
Scalable Discovery of Partially Ordered Workflow
Models with Formal Guarantees

Humam Kourani
Fraunhofer FIT

Sankt Augustin, Germany
humam.kourani@fit.fraunhofer.de

Daniel Schuster
Fraunhofer FIT

Sankt Augustin, Germany
daniel.schuster@fit.fraunhofer.de

Wil van der Aalst
RWTH Aachen University

Aachen, Germany
wvdaalst@pads.rwth-aachen.de

Abstract—Many real-life processes naturally define partial
orders over the activities they are composed of. Partial orders can
be used as a graph-like representation of process behavior, al-
lowing us to model concurrent and sequential dependencies. The
Partially Ordered Workflow Language (POWL) combines block-
structured modeling notations with partially-ordered graph rep-
resentations. A POWL model is a hierarchical model where
sub-models can be combined into a new model either using
a control-flow operator or as a partial order. The application
of POWL models in process mining remains a challenge due
to a lack of scalable approaches for the discovery of POWL
models. In this paper, we address this gap by proposing an
approach for the discovery of POWL models that leverages
large data sets and ensures high conformity with the input data.
Our approach provides formal guarantees on the uniqueness,
existence, and quality of discovered partial orders. The evaluation
of our approach underscores its scalability with large data sets
and its ability to generate high-quality models.

Index Terms—partial order, process discovery, inductive min-
ing

I. INTRODUCTION

Process models serve as a representation of processes,
facilitating communication, simulation, and analysis. Process
models can either be created by hand or discovered using
process discovery techniques. Organizations use information
systems to track and record data about the execution of their
processes, and these data are used for the discovery of process
models. Discovered models provide insights that empower or-
ganizations to streamline their processes and improve decision-
making, leading to enhanced automation and efficiency.

Partial orders are used as a representation of the execution
order of activities for many real-life processes. In a partial
order, some activities may have a strict order with respect
to each other (e.g., activity “a” must happen before activity
“b”), while other activities are concurrent (e.g., activities
“b” and “c” may happen in any order). Partially ordered
graph representations allow us to model concurrency and
sequential dependencies in an efficient and compact manner;
however, they lack support for cyclic process behavior, which
is very common in practice. Moreover, in a partial order over
activities, we assume all activities to be executed, and thus,
modeling a choice is not supported.

A process tree [16] is a block-structured process modeling
notation that uses control-flow operators (sequence →, choice

Fig. 1: A POWL model. We only visualize the transitive
reduction of a partial order for the sake of simplicity

.

×, concurrency +, and loop ⟲) to model behavioral depen-
dencies between different blocks of activities. The Partially
Ordered Workflow Language (POWL) [15] is a hybrid model-
ing language that extends partially ordered graphs with process
tree operators for modeling choice and loop structures; i,e, a
POWL model is a hierarchical model where sub-models can
be combined either as a partial order or using process tree
operators.

An example POWL model is depicted in Fig. 1. The
outer layer of the hierarchy is a partial order modeling a
sequence between the activity sets {a}, {b, c, d, e, f}, and
{g, h}. Another partial order is used to model non-hierarchical
dependencies between {b}, {c}, {d, e}, and {f}; these depen-
dencies cannot be modeled by a process tree as process trees
are limited to hierarchical structures [16]. Finally, the process
tree operators × and ⟲ are used to model the choice between
d and e and the loop between g and h respectively.

Process discovery is one of the main branches of process
mining. Process discovery techniques analyze event data,
aiming at learning a process model that captures the behavior
recorded in the data. In [26] the authors outline four levels
of maturity for process discovery techniques. In [15], we
proposed an initial discovery approach that demonstrates the
feasibility of using POWL models for process discovery. This
initial approach is not scalable to handle large real-life data
sets (i.e., there exists no discovery approach of the second
maturity level for POWL models [26]). The absence of a
mature, scalable discovery approach underscores the challenge
of developing comprehensive POWL models.

In this paper, we contribute towards filling this gap by
proposing a scalable approach for the discovery of POWL
models. Moreover, the proposed method improves the quality
of the discovered models by ensuring a high degree of confor-

mity between the discovered models and the input event data.
We achieve this by defining a notion of completeness, which
serves as a mechanism to encapsulate all the order restrictions
between activities that the data permits. We also define a
notion of maximality, which provides formal guarantees on
the uniqueness and existence of the discovered partial orders.
We believe that our contribution will significantly enhance the
robustness and applicability of POWL models in practice.

