of the prerequisites for this is the guarantee that the workflow process definitions do not contain any
logical errors. Therefore, XRL/Woflan, the verification tool presented in this paper, is highly relevant for
developers of inter-organizational workflows.

Figure 1 shows the architecture of the toolset involving XRL/Flower and XRL/Woflan. Using both
the control flow data for the workflow case and the case specific data, the Petri-net engine computes the set
of enabled tasks, that is, the set of work items that are ready. The engine sends this set to the work

Petri-net
engine

Web server

Work
distribution

module

Process data

Case data

Form data

Enabled
tasks

Work item

Web client

XSLT library
manager

XSLT
library

XSLT code
(new

template)

XRL2PNML

XRL file
(new instance)

Woflan

PNML file
to verfiy

Verification
results

Verified
PNML file

Client PC

Server Host

User requests Responses

Task
update

Organiz. data

Work item
pool

Figure 1. A detailed architecture for implementing inter-organizational workflows using XRL/
Woflan.
3

distribution module. Based on information on the organizational roles and users, the work distribution
module sends e-mails offering the work item to certain users who are qualified to work on it. A user would
receive an e-mail notification with a URL pointing to new work item(s) waiting for her. By clicking on the
URL, the user accepts the work item; thus, the work item becomes an activity for a specific user, and other
users to whom the work item was also offered are notified that it has already been accepted and is no
longer available to them. A user who has accepted an activity may perform work on it either at acceptance
time or later. In order to enable a user to perform an activity, the web server fills the appropriate form
template with the case specific data for the activity. The user indicates completion of an activity by, say,
pressing a submit button. The web server stores the updated case data and signals the Petri-net engine that
the activity has been completed. The Petri-net engine then recomputes a new set of work items that are
ready. The user can also start an XRL instance by sending the corresponding XRL file to the web server.
The web server forwards the XRL file to the XRL2PNML module that transforms XRL to PNML (Petri-
Net Markup Language), which is a standard representation language for a Petri net in XML format [22].

Figure 2 shows how the XRL2PNML module makes the transformation from XRL to PNML. First, it
transforms the XRL file to two PNML files: one for verification and one for enactment. The first PNML
file (for verification) can be considerably smaller in size than the second (for enactment), but their
soundness characteristics are the same. The first PNML file is verified using the XRL/Woflan tool. Based
on the result of the verification, either the second PNML file is sent to the Petri-net engine for enactment,
or the user is informed that the XRL instance contains flaws. In the latter case, the user may either abandon
the new instance, or modify it to fix the errors. Of course, the fixed instance is also verified before it is
enacted. If the expressive power of the current XSLT library does not satisfy the user’s needs, she may
decide to extend this library by adding a new template to it. Figure 3 shows how this is done. First, the user
describes the DTD of the new pattern. Second, she writes the XSLT code that will transform the new
template to the appropriate PNML code. After the new XSLT code is verified, it is incorporated into the
XSLT library.

The remainder of this paper is organized as follows. Section 2 introduces XRL and Section 3 gives an
example of how a workflow can be represented in XRL. Section 4 introduces WF-nets. Then Section 5
provides the formal semantics of XRL in terms of WF-nets. Based on these semantics, Section 6 discusses
the soundness of XRL routes, while Section 7 proposes a verification procedure that exploits the structural
properties of certain XRL constructs and Petri-net based reduction rules [32]. Section 8 demonstrates the

Transform into PNML using XRL2PNML

Verify PNML using Woflan

Enact using Petri-net engineFix XRL instance

XRL file to
enact

PNML Files

Verfication Ok

Verification not Ok

AbandonContinue

Verified PNML file

 Verified
PNML Files

Fixed XRL
file to enact

Figure 2. Transformation from XRL to PNML.
4

extensibility of XRL by showing how new constructs may be added to XRL. Section 9 presents our tool
XRL/Woflan. Section 10 relates this paper to known research. Section 11 concludes the paper. Appendix A
shows the DTD of XRL after the extensions from Section 8 have been added. Appendix B shows the XRL
route for processing a customer order that is introduced in Section 3. Appendix C lists the complete XSLT
specification of the extensions mentioned in Section 8, using the macros as defined in Appendix D. These
macros were introduced to keep the verbose XSLT files as compact and readable as possible. The resulting
(‘macrofied’) XSLT specifications are listed in Appendix E.

2. XRL: An XML based routing language

The focus of this paper is on verification and extensibility. Therefore, we limit ourselves to only a brief
introduction to XRL and the workflow management system XRL/Flower. The syntax of XRL is
completely specified by the DTD [15] shown in Figure 4. An XRL route is a consistent XML document,
that is, a well-formed and valid XML file with top element route (see Figure 4).

The structure of any XML document forms a tree. In case, of XRL, the root element of that tree is the
route. This route contains exactly one so-called routing element. A routing element (RE) is an important
building block of XRL. It can either be simple (no child routing elements) or complex (one or more child
routing elements). A complex routing element specifies whether, when and in which order the child routing
elements are done.

XRL provides the following routing elements:

Task: Offer the given step to some resource, wait until the step has been performed, and afterwards set all
events for which a child event element exists.

Sequence: Start the child routing elements in the given order and wait until all have been performed.
Any_sequence: Start the child routing elements in any order and wait until all have been performed.
Choice: Start one of the child routing elements and wait until it has been performed.
Condition: If the given condition holds, start the child routing elements of all true child elements in parallel

and wait until all have been performed. Otherwise, start the child routing elements of all false child

Describe DTD of pattern

Write XSLT code

Verify XSLT code

Rewrite XSLT code
Update XSLT library

using XSLT library manager

Not OK

Ok

Abandon Continue

New pattern
to add

Figure 3. Adding a new template to the library.
5

<!ENTITY % routing_element
"task|sequence|any_sequence|choice|condition|parallel_sync|parall
el_no_sync|parallel_part_sync|parallel_part_sync_cancel|wait_all|
wait_any|while_do|terminate">
<!ELEMENT route ((%routing_element;), event*)>
<!ATTLIST route
name ID #REQUIRED
created_by CDATA #IMPLIED
date CDATA #IMPLIED>

<!ELEMENT task (event*)>
<!ATTLIST task

name ID #REQUIRED
address CDATA #REQUIRED
role CDATA #IMPLIED
doc_read NMTOKENS #IMPLIED
doc_update NMTOKENS #IMPLIED
doc_create NMTOKENS #IMPLIED
result CDATA #IMPLIED
status (ready|running|enabled|disabled|aborted|null) #IMPLIED
start_time NMTOKENS #IMPLIED
end_time NMTOKENS #IMPLIED
notify CDATA #IMPLIED>

<!ELEMENT event EMPTY>
<!ATTLIST event

name ID #REQUIRED>
<!ELEMENT sequence ((%routing_element;|state)+)>
<!ELEMENT any_sequence ((%routing_element;)+)>
<!ELEMENT choice ((%routing_element;)+)>
<!ELEMENT condition ((true|false)*)>
<!ATTLIST condition

condition CDATA #REQUIRED>
<!ELEMENT true (%routing_element;)>
<!ELEMENT false (%routing_element;)>
<!ELEMENT parallel_sync ((%routing_element;)+)>
<!ELEMENT parallel_no_sync ((%routing_element;)+)>
<!ELEMENT parallel_part_sync ((%routing_element;)+)>
<!ATTLIST parallel_part_sync

number NMTOKEN #REQUIRED>
<!ELEMENT parallel_part_sync_cancel ((%routing_element;)+)>
<!ATTLIST parallel_part_sync_cancel

number NMTOKEN #REQUIRED>
<!ELEMENT wait_all ((event_ref|timeout)+)>
<!ELEMENT wait_any ((event_ref|timeout)+)>
<!ELEMENT event_ref EMPTY>
<!ATTLIST event_ref

name IDREF #REQUIRED>
<!ELEMENT timeout ((%routing_element;)?)>
<!ATTLIST timeout

time CDATA #REQUIRED
type (relative|s_relative|absolute) "absolute">

<!ELEMENT while_do (%routing_element;)>
<!ATTLIST while_do

condition CDATA #REQUIRED>
<!ELEMENT terminate EMPTY>
<!ELEMENT state EMPTY>

Figure 4. The DTD of XRL
6

elements in parallel and wait until all have been performed. A condition may have any number (even
none) of true and false child elements.

Parallel_sync: Start the child routing elements in parallel and wait until all have been performed.
Parallel_no_sync: Start the child routing elements in parallel but don’t wait for any of them.
Parallel_part_sync: Start the child routing elements in parallel and wait until the given number of child

routing elements has been performed.
Parallel_part_sync_cancel: Start the child routing elements in parallel, wait until the given number of

child routing elements has been performed and cancel the remaining child routing elements if possi-
ble.

Wait_all: Wait until either all events for which an eventref child exists are set, or wait until the given dead-
line of some child timeout element has expired. If this timeout element has a child routing element,
start it and wait until is has been performed.

Wait_any: Wait until either at least one of the events for which an eventref child exists is set, or wait until
the given deadline of some child timeout element has expired. If this timeout element has a child rout-
ing element, start it and wait until is has been performed.

While_do: As long as the given condition holds, start the child routing element and wait until it has been
performed.

Terminate: End this workflow instance.

As mentioned before, the routing elements of XRL are based on a thorough analysis of the workflow
patterns supported by leading workflow management systems.

In the next section, we show how the routing elements of XRL can be used to design a real workflow,
which is consistent with the DTD.

3. Example: An electronic bookstore

In this section we illustrate XRL using an example inspired by electronic bookstores, such as Amazon [12]
and Barnes and Noble [13]. The activity diagram in Figure 5 shows a typical order flow. This figure gives
the four parties or organizations involved (that is, customer, bookstore, publisher and shipper), and the
steps performed by each one. The arrows show the sequence in which these steps are carried out. Some of
the details of the real-world process are omitted from this diagram for clarity.

The workflow represented by the sequence diagram is described in XRL in Appendix B. The XRL
rendition covers the typical order flow of Figure 5, and also some more details. First, the customer places
an order (task place_c_order). This customer order is sent to and handled by the bookstore (task
handle_c_order). The electronic bookstore is a virtual company that has no books in stock. Therefore, the
bookstore transfers the order for the desired book to the first appropriate publisher (task place_b_order).
We use the term ‘‘bookstore order’’ for the transferred order. The publisher evaluates the bookstore order
(task eval_b_order). By shipping the XRL route back to the bookstore, the publisher informs the bookstore
about the availability of the book. If the book is not available, the bookstore decides (task decide) to either
search for an alternative publisher (task alt_publ) or to reject the customer (task c_reject). If the customer
receives a negative answer (task rec_decl), the workflow terminates. If the book is available (task
c_accept), the customer is informed (task rec_acc) and the bookstore continues processing the customer
order. The bookstore sends a request to the shipper (task s_request), the shipper evaluates the request (task
eval_s_req) and either accepts (task s_accept) or rejects (task s_reject). If the bookstore receives a negative
answer, it searches for another shipper.

After a shipper has been found, the publisher is informed (task inform_publ), the publisher prepares
the book for shipment (task prepare_b), and the book is sent from the publisher to the shipper (task
send_book). The shipper prepares the shipment to the customer (task prepare_s) and actually ships the
book to the customer (task ship). The customer receives the book (task rec_book) and the shipper notifies
the bookstore (task notify). The bookstore sends the bill to the customer (task send_bill). After receiving
7

both the book and the bill (task rec_bill), the customer makes a payment (task pay). Then the bookstore
processes the payment (task handle_payment) and the inter-organizational workflow terminates.

The XRL route shown in Appendix B just illustrates some of the XRL routing elements. The
description is far from complete, for example, the detailed descriptions of tasks and conditions have not
been included. Please note that, since an XRL route specifies the life cycle of a particular workflow
instance (that is, work case), any instance can be modified without reference to some underlying workflow
schema type.

Figure 5. Typical order flow for an electronic bookstore.

ShipperPublisherBookstoreCustomer

place_c_order handle_c_order

place_b_order eval_b_order

b_acceptc_accept

rec_acc

s_request eval_s_req

s_acceptinform_publ

prepare_b

send_book prepare_s

ship

rec_book notifysend_billrec_bill

pay handle_payment
8

4. Workflow nets

As is shown in [8], the semantics of XRL can easily be expressed in terms of Petri nets. XRL/Flower uses
a Petri-net engine to interpret and execute XRL routes. Unfortunately, the transformation given in [8] does
not result in so-called WorkFlow nets (WF-nets), as observed in [9]. Consequently, the strong theoretical
results for WF-nets cannot be used. Moreover, it is difficult to deploy our workflow verification tool
Woflan [37]. In this paper, we present a new approach. The semantics presented in [8] is modified
considerably. The semantic transformation into Petri nets becomes more complex. However, the resulting
Petri nets are WF-nets, which allows us to use the results presented in [1, 38]. Before we present this new
transformation, we briefly introduce some of the concepts related to WF-nets. We assume some basic
knowledge of Petri nets [32, 33].

A Petri net that models the control-flow dimension of a workflow, is called a WF-net. It should be
noted that a WF-net specifies the dynamic behavior of a single case in isolation.

Definition 1. WF-net

A Petri net is a WF-net (Workflow net) if and only if:

(1) There is one source place , that is, one place without any predecessors.

(2) There is one sink place , that is, one place without any successors.

(3) Every node is on a path from i to o.

A WF-net has one input place (i) and one output place (o) because any case handled by the procedure
represented by the WF-net is created when it enters the workflow management system and is deleted once
it is completely handled by the workflow management system, that is, the WF-net specifies the life-cycle
of a case. The third requirement in Definition 1 has been added to avoid ‘dangling tasks’, that is, tasks that
do not contribute to the processing of cases.

For sake of completeness, we mention that the original definition of WF-nets did not include arc
weights (sometimes also called multiple arcs). However, as mentioned in [38], it is straightforward to
extend WF-nets by allowing arc weights. For the remainder of this paper, we assume that arc weights are
allowed in WF-nets.

The three requirements stated in Definition 1 can be verified statically, that is, they only relate to the
structure of the Petri net. However, there is another requirement that should be satisfied:

For any case, the procedure will terminate eventually and upon termination there is a token in
place o and all the other places are empty.

Moreover, there should be no dead tasks, that is, it should be possible to execute an arbitrary task by
following the appropriate route through the WF-net. These two additional requirements correspond to the
so-called soundness property.

Definition 2. Soundness

A procedure modeled by a WF-net is sound if and only if:

(1) For every state M reachable from state i, there exists a firing sequence leading from state M to state o.
(2) State o is the only state reachable from state i with a token in place o.
(3) There are no dead transitions when starting in state i.

Note that the soundness property relates to the dynamics of a WF-net. The first requirement in
Definition 2 states that starting from the initial state (state i), it is always possible to reach the state with
one token in place o (state o). The second requirement states that the moment a token is put in place o, all
the other places should be empty. The last requirement states that there are no dead transitions (tasks) in the
initial state i.

PN P T F, ,()=

i P∈
o P∈

x P T∪∈

PN P T F, ,()=
9

In [1], it is shown that there is an interesting relation between soundness and well-known Petri-net
properties such as liveness and boundedness. A WF-net is sound if and only if the short-circuited net (that
is, the net obtained by linking the sink place to the source place) is live and bounded. This result illustrates
that standard Petri-net-based analysis techniques can be used to verify soundness.

5. Semantics of XRL in terms of WF-nets

The DTD shown in Figure 4 only describes the syntax of XRL and does not specify the semantics. To
provide operational semantics of the routing elements we transform each routing element mentioned in the
DTD into a Petri net. Such a transformation was given in [8]. However, as indicated earlier, this
transformation does not necessarily yield WF-nets. Therefore, we have modified the transformation given
in [8] such that XRL routes are transformed into WF-nets. First, we discuss the problems we encountered
when trying to transform XRL routes into WF-nets. Second, we present for the route and for each routing
element its Petri-net semantics. Third, we transform the example from Section 3 (see Appendix B for the
XRL specification) into a WF-net.