The remainder of the paper is structured as follows. We
discuss related work in Sec. II, and we present basic prelimi-
naries in Sec. III. We introduce our approach for the discovery
of POWL models in Sec. IV. Next, we evaluate our approach
using real-life event data in Sec. V. Finally, we summarize the
paper and outline future work in Sec. VI.

II. RELATED WORK

Various process discovery approaches have been proposed.
We refer to [3] for an overview of automated process discovery
methods used in the field of process mining. In [16], the
inductive mining framework is introduced. The approach we
propose for the discovery of POWL models extends the
inductive mining framework.

Partial orders are used for data representation and process
modeling. An overview of the use of partial orders in process
mining is provided in [17]. In [12], the authors propose three
approaches for the discovery of Petri nets by aggregating
partially ordered sets of events. Another approach for the
discovery of Petri nets from partially ordered languages is
introduced in [4]. In [21], Mannila et al. propose an approach
for the discovery of frequent episodes, where an episode
is defined as a partially ordered set of events. In [14], the
authors create partially ordered representations of activities
and combine them into a workflow graph. In [13], the authors
suggest a discovery approach that generates partially ordered
graphs enriched with a conflict relation. This approach is able
to model choice due to the conflict relation; however, loops
remain a major challenge for prime event structures. In [22],
the authors present a method for deriving conditional partial
order graphs from event logs. A conditional partial order graph
[23] is a compact representation of a family of partial orders
that is able to model choice structures, but it fails to capture
cyclic behavior.

In [15], we introduce POWL models as a novel process
modeling notation that extends partially ordered graphs with
control-flow operators, and we introduce an initial discovery
approach that demonstrates the feasibility of using POWL
models for process discovery. This initial approach is not able
to scale on large real-life data sets as it mines for partial order
using a brute-force technique.

POWL models can be viewed as hybrid process models; i.e.,
POWL models combine partially ordered graphs with process
trees. Many ideas for combining different modeling notations
have been proposed. A hybrid Petri net [2] is defined as a Petri
net extended with informal arcs connecting transitions. In [25],
another type of hybrid process models is defined, combining
imperative and declarative modeling languages.

III. PRELIMINARIES

In this section, we present basic preliminaries.

A. Notation

IN = {1, 2, 3, ...} denotes the set of natural numbers. For
n sets X1, ..., Xn, the n-ary Cartesian product is denoted by
X1 × ...×Xn. An n-ary relation over X1, ..., Xn is a subset
of the n-ary Cartesian product X1 × ...×Xn.

A multi-set generalizes the notion of a set and allows for
multiple occurrences of the same element. We define a multi-
set M over a set X as a function M : X→IN∪{0}. We write
a multi-set as M = [x1

c1 , ..., xn
cn] where M(xi) = ci for

1≤i≤n (for x ∈ X with M(x) = 1, we omit the superscript;
in case M(x) = 0, we omit x). We use M(X) to denote the
set of all multi-sets over X .

We define a sequence over a set X as a function
σ : {1, . . ., n}→X , and we write σ = ⟨σ(1), ..., σ(n)⟩. We
use |σ| = n to denote the length of σ and X∗ to denote the
set of all sequences over X .

Let ≺ ⊆ X ×X be a binary (i.e., 2-ary) relation over
a set X . For (x1, x2) ∈ X ×X , we write x1≺x2 to de-
note that (x1, x2) ∈ ≺, and we write x1⊀x2 to denote that
(x1, x2) /∈ ≺. We refer to ρ = (X ,≺) as an ordered set. We
call ≺ a strict partial order if it is irreflexive (i.e., x⊀x for all
x ∈ X) and transitive (i.e., x1≺x2∧x2≺x3 ⇒ x1≺x3)1. In the
remainder of the paper, we use the term partial order to refer
to a strict partial order. The transitive reduction of ≺ is defined
as ≺− = {(x1, x3) ∈ ≺ | ∄x2 ∈ X

(
x1≺x2 ∧ x2≺x3}

)
. We

refer to ρ = (X ,≺) as a partially ordered set (poset). We use
Π (X) to denote the set of all posets over X .

B. Event Log

We use Σ to denote the universe of activities. We define an
event log L ∈ M(Σ∗) as a multi-set of activity sequences.
A trace σ ∈ L is a sequence of activities that represents the
execution of a single process instance.

Let L ∈ M(Σ∗) be an event log. ΣL={a ∈
Σ | ∃σ ∈ L, 1≤i≤ |σ|

(
σ(i) = a

)
} denotes the set

of activities that occur in L. We use L▷={a ∈
ΣL | ∃σ ∈ L

(
σ(1)=a

)
} to denote the set of start activities

and L□={a ∈ ΣL | ∃σ ∈ L
(
σ(|σ|)=a

)
} to denote the set

of end activities. The Directly-Follows Graph (DFG) is a
2-ary relation 7→L⊆ΣL×ΣL that captures direct successions
between activities: a7→Lb iff ∃σ∈L, 1≤i< |σ|

(
σ(i)=a∧σ(i+

1)=b
)

. The Eventually-Follows Graph (EFG)⇝L ⊆ ΣL×ΣL

captures direct and indirect successions between activities:
a⇝Lb iff ∃σ ∈ L, 1≤i<j≤ |σ|

(
σ(i)=a ∧ σ(j)=b

)
. For an

activity a, the pre-set of a is defined as •⇝La = {b | b⇝La ∧
a⇝̸Lb}, while the post-set of a is defined as a⇝L• =
{b | a⇝Lb ∧ b⇝̸La} .

For instance, L1=[⟨a, b, c⟩3, ⟨a, b, d⟩2] is an event
log consisting of five traces with ΣL1={a, b, c, d},

1Irreflexivity and transitivity imply asymmetry (i.e., x1≺x2 ⇒ x2⊀x1).

Fig. 2: A sound WF-net modeling the same behavior of the
POWL model shown in Fig. 1.

L1▷={a}, L1□={c, d}, 7→L1
={(a, b), (b, c), (b, d)}, and

⇝L1
={(a, b), (a, c), (a, d), (b, c), (b, d)}. The pre-set of c is

•⇝Lc = {a, b}, while the post-set of c is c⇝L• = ∅ .
Let P = {A1, ..., An} be a partitioning of the activities of

an event log L into n≥2 subsets, i.e., ΣL=A1∪...∪An and
Ai∩Aj=∅ for 1≤i<j≤n. For any activity a ∈ ΣL, we write
Pa to denote the subset of the partitioning that contains a, i.e.,
a ∈ Pa ∈ {A1, ..., An}.

C. POWL Model
We use τ /∈ Σ to denote the silent activity (e.g., τ is

used to model a choice between executing some activity
or skipping it). A POWL model [15] is a partially ordered
graph representation of a process, extended with control-flow
operators for modeling choice and loop structures. There are
three types of POWL models. The first type is the base
case consisting of a single activity. For the second type, the
operators × and ⟲ can be used to combine multiple POWL
models into a new model. The operator × is used to model an
exclusive choice of n≥2 POWL models, while the operator
is used ⟲ to model a do-redo loop of two POWL models.
The third type of POWL models is defined as a poset of n≥2
POWL models. Unconnected nodes in a poset are interpreted
to be concurrent, and connections between nodes represent
sequential dependencies.

Definition 1 (POWL Model). A POWL model is recursively
defined as follows:

• Any activity a ∈ Σ∪{τ} is a POWL model.

• Let ψ1 and ψ2 be two POWL models. ⟲(ψ1, ψ2) is a
POWL model.

• Let P = {ψ1, ..., ψn} be a set of n≥2 POWL models.

– ×(ψ1, ..., ψn) is a POWL model.

– A poset ρ ∈ Π (P) is a POWL model.

For the formal definition of the semantics of POWL models,
we refer to [15]. Workflow nets [1] are a powerful modeling
notation widely used to formally describe the behavior of
business processes. A POWL model can be transformed into a
WF-net, and the generated WF-net is guaranteed to be sound
(i.e., it adheres to certain structural quality criteria) [15]. The
POWL model shown in Fig. 1 can be transformed into the
sound WF-net shown in Fig. 2.