In Section 2 we already observed that the structure of an XRL document forms a tree, with the route
element as root. Many routing elements interface only with their parent element and their child elements.
For this reason, we propose to ‘copy’ this tree structure to the resulting WF-net: Every routing element is
replaced by some Petri-net fragment that interfaces with the Petri nets associated with its parent child
elements nets. The exceptions to this rule are the terminate routing elements and the task, wait_all and
wait_any routing elements (when events are involved). We deal with these exceptions later on; first we
focus on the interface between a parent and a child element.

At first glance, only two places seem to be necessary for the communication between a parent and
child: one from parent to child indicating that the child can be started, and one from child to parent
indicating that the child has been performed. However, according to the descriptions given in Section 2,
there are three routing elements that do not wait until all child elements have been performed:
parallel_no_sync, parallel_part_sync, and parallel_part_sync_cancel. As a result, an instance might reach
the point of completion while still, somewhere deep inside some subtree, elements still can be performed.
Take for instance the simple example where the route contains a parallel_no_sync containing only one
task. Because the parallel_no_sync does not wait until the task has been performed, the entire instance
might reach the point of completion before the task has been accepted and started. Recall that soundness
requires that the remainder of the entire Petri-net is empty when a token is put into the sink place, that is, a
Petri-net fragment associated with any routing element has to be empty at that point. Therefore, before
actually reaching completion, we have to wait until all these fragments are empty. For this reason, we
introduce a third communication place: from child to parent indicating that the Petri-net fragment
associated with the entire subtree of the child is now empty of tokens.

Figure 6 shows the basic routing element. A token in place prev indicates that the routing element can
be started. A token in place exec indicates that the routing has started. However, in many routing elements
this exec place is redundant, and therefore omitted. When the routing element has been performed, it puts a
token in places next and sig. The token in place next informs the parent that this element has been
performed, while the token in place sig indicates that the routing element is waiting until all descending

begin end

prev next done

exec sig

term

Figure 6. Basic routing element.
10

routing elements have been performed too, that is, until all subtrees are empty. If all are empty, it puts a
token in place done, indicating that it is now empty of tokens except for the token in the done place.

When a terminate occurs, the entire instance, that is, the route itself, is to be completed. This clearly
has an effect on the instance level. In Petri nets, it is hard to foresee all possible reachable states, and to add
transitions such that from every reachable state we can reach state o. A simple observation alleviates this
problem: If we bypass every task, wait_all, and wait_any, the instance automatically reaches completion!
The tasks need to be bypassed because we cannot allow that a task is started after a terminate occurred.
Both wait routing elements need to be bypassed because they are not allowed to wait any longer after a
terminate occurred. Note that this solution assumes that running tasks are not preempted when a terminate
occurs. As a result, we can treat a terminate almost in a similar way as we treat an event. Because all tasks
need to have both places terminate and nonterminate present, and all waits need to have the place
terminate present, we incorporate the global part of the terminate in the route.

Figure 7 shows the semantics of the route element, containing the terminate at the instance level. For
sake of clarity, a stub (drawn dotted) replaces the top routing element (the only child routing element of the
route element). Initially, place input (which corresponds to place i in Definition 1) contains one token,
indicating that the instance has not started yet. Transition begin starts the instance and

(1) starts the top child routing element,
(2) enables the terminate,
(3) enables all events, and
(4) enables every parallel_part_sync or parallel_part_sync_cancel.

Note that items (3) and (4) are explained later on and not shown in this net. Item 3 is shown in Figure 8 and
item 4 is shown in Figures 16 and 17.

After the top routing element and all its descendants have completed, transition end initiates the
completion phase of the instance. First, all events and the terminate are reset (which happens while place
almost contains a token). Second and last, transition done completes the instance and

terminate

nonterminate

setterminate set

isset

reset

terminateset

begin done

almost

RE

input output

end

begin end term

prev next done

exec sig

Figure 7. Semantics of route.
11

(1) removes the token from place almost,
(2) disables the terminate,
(3) disables all events, and
(4) disables every parallel_part_sync and parallel_part_sync_cancel.

Again, items (3) and (4) are explained later on and not shown in this net.
Of course, if no terminates are present in the XRL route, the part concerning the terminate is

discarded from the semantics of the route.
Like terminate, events are defined on the top level of the instance, that is, the route level, not on some

local level deeply nested in some subtree: If some task in some subtree sets a certain event, than some wait
in some other subtree might be affected. For this reason, events are handled on the instance level: For
every event, we add a Petri-net fragment that manages the event. Such a fragment interfaces only with the
Petri-nets associated with the route itself (for enabling and disabling the event), tasks (for setting the
event), and both waits (for testing the event). On the instance level, two places are introduced for every
event: event and nonevent. Only one of them may contain a token: Either the event has occurred (event
contains a token) or not (nonevent contains a token). When the instance is started, each event is enabled by
putting a token into place nonevent, and when the instance completes, it is disabled by removing the token
from that place. When the event has been set, transition reset can move the token from event to nonevent
when the instance is completing. A task sets the event by putting a token in place setevent and waiting until
a token is put into place eventset. The transitions set and isset take care that the event is set when this place
contains a token. They also take care that this token is moved to place eventset when the event has been set.
Figure 8 shows an event on the instance level.

At this point, we have dealt with the exceptions and can introduce the Petri-net semantics of every
routing element.

Figure 9 shows the semantics of the task routing element. When a task is started, what happens
depends on whether or not a terminate has occurred. If a terminate has occurred, the transitions bbegin and
bend bypass the normal execution of the task. Otherwise, transition begin starts the execution by offering
the task to some resources. After the task has been performed by some resource, transition events has the
appropriate events set (could be none), and the task waits until these events are set. After all have been set,
transition end signals that the task has been performed. Because there are no child routing elements, this
automatically results in an empty subtree, which is signaled too.

Figure 10 shows the semantics of the sequence routing element. Transition begin starts the sequence,
and puts a token in the place prev of the first child routing element. Doing so, this routing element can be
started. When this routing element has been performed, it puts a token in its place next. Transition next1
moves this token to the place prev of the next child routing element, and so on. When the last child routing

event

nonevent

setevent

setisset

reset

eventset

route
begin donealmost

Figure 8. Event on global level.
12

element has been performed, transition end puts a token in place next, signaling that the entire sequence
has been performed. After firing end, the sequence waits until all descending routing elements have been
performed. If all have been performed and hence their subtrees are empty, transition term puts a token in
place done.

Figure 11 shows the semantics of the any_sequence routing element. Transition begin starts the
any_sequence, and puts tokens in the place prev for every child routing element, and a token in the place
exec. The token in place exec guarantees the mutual exclusion of the child routing elements. A child
routing element can only start if place exec contains a token, and when it starts, it removes that token.
When the child routing element has been performed and transition end fires, the token is put back. After all
child routing elements have been performed, the transition end puts a token in place next, signaling that the
entire any_sequence has been performed. After firing end, the any_sequence waits until all descending

Figure 9. Semantics of task.

prev next done

begin
end

term

exec

sig

setevent eventset

eventA eventB

setevent eventset

events

wait

route
terminatenonterminate

bbegin bendbypass

prev next done

begin end term

RE1 RE2 REN

sig

next1 nextN-1

prev prev prevnext nextnextdone done done

sig sig sigexec exec exec

begin begin beginend end endterm term term

Figure 10. Semantics of sequence.
13

routing elements have performed. If all have been performed and hence heir subtrees are empty, it puts a
token in place done.

Figure 12 shows the semantics of the choice routing element. Transition begin starts the choice, and
puts a token in every child’s prev place. The first child routing element that fires its transition begin,
disables the other child routing elements. After this first child routing element has been performed, its
transition end fires, which puts a token in place join. As a result, transition end fires, signaling that the
choice has been performed. After firing end, the choice waits until the first child routing element and all its
descending routing elements have been performed. If all have been performed and hence their subtrees are
empty, the child’s transition term fires, followed by the choice’s transition term, which puts a token in its
place done.

Figure 13 shows the semantics of the condition routing element. Transition begin starts the condition,
and puts a token in place split. At this point, the condition is evaluated. If the condition is evaluated to true,
transition tbegin fires, otherwise transition fbegin fires. Assume without loss of generality that transition
tbegin fires. This transition puts a token in place texec and enables the child routing element of every true
child element. After all these ‘grandchild’ routing elements have been performed, transition tend fires,
which puts tokens in places join and tsig. At this point, transition end fires, signaling that the condition has

prev next done

begin end term

RE1 RE2 REN

exec sig

prev prev prevnext next nextdone done done

sig sig sigexec exec exec

begin begin beginend end endterm term term

Figure 11. Semantics of any_sequence.

prev next done

begin end term

RE1 RE2 REN

sig

join joindone

end2 term2

prev prev prevnext next nextdone done done

begin begin beginend end endterm term term

sig sig
sigexec exec exec

end1 endNterm1 termN

Figure 12. Semantics of choice.
14

been performed. After all descending routing elements of the true child elements have also have been
performed, transition tterm fires, followed by transition term, which puts a token in place done.

Figure 14 shows the semantics of the parallel_sync routing element. Transition begin starts the
parallel_sync, and puts a token in the place prev for every child routing element. After all child routing
elements have been performed, transition end fires, which puts a token in place next. After firing end, the
parallel_sync waits until all descending routing elements have been performed. If all have been performed,
transition term fires, which puts a token in place done.

Figure 15 shows the semantics of the parallel_no_sync routing element. Transition begin starts the
parallel_no_sync, and puts a token in place prev for every child routing element and a token in place exec.
As a result of the token in place exec, transition end can fire immediately, signaling that the
parallel_no_sync has been performed. After firing end, the parallel_no_sync waits until all descending
child routing elements have been performed. If all have been performed, transition term fires, which puts a
token in place done.

Figure 16 shows the semantics of the parallel_part_sync routing element. Transition begin starts the
parallel_part_sync, and puts a token in place prev for every child routing element and a token in place exec.

prev next done

begin end term

RE RE RE

sig

true1

tbegin texec

fend fsig fterm

true2 trueN

prev prev
prev

next next
next

done
done

done

exec exec execsig sig sig

begin begin beginend end endterm term term

fbegin

tterm

fexec

tend tsig

split join joindone

Figure 13. Semantics of condition.

prev next done

begin end term

RE1 RE2 REN

sig

prev prev prevnext next nextdone done done

termtermterm endendend beginbeginbegin

sigsigsigexec execexec

Figure 14. Semantics of parallel_sync.
15

After any child routing element has been performed, the appropriate transition counti fires, which moves
the token to the place count. After K tokens have been moved this way, that is, after at least K child routing
elements have been performed, transition end fires, signaling that the parallel_part_sync has been
performed, and puts a token in place next. Note that the place exec is not redundant for this routing
element: if we had removed the place exec, transition end could fire times. For instance, if there
were 10 child routing elements () and the given number were 3 (), transition end could fire
3 times, signaling 3 times that the parallel_part_sync has been performed, which is clearly an error. After
firing end, the parallel_part_sync waits until the remaining child routing elements and all descending
routing elements have been performed. If all have been performed, transition term fires, which puts a token
in place done.

To avoid problems with recurrent parallel_part_syncs, that is, if a parallel_part_sync is embedded in a
while_do, we prevent the parallel_part_sync to be recurrent by introducing the place free. As indicated in

Figure 15. Semantics of parallel_no_sync.

prev next done

begin end term

RE1 RE2 REN

exec sig

prev prev prevnext next nextdone done done

exec exec execsig sig sig

begin begin beginend end endterm term term

prev next done

begin end term

RE1 RE2 REN

exec sig

count
K N-K

route
begin end

free

count2

prev prev prevnext next nextdone done done

begin begin beginend end endterm term term

exec exec execsig sig sig

count1 countN

Figure 16. Semantics of parallel_part_sync.

N K⁄
N 10= K 3=
16

Figure 16, transition begin of the route puts a token in place free, and transition end of the route removes
the token. Note that transition begin has to fire before any routing element is started, and that end can only
fire after all routing elements have been performed.

Figure 17 shows the semantics of the parallel_part_sync_cancel routing element. This semantics is an
extension of the semantics of the parallel_part_sync: Transitions canceli have been added. After it has been
performed, any child routing element that has not started yet can be cancelled by firing the appropriate
transition canceli. When transition canceli fires, it removes the token from the place prev of the i-th child
routing element, and puts tokens in its places next and done.

Figure 18 shows the semantics of the wait_all routing element. Transition begin starts the wait_all,
and puts a token in place wprev. After firing begin, the wait_all waits until

(1) all events referred to have occurred,
(2) a terminate has occurred, or
(3) any of deadlines associated with the timeouts are exceeded.

If all events referred to have occurred, transition wait fires, which puts tokens in places wnext and wdone.
If a terminate has occurred, transition twait fires, which also puts tokens in places wnext and wdone. If a
timeout occurs, the child routing element of this timeout is started. After this child routing element has
been performed, a token is put in place wnext. After all descending routing elements of the timeout have
been performed, a token is put in place wdone. When place wnext contains a token, transition end fires,
signaling that the wait_all has been performed, and puts a token in place next. After firing end, the wait_all
waits until place wdone contains a token. If this place contains a token, transition term fires and puts a
token in place done.

Figure 19 shows the semantics of the wait_any routing element. Transition begin starts the wait_any,
and puts a token in place wprev. After firing begin, the wait_any waits until either

(1) any event referred to has occurred,
(2) a terminate has occurred, or
(3) any of the timeouts occurs.

prev next done

begin end term

RE1 RE2 REN

exec sig

count
K N-K

route
begin end

free

count2

cancel2

prev prev prev
next next next

done done done

begin begin beginend end endterm term term

exec exec execsig sig sig

cancel1 cancelNcount1

countN

Figure 17. Semantics of parallel_part_sync_cancel.
17

prev next done

begin end term

RE RE

sig

timeout1

route
terminate

wprev twait

wait

wnext wdone

timeoutN

event event

eventrefA eventrefB

eventA eventB

begin end term

prev prevnext nextdone done

begin beginend endterm term

sig sigexec exec

begin end term

Figure 18. Semantics of wait_all.

eventrefA

prev next done

begin end term

RE RE

sig

timeout1

route
terminate

wprev twait

wait

eventrefB

wait

wnext wdone

begin

timeoutN

end term

event event

eventA eventB

prev prevnext nextdone done

exec execsig sig

begin begin

begin

end end

end

term term

term

Figure 19. Semantics of wait_any.
18

If any event referred to has occurred, its transition wait fires, which puts tokens in places wnext and wdone.
If a terminate has occurred, transition twait fires, which also puts tokens in places wnext and wdone. If a
timeout occurs, the child routing element of this timeout is started. After this child routing element has
been performed, a token is put in place wnext. After all descending routing elements of the timeout have
been performed, a token is put in place wdone. When place wnext contains a token, transition end fires,
signaling that the wait_any has been performed, and puts a token in place next. After firing end, the
wait_any waits until place wdone contains a token. If this place contains a token, transition term fires and
puts a token in place done.

Figure 20 shows the semantics of the while_do routing element. Transition begin starts the while_do,
and puts a token in place next of its child routing element, and X tokens in the place done, where X is a
positive number that serves as a parameter to limit the number of concurrent instances. After firing begin,
the condition is evaluated (by the enactment server). If the condition evaluates to true, the transition true
fires, which starts another iteration of the child routing element. If the condition evaluates to false,
transition end fires, signaling that the while_do has been performed and puts a token in place next. After
firing end, the while_do waits until all descending routing elements corresponding to all iterations have
been performed. If all have, transition term fires, which puts a token in place done. Note that a new
iteration can only start, when at most previously started iterations are still running. Also note that X
can be set to a very large value when enacting the entire XRL route, but for verification purposes X should
be as small as possible: The larger X is, the larger the state space of the entire resulting Petri net becomes.