IV. DISCOVERY OF POWL MODELS WITH GUARANTEES

In this section, we propose a scalable approach for the
discovery of POWL models. Our approach provides formal

guarantees on the uniqueness, existence, and quality of the
discovered partial orders.

A. Inductive Miner

The inductive miner [16] is one of the leading approaches
in process discovery. It provides formal guarantees such as
soundness and rediscoverability of certain process structures.
There are several variants of the inductive miner (e.g., for
handling incompleteness or infrequent behavior). In this sec-
tion, we introduce the base variant of the inductive miner that
returns a process tree that perfectly fits the input event log (i.e.,
it discovers a model that covers all behavior recorded in the
log). Our approach for the discovery of POWL models adapts
the inductive miner to additionally mine for partial orders.

The inductive miner is a recursive top-down approach. The
algorithm tries to detect a cut, i.e., it tries to detect a behavioral
pattern in the directly-follows graph and a partitioning of
the activities according to this pattern. The inductive miner
supports four cuts corresponding to the four operators of
process trees, and it recursively generates a process tree based
on the detected cuts.

After detecting a process tree cut, the event log is projected
into the different subsets of the partitioning, creating several
sub-logs. The same approach is then recursively applied to all
sub-logs until a base case of the recursion is reached. A base
case is defined as an event log whose activity set consists of
a single activity. A base case can be easily transformed into a
process tree: either into a single node or using the operators
× or ⟲ to model an optional activity or a self-loop.

If neither a base case nor a cut is detected, then the
inductive miner invokes a fall-through function. This function
always returns a cut that might correspond to an under-
fitting model (i.e., a model that does not precisely capture
the behavior recorded in the log), but it allows for continuing
the recursion. For the formal description of the different steps
of the inductive miner, we refer to [16].

B. Mining for Partial Orders

Fig. 3 illustrates our approach for the discovery of POWL
models. It extends the inductive miner to mine for a partial
order after mining for the process tree cuts and before invoking
the fall-through function. Similarly to process tree cuts, a
partial order cut is defined as a partitioning of the activities
and a partial order over the partitioning.

Definition 2 (Partial Order Cut). Let L ∈ M(Σ∗) be an event
log. A partial order cut of L is a poset ({A1, ..., An},≺) over
a partitioning of the activities into n≥2 subsets A1, ..., An.

We define a notion of validity for partial order cuts. For
a given partitioning of activities, a valid partial order cut is
defined as a behavioral pattern in the eventually-follows graphs
that corresponds to a partial order over the partitioning of
activities [15].

Definition 3 (Valid Partial Order Cut). Let L ∈ M(Σ∗) be
an event log and ρ = (P,≺) be a partial order cut of L. ρ

Fig. 3: Approach for the discovery of POWL models.

Fig. 4: An eventually-follows graph and two corresponding
partial order cuts. The first cut ρ1 is valid but not complete,
while the second cut ρ2 is valid and complete.

is valid if the following conditions hold for all Ai, Aj ∈ P ;
Ai ̸=Aj:

1) Ai≺Aj iff ∀ ai ∈ Ai, aj ∈ Aj

(
ai⇝Laj ∧ aj⇝̸Lai

)
.

2) (Ai⊀Aj ∧ Aj⊀Ai) iff ∀ ai ∈ Ai, aj ∈ Aj

(
ai⇝Laj ∧

aj⇝Lai

)
.

3) if ∄Ak ∈ P
(
Ak≺Ai

)
, then Ai∩L▷ ̸=∅.

4) if ∄Ak ∈ P
(
Ai≺Ak

)
, then Ai∩L□ ̸=∅.

After failing to discover a process tree cut, our approach
mines for valid partial order cuts. If a valid partial order cut is
detected, then the log is projected into the different subsets
of the partitioning and the recursion continues; otherwise,
the fall-through is invoked. Note that → and + cuts are
transformed into partial order cuts since POWL models do
not support the process tree operators → and +.

Fig. 4 shows an example eventually-follows graph and two
valid partial order cuts detected based on it.

In order to ensure the efficiency of our approach and the
uniqueness of the solution, we define a notion of maximality
for partial order cuts, and we only mine for a maximal partial
order cut (cf. Sec. IV-C).

Our approach is fitness-preserving, i.e., all traces in the
input event log are guaranteed to be included in the language
of the generated model. All steps of the inductive miner are
fitness-preserving [16], and mining for valid partial order cuts
preserves the fitness guarantee as well [15].

C. Maximal Partial Order Cut

We define a notion of maximality for partial order cuts.
The goal is to ensure the efficiency of the discovery approach
by only mining for a unique solution (i.e., the maximal cut),
and at the same time, we need to ensure the optimality of
this unique solution. In other words, we mine for a unique
partial order cut that not only conforms with the event log
but also is the most compact representation of the event log’s
dependencies, providing existence and validity guarantees if
any other solutions exist.

We define a notion of completeness for partial order cuts
by exploiting the eventually-follows graph, and then we define
maximality over complete partial order cuts. The notion of va-
lidity (Def. 3) enforces a certain level of compliance between
a valid partial order cut and the EFG; however, it still allows
for leaving out some order restrictions derived from the EFG.
For example, both partial order cuts shown in Fig. 4 are valid;
however, we consider ρ2 to be better than ρ1 as ρ1 does not
capture the sequential dependency between the activities a and
b.

We define a partial order cut to be complete if it fully
conforms with the eventually-follows graph. In other words,
we ensure capturing all order restrictions derived from the
eventually-follows graph in a complete partial order cut, and
at the same time, we avoid adding any additional dependencies
not observed in the eventually-follows graph.

Definition 4 (Complete Partial Order Cut). Let L ∈ M(Σ∗)
be an event log and ρ = (P,≺) be a partial order cut of L. ρ
is complete if the following conditions hold for all Ai, Aj ∈
P ; ai ∈ Ai; aj ∈ Aj:

• Ai≺Aj iff ai⇝Laj ∧ aj⇝̸Lai.

In Fig. 4, the first partial order cut is not complete as a and
b are in the same subset of the partitioning, i.e., a⇝Lb∧b⇝̸La
and {a, b}⊀1{a, b}. The second partial order cut is complete.

We define a complete partial order cut to be maximal if
the subsets of the partitioning are of maximal size. In other
words, a partial order cut is maximal if it is complete and no
subsets of the partitioning can be merged without violating the
completeness of the order.

Fig. 5: An eventually-follows graph and five corresponding
complete partial order cuts. Since ρ4 is valid, the validity of
the maximal cut ρ5 is guaranteed (cf. Theorem 3).

Definition 5 (Maximal Partial Order Cut). Let L ∈ M(Σ∗) be
an event log and ρ = (P,≺) be a complete partial order cut
of L. ρ is maximal if for all Ai, Aj ∈ P ; ai ∈ Ai; aj ∈ Aj:

• Ai = Aj iff •⇝Lai = •⇝Laj ∧ ai⇝L• = aj⇝L•.

Fig. 5 shows an eventually-follows graph and five partial
order cuts detected based on it. All five partial order cuts are
complete as they capture the same order restrictions derived
from the eventually-follows graph while grouping concurrent
activities differently. In this example, ρ5 is maximal because
none of the subsets {a}, {b1, b2, b3}, and {c} can be merged
together. Although all five cuts model the same ordering
restrictions between activities, we consider the maximal cut
ρ5 to be the optimal solution due to three reasons. First,
the maximal cut is better in terms of simplicity; the graph
representation of ρ5 only has two ordering edges compared
to six edges required for representing ρ1. Second, grouping
concurrent activities together into one node allows us to mine
for more structures in the next iterations of the discovery
approach. In our example, there is a choice between b1 and b3.
Grouping these activities together into the same node allows
us to detect a choice cut in the next iterations. Finally, the
maximal cut provides several guarantees:

• If a maximal partial order cut exists, then it is unique (cf.
Theorem 1).

• If a complete partial order cut exists, then the maximal
partial order cut exists as well (cf. Theorem 2).

• If a complete partial order cut exists and is valid, then
the maximal partial order cut exists and is valid as well
(cf. Theorem 3).

Next, we prove the three guarantees for maximal partial
order cuts. First, we prove the uniqueness guarantee.