Figure 21 shows the semantics of the terminate routing element. Recall that the instance level part is
incorporated in the semantics of the route element, cf. Figure 7. Transition begin starts the terminate, and
has the terminate set. Transition end fires if the terminate has been set, signaling that the terminate has
been performed, and puts a token in place next. After firing end, transition term puts a token in place done.

At this point, all XRL routing elements can be transformed into Petri-nets. By starting with the XRL
route and recursively transforming each child routing element into its corresponding Petri-net semantics,
one obtains a WF-net. As a result, we can check the important soundness property introduced in the
previous section. This will be discussed in the next section.

The example shown in Appendix B results in a WF-net containing 303 places and 275 transitions
when applying the rules presented in this section. These numbers indicate that the dynamic behavior of the
XRL route presented in Section 3 is complex. However, this complexity is hidden from both the designer
and the user.

Figure 20. Semantics of while_do.

X

prev next done

begin end term

RE

sig

Xtrue

prev next done

termendbegin

sigexec

X 1–
19

6. Soundness of XRL

This section discusses the soundness of an XRL route, that is, the soundness of the WF-net it is
transformed into. Recall that for soundness three requirements should hold. The first requirement states
that the final state o should be reachable, that is, proper completion is possible. The second requirement
states that completion is always proper, that is, no tokens are left after completion. The third requirement
states that for every transition there is a way to fire it from the initial state i. First, we show that completion
of an XRL route is always proper. Second, we show that only certain XRL routing elements can invalidate
the other two soundness requirements.

Lemma 1. Coverage of a single routing element.

Let be a routing element and let be its Petri-net semantics as described in Section 5. Then all
places in can be covered by two place invariants and , where contains the places prev
and next with identical weights and contains the places prev and done with identical weights.

Proof. By induction. Most of this proof is straightforward. For this reason, we will restrict ourselves to
two routing elements that serve as examples: task and parallel_part_sync_cancel. For sake of simplicity,
we assume that the invariants of the child routing elements are recalibrated such that the places next and
done have weight 1. As a result, some weights might be fractions instead of natural numbers, but for the
proof this is irrelevant. For sake of completeness, the invariants for all routing elements are listed in
Appendix F. For the task (tk for short), which serves as example for the induction base, the invariants are
as follows:

,
.

For the parallel_part_sync (ppsc for short), which serves as example for the induction step, the invariants
are as follows:

,

.

prev next done

begin
end

term

exec sig

setterminate terminateset

route

Figure 21. Semantics of terminate.

RE PN
PN PRE QRE PRE

QRE

Ptk prev exec wait bypass next+ + + +=
Qtk prev exec wait bypass sig done+ + + + +=

Pppsc prev exec next+ +=

Qppsc 2N prev done+()× free PREi
QREi

+

i 1=

N

∑

exec count K 1+() sig×+ + + + +=
20

Lemma 2. Coverage of top routing element.

Let be an XRL route, let be the top routing element in , and let and be the Petri-net
semantics of and as described in Section 5. Then there exists a place invariant containing (i) the
places input and output with identical weight and (ii) all places in .

Proof. By construction. .

Lemma 3. Coverage of a single event.

Let be an XRL route, let be an event and let and be their Petri-net semantics as described
in Section 5. Then there exists a place invariant containing (i) the place input and output with identical
weight and (ii) all places of .

Proof. By construction. The places event and nonevent are easily covered. However, to cover setevent and
eventset we need to a variant of . Let be equal to , except for the tasks where event is set. For
these tasks, the occurrence of place wait is replaced by the expression . It is
straightforward to check that is a place invariant containing places input and output with identical
weights. Then .

Lemma 4. Coverage of all events.

Let be an XRL route and let be the set of events in . Then there exists a place invariant
containing (i) the places input and output with identical weight and (ii) all places corresponding to the
events in .

Proof. By construction. .

Lemma 5. Coverage of complete XRL route.

Let be an XRL route and let be its Petri-net semantics as described in Section 5. Then there exists
a place invariant containing (i) the places input and output with identical weight and (ii) all places in

.

Proof. By construction. To cover the places terminate and nonterminate we introduce another variant of
: . In all occurrences of any terminate’s exec place is replaced by the expression

. It is straightforward to check that is a place invariant containing places
input and output with identical weights. Then .

Theorem 6. Completion of an XRL route is always proper.

Proof. By Lemma 5, place invariant contains (i) places input and output with identical weights and (ii)
all places of the Petri-net semantics of the XRL route. Because initially only input is marked with one
token, no other place can be marked when output is marked.

Theorem 7. If every wait_all and every wait_any in an XRL route contains a timeout, then completion of
the XRL route is guaranteed.

Proof. By induction. It is straightforward to check that only a wait_all or wait_any that does not contain a
timeout can get stuck. Note that we assume that tasks are completed eventually.

R ME R PNR PNRE
R RE P1

PNRE

P1 input almost output+ + PRE QRE+ +=

R E PNR PNE
PE

PNE

P1 P1
E

P1 E
Esetevent Esetevent+

P1
E

PE P1
E

input almost output Eevent Enonevent+ + + + +=

R S R P2

S

P2 PE

E S∈
∑=

R PNR
P

PNR

P1 P1
T

P1
T

terminate nonterminate+ P1
T

P P1 P1
T

P2+ +=

P

21

Theorem 8. If every wait_all and every wait_any in an XRL route contains a timeout, and if the XRL
route contains no terminate, then no transition in the Petri-net semantics of the route is
dead.

Proof. It is straightforward to check that only a wait_all or wait_any that does not contain a timeout can
get stuck. It is also straightforward to check that some transitions can only get by-passed by a terminate
construct.

Corollary 1. There are two possible causes for violation of soundness: (i) a wait_all or wait_any gets
stuck, or (ii) a terminate occurs.

In case a terminate occurs, the short-circuiting transition in the short-circuited net will be live: A terminate
guarantees completion. In case a wait_all or wait_any gets stuck, the short-circuiting transition (that is, the
transition linking the place output to input in the short-circuited net) will not be live.

7. Verification of XRL

With the semantics specified in terms of WF-nets, described in Section 5, the theory and tools for WF-nets
can be deployed in a straightforward manner. This allows us to use Woflan for verifying the correctness of
an XRL route using criteria such as the soundness property. Unfortunately, XRL routes with a lot of
parallelism tend to have a large state space, thus complicating verification from a computational point of
view. Therefore, we propose a verification procedure that consists of two optimization steps. In the first
step, the XSL transformation, which transforms the XRL route into a WF-net, reduces the WF-net by using
structural properties of XRL. In the second step, Woflan reduces the WF-net by applying the well-known
liveness and boundedness preserving reduction rules for Petri nets [32].

The first step is the reduction by the XSL transformation based on structural properties of XRL.
Figures 9 to 21 show a place named done to accommodate the situation where completion of a routing
element does not automatically yield completion of its descendants. This situation can only occur if the
routing element ascends some parallel_no_sync, parallel_part_sync, or parallel_part_sync_cancel routing
element. In all other cases, there is no need to model things related to these done places. For instance,
assuming the routing element in Figure 20 has no done place allows us to remove the upper half of the
Petri net (that is, REdone, sig, term, and done). Similar simplifications are possible if no events are used.
Moreover, we can apply the result presented in [9]: a routing element without any event, wait_all,
wait_any, or terminate is sound and can therefore be replaced by the basic routing element shown in
Figure 6. Note that this is consistent with the results in Section 6. When these reduction rules are applied,
the XRL route shown in Appendix B is transformed into a WF-net that contains only 108 places and 105
transitions. Compared to the original WF-net, the reduced WF-net is considerably smaller and less
complex. Note that several routing elements can be abstracted from, and that the resulting WF-net need not
contain any done places.

The second step is the reduction of the resulting WF-net by Woflan based on liveness and
boundedness preserving reduction rules. Fragments of various routing elements are connected by
transitions. This introduces a lot of transitions that are not relevant for the verification but introduce
transient states. These and other parts of the WF-net can be reduced enormously without losing
information relevant for the verification. In Section 4, it was pointed out that soundness corresponds to
liveness and boundedness [1]. This allows us to apply the well-known liveness and boundedness
preserving reduction rules for Petri nets [32]. These rules are shown in Figure 22. Note that not all rules are
relevant for reducing a WF-net derived from an XRL route: For instance the fifth rule will not be applied,
because the only marked place in the WF net has no input arcs. After these reduction rules are applied, the
reduced WF-net mentioned under Step 1 contains only 21 places and 18 transitions and is shown in
22

Figure 23. Table 1 shows how the reductions affect the size (in number of places and transitions) of the
example WF-net.

After making the appropriate changes, the soundness results from Section 6 still hold upon applying
these reduction rules. It is straightforward to check that the wait transition in a wait_all or wait_any will
not be reduced. Nor will be the terminate, if present. Note that we do not apply the six WF-net-based
reduction rules on the short-circuited net, but on the original WF-net. As a result, the short-circuited

Figure 22. Liveness and boundedness preserving transformation rules.

WF-net Number of places Number of Transitions

Original 303 275

After XRL-based reduction 108 105

After both XRL-based and Petri-net-based
reduction

21 18

Table 1. The effects of both reductions on the size of the example WF-net.
23

transition will still be present after the WF-net has been reduced. As mentioned in Section 6, this transition
can be very useful when diagnosing the net.

Using standard Petri-net-based analysis tools, or dedicated tools such as Woflan, it is easy to show
that Figure 23 is sound. Therefore, the XRL route shown in Section 3 is correct, that is, free of deadlocks,
livelocks and other anomalies. Note that Figure 23 is obtained after applying both types of reduction.

XRL/Woflan is based on our workflow verification tool Woflan [37, 38]. Woflan (See http://
www.tm.tue.nl/it/woflan) is designed as a workflow-management-system-independent analysis tool. In
principle, it can interface with many workflow management systems. At present, Woflan can interface with
the workflow products COSA (Thiel Logistic AG/Software Ley), METEOR (LSDIS), and Staffware
(Staffware), and the BPR-tool Protos (Pallas Athena). Furthermore, Woflan can read Petri Net Markup
Language (PNML) files. PNML is a Petri net file format based on XML [22]. Therefore, it is natural to use
XSLT to automatically transform an XRL route into a PNML representation that can be diagnosed using
Woflan. We have implemented this transformation in XSLT and the two types of reduction rules presented
in this section. These two types of reduction rules allow us to verify large XRL routes containing hundreds
of tasks.

We propose a verification procedure that consists of three steps. In the first step, the XRL route is
transformed into a WF-net, taking into account the three reduction rules based on the structure of XRL. In
the second step, the resulting WF-net is reduced even further using the six reduction rules based on the
structure of the WF-net. In the third step, we use Woflan to verify and diagnose the reduced WF-net.

A final note on the terminate. If terminates are present, there might be tasks and waits that have to
complete before any terminate can occur. In such a task or wait, the bypassing transitions are dead.
However, these dead transitions do not correspond to an error in the XRL route, they only befoul the
diagnostic information. To get rid of these dead transitions, we can add two additional routing elements to
the route: A parallel_sync and a terminate. The parallel_sync will be the new top routing element and will
have the old top routing element and the additional terminate as child routing elements. As a result, a
terminate can occur immediately after the instance has started, so the set of tasks and waits that have to
complete before any terminate can occur will be empty.

8. Extensibility of XRL

Extensibility is an important feature of our approach. Therefore, the architecture of Figure 1 has been
designed for extensibility. This means that an end-user can add his or her own new routing elements to the

input output

place_c_order

place_b_order

alt_publ

no accept

accept

c_accept s_accept

rec_book

rec_bill

pay

s_reject

rec_acc

Figure 23. The WF-net corresponding to the example XRL route in Section 3 after both
reductions.
24

DTD and implement them using this toolset. This gives the end-user a powerful capability. We first
describe the general approach and then illustrate it with three examples.

The basic approach is as follows:

(1) Add a new routing element to the DTD of XRL.
(2) Specify the semantics of the new routing element in XSLT.
(3) Verify the XSLT specification of the new routing element.
(4) Add the XSLT specification to the library used in the transformation step.

Thus, for any new routing element it suffices to add it to the DTD and specify its corresponding Petri-net
semantics in XSLT. However, XSLT is a very verbose format, and editing XSLT specifications directly is
cumbersome. For this reason, we use a set of macros while editing XSLT specifications. These macros,
which are transformed into XSLT using a C preprocessor, are listed in Appendix D.

Now, consider the architecture shown in Figure 1. Note that, in the context of this architecture, the
engine of XRL/Flower does not change after extending XRL in this manner. To demonstrate the
extensibility of XRL we discuss the effort it takes to add two new routing elements.

The first new routing element we want to extend XRL with is a generalization of both the
any_sequence as the parallel_sync and is called restricted_parallel_sync. Basically, the
restricted_parallel_sync is a parallel_sync restricted by a maximum number of branches that can execute in
parallel. If this number equals the number of branches, the restricted_parallel_sync resembles a
parallel_sync, if the number equals 1, it resembles an any_sequence. The restricted_parallel_sync can be
used when the parallel branches share a limited number of identical resources. For example, a database
might be involved in all branches, and only a number of connections can be made to that database. First,
we add the following lines to the DTD shown in Figure 4:

<!ELEMENT restricted_parallel_sync ((%routing_element;)+)>
<!ATTLIST restricted_parallel_sync number NMTOKEN #REQUIRED>.

Note that the second line is added to specify the restrictive number of this element. The first line of the
DTD is also changed to add this element to the list of routing elements. Second, the XSLT code of this
routing element in terms of Petri nets is specified. The actual macro specification can be found in
Append C, the complete XSLT specification in Appendix E, and Figure 24 shows the equivalent Petri net
of the restricted_parallel_sync. The following macro snippet shows the core of the
restricted_parallel_sync:

prev next done

begin end term

RE1 RE2 REN

K K
exec sig

prev prev prevnext next nextdone done done

sig sig sigexec exec exec

begin begin beginend end endterm term term

Figure 24. Semantics of restricted_parallel_sync.
25

rememberNumber()
forEveryChildRE()
...
switch()

caseNumber()
arc("..",arc2_<xsl:number value="position()"/>,"..",begin,"..",exec)
arc("..",arc3_<xsl:number value="position()"/>,"..",exec,"..",end)

endCase()
endSwitch()

endFor()

If K is the value of the number attribute, then the first K child routing elements add K arcs from the parent’s
begin transition to the parent’s exec place, and K arcs from that exec place to the parent’s end transition.
Third, we verify the restricted_parallel_sync. This can be done in numerous ways. For example, we could
take a representative set of existing sound XRL instances and replace every parallel_sync by an
restricted_parallel_sync. After transforming these instances to PNML, we can verify them using Woflan. If
all are sound, verification is complete. Fourth and last, we add the restricted_parallel_sync to the XSLT
tranformation library.

The second new routing element we want to extend XRL with is called fast_sequence, and
demonstrates that tasks need not be atomic in XRL. This routing element executes a sequence of tasks such
that when two tasks are in a fast_sequence, the second task can start before the preceding task is
completed, provided the preceding task has started. Moreover, the second task can only complete if the
preceding task is completed. The fast_sequence is frequently seen for long-lived activities that can span
days or months. For instance, let the first task in the fast_sequence represent an approval process, while the
second represents the preparation for the actual construction. We may want to specify that the preparation
for the construction can start any time after the approval process has been started and that it cannot be
completed before the approval process has completed, because only then all things are fixed. To add this
routing element, we follow the steps as described above. First, we first add the following line to the DTD
shown in Figure 4:

<!ELEMENT fast_sequence ((%routing_element;)+)>.

The first line of the DTD is also changed to add this element to the list of routing elements. Second, the
XSLT code for this routing element is specified in terms of Petri nets. The actual macro specification can
be found in Appendix C, the complete XSLT specification in Appendix E, and Figure 25 shows the

prev next done

begin end term

RE1 RE2 REN

sig

prev prev prevnext next nextdone done done

termtermterm endendend beginbeginbegin

sigsigsigexec execexec

Figure 25. Semantics of fast_sequence.
26

equivalent Petri-net of the fast_sequence. The following macro snippet shows the core of the
fast_sequence:

forEveryNonLastChildRE()
arc("..",arc5_<xsl:number value="position()"/>,".",begin,nextRE(),prev)
arc("..",arc6_<xsl:number value="position()"/>,".",next,nextRE(),end)
...

endFor()

For every child routing element except the last, arcs are added that connect its begin transition to the prev
place of the next routing element, and its next place to the end transition of that next routing element. After
verifying the fast_sequence, we add it to the XSLT tranformation library.