Theorem 1 (Uniqueness of Maximal Order). Let L ∈ M(Σ∗)
be an event log. If a maximal partial order cut of L exists,
then it is unique.

Proof. The maximality condition (Def. 5) uniquely defines

a partitioning of activities: two activities ai and aj are in
the same subset if and only if •⇝Lai = •⇝Laj and
ai⇝L• = aj⇝L•. Since activities within the same subset
of the partitioning share the same predecessors and suc-
cessors, the completeness condition (Def. 4) uniquely de-
fines a binary relation ≺ over the partitioning: Ai≺Aj iff

∀ ai ∈ Ai, aj ∈ Aj

(
ai⇝Laj ∧ aj⇝̸Lai

)
.

The uniquely defined binary relation ≺ is guaranteed to
be irreflexive since it is impossible to fulfill a⇝La ∧ a⇝̸La
for any activity a. If ≺ violates transitivity, then the maximal
order does not exist. If ≺ is transitive, then ≺ is a partial order
adhering to the requirements of completeness and maximality
by construction, i.e., a maximal order exists and is unique due
to the uniqueness of the partitioning and the binary relation.

Our notion of maximality provides an existence guarantee;
i.e., if a complete partial order cut exists, then the maximal
partial order cut exists as well.

Theorem 2 (Existence Guarantee of Maximal Order). Let L ∈
M(Σ∗) be an event log. If a complete partial order cut of L
exists, then a maximal partial order cut of L exists as well.

Proof. Let ρ = (P,≺) be the ordered partitioning uniquely
defined by Def. 5. In the proof of Theorem 1, we showed that
if ≺ is transitive, then ρ is the unique maximal order cut of L;
and if ≺ is not transitive, then no maximal order of L exists.

We prove Theorem 2 by contradiction, i.e., assume that a
complete partial order cut ρ′ = (P ′,≺′) of L exists, while ≺
is not transitive (i.e., a maximal order cut does not exist).

Since ≺ is not transitive, there must exist a, b, c ∈ ΣL

such that Pa≺Pb and Pb≺Pc but Pa⊀Pc. Since ≺ satisfies
the completeness condition by construction, it follows that
a⇝Lb ∧ b⇝̸La, b⇝Lc ∧ c⇝̸Lb, and a⇝̸Lc ∨ c⇝La

The completeness of ρ′ implies P ′
a≺′P ′

b, P ′
b≺′P ′

c, and
P ′
a⊀

′P ′
c. This means that ≺′ is not a partial order as it violates

transitivity; therefore ρ′ is not a partial order cut.

Our notion of maximality provides a validity guarantee, i.e.,
if a valid complete partial order cut exists, the maximal partial
order cut is valid as well. We define an auxiliary lemma we
use in the proof of the validity guarantee.

Lemma 1 (Inclusion of Partitioning Subsets). Let L ∈ M(Σ∗)
be an event log and ρ = (P,≺) be a maximal partial order cut
of L. The partitioning subsets of any complete partial order
cut of L are subsets of the partitioning subsets of ρ.

Proof. Let ρ′ = (P ′,≺′) be a complete partial order cut over
L. We prove Lemma 1 by contradiction, i.e., assume there are
two activities a and b in the same subset in P ′ (i.e., P ′

a = P ′
b)

that they are in separate subsets in P (i.e., Pa ̸=Pb).
Since a and b are in separate subsets in the maximal order,

then it follows that either •⇝La̸= •⇝Lb or a⇝L • ̸=b⇝L•.
We consider the case where •⇝La̸= •⇝Lb for concreteness,
but the argument for a⇝L • ̸=b⇝L• is analogous.

Without loss of generality, let us assume there exists an
activity c such that c ∈ •⇝La and c /∈ •⇝Lb. This means
that c⇝La ∧ a⇝̸Lc and c⇝̸Lb ∨ b⇝Lc. The completeness of
ρ′ implies that P ′

c≺′P ′
a and P ′

c⊀
′P ′

b. Hence, P ′
a ̸= P ′

b.

Theorem 3 (Validity Guarantee of Maximal Order). Let L ∈
M(Σ∗) be an event log. If a valid complete partial order cut
of L exists, then a maximal partial order cut of L exists and
is guaranteed to be valid.

Proof. Assume a complete partial order cut ρ′ = (P ′,≺′) of
L exists. From Theorem 2, we know that a maximal partial
order cut ρ = (P,≺) of L exists, and we know that ρ is unique
by Theorem 1. We prove that ρ adheres to the four conditions
of validity (Def. 3) if ρ′ is valid.

1) The first condition is satisfied by the definition of
completeness.

2) We prove the second condition by contradiction, i.e.,
assume ρ′ is valid and ρ violates the second condition
of validity. Since the first condition is satisfied and a
partial order is asymmetric, violating the second con-
dition means that there exist a, b ∈ ΣL with Pa ̸=Pb,
Pa⊀Pb ∧ Pb⊀Pa, and a⇝̸Lb.
We know by Lemma 1 that the subsets of P ′ are subsets
of the subsets of P . Therefore, a and b must be in
separate subsets in P ′ (P ′

a ̸=P ′
b). We distinguish four

cases depending on the relationship between P ′
a and P ′

a

with respect to ≺′:

• The case (P ′
a≺′P ′

b ∧P ′
b≺′P ′

a) is not possible due to
the asymmetry of ≺′.

• If P ′
a⊀

′P ′
b and P ′

a⊀
′P ′

b, then ρ′ is not valid as
P ′
a ̸=P ′

b and a⇝̸Lb.
• If P ′

a≺′P ′
b ∧P ′

b⊀
′P ′

a, then ρ′ is not valid as a⇝̸Lb.
• If P ′

a⊀
′P ′

b ∧ P ′
b≺′P ′

a, then it follows by the first
condition of validity that b⇝La. Since a⇝̸Lb and
b⇝La, the completeness of the maximal order cut
ρ implies that Pb≺Pa.

All cases contradict our assumption.
3) We prove the third condition by contradiction, i.e.,

assume ρ′ is valid and ρ violates the third condi-
tion of validity. Then there exists b ∈ ΣL such that
∄Px ∈ P

(
Px≺Pb

)
and Pb ∩ L▷ = ∅.

By Lemma 1, we know that P ′
b ⊆ Pb. Since ρ′ is valid,

we know that if no subset precedes P ′
b, then P ′

b∩L▷ ̸=∅.
However, since P ′

b ⊆ Pb and Pb ∩L▷ = ∅, we conclude
that there must exist a ∈ ΣL such that P ′

a≺′P ′
b.

By the definition of completeness, we know that a⇝Lb∧
b⇝̸La. Since a ∈ Pa, we conclude by the definition of
completeness that Pa≺Pb, i.e., ∃Px ∈ P

(
Px≺Pb

)
.

4) The proof of the fourth condition is analogous to the
third condition.

Fig. 6: Time performance results for the unfiltered logs. Both
IM and IMPC are able to scale well on the unfiltered logs.

V. EVALUATION

We implemented our discovery approach in PM4Py [6],
and we evaluate it using real-life event logs. We compare our
approach (IMPC) with the base inductive miner that guarantees
prefect fitness (IM) and the brute-force approach for the
discovery of POWL models from [15] (IMP).

We transform the discovered models into WF-nets, and we
assess their quality using three conformance-checking metrics:
fitness [5], precision [24], and simplicity [7].

We use real-life event logs for the evaluation ([19], [18],
[20], [8], [11], [9], [10]). Since the approach for the discovery
of POWL models from [15] (IMP) is not able to scale well on
event logs with a large number of activities, we filter the event
logs to only keep the most frequent activities using two values
for this filter: 8 and (at most) 12 activities. We additionally
apply IM and IMPC to the unfiltered logs.

Results

The time performance results for the unfiltered logs are
shown in Fig. 6, and the results for the filtered logs are shown
in Fig. 7. Unlike IMP, our approach is able to scale well on
event logs with large numbers of activities. In general, the time
values observed for IMPC are close to the time values observed
for IM, while IMP takes excessively long for some event logs.
For example, IMPC required 0.56 seconds to discover a model
for the Travel Permit event log with 12 activities, compared
to 280 seconds required by IMP and 0.45 seconds required
by IM. For the unfiltered BPI Challenge 2018, which contains
41 activities, IMPC required 667 seconds to discover a model
compared to 646 seconds required by IM.