As a third and final example, we extend XRL in such a way that an event can also be reset. Note that,
although this extends the funcionality of XRL, this is not really a new routing element. First, we extend the
DTD with a type attribute for events:

<!ATTLIST event name ID #REQUIRED type (set|reset) “set”>.

Possible values for the type attribute are set and reset, with set being the default value. This ensures
backward compatibility: if unspecified, set is assumed. Second, we update the appropriate semantics.
Figure 26 shows the updated semantics of the task. Depending on the type attribute, either the places
setevent and eventset are connected to transition events, or the places resetevent and eventreset. Figure 27
shows the updated event on the global level. When the place setevent contains a token, the event is set, and
the token is moved to eventset. When the place resetevent contains a token, the event is reset and the token
is moved to eventreset. Note that it is possible to set and reset an event simultaneously, in which case it is
impossible to tell whether the event is set or reset at the end. After verifying that the updates were specified
correctly, the new specifications replace the old ones in the library. Note that, after adding this extension,
the transformation form XRL to Petri nets does not necessarily result in a WF-net: If a certain event is only
reset in a route, then the corresponding event place will be an additional source place. Because a route
containing an event that can never be set is evidently erroneous, we don’t regard this a problem. It even

prev next done

begin
end

term

exec

sig

setevent eventset

eventA eventC

resetevent eventreset

events

wait

route
terminatenonterminate

bbegin bendbypass

setevent eventset

eventB

Figure 26. Semantics of task after extending event.
27

helps verifying the XRL route: If some event place happens to be an additional source place, then that
event is only reset in the route.

After adding the XSLT specifications for both new XRL routing elements to the XSLT transformation
library, and replacing the old specifications by the new ones for the third extension, both the enactment
service (XRL/Flower) and the verification tool (XRL/Woflan) support the new or updated routing
elements.

Similarly, other new application-specific routing elements may be added on-the-fly in this manner.
Therefore, it is possible to create new application-specific workflow patterns by writing XSLT routines
that describe the semantics of the pattern. The patterns can then be incorporated into the DTD of XRL after
they have been tested and verified with Woflan. We are currently developing a complete methodology for
workflow extensibility.

9. Verification tool

XRL/Woflan is based on our workflow verification tool Woflan [37, 38]. Woflan (http://www.tm.tue.nl/it/
woflan) is designed as a workflow-management-system-independent analysis tool. In principle, it can
interface with many workflow management systems. At present, Woflan can also interface with the
workflow products COSA (Thiel Logistics AG/Software Ley), METEOR (LSDIS), and Staffware
(Staffware), and the BPR tool Protos (Pallas Athena).

We have implemented the transformation from an XRL route into a WF-net using an XSLT
specification. This XSLT specification produces a Petri Net Markup Lanaguage (PNML) file. PNML is
the standard Petri net file format based on XML [22]. A second XSLT specification has been implemented
that enables Woflan to read these PNML files.

The reduction rules based on the XRL structure have been implemented as an option in the first XSLT
specification. The reduction rules based on the structure of the WF-net have been implemented as an
option in Woflan.

PNML requires that every place, transition, and arc has a unique id. For this reason, the identification
of these objects is an important implementation issue. For diagnostic purposes, it is vital that the names of
the places and transitions are meaningful to the developer of the XRL route. We use the fact that a route is
structured as a tree. For instance, we could identify a transition as transition begin of the second sequence
of the first parallel_sync of the third true of the condition of the second while_do of the sequence of the
route named route. To avoid long names as much as possible, we use abbreviations to identify the different
routing elements. Table 2 lists these abbreviations. Figure 28 shows how a sequence is identified. The
mode id is used to obtain the identification of any routing element. First, the sequence requests the id of its
parent. Second, it adds “/s”. Third, it adds its rank among the sibling sequences. The example transition

event

noneventsetevent

set

isset reset

eventset

route
begin donealmost

eventreset

resetevent

clear isreset

Figure 27. Semantics of event on global level after extending event.
28

mentioned is now identified by “route/s1/wd2/cn1/t3/ps1/s2/begin”. For most routing elements, this is fine,
but we make an exception for tasks and events. These elements have explicit XRL names, and we want to
use these names to identify them. Suppose the transition mentioned happens to be the transition begin of
the task named task. Then it is identified by “route/task/begin”. Figure 29 shows how this is done. First, the
task requests the name of the top element, that is, of the route. Second, it adds “/”. Third, it adds the value
of its attribute name. Likewise, the transition set of the event named event is identified by “route/event/
set”.

Figure 30 shows a screendump of Woflan after it diagnosed the example XRL route with all
reductions applied. Clearly, after the transformation and both reductions, the example XRL route
corresponds to a sound WF-net. As a result, we may conclude that the XRL route itself meets the
soundness requirements. Therefore, we can take it into production safely.

10. Related work

The semantics of XRL is expressed in terms of Petri nets. Petri nets have been proposed for modeling
workflow process definitions long before the term “workflow management” was coined and workflow
management systems became readily available. Consider for example the work on Information Control
Nets, a variant of the classical Petri nets, in the late seventies [16, 17]. The readers interested in the
application of Petri nets to workflow management may refer to the two recent workshops on workflow
management held in conjunction with the annual International Conference on Application and Theory of
Petri Nets [7, 31] and an elaborate paper on workflow modeling using Petri nets [1].

Only a few papers in the literature focus on the verification of workflow process definitions. In [20]
some verification issues have been examined and the complexity of selected correctness issues has been
identified, but no concrete verification procedures have been suggested. In [1] and [11] concrete

Routing element Abbreviation

Any_sequence as

Choice ce

Condition cn

Event e

Event_ref er

False f

Fast_sequence fs

Parallel_no_sync pns

Parallel_part_sync pps

Parallel_part_sync_cancel ppsc

Routing element Abbreviation

Parallel_sync ps

Restricted_parallel_sync rps

Sequence s

True t

Task tk

Timeout to

Terminate tt

Wait_all wl

Wait_any wy

While_do wd

Table 2. Abbreviations.

<xsl:template match="sequence" mode="id">
<xsl:apply-templates select=".." mode="id"/>/s<xsl:number/>

</xsl:template>

Figure 28. Identifying a sequence.

<xsl:template match="task" mode="id">
<xsl:apply-templates select="/" mode="id"/>/<xsl:value-of

select="@name"/>
</xsl:template>

Figure 29. Identifying a task.
29

verification procedures based on Petri nets have been proposed. This paper builds upon the work presented
in [1] where the concept of a sound WF-net was introduced (see Section 4). The technique presented in
[11] has been developed for checking the consistency of transactional workflows including temporal
constraints. However, the technique is restricted to acyclic workflows and only gives necessary conditions
(that is, not sufficient conditions) for consistency. In [36] a reduction technique has been proposed. This
reduction technique uses a correctness criterion which corresponds to soundness and the class of workflow
processes considered are in essence acyclic free-choice Petri nets. Based on this reduction technique the
analysis tool FlowMake [35] has been developed. Flowmake can interface with the IBM MQSeries
Workflow product. Note that, although completely different techniques are used, Flowmake is very similar
to the tool Woflan used in this paper [38].

This paper differs from the above approaches because the focus is on interorganizational workflows.
Only a few papers explicitly focus on the problem of verifying the correctness of interorganizational
workflows [2, 23]. In [2] the interaction between domains is specified in terms of message sequence charts
and the actual overall workflow is checked with respect to these message sequence charts. A similar, but
more formal and complete, approach is presented by Kindler, Martens, and Reisig in [23]. The authors give
local criteria, using the concept of scenarios (similar to runs or basic message sequence charts), to
guarantee the absence of certain anomalies at the global level.

Much work has been done on workflow transactions in the context of cross-organizational workflows,
for example [18, 19, 34]. However, this work typically considers correctness issues at the task level rather
than the process level. For example, the coordination model and the service model presented in [18] are not

Figure 30. Woflan screendump.
30

explicitly addressing control flow problems resulting from causal relations (or the absence of such
relations). The work conducted in projects such as CrossFlow [19], WISE [26], OSM [29], and COSMOS
[30] is highly relevant for the enactment of interorganizational workflows. However, these projects do not
consider the correctness issues tackled in this paper. Consider for example the Common Open Service
Market (COSM) infrastructure proposed in [29, 30]. This infrastructure proposes mobile agents. The
control-flow within each agent is managed by a Petri-net-based workflow engine. Unfortunately, this work
does not address correctness issues at the process level.

In the last couple of years, many XML-based standards for electronic commerce have been proposed.
The XML Common Business Library (xCBL) by CommerceOne, the Partner Interface Process (PIP)
blueprints by RosettaNet, the Universal Description, Discovery and Integration (UDDI), the Electronic
Business XML (ebXML) initiative by UN/CEFACT and OASIS, the Open Buying on the Internet (OBI)
specification, the Open Application Group Integration Specification (OAGIS), and the BizTalk Framework
are just some examples of the emerging standards based on XML. These standards primarily focus on the
exchange of data and not on the control flow among organizations. Most of the standards provide standard
DTDs or XML schemas for specific application domains (such as procurement). As mentioned in the
introduction, one of the few initiatives which also addresses the control flow is RosettaNet. The Partner
Interface Process (PIP) blueprints by RosettaNet do specify interactions using UML activity diagrams for
the Business Operational View (BOV) and UML sequence diagrams for the Functional Service View
(FSV) in addition to DTDs for data exchange. However, the PIP blueprints are not executable and need to
be predefined. Like all of the standards, RosettaNet is primarily focusing on electronic markets with long-
lasting prespecified relationships with one party (e.g. the market maker) imposing rigid business rules.
XRL is not restricted to data-oriented static market places. XRL focuses on the process aspect and also
consider others network structures (for example, the “first trading problem” [14, 27, 28]).

Finally, we would like to refer to two existing approaches toward interorganizational workflows based
on Petri-nets. The first approach uses Documentary Petri Nets (DPN's), that is, a variant of high-level Petri
nets with designated places for message exchange, to model and enact trade procedures [14, 27, 28]. The
Interprocs system is based on these nets. The main difference between the Interprocs language and XRL is
that XRL is instance based and supports less structured and more dynamic processes. Another approach
combining Petri nets and interorganizational workflows is the P2P approach described in [10]. This
approach uses inheritance to align local workflows. In [10] this approach is used to design an
interorganizational workflow for a fictitious electronic bookstore similar to amazon.com or bn.com. A
predecessor of the P2P approach has also been applied to an interorganizational workflow in the Telecom
industry [5]. An interesting topic for future research is to see how the inheritance concepts used in [10, 5]
translate to XRL. We would also like to develop a more formal methodology for verification of new
workflow patterns like the ones we introduced in Section 8.

11. Conclusion

XRL is an XML-based language for describing workflow enactments. Woflan is a tool for the verification
of Petri-net workflows. In this paper, we show how these two technologies can be combined together to
create a powerful toolset for designing, verifying and implementing extensible workflows.

We have presented a novel way to verify the correctness of XRL routes. XRL routes are automatically
transformed into WF-nets using XSLT. As a result, Woflan can be used to verify the correctness of the
XRL route. The analysis procedure is optimized by exploiting dynamic properties of XRL routing
elements and by using standard reduction rules at the Petri-net level [32]. We consider these verification
capabilities essential for inter-organizational workflows. As was argued in the introduction, contemporary
workflows need to be changed on the fly and sent across organizational boundaries. Unfortunately, the
features also enable subtle, but highly disruptive, cross-organizational errors. On-the-fly changes and one-
of-a-kind processes are destined to result in errors. Moreover, errors of a cross-organizational nature are
31

difficult to repair. Therefore, a language such as XRL (that is, a language with formal semantics) and
verification tools such as XRL/Woflan are highly relevant for today’s dynamic and networked economy.

References

[1] W.M.P. van der Aalst. The Application of Petri Nets to Workflow Management. The Journal of
Circuits, Systems and Computers, 8(1):21—66, 1998.

[2] W.M.P. van der Aalst. Interorganizational Workflows: An Approach based on Message Sequence
Charts and Petri Nets. Systems Analysis - Modelling - Simulation, 34(3):335—367, 1999.

[3] W.M.P. van der Aalst. Loosely Coupled Interorganizational Workflows: Modeling and Analyzing
Workflows Crossing Organizational Boundaries. Information and Management, 37(2):67—75, March
2000.

[4] W.M.P. van der Aalst. Process-oriented Architectures for Electronic Commerce and
Interorganizational Workflow. Information Systems, 24(8):639—671, 2000.

[5] W.M.P. van der Aalst and K. Anyanwu. Inheritance of Interorganizational Workflows to Enable
Business-to-Business E-commerce. In A. Dognac, E. van Heck, T. Saarinnen, and et. al., editors,
Proceedings of the Second International Conference on Telecommunications and Electronic
Commerce (ICTEC’99), pages 141—157, Nashville, Tennessee, October 1999.

[6] W.M.P. van der Aalst, A.H.M. ter Hofstede, B. Kiepuszewski, and A.P. Barros. Advanced Workflow
Patterns. In O. Etzion and P. Scheuermann, editors, 7th International Conference on Cooperative
Information Systems (CoopIS 2000), volume 1901 of Lecture Notes in Computer Science, pages 18—
29. Springer-Verlag, Berlin, 2000.

[7] W.M.P. van der Aalst, G. De Michelis, and C.A. Ellis, editors. Proceedings of Workflow Management:
Net-based Concepts, Models, Techniques and Tools (WFM’98), Lisbon, Portugal, June 1998.
UNINOVA, Lisbon.

[8] W.M.P. van der Aalst and A. Kumar. XML Based Schema Definition for Support of Inter-
organizational Workflow. Information Systems Research (forthcoming).

[9] W.M.P. van der Aalst, H.M.W. Verbeek, and A. Kumar. Verification of XRL: An XML-based
Workflow Language. In W. Shen, Z. Lin, J.-P. Barthès, and M. Kamel, editors, Proceedings of the
Sixth International Conference on CSCW in Design (CSCWD 2001), pages 427—432, London,
Ontario, Canada, July 2001.

[10] W.M.P. van der Aalst and M. Weske. The P2P approach to Interorganizational Workflows. In K.R.
Dittrich, A. Geppert, and M.C. Norrie, editors, Proceedings of the 13th International Conference on
Advanced Information Systems Engineering (CAiSE’01), volume 2068 of Lecture Notes in Computer
Science, pages 140—156. Springer-Verlag, Berlin, 2001.

[11] N.R. Adam, V. Atluri, and W. Huang. Modeling and Analysis of Workflows using Petri Nets. Journal
of Intelligent Information Systems, 10(2):131—158, 1998.

[12] Amazon.com, Inc. Amazon.com. http://www.amazon.com, 1999.
[13] Barnes and Noble. bn.com. http://www.bn.com, 1999.
[14] R.W.H. Bons, R.M. Lee, and R.W. Wagenaar. Designing trustworthy interorganizational trade

procedures for open electronic commerce. International Journal of Electronic Commerce, 2(3):61—
83, 1998.

[15] T. Bray, J. Paoli, C.M. Sperberg-McQueen, and E. Maler. eXtensible Markup Language (XML) 1.0
(Second Edition). http://www.w3.org/TR/REC-xml, 2000.

[16] C.A. Ellis. Information Control Nets: A Mathematical Model of Office Information Flow. In
Proceedings of the Conference on Simulation, Measurement and Modeling of Computer Systems,
pages 225—240, Boulder, Colorado, 1979. ACM Press.

[17] C.A. Ellis and G.J. Nutt. Modelling and Enactment of Workflow Systems. In M. Ajmone Marsan,
editor, Application and Theory of Petri Nets 1993, volume 691 of Lecture Notes in Computer Science,
pages 1—16. Springer-Verlag, Berlin, 1993.
32

[18] D. Georgakopoulos, H. Schuster, A. Cichocki, and D. Baker. Managing process and service fusion in
virtual enterprises. Information Systems, 24(6):429—456, 1999.

[19] P. Grefen, K. Aberer, Y. Hoffner, and H. Ludwig. CrossFlow: Cross-organizational Workflow
Management in Dynamic Virtual Enterprises. International Journal of Computer Systems, Science,
and Engineering, 15(5):277—290, 2001.

[20] A.H.M. ter Hofstede, M.E. Orlowska, and J. Rajapakse. Verification Problems in Conceptual
Workflow Specifications. Data and Knowledge Engineering, 24(3):239—256, 1998.

[21] S. Jablonski and C. Bussler. Workflow Management: Modeling Concepts, Architecture, and
Implementation. International Thomson Computer Press, London, UK, 1996.

[22] M. Jungel, E. Kindler, and M. Weber. The Petri Net Markup Language. In S. Philippi, editor,
Proceedings of AWPN 2000 - 7thWorkshop Algorithmen und Werkzeuge für Petrinetze, pages 47—52.
Research Report 7/2000, Institute for Computer Science, University of Koblenz, Germany, 2000.

[23] E. Kindler, A. Martens, and W. Reisig. Inter-Operability of Workflow Applications: Local Criteria for
Global Soundness. In W.M.P. van der Aalst, J. Desel, and A. Oberweis, editors, Business Process
Management: Models, Techniques, and Empirical Studies, volume 1806 of Lecture Notes in
Computer Science, pages 235—253. Springer-Verlag, Berlin, 2000.

[24] A. Kumar and J.L. Zhao. Workflow Support for Electronic Commerce Applications. Decision
Support Systems (forthcoming).

[25] P. Lawrence, editor. Workflow Handbook 1997, Workflow Management Coalition. John Wiley and
Sons, New York, 1997.

[26] A. Lazcano, G. Alonso, H. Schuldt, and C. Schuler. The WISE Approach to Electronic Commerce.
International Journal of Computer Systems, Science, and Engineering, 15(5):345—357, 2001.

[27] R.M. Lee. Distributed Electronic Trade Scenarios: Representation, Design, Prototyping. International
Journal of Electronic Commerce, 3(2):105—120, 1999.

[28] R.M. Lee and R.W.H. Bons. Soft-Coded Trade Procedures for Open-edi. International Journal of
Electronic Commerce, 1(1):27—49, 1996.

[29] M. Merz, B. Liberman, and W. Lamersdorf. Using Mobile Agents to Support Interorganizational
Workflow-Management. International Journal on Applied Artificial Intelligence, 11(6):551—572,
1997.

[30] M. Merz, B. Liberman, and W. Lamersdorf. Crossing Organisational Boundaries with Mobile Agents
in Electronic Service Markets. Integrated Computer-Aided Engineering, 6(2):91—104, 1999.

[31] G. De Michelis, C. Ellis, and G.. Memmi, editors. Proceedings of the Second Workshop on Computer-
Supported Cooperative Work, Petri nets and Related Formalisms, Zaragoza, Spain, June 1994.

[32] T. Murata. Petri Nets: Properties, Analysis and Applications. Proceedings of the IEEE, 77(4):541—
580, April 1989.

[33] W. Reisig and G. Rozenberg, editors. Lectures on Petri Nets I: Basic Models, volume 1491 of Lecture
Notes in Computer Science. Springer-Verlag, Berlin, 1998.

[34] A. Reuter and F. Schwenkreis. Contracts - a low-level mechanism for building general-purpose
workflow management-systems. Data Engineering Bulletin, 18(1):4—10, 1995.

[35] W. Sadiq and M.E. Orlowska. FlowMake Product Information, Distributed Systems Technology
Centre, Queensland, Australia. http://www.dstc.edu.au/Research/Projects/FlowMake/productinfo/
index.html.

[36] W. Sadiq and M.E. Orlowska. Analyzing Process Models using Graph Reduction Techniques.
Information Systems, 25(2):117—134, 2000.

[37] H.M.W. Verbeek and W.M.P. van der Aalst. Woflan 2.0: A Petri-net-based Workflow Diagnosis Tool.
In M. Nielsen and D. Simpson, editors, Application and Theory of Petri Nets 2000, volume 1825 of
Lecture Notes in Computer Science, pages 475—484. Springer-Verlag, Berlin, 2000.

[38] H.M.W. Verbeek, T. Basten, and W.M.P. van der Aalst. Diagnosing Workflow Processes Using
Woflan. The Computer Journal, 44(4):246—279. British Computer Society, 2001.
33

Appendix A. The extended DTD of XRL

This appendix shows the DTD of XRL after all extensions have been added. For sake of clarity, the
differences with the original DTD (see Figure 4) are emphasized.
<!ENTITY % routing_element
"task|sequence|any_sequence|choice|condition|fast_sequence|parallel_sync|parallel_no_s
ync|parallel_part_sync|parallel_part_sync_cancel|restricted_parallel_sync|wait_all|wai
t_any|while_do|terminate">
<!ELEMENT route ((%routing_element;), event*)>
<!ATTLIST route

name ID #REQUIRED
created_by CDATA #IMPLIED
date CDATA #IMPLIED>

<!ELEMENT task (event*)>
<!ATTLIST task
name ID #REQUIRED
address CDATA #REQUIRED
role CDATA #IMPLIED
doc_read NMTOKENS #IMPLIED
doc_update NMTOKENS #IMPLIED
doc_create NMTOKENS #IMPLIED
result CDATA #IMPLIED
status (ready|running|enabled|disabled|aborted|null) #IMPLIED
start_time NMTOKENS #IMPLIED
end_time NMTOKENS #IMPLIED
notify CDATA #IMPLIED>

<!ELEMENT event EMPTY>
<!ATTLIST event
name ID #REQUIRED
type (set|reset) "set">

<!ELEMENT sequence ((%routing_element;|state)+)>
<!ELEMENT any_sequence ((%routing_element;)+)>
<!ELEMENT choice ((%routing_element;)+)>
<!ELEMENT condition ((true|false)*)>
<!ATTLIST condition

condition CDATA #REQUIRED>
<!ELEMENT true (%routing_element;)>
<!ELEMENT false (%routing_element;)>
<!ELEMENT fast_sequence ((%routing_element;)+)>
<!ELEMENT parallel_sync ((%routing_element;)+)>
<!ELEMENT parallel_no_sync ((%routing_element;)+)>
<!ELEMENT parallel_part_sync ((%routing_element;)+)>
<!ATTLIST parallel_part_sync
number NMTOKEN #REQUIRED>

<!ELEMENT parallel_part_sync_cancel ((%routing_element;)+)>
<!ATTLIST parallel_part_sync_cancel
number NMTOKEN #REQUIRED>

<!ELEMENT restricted_parallel_sync ((%routing_element;)+)>
<!ATTLIST restricted_parallel_sync
number NMTOKEN #REQUIRED>

<!ELEMENT wait_all ((event_ref|timeout)+)>
<!ELEMENT wait_any ((event_ref|timeout)+)>
<!ELEMENT event_ref EMPTY>
<!ATTLIST event_ref
name IDREF #REQUIRED>

<!ELEMENT timeout ((%routing_element;)?)>
<!ATTLIST timeout
time CDATA #REQUIRED
34

type (relative|s_relative|absolute) "absolute">
<!ELEMENT while_do (%routing_element;)>
<!ATTLIST while_do
condition CDATA #REQUIRED>

<!ELEMENT terminate EMPTY>
<!ELEMENT state EMPTY>

Appendix B. The E-bookstore example

This appendix shows the XRL route for processing a customer order by the e-bookstore. Note that most
attributes have been omitted for brevity.
<!DOCTYPE route SYSTEM "xrl.dtd">
<route name="e-bookstore" created_by="H.M.W. Verbeek" date="June 11, 2001">
<sequence>

<task name="place_c_order" address="customer"/>
<task name="handle_c_order" address="bookstore"/>
<while_do condition="No publisher found yet">

<sequence>
<task name="place_b_order" address="bookstore"/>
<task name="eval_b_order" address="publisher"/>
<condition condition="No publisher found yet">

<true>
<sequence>

<task name="decide" address="publisher"/>
<condition condition="Try alternative publisher">

<true>
<task name="alt_publ" address="publisher"/>

</true>
<false>

<sequence>
<task name="b_reject" address="publisher"/>
<task name="c_reject" address="bookstore"/>
<task name="rec_decl" address="customer"/>

</sequence>
</false>

</condition>
</sequence>

</true>
<false>

<sequence>
<task name="b_accept" address="publisher"/>
<task name="c_accept" address="bookstore"/>
<parallel_sync>

<task name="rec_acc" address="customer">
<event name="accept"/>

</task>
<sequence>

<while_do condition="No shipper found yet">
<sequence>

<task name="s_request" address="bookstore"/>
<task name="eval_s_req" address="shipper"/>

</sequence>
</while_do>
<condition condition="Shipper found">

<true>
<sequence>

<task name="s_accept" address="shipper"/>
<task name="inform_publ" address="bookstore"/>
35

<task name="prepare_b" address="publisher"/>
<task name="send_book" address="publisher"/>
<task name="prepare_s" address="shipper"/>
<task name="ship" address="shipper"/>
<parallel_sync>

<sequence>
<task name="notify" address="shipper"/>
<task name="send_bill" address="bookstore"/>
<wait_all>

<event_ref name="accept"/>
</wait_all>
<task name="rec_bill" address="customer"/>

</sequence>
<sequence>

<wait_all>
<event_ref name="accept"/>

</wait_all>
<task name="rec_book" address="customer"/>

</sequence>
</parallel_sync>
<task name="pay" address="customer"/>
<task name="handle_payment" address="bookstore"/>

</sequence>
</true>
<false>

<task name="s_reject" address="shipper"/>
</false>

</condition>
</sequence>

</parallel_sync>
</sequence>

</false>
</condition>

</sequence>
</while_do>

</sequence>
</route>

Appendix C. Extensions, using macros

This appendix shows the macro specifications of the restricted_parallel_sync, the fast_sequence, and the
event after all three extensions have been added.

restricted_parallel_sync

<xsl:template match="restricted_parallel_sync">
countSuspects()
countSpawners()
localTransition(begin)
localTransition(end)
localPlace(prev)
localPlace(next)
localPlace(exec)
localArc(arc1,prev,begin)
localArc(arc4,end,next)
switch()

caseAnySuspects()
<xsl:apply-templates/>
36

rememberNumber()
forEveryChildRE()

countSpawnersChild()
arc("..",arc5_<xsl:number value="position()"/>,"..",begin,".",prev)
arc("..",arc6_<xsl:number value="position()"/>,"..",exec,".",begin)
arc("..",arc7_<xsl:number value="position()"/>,".",next,"..",end)
arc("..",arc8_<xsl:number value="position()"/>,".",end,"..",exec)
switch()

caseAnySpawnersChild()
arc("..",arc9_<xsl:number value="position()"/>,".",done,"..",term)

endCase()
endSwitch()
switch()

caseNumber()
arc("..",arc2_<xsl:number value="position()"/>,"..",begin,"..",exec)
arc("..",arc3_<xsl:number value="position()"/>,"..",exec,"..",end)

endCase()
endSwitch()

endFor()
endCase()

endSwitch()
switch()

caseAnySpawners()
localTransition(term)
localPlace(done)
localPlace(sig)
localArc(arc10,end,sig)
localArc(arc11,sig,term)
localArc(arc12,term,done)

endCase()
endSwitch()

</xsl:template>

<xsl:template match="restricted_parallel_sync" mode="id">
<xsl:apply-templates select=".." mode="id"/>/rps:rankRE()

</xsl:template>

fast_sequence

<xsl:template match="fast_sequence">
countSuspects()
countSpawners()
localTransition(begin)
localTransition(end)
localPlace(prev)
localPlace(next)
localArc(arc1,prev,begin)
localArc(arc2,end,next)
switch()

caseAnySuspects()
<xsl:apply-templates/>
arc(".",arc3,".",begin,firstChildRE(),prev)
arc(".",arc4,lastChildRE(),next,".",end)
forEveryNonLastChildRE()

arc("..",arc5_<xsl:number value="position()"/>,".",begin,nextRE(),prev)
arc("..",arc6_<xsl:number value="position()"/>,".",next,nextRE(),end)
switch()

caseAnyTerminates()
checkSelfTask()
37

switch()
caseSelfTask()

arc("..",arc7_<xsl:number value="position()"/>,".",bbegin,nex-
tRE(),prev)

endCase()
endSwitch()
checkSuccessorTask()
switch()

caseSuccessorTask()
arc("..",arc8_<xsl:number value="position()"/>,".",next,nextRE(),bend)

endCase()
endSwitch()

endCase()
endSwitch()

endFor()
forEveryChildRE()

countSpawnersChild()
switch()

caseAnySpawnersChild()
arc("..",arc12_<xsl:number value="position()"/>,".",done,"..",term)

endCase()
endSwitch()

endFor()
endCase()
default()

localPlace(exec)
localArc(arc10,begin,exec)
localArc(arc11,exec,end)

endDefault()
endSwitch()
switch()

caseAnySpawners()
localTransition(term)
localPlace(done)
localPlace(sig)
localArc(arc7,end,sig)
localArc(arc8,sig,term)
localArc(arc9,term,done)

endCase()
endSwitch()

</xsl:template>

<xsl:template match="fast_sequence" mode="id">
<xsl:apply-templates select=".." mode="id"/>/fs[rankRE()]

</xsl:template>

event

<xsl:template match="event">
rankEvent()
switch()

caseReset()
mixedArc(".","id",arc1,"..","id",events,".","eid",resetevent)
mixedArc(".","id",arc2,".","eid",eventreset,"..","id",end)

endCase()
default()

mixedArc(".","id",arc1,"..","id",events,".","eid",setevent)
mixedArc(".","id",arc2,".","eid",eventset,"..","id",end)

endDefault()
38

endSwitch()
switch()

caseEventRankedFirst()
countSetsAndResets()
eventTransition(clear)
eventPlace(event)
eventPlace(nonevent)
eventArc(arc1,event,clear)
eventArc(arc2,clear,nonevent)
mixedArc(".","eid",arc3,"/","id",almost,".","eid",clear)
mixedArc(".","eid",arc4,".","eid",clear,"/","id",almost)
mixedArc(".","eid",arc5,".","eid",nonevent,"/","id",done)
mixedArc(".","eid",arc6,"/","id",begin,".","eid",nonevent)
ifSets()

eventTransition(set)
eventTransition(isset)
eventPlace(setevent)
eventPlace(eventset)
eventArc(arc7,setevent,set)
eventArc(arc8,setevent,isset)
eventArc(arc9,nonevent,set)
eventArc(arc10,set,event)
eventArc(arc11,event,isset)
eventArc(arc12,isset,event)
eventArc(arc13,set,setevent)
eventArc(arc14,isset,eventset)

endIf()
ifResets()

eventTransition(reset)
eventTransition(isreset)
eventPlace(resetevent)
eventPlace(eventreset)
eventArc(arc17,resetevent,reset)
eventArc(arc18,resetevent,isreset)
eventArc(arc19,nonevent,reset)
eventArc(arc20,reset,event)
eventArc(arc21,event,isreset)
eventArc(arc22,isreset,event)
eventArc(arc23,reset,resetevent)
eventArc(arc24,isreset,eventreset)

endIf()
endCase()

endSwitch()
</xsl:template>

<xsl:template match="event" mode="id">
<xsl:apply-templates select=".." mode="id"/>/e<xsl:number/>

</xsl:template>

<xsl:template match="event" mode="eid">
<xsl:apply-templates select="/" mode="id"/>/<xsl:value-of select="@name"/>

</xsl:template>

Appendix D. Macro definitions

This appendix shows the macro definitions after the restricted_parallel_sync, the fast_sequence, and the
event extensions have been added.
#define parentTransition(self) \
39

<transition><xsl:attribute name="id"><xsl:apply-templates select=".." mode="id"/>/
self</xsl:attribute></transition>

#define localTransition(self) \
<transition><xsl:attribute name="id"><xsl:apply-templates select="." mode="id"/>/self</
xsl:attribute><xsl:apply-templates select="attribute::condition"/></transition>

#define eventTransition(self) \
<transition><xsl:attribute name="id"><xsl:apply-templates select="." mode="eid"/>/
self</xsl:attribute></transition>

#define localNamedTransition(self) \
<transition><xsl:attribute name="id"><xsl:apply-templates select="." mode="id"/>/self</
xsl:attribute><xsl:apply-templates select="attribute::role"/><xsl:apply-templates
select="attribute::address"/><name><value>"<xsl:value-of select="@name"/>/
self"</value></name></transition>

#define place(parent,self) \
<place><xsl:attribute name="id"><xsl:apply-templates select=parent mode="id"/>/self</
xsl:attribute></place>

#define localPlace(self) \
<place><xsl:attribute name="id"><xsl:apply-templates select="." mode="id"/>/self</
xsl:attribute></place>

#define eventPlace(self) \
<place><xsl:attribute name="id"><xsl:apply-templates select="." mode="eid"/>/self</
xsl:attribute></place>

#define localNamedPlace(self) \
<place><xsl:attribute name="id"><xsl:apply-templates select="." mode="id"/>/self</
xsl:attribute><name><value>"<xsl:value-of select="@name"/>/self"</value></
name></place>

#define localMarkedPlace(self) \
<place><xsl:attribute name="id"><xsl:apply-templates select="." mode="id"/>/self</
xsl:attribute><initialMarking><value>1</value></initialMarking></place>

#define arc(aparent,aself,sparent,sself,tparent,tself) \
<arc><xsl:attribute name="id"><xsl:apply-templates select=aparent mode="id"/>/aself</
xsl:attribute><xsl:attribute name="source"><xsl:apply-templates select=sparent
mode="id"/>/sself</xsl:attribute><xsl:attribute name="target"><xsl:apply-templates
select=tparent mode="id"/>/tself</xsl:attribute></arc>

#define mixedArc(aparent,aid,aself,sparent,sid,sself,tparent,tid,tself) \
<arc><xsl:attribute name="id"><xsl:apply-templates select=aparent mode=aid/>/aself</
xsl:attribute><xsl:attribute name="source"><xsl:apply-templates select=sparent
mode=sid/>/sself</xsl:attribute><xsl:attribute name="target"><xsl:apply-templates
select=tparent mode=tid/>/tself</xsl:attribute></arc>

#define localArc(aself,sself,tself) \
<arc><xsl:attribute name="id"><xsl:apply-templates select="." mode="id"/>/aself</
xsl:attribute><xsl:attribute name="source"><xsl:apply-templates select="." mode="id"/>/
sself</xsl:attribute><xsl:attribute name="target"><xsl:apply-templates select="."
mode="id"/>/tself</xsl:attribute></arc>

#define eventArc(aself,sself,tself) \
<arc><xsl:attribute name="id"><xsl:apply-templates select="." mode="eid"/>/aself</
xsl:attribute><xsl:attribute name="source"><xsl:apply-templates select="." mode="eid"/
40

>/sself</xsl:attribute><xsl:attribute name="target"><xsl:apply-templates select="."
mode="eid"/>/tself</xsl:attribute></arc>

#define rememberNumber() \
<xsl:variable name="rememberedNumber"><xsl:value-of select="@number"/></xsl:variable>

#define caseNumber() \
<xsl:when test="position() <= $rememberedNumber">

#define rememberSelf() \
<xsl:variable name="rememberedSelf"><xsl:apply-templates select="." mode="id"/></
xsl:variable>

#define rememberedSelf() \
"$rememberedSelf"

#define countEvents() \
<xsl:variable name="numberOfEvents"><xsl:value-of
select="count(child::*[self::event])"/></xsl:variable>

#define caseAnyEvents() \
<xsl:when test="$reduce = ’No’ or $numberOfEvents > 0">

#define countSuspects() \
<xsl:variable name="numberOfSuspects"><xsl:value-of select="count(descen-
dant::*[self::event or self::wait_all or self::wait_any or self::terminate])"/></
xsl:variable>

#define caseAnySuspects() \
<xsl:when test="$reduce = ’No’ or $numberOfSuspects > 0">

#define countSpawners() \
<xsl:variable name="numberOfSpawners"><xsl:value-of select="count(descen-
dant::*[self::parallel_part_sync or self::parallel_part_sync_cancel or
self::parallel_no_sync])"/></xsl:variable>

#define caseAnySpawners() \
<xsl:when test="$reduce = ’No’ or $numberOfSpawners > 0">

#define countSpawnersChild() \
<xsl:variable name="numberOfSpawnersChild"><xsl:value-of select="count(descendant-or-
self::*[self::parallel_part_sync or self::parallel_part_sync_cancel or
self::parallel_no_sync])"/></xsl:variable>

#define caseAnySpawnersChild() \
<xsl:when test="$reduce = ’No’ or $numberOfSpawnersChild > 0">

#define countTerminates() \
<xsl:variable name="numberOfTerminates"><xsl:value-of select="count(descen-
dant::*[self::terminate])"/></xsl:variable>

#define caseAnyTerminates() \
<xsl:when test="$reduce = ’No’ or $numberOfTerminates > 0">

#define rankEvent() \
<xsl:variable name="nameOfEvent"><xsl:value-of select="@name"/></xsl:vari-
able><xsl:variable name="rankOfEvent"><xsl:value-of select="count(preced-
ing::event[@name=$nameOfEvent]|ancestor::event[@name=$nameOfEvent])"/></xsl:variable>
41

#define caseEventRankedFirst() \
<xsl:when test="$rankOfEvent = 0">

#define switch() \
<xsl:choose>

#define caseNoReduction() \
<xsl:when test="$reduce = ’No’">

#define endCase() \
</xsl:when>

#define default() \
<xsl:otherwise>

#define endDefault() \
</xsl:otherwise>

#define endSwitch() \
</xsl:choose>

#define rankRE() \
<xsl:value-of select="1 + count(preceding-sibling::*[self::sequence or
self::any_sequence or self::fast_sequence or self::choice or self::condition or
self::parallel_sync or self::parallel_no_sync or self::parallel_part_sync or
self::parallel_part_sync_cancel or self::restricted_parallel_sync or self::wait_all or
self::wait_any or self::while_do or self::task or self::terminate])"/>

#define firstChildRE() \
"child::*[self::sequence or self::any_sequence or self::fast_sequence or self::choice
or self::condition or self::parallel_sync or self::parallel_no_sync or
self::parallel_part_sync or self::parallel_part_sync_cancel or
self::restricted_parallel_sync or self::wait_all or self::wait_any or self::while_do or
self::task or self::terminate][1]"

#define lastChildRE() \
"child::*[self::sequence or self::any_sequence or self::fast_sequence or self::choice
or self::condition or self::parallel_sync or self::parallel_no_sync or
self::parallel_part_sync or self::parallel_part_sync_cancel or
self::restricted_parallel_sync or self::wait_all or self::wait_any or self::while_do or
self::task or self::terminate][last()]"

#define nextRE() \
"following-sibling::*[self::sequence or self::any_sequence or self::fast_sequence or
self::choice or self::condition or self::parallel_sync or self::parallel_no_sync or
self::parallel_part_sync or self::parallel_part_sync_cancel or
self::restricted_parallel_sync or self::wait_all or self::wait_any or self::while_do or
self::task or self::terminate][1]"

#define forEveryChildRE() \
<xsl:for-each select="child::*[self::sequence or self::any_sequence or
self::fast_sequence or self::choice or self::condition or self::parallel_sync or
self::parallel_no_sync or self::parallel_part_sync or self::parallel_part_sync_cancel
or self::restricted_parallel_sync or self::wait_all or self::wait_any or self::while_do
or self::task or self::terminate]">

#define forEveryEventRef() \
<xsl:for-each select="child::*[self::event_ref]">
42

#define forEveryTimeout() \
<xsl:for-each select="child::*[self::timeout]">

#define forEveryPrecedingTask() \
<xsl:for-each select="preceding-sibling::*[self::task]">

#define forEveryFollowingTask() \
<xsl:for-each select="following-sibling::*[self::task]">

#define forEveryNonLastChildRE() \
<xsl:for-each select="child::*[self::sequence or self::any_sequence or
self::fast_sequence or self::choice or self::condition or self::parallel_sync or
self::parallel_no_sync or self::parallel_part_sync or self::parallel_part_sync_cancel
or self::restricted_parallel_sync or self::wait_all or self::wait_any or self::while_do
or self::task or self::terminate][position()!=last()]">

#define forEveryPrecedingRE() \
<xsl:for-each select="preceding-sibling::*[self::sequence or self::any_sequence or
self::fast_sequence or self::choice or self::condition or self::parallel_sync or
self::parallel_no_sync or self::parallel_part_sync or self::parallel_part_sync_cancel
or self::restricted_parallel_sync or self::wait_all or self::wait_any or self::while_do
or self::task or self::terminate]">

#define forEveryFollowingRE() \
<xsl:for-each select="following-sibling::*[self::sequence or self::any_sequence or
self::fast_sequence or self::choice or self::condition or self::parallel_sync or
self::parallel_no_sync or self::parallel_part_sync or self::parallel_part_sync_cancel
or \
self::restricted_parallel_sync or self::wait_all or self::wait_any or self::while_do or
self::task or self::terminate]">

#define endFor() \
</xsl:for-each>

#define checkSelfTask() \
<xsl:variable name="oneIfTask"><xsl:value-of select="count(self::*[self::task])"/></
xsl:variable>

#define caseSelfTask() \
<xsl:when test="$oneIfTask > 0">

#define checkSuccessorTask() \
<xsl:variable name="oneIfSuccessorTask"><xsl:value-of select="count(following-sib-
ling::*[self::sequence or self::any_sequence or self::fast_sequence or self::choice or
self::condition or self::parallel_sync or self::parallel_no_sync or
self::parallel_part_sync or self::parallel_part_sync_cancel or
self::restricted_parallel_sync or self::wait_all or self::wait_any or self::while_do or
self::task or self::terminate][1][self::task])"/></xsl:variable>

#define caseSuccessorTask() \
<xsl:when test="$oneIfSuccessorTask > 0">

#define countSetsAndResets() \
<xsl:variable name="numberOfSets">\
<xsl:value-of select="count(/route//event[@name=$nameOfEvent])"/>\
</xsl:variable>\
<xsl:variable name="numberOfResets">\
<xsl:value-of select="count(/route//event[@name=$nameOfEvent and @type=’reset’])"/>\
</xsl:variable>
43

#endif

#define ifSets() \
<xsl:if test="$numberOfSets > $numberOfResets">

#define ifResets() \
<xsl:if test="$numberOfResets > 0">

#define endIf() \
</xsl:if>

#define caseReset() \
<xsl:when test="@type = ’reset’">

Appendix E. Extensions, plain XSLT

This appendix shows the plain XSLT specifications of the restricted_parallel_sync, the fast_sequence, and
the event after all three extensions have been added.

restricted_parallel_sync

<xsl:template match="restricted_parallel_sync">
<xsl:variable name="numberOfSuspects">

<xsl:value-of select="count(descendant::*[self::event or self::send or
self::receive or self::wait_all or self::wait_any or self::terminate])"/>

</xsl:variable>
<xsl:variable name="numberOfSpawners">

<xsl:value-of select="count(descendant::*[self::parallel_part_sync or
self::parallel_part_sync_cancel or self::parallel_no_sync])"/>

</xsl:variable>
<transition>

<xsl:attribute name="id"><xsl:apply-templates select="." mode="id"/>/begin</
xsl:attribute>

<xsl:apply-templates select="attribute::condition"/>
</transition>
<transition>

<xsl:attribute name="id"><xsl:apply-templates select="." mode="id"/>/end</
xsl:attribute>

<xsl:apply-templates select="attribute::condition"/>
</transition>
<place>

<xsl:attribute name="id"><xsl:apply-templates select="." mode="id"/>/prev</
xsl:attribute>

</place>
<place>

<xsl:attribute name="id"><xsl:apply-templates select="." mode="id"/>/next</
xsl:attribute>

</place>
<place>

<xsl:attribute name="id"><xsl:apply-templates select="." mode="id"/>/exec</
xsl:attribute>

</place>
<arc>

<xsl:attribute name="id"><xsl:apply-templates select="." mode="id"/>/arc1</
xsl:attribute>

<xsl:attribute name="source"><xsl:apply-templates select="." mode="id"/>/prev</
xsl:attribute>

<xsl:attribute name="target"><xsl:apply-templates select="." mode="id"/>/begin</
44

xsl:attribute>
</arc>
<arc>

<xsl:attribute name="id"><xsl:apply-templates select="." mode="id"/>/arc4</
xsl:attribute>

<xsl:attribute name="source"><xsl:apply-templates select="." mode="id"/>/end</
xsl:attribute>

<xsl:attribute name="target"><xsl:apply-templates select="." mode="id"/>/next</
xsl:attribute>

</arc>
<xsl:choose>

<xsl:when test="$reduce = ’No’ or $numberOfSuspects > 0">
<xsl:apply-templates/>
<xsl:variable name="rememberedNumber">

<xsl:value-of select="@number"/>
</xsl:variable>
<xsl:for-each select="child::*[self::sequence or self::any_sequence or

self::fast_sequence or self::choice or self::condition or self::parallel_sync or
self::parallel_no_sync or self::parallel_part_sync or self::parallel_part_sync_cancel
or self::restricted_parallel_sync or self::wait_all or self::wait_any or self::while_do
or self::task or self::terminate]">

<xsl:variable name="numberOfSpawnersChild">
<xsl:value-of select="count(descendant-or-self::*[self::parallel_part_sync

or self::parallel_part_sync_cancel or self::parallel_no_sync])"/>
</xsl:variable>
<arc>

<xsl:attribute name="id"><xsl:apply-templates select=".." mode="id"/>/
arc5_<xsl:number value="position()"/></xsl:attribute>

<xsl:attribute name="source"><xsl:apply-templates select=".." mode="id"/>/
begin</xsl:attribute>

<xsl:attribute name="target"><xsl:apply-templates select="." mode="id"/>/
prev</xsl:attribute>

</arc>
<arc>

<xsl:attribute name="id"><xsl:apply-templates select=".." mode="id"/>/
arc6_<xsl:number value="position()"/></xsl:attribute>

<xsl:attribute name="source"><xsl:apply-templates select=".." mode="id"/>/
exec</xsl:attribute>

<xsl:attribute name="target"><xsl:apply-templates select="." mode="id"/>/
begin</xsl:attribute>

</arc>
<arc>

<xsl:attribute name="id"><xsl:apply-templates select=".." mode="id"/>/
arc7_<xsl:number value="position()"/></xsl:attribute>

<xsl:attribute name="source"><xsl:apply-templates select="." mode="id"/>/
next</xsl:attribute>

<xsl:attribute name="target"><xsl:apply-templates select=".." mode="id"/>/
end</xsl:attribute>

</arc>
<arc>

<xsl:attribute name="id"><xsl:apply-templates select=".." mode="id"/>/
arc8_<xsl:number value="position()"/></xsl:attribute>

<xsl:attribute name="source"><xsl:apply-templates select="." mode="id"/>/
end</xsl:attribute>

<xsl:attribute name="target"><xsl:apply-templates select=".." mode="id"/>/
exec</xsl:attribute>

</arc>
<xsl:choose>

<xsl:when test="$reduce = ’No’ or $numberOfSpawnersChild > 0">
45

<arc>
<xsl:attribute name="id"><xsl:apply-templates select=".." mode="id"/>/

arc9_<xsl:number value="position()"/></xsl:attribute>
<xsl:attribute name="source"><xsl:apply-templates select="." mode="id"/>/

done</xsl:attribute>
<xsl:attribute name="target"><xsl:apply-templates select=".." mode="id"/

>/term</xsl:attribute>
</arc>

</xsl:when>
</xsl:choose>
<xsl:choose>

<xsl:when test="position() <= $rememberedNumber">
<arc>

<xsl:attribute name="id"><xsl:apply-templates select=".." mode="id"/>/
arc2_<xsl:number value="position()"/></xsl:attribute>

<xsl:attribute name="source"><xsl:apply-templates select=".." mode="id"/
>/begin</xsl:attribute>

<xsl:attribute name="target"><xsl:apply-templates select=".." mode="id"/
>/exec</xsl:attribute>

</arc>
<arc>

<xsl:attribute name="id"><xsl:apply-templates select=".." mode="id"/>/
arc3_<xsl:number value="position()"/></xsl:attribute>

<xsl:attribute name="source"><xsl:apply-templates select=".." mode="id"/
>/exec</xsl:attribute>

<xsl:attribute name="target"><xsl:apply-templates select=".." mode="id"/
>/end</xsl:attribute>

</arc>
</xsl:when>

</xsl:choose>
</xsl:for-each>

</xsl:when>
</xsl:choose>
<xsl:choose>

<xsl:when test="$reduce = ’No’ or $numberOfSpawners > 0">
<transition>

<xsl:attribute name="id"><xsl:apply-templates select="." mode="id"/>/term</
xsl:attribute>

<xsl:apply-templates select="attribute::condition"/>
</transition>
<place>

<xsl:attribute name="id"><xsl:apply-templates select="." mode="id"/>/done</
xsl:attribute>

</place>
<place>

<xsl:attribute name="id"><xsl:apply-templates select="." mode="id"/>/sig</
xsl:attribute>

</place>
<arc>

<xsl:attribute name="id"><xsl:apply-templates select="." mode="id"/>/arc10</
xsl:attribute>

<xsl:attribute name="source"><xsl:apply-templates select="." mode="id"/>/end</
xsl:attribute>

<xsl:attribute name="target"><xsl:apply-templates select="." mode="id"/>/sig</
xsl:attribute>

</arc>
<arc>

<xsl:attribute name="id"><xsl:apply-templates select="." mode="id"/>/arc11</
xsl:attribute>
46

<xsl:attribute name="source"><xsl:apply-templates select="." mode="id"/>/sig</
xsl:attribute>

<xsl:attribute name="target"><xsl:apply-templates select="." mode="id"/>/term</
xsl:attribute>

</arc>
<arc>

<xsl:attribute name="id"><xsl:apply-templates select="." mode="id"/>/arc12</
xsl:attribute>

<xsl:attribute name="source"><xsl:apply-templates select="." mode="id"/>/term</
xsl:attribute>

<xsl:attribute name="target"><xsl:apply-templates select="." mode="id"/>/done</
xsl:attribute>

</arc>
</xsl:when>

</xsl:choose>
</xsl:template>
<xsl:template match="restricted_parallel_sync" mode="id">
<xsl:apply-templates select=".." mode="id"/>/rps:<xsl:value-of select="1 + count(pre-

ceding-sibling::*[self::sequence or self::any_sequence or self::fast_sequence or
self::choice or self::condition or self::parallel_sync or self::parallel_no_sync or
self::parallel_part_sync or self::parallel_part_sync_cancel or
self::restricted_parallel_sync or self::wait_all or self::wait_any or self::while_do or
self::task or self::terminate])"/>
</xsl:template>

fast_sequence

<xsl:template match="fast_sequence">
<xsl:variable name="numberOfSuspects">

<xsl:value-of select="count(descendant::*[self::event or self::send or
self::receive or self::wait_all or self::wait_any or self::terminate])"/>

</xsl:variable>
<xsl:variable name="numberOfSpawners">

<xsl:value-of select="count(descendant::*[self::parallel_part_sync or
self::parallel_part_sync_cancel or self::parallel_no_sync])"/>

</xsl:variable>
<transition>

<xsl:attribute name="id"><xsl:apply-templates select="." mode="id"/>/begin</
xsl:attribute>

<xsl:apply-templates select="attribute::condition"/>
</transition>
<transition>

<xsl:attribute name="id"><xsl:apply-templates select="." mode="id"/>/end</
xsl:attribute>

<xsl:apply-templates select="attribute::condition"/>
</transition>
<place>

<xsl:attribute name="id"><xsl:apply-templates select="." mode="id"/>/prev</
xsl:attribute>

</place>
<place>

<xsl:attribute name="id"><xsl:apply-templates select="." mode="id"/>/next</
xsl:attribute>

</place>
<arc>

<xsl:attribute name="id"><xsl:apply-templates select="." mode="id"/>/arc1</
xsl:attribute>

<xsl:attribute name="source"><xsl:apply-templates select="." mode="id"/>/prev</
47

xsl:attribute>
<xsl:attribute name="target"><xsl:apply-templates select="." mode="id"/>/begin</

xsl:attribute>
</arc>
<arc>

<xsl:attribute name="id"><xsl:apply-templates select="." mode="id"/>/arc2</
xsl:attribute>

<xsl:attribute name="source"><xsl:apply-templates select="." mode="id"/>/end</
xsl:attribute>

<xsl:attribute name="target"><xsl:apply-templates select="." mode="id"/>/next</
xsl:attribute>

</arc>
<xsl:choose>

<xsl:when test="$reduce = ’No’ or $numberOfSuspects > 0">
<xsl:apply-templates/>
<arc>

<xsl:attribute name="id"><xsl:apply-templates select="." mode="id"/>/arc3</
xsl:attribute>

<xsl:attribute name="source"><xsl:apply-templates select="." mode="id"/>/
begin</xsl:attribute>

<xsl:attribute name="target"><xsl:apply-templates
select="child::*[self::sequence or self::any_sequence or self::fast_sequence or
self::choice or self::condition or self::parallel_sync or self::parallel_no_sync or
self::parallel_part_sync or self::parallel_part_sync_cancel or
self::restricted_parallel_sync or self::wait_all or self::wait_any or self::while_do or
self::task or self::terminate][1]" mode="id"/>/prev</xsl:attribute>

</arc>
<arc>

<xsl:attribute name="id"><xsl:apply-templates select="." mode="id"/>/arc4</
xsl:attribute>

<xsl:attribute name="source"><xsl:apply-templates
select="child::*[self::sequence or self::any_sequence or self::fast_sequence or
self::choice or self::condition or self::parallel_sync or self::parallel_no_sync or
self::parallel_part_sync or self::parallel_part_sync_cancel or
self::restricted_parallel_sync or self::wait_all or self::wait_any or self::while_do or
self::task or self::terminate][last()]" mode="id"/>/next</xsl:attribute>

<xsl:attribute name="target"><xsl:apply-templates select="." mode="id"/>/end</
xsl:attribute>

</arc>
<xsl:for-each select="child::*[self::sequence or self::any_sequence or

self::fast_sequence or self::choice or self::condition or self::parallel_sync or
self::parallel_no_sync or self::parallel_part_sync or self::parallel_part_sync_cancel
or self::restricted_parallel_sync or self::wait_all or self::wait_any or self::while_do
or self::task or self::terminate][position()!=last()]">

<arc>
<xsl:attribute name="id"><xsl:apply-templates select=".." mode="id"/>/

arc5_<xsl:number value="position()"/></xsl:attribute>
<xsl:attribute name="source"><xsl:apply-templates select="." mode="id"/>/

begin</xsl:attribute>
<xsl:attribute name="target"><xsl:apply-templates select="following-sib-

ling::*[self::sequence or self::any_sequence or self::fast_sequence or self::choice or
self::condition or self::parallel_sync or self::parallel_no_sync or
self::parallel_part_sync or self::parallel_part_sync_cancel or
self::restricted_parallel_sync or self::wait_all or self::wait_any or self::while_do or
self::task or self::terminate][1]" mode="id"/>/prev</xsl:attribute>

</arc>
<arc>

<xsl:attribute name="id"><xsl:apply-templates select=".." mode="id"/>/
arc6_<xsl:number value="position()"/></xsl:attribute>
48

<xsl:attribute name="source"><xsl:apply-templates select="." mode="id"/>/
next</xsl:attribute>

<xsl:attribute name="target"><xsl:apply-templates select="following-sib-
ling::*[self::sequence or self::any_sequence or self::fast_sequence or self::choice or
self::condition or self::parallel_sync or self::parallel_no_sync or
self::parallel_part_sync or self::parallel_part_sync_cancel or
self::restricted_parallel_sync or self::wait_all or self::wait_any or self::while_do or
self::task or self::terminate][1]" mode="id"/>/end</xsl:attribute>

</arc>
<xsl:choose>

<xsl:when test="$reduce = ’No’ or $numberOfTerminates > 0">
<xsl:variable name="oneIfTask">

<xsl:value-of select="count(self::*[self::task])"/>
</xsl:variable>
<xsl:choose>

<xsl:when test="$oneIfTask > 0">
<arc>

<xsl:attribute name="id"><xsl:apply-templates select=".." mode="id"/
>/arc7_<xsl:number value="position()"/></xsl:attribute>

<xsl:attribute name="source"><xsl:apply-templates select="."
mode="id"/>/bbegin</xsl:attribute>

<xsl:attribute name="target"><xsl:apply-templates select="following-
sibling::*[self::sequence or self::any_sequence or self::fast_sequence or self::choice
or self::condition or self::parallel_sync or self::parallel_no_sync or
self::parallel_part_sync or self::parallel_part_sync_cancel or
self::restricted_parallel_sync or self::wait_all or self::wait_any or self::while_do or
self::task or self::terminate][1]" mode="id"/>/prev</xsl:attribute>

</arc>
</xsl:when>

</xsl:choose>
<xsl:variable name="oneIfSuccessorTask">

<xsl:value-of select="count(following-sibling::*[self::sequence or
self::any_sequence or self::fast_sequence or self::choice or self::condition or
self::parallel_sync or self::parallel_no_sync or self::parallel_part_sync or
self::parallel_part_sync_cancel or self::restricted_parallel_sync or self::wait_all or
self::wait_any or self::while_do or self::task or self::terminate][1][self::task])"/>

</xsl:variable>
<xsl:choose>

<xsl:when test="$oneIfSuccessorTask > 0">
<arc>

<xsl:attribute name="id"><xsl:apply-templates select=".." mode="id"/
>/arc8_<xsl:number value="position()"/></xsl:attribute>

<xsl:attribute name="source"><xsl:apply-templates select="."
mode="id"/>/next</xsl:attribute>

<xsl:attribute name="target"><xsl:apply-templates select="following-
sibling::*[self::sequence or self::any_sequence or self::fast_sequence or self::choice
or self::condition or self::parallel_sync or self::parallel_no_sync or
self::parallel_part_sync or self::parallel_part_sync_cancel or
self::restricted_parallel_sync or self::wait_all or self::wait_any or self::while_do or
self::task or self::terminate][1]" mode="id"/>/bend</xsl:attribute>

</arc>
</xsl:when>

</xsl:choose>
</xsl:when>

</xsl:choose>
</xsl:for-each>
<xsl:for-each select="child::*[self::sequence or self::any_sequence or

self::fast_sequence or self::choice or self::condition or self::parallel_sync or
self::parallel_no_sync or self::parallel_part_sync or self::parallel_part_sync_cancel
49

or self::restricted_parallel_sync or self::wait_all or self::wait_any or self::while_do
or self::task or self::terminate]">

<xsl:variable name="numberOfSpawnersChild">
<xsl:value-of select="count(descendant-or-self::*[self::parallel_part_sync

or self::parallel_part_sync_cancel or self::parallel_no_sync])"/>
</xsl:variable>
<xsl:choose>

<xsl:when test="$reduce = ’No’ or $numberOfSpawnersChild > 0">
<arc>

<xsl:attribute name="id"><xsl:apply-templates select=".." mode="id"/>/
arc12_<xsl:number value="position()"/></xsl:attribute>

<xsl:attribute name="source"><xsl:apply-templates select="." mode="id"/>/
done</xsl:attribute>

<xsl:attribute name="target"><xsl:apply-templates select=".." mode="id"/
>/term</xsl:attribute>

</arc>
</xsl:when>

</xsl:choose>
</xsl:for-each>

</xsl:when>
<xsl:otherwise>

<place>
<xsl:attribute name="id"><xsl:apply-templates select="." mode="id"/>/exec</

xsl:attribute>
</place>
<arc>

<xsl:attribute name="id"><xsl:apply-templates select="." mode="id"/>/arc10</
xsl:attribute>

<xsl:attribute name="source"><xsl:apply-templates select="." mode="id"/>/
begin</xsl:attribute>

<xsl:attribute name="target"><xsl:apply-templates select="." mode="id"/>/exec</
xsl:attribute>

</arc>
<arc>

<xsl:attribute name="id"><xsl:apply-templates select="." mode="id"/>/arc11</
xsl:attribute>

<xsl:attribute name="source"><xsl:apply-templates select="." mode="id"/>/exec</
xsl:attribute>

<xsl:attribute name="target"><xsl:apply-templates select="." mode="id"/>/end</
xsl:attribute>

</arc>
</xsl:otherwise>

</xsl:choose>
<xsl:choose>

<xsl:when test="$reduce = ’No’ or $numberOfSpawners > 0">
<transition>

<xsl:attribute name="id"><xsl:apply-templates select="." mode="id"/>/term</
xsl:attribute>

<xsl:apply-templates select="attribute::condition"/>
</transition>
<place>

<xsl:attribute name="id"><xsl:apply-templates select="." mode="id"/>/done</
xsl:attribute>

</place>
<place>

<xsl:attribute name="id"><xsl:apply-templates select="." mode="id"/>/sig</
xsl:attribute>

</place>
<arc>
50

<xsl:attribute name="id"><xsl:apply-templates select="." mode="id"/>/arc7</
xsl:attribute>

<xsl:attribute name="source"><xsl:apply-templates select="." mode="id"/>/end</
xsl:attribute>

<xsl:attribute name="target"><xsl:apply-templates select="." mode="id"/>/sig</
xsl:attribute>

</arc>
<arc>

<xsl:attribute name="id"><xsl:apply-templates select="." mode="id"/>/arc8</
xsl:attribute>

<xsl:attribute name="source"><xsl:apply-templates select="." mode="id"/>/sig</
xsl:attribute>

<xsl:attribute name="target"><xsl:apply-templates select="." mode="id"/>/term</
xsl:attribute>

</arc>
<arc>

<xsl:attribute name="id"><xsl:apply-templates select="." mode="id"/>/arc9</
xsl:attribute>

<xsl:attribute name="source"><xsl:apply-templates select="." mode="id"/>/term</
xsl:attribute>

<xsl:attribute name="target"><xsl:apply-templates select="." mode="id"/>/done</
xsl:attribute>

</arc>
</xsl:when>

</xsl:choose>
</xsl:template>
<xsl:template match="fast_sequence" mode="id">
<xsl:apply-templates select=".." mode="id"/>/fs[<xsl:value-of select="1 + count(pre-

ceding-sibling::*[self::sequence or self::any_sequence or self::fast_sequence or
self::choice or self::condition or self::parallel_sync or self::parallel_no_sync or
self::parallel_part_sync or self::parallel_part_sync_cancel or
self::restricted_parallel_sync or self::wait_all or self::wait_any or self::while_do or
self::task or self::terminate])"/>]
</xsl:template>

event

<xsl:template match="event">
<xsl:variable name="nameOfEvent">

<xsl:value-of select="@name"/>
</xsl:variable>
<xsl:variable name="rankOfEvent">

<xsl:value-of select="count(preceding::event[@name=$nameOfEvent]|ances-
tor::event[@name=$nameOfEvent])"/>

</xsl:variable>
<xsl:choose>

<xsl:when test="@type = ’reset’">
<arc>

<xsl:attribute name="id"><xsl:apply-templates select="." mode="id"/>/arc1</
xsl:attribute>

<xsl:attribute name="source"><xsl:apply-templates select=".." mode="id"/>/
events</xsl:attribute>

<xsl:attribute name="target"><xsl:apply-templates select="." mode="eid"/>/
resetevent</xsl:attribute>

</arc>
<arc>

<xsl:attribute name="id"><xsl:apply-templates select="." mode="id"/>/arc2</
xsl:attribute>

<xsl:attribute name="source"><xsl:apply-templates select="." mode="eid"/>/even-
51

treset</xsl:attribute>
<xsl:attribute name="target"><xsl:apply-templates select=".." mode="id"/>/end</

xsl:attribute>
</arc>

</xsl:when>
<xsl:otherwise>

<arc>
<xsl:attribute name="id"><xsl:apply-templates select="." mode="id"/>/arc1</

xsl:attribute>
<xsl:attribute name="source"><xsl:apply-templates select=".." mode="id"/>/

events</xsl:attribute>
<xsl:attribute name="target"><xsl:apply-templates select="." mode="eid"/>/set-

event</xsl:attribute>
</arc>
<arc>

<xsl:attribute name="id"><xsl:apply-templates select="." mode="id"/>/arc2</
xsl:attribute>

<xsl:attribute name="source"><xsl:apply-templates select="." mode="eid"/>/
eventset</xsl:attribute>

<xsl:attribute name="target"><xsl:apply-templates select=".." mode="id"/>/end</
xsl:attribute>

</arc>
</xsl:otherwise>

</xsl:choose>
<xsl:choose>

<xsl:when test="$rankOfEvent = 0">
<xsl:variable name="numberOfSets">

<xsl:value-of select="count(/route//event[@name=$nameOfEvent])"/>
</xsl:variable>
<xsl:variable name="numberOfResets">

<xsl:value-of select="count(/route//event[@name=$nameOfEvent and
@type=’reset’])"/>

</xsl:variable>
<transition>

<xsl:attribute name="id"><xsl:apply-templates select="." mode="eid"/>/clear</
xsl:attribute>

</transition>
<place>

<xsl:attribute name="id"><xsl:apply-templates select="." mode="eid"/>/event</
xsl:attribute>

</place>
<place>

<xsl:attribute name="id"><xsl:apply-templates select="." mode="eid"/>/non-
event</xsl:attribute>

</place>
<arc>

<xsl:attribute name="id"><xsl:apply-templates select="." mode="eid"/>/arc1</
xsl:attribute>

<xsl:attribute name="source"><xsl:apply-templates select="." mode="eid"/>/
event</xsl:attribute>

<xsl:attribute name="target"><xsl:apply-templates select="." mode="eid"/>/
clear</xsl:attribute>

</arc>
<arc>

<xsl:attribute name="id"><xsl:apply-templates select="." mode="eid"/>/arc2</
xsl:attribute>

<xsl:attribute name="source"><xsl:apply-templates select="." mode="eid"/>/
clear</xsl:attribute>

<xsl:attribute name="target"><xsl:apply-templates select="." mode="eid"/>/non-
52

event</xsl:attribute>
</arc>
<arc>

<xsl:attribute name="id"><xsl:apply-templates select="." mode="eid"/>/arc3</
xsl:attribute>

<xsl:attribute name="source"><xsl:apply-templates select="/" mode="id"/>/
almost</xsl:attribute>

<xsl:attribute name="target"><xsl:apply-templates select="." mode="eid"/>/
clear</xsl:attribute>

</arc>
<arc>

<xsl:attribute name="id"><xsl:apply-templates select="." mode="eid"/>/arc4</
xsl:attribute>

<xsl:attribute name="source"><xsl:apply-templates select="." mode="eid"/>/
clear</xsl:attribute>

<xsl:attribute name="target"><xsl:apply-templates select="/" mode="id"/>/
almost</xsl:attribute>

</arc>
<arc>

<xsl:attribute name="id"><xsl:apply-templates select="." mode="eid"/>/arc5</
xsl:attribute>

<xsl:attribute name="source"><xsl:apply-templates select="." mode="eid"/>/non-
event</xsl:attribute>

<xsl:attribute name="target"><xsl:apply-templates select="/" mode="id"/>/done</
xsl:attribute>

</arc>
<arc>

<xsl:attribute name="id"><xsl:apply-templates select="." mode="eid"/>/arc6</
xsl:attribute>

<xsl:attribute name="source"><xsl:apply-templates select="/" mode="id"/>/
begin</xsl:attribute>

<xsl:attribute name="target"><xsl:apply-templates select="." mode="eid"/>/non-
event</xsl:attribute>

</arc>
<xsl:if test="$numberOfSets > $numberOfResets">

<transition>
<xsl:attribute name="id"><xsl:apply-templates select="." mode="eid"/>/set</

xsl:attribute>
</transition>
<transition>

<xsl:attribute name="id"><xsl:apply-templates select="." mode="eid"/>/isset</
xsl:attribute>

</transition>
<place>

<xsl:attribute name="id"><xsl:apply-templates select="." mode="eid"/>/set-
event</xsl:attribute>

</place>
<place>

<xsl:attribute name="id"><xsl:apply-templates select="." mode="eid"/>/event-
set</xsl:attribute>

</place>
<arc>

<xsl:attribute name="id"><xsl:apply-templates select="." mode="eid"/>/arc7</
xsl:attribute>

<xsl:attribute name="source"><xsl:apply-templates select="." mode="eid"/>/
setevent</xsl:attribute>

<xsl:attribute name="target"><xsl:apply-templates select="." mode="eid"/>/
set</xsl:attribute>

</arc>
53

<arc>
<xsl:attribute name="id"><xsl:apply-templates select="." mode="eid"/>/arc8</

xsl:attribute>
<xsl:attribute name="source"><xsl:apply-templates select="." mode="eid"/>/

setevent</xsl:attribute>
<xsl:attribute name="target"><xsl:apply-templates select="." mode="eid"/>/

isset</xsl:attribute>
</arc>
<arc>

<xsl:attribute name="id"><xsl:apply-templates select="." mode="eid"/>/arc9</
xsl:attribute>

<xsl:attribute name="source"><xsl:apply-templates select="." mode="eid"/>/
nonevent</xsl:attribute>

<xsl:attribute name="target"><xsl:apply-templates select="." mode="eid"/>/
set</xsl:attribute>

</arc>
<arc>

<xsl:attribute name="id"><xsl:apply-templates select="." mode="eid"/>/arc10</
xsl:attribute>

<xsl:attribute name="source"><xsl:apply-templates select="." mode="eid"/>/
set</xsl:attribute>

<xsl:attribute name="target"><xsl:apply-templates select="." mode="eid"/>/
event</xsl:attribute>

</arc>
<arc>

<xsl:attribute name="id"><xsl:apply-templates select="." mode="eid"/>/arc11</
xsl:attribute>

<xsl:attribute name="source"><xsl:apply-templates select="." mode="eid"/>/
event</xsl:attribute>

<xsl:attribute name="target"><xsl:apply-templates select="." mode="eid"/>/
isset</xsl:attribute>

</arc>
<arc>

<xsl:attribute name="id"><xsl:apply-templates select="." mode="eid"/>/arc12</
xsl:attribute>

<xsl:attribute name="source"><xsl:apply-templates select="." mode="eid"/>/
isset</xsl:attribute>

<xsl:attribute name="target"><xsl:apply-templates select="." mode="eid"/>/
event</xsl:attribute>

</arc>
<arc>

<xsl:attribute name="id"><xsl:apply-templates select="." mode="eid"/>/arc13</
xsl:attribute>

<xsl:attribute name="source"><xsl:apply-templates select="." mode="eid"/>/
set</xsl:attribute>

<xsl:attribute name="target"><xsl:apply-templates select="." mode="eid"/>/
setevent</xsl:attribute>

</arc>
<arc>

<xsl:attribute name="id"><xsl:apply-templates select="." mode="eid"/>/arc14</
xsl:attribute>

<xsl:attribute name="source"><xsl:apply-templates select="." mode="eid"/>/
isset</xsl:attribute>

<xsl:attribute name="target"><xsl:apply-templates select="." mode="eid"/>/
eventset</xsl:attribute>

</arc>
</xsl:if>
<xsl:if test="$numberOfResets > 0">

<transition>
54

<xsl:attribute name="id"><xsl:apply-templates select="." mode="eid"/>/reset</
xsl:attribute>

</transition>
<transition>

<xsl:attribute name="id"><xsl:apply-templates select="." mode="eid"/>/isre-
set</xsl:attribute>

</transition>
<place>

<xsl:attribute name="id"><xsl:apply-templates select="." mode="eid"/>/
resetevent</xsl:attribute>

</place>
<place>

<xsl:attribute name="id"><xsl:apply-templates select="." mode="eid"/>/even-
treset</xsl:attribute>

</place>
<arc>

<xsl:attribute name="id"><xsl:apply-templates select="." mode="eid"/>/arc17</
xsl:attribute>

<xsl:attribute name="source"><xsl:apply-templates select="." mode="eid"/>/
resetevent</xsl:attribute>

<xsl:attribute name="target"><xsl:apply-templates select="." mode="eid"/>/
reset</xsl:attribute>

</arc>
<arc>

<xsl:attribute name="id"><xsl:apply-templates select="." mode="eid"/>/arc18</
xsl:attribute>

<xsl:attribute name="source"><xsl:apply-templates select="." mode="eid"/>/
resetevent</xsl:attribute>

<xsl:attribute name="target"><xsl:apply-templates select="." mode="eid"/>/
isreset</xsl:attribute>

</arc>
<arc>

<xsl:attribute name="id"><xsl:apply-templates select="." mode="eid"/>/arc19</
xsl:attribute>

<xsl:attribute name="source"><xsl:apply-templates select="." mode="eid"/>/
nonevent</xsl:attribute>

<xsl:attribute name="target"><xsl:apply-templates select="." mode="eid"/>/
reset</xsl:attribute>

</arc>
<arc>

<xsl:attribute name="id"><xsl:apply-templates select="." mode="eid"/>/arc20</
xsl:attribute>

<xsl:attribute name="source"><xsl:apply-templates select="." mode="eid"/>/
reset</xsl:attribute>

<xsl:attribute name="target"><xsl:apply-templates select="." mode="eid"/>/
event</xsl:attribute>

</arc>
<arc>

<xsl:attribute name="id"><xsl:apply-templates select="." mode="eid"/>/arc21</
xsl:attribute>

<xsl:attribute name="source"><xsl:apply-templates select="." mode="eid"/>/
event</xsl:attribute>

<xsl:attribute name="target"><xsl:apply-templates select="." mode="eid"/>/
isreset</xsl:attribute>

</arc>
<arc>

<xsl:attribute name="id"><xsl:apply-templates select="." mode="eid"/>/arc22</
xsl:attribute>

<xsl:attribute name="source"><xsl:apply-templates select="." mode="eid"/>/
55

isreset</xsl:attribute>
<xsl:attribute name="target"><xsl:apply-templates select="." mode="eid"/>/

event</xsl:attribute>
</arc>
<arc>

<xsl:attribute name="id"><xsl:apply-templates select="." mode="eid"/>/arc23</
xsl:attribute>

<xsl:attribute name="source"><xsl:apply-templates select="." mode="eid"/>/
reset</xsl:attribute>

<xsl:attribute name="target"><xsl:apply-templates select="." mode="eid"/>/
resetevent</xsl:attribute>

</arc>
<arc>

<xsl:attribute name="id"><xsl:apply-templates select="." mode="eid"/>/arc24</
xsl:attribute>

<xsl:attribute name="source"><xsl:apply-templates select="." mode="eid"/>/
isreset</xsl:attribute>

<xsl:attribute name="target"><xsl:apply-templates select="." mode="eid"/>/
eventreset</xsl:attribute>

</arc>
</xsl:if>

</xsl:when>
</xsl:choose>

</xsl:template>
<xsl:template match="event" mode="id">
<xsl:apply-templates select=".." mode="id"/>/e<xsl:number/>

</xsl:template>
<xsl:template match="event" mode="eid">
<xsl:apply-templates select="/" mode="id"/>/<xsl:value-of select="@name"/>

</xsl:template>

Appendix F. Coverage of routing elements

For sake of simplicity, we assume that the invariants of the child routing elements are recalibrated such that
the places next and done have weight 1. As a result, some weights might be fractions instead of natural
numbers, but this is irrelevant: If need be, we can always multiply all weights with the product of all
denominators.

Any_sequence:

Choice:

Pas N 1+() prev next+()× PREi
REiexec

+

i 1=

N

∑

exec+ +=

Qas 2N 1+() prev done+()× PREi
QREi

REiexec
+ +

i 1=

N

∑

exec N 1+() sig×+ + +=

Pce N prev join next+ +()× N P× REi
N 1–() REi

[]Pa

×–

i 1=

N

∑

+=
56

N

Condition, with T true’s and F false’s:

Parallel_no_sync:

Parallel_part_sync or parallel_part_sync_cancel:

Parallel_sync:

Sequence:

Qce 2N prev done+()× N PREi
QREi

+()× N 1–() REiprev
×–

i 1=

∑

N join next sig+ +()×+ +=

Pcn T F 1+ +() prev split join next+ + +()× PtrueREi
i 1=

T

∑

F 1+() texec×

PfalseREi
i 1=

F

∑

T 1+() fexec×

+ + +

+

=

Qcn 2T 2F 2+ +() prev split done+ +()× PtrueREi

QtrueREi

+

i 1=

T

∑

2F 2+() texec× F 1+() tsig× PfalseREi

QfalseREi

+

i 1=

F

∑

2T 2+() fexec× T 1+() fsig× T F 1+ +() join sig joindone+ +()×

+ +

+ + +

+ +

=

Ppns prev exec next+ +=

Qpns 2N 1+() prev done+()× PREi
QREi

+

i 1=

N

∑

exec sig+ + +=

Ppps Pppsc prev exec next+ += =

Qpps Qppsc 2N prev done+()× free PREi
QREi

+

i 1=

N

∑

exec count K 1+() sig×+ + + + += =

Pps N prev next+()× PREi

i 1=

N

∑

+=

Qps 2N prev done+()× PREi
QREi

+

i 1=

N

∑

N sig×+ +=
57

N

Task:

Terminate:

Wait_all or wait_any, with N timeouts:

While_do:

Ps prev PREi

i 1=

∑

next+ +=

Qs N 1+() prev done+()× N 1 i–+() PREi
× QREi

+

i 1=

N

∑

sig+ +=

Ptk prev exec wait bypass next+ + + +=
Qtk prev exec wait bypass sig done+ + + + +=

Ptt prev exec next+ +=
Qtt prev exec sig done+ + +=

Pwl Pwy prev wprev wnext next+ + += =

Qwl Qwy 2 prev wprev done+ +()× PtimeoutREi

QtimeoutREi

+

i 1=

N

∑

wnext wdone sig+ + + += =

Pwd prev PRE next+ +=
Qwd X 1+() prev done+()× PRE QRE sig+ + +=
58

	XRL/Woflan: Verification of an XML/Petri-net-based language for inter-organizational workflows
	Abstract
	Keywords
	1. � Introduction
	2. � XRL: An XML based routing language
	3. � Example: An electronic bookstore
	4. � Workflow nets
	5. � Semantics of XRL in terms of WF-nets
	6. � Soundness of XRL
	7. � Verification of XRL
	8. � Extensibility of XRL
	9. � Verification tool
	10. � Related work
	11. � Conclusion
	References
	Appendix A. � The extended DTD of XRL
	Appendix B. � The E-bookstore example
	Appendix C. � Extensions, using macros
	restricted_parallel_sync
	fast_sequence
	event

	Appendix D. � Macro definitions
	Appendix E. � Extensions, plain XSLT
	restricted_parallel_sync
	fast_sequence
	event

	Appendix F. � Coverage of routing elements