The results obtained for the conformance checking metrics
are reported in Tab. I. We report the precision and simplicity
scores we obtained, and we omit the fitness values as all
models achieved a fitness of 1. These results were expected
since all three discovery approaches guarantee perfect fitness.

For all event logs, the simplicity of the models discovered
by IMPC is higher or equal to the simplicity of the models
discovered by both IM and IMP. This increase in simplicity
was expected due to the notion of maximality we defined; a
maximal partial order cut is simpler than any other complete
partial order cut as it clusters concurrent nodes in the same

Fig. 7: Time performance results for the filtered logs. The time values observed for IMPC are close to the time values observed
for IM, while for IMP we observe some extreme values.

TABLE I: Precision and simplicity results. We highlighted the
highest precision and simplicity values observed for each log
in green. In general, IMPC led to the models of the highest
simplicity and precision.

Event log #Act. Precision Simplicity
IM IMP IMPC IM IMP IMPC

BPI 2017 8 0.37 0.68 0.68 0.67 0.74 0.74
BPI 2017 12 0.23 0.34 0.34 0.65 0.68 0.69
BPI 2018 8 0.35 0.32 0.32 0.65 0.63 0.65
BPI 2018 12 0.2 0.21 0.23 0.61 0.63 0.64
BPI 2019 8 0.62 0.78 0.78 0.64 0.67 0.67
BPI 2019 12 0.55 0.7 0.7 0.64 0.64 0.65

Dom. Declaration 8 0.4 0.4 0.4 0.65 0.66 0.66
Dom. Declaration 12 0.5 0.54 0.54 0.61 0.67 0.67
Int. Declaration 8 0.5 0.53 0.53 0.67 0.71 0.71
Int. Declaration 12 0.47 0.51 0.51 0.65 0.69 0.69
Travel Permit 8 0.51 0.51 0.51 0.67 0.67 0.67
Travel Permit 12 0.33 0.35 0.36 0.65 0.67 0.67
Travel Costs 8 0.43 0.39 0.43 0.63 0.68 0.7
Travel Costs 12 0.23 0.35 0.23 0.58 0.68 0.69
Pay. Request 8 0.75 0.75 0.75 0.63 0.68 0.68
Pay. Request 12 0.49 0.49 0.49 0.6 0.67 0.67
Sepsis Cases 8 0.5 0.5 0.5 0.64 0.65 0.65
Sepsis Cases 12 0.34 0.35 0.35 0.64 0.65 0.65

Fine Management 8 0.76 0.76 0.76 0.66 0.67 0.67
Hospital Billing 8 0.78 0.78 0.78 0.67 0.67 0.67
Hospital Billing 12 0.6 0.6 0.6 0.65 0.66 0.66

subset, minimizing the number of connections in the graph
representation of the partial order.

We observe that precision varies among the different event
logs. On the one hand, IMPC led to higher precision than IMP
for three event logs. Such results were expected due to the
notion of maximality of partial order cuts, where concurrent
activities are clustered together, allowing for the discovery of
more structures in the next iterations. For example, Fig. 8
shows a sub-model of the POWL model discovered by IMP for
the BPI Challenge 2018 event log with 12 activities, and Fig. 9
shows the sub-model discovered by IMPC for the projection of
the log on the same activities. IMPC merged concurrent subsets
together, leading to the discovery of the sequential dependency
“decide” → “begin payment” → “finish payment”.

On the other hand, we observe one case (Travel Costs with

Fig. 8: A POWL model discovered by IMP for the projection
of the BPI Challenge 2018 event log on seven activities.

12 activities) where IMP performed better than IMPC in terms
of precision. Such results were expected as we restricted the
search space to mine for complete partial orders. For this log,
IMPC failed to discover a complete partial order, while IMP re-
turned an incomplete partial order cut consisting of two uncon-
nected subsets (in the form ρ = ({{a1}, {a2, a3, ..., a12}}, ∅).
Both IM and MPC invoked the fall-through, which returned a
loop cut (i.e., tau-loop fall-through [16]).

By comparing the results of IMPC with IM, we observe that
IMPC led to higher or equal precision values for all event logs
except BPI Challenge 2018 with 8 activities. For this case,
invoking the fall-through led to better results than detecting
a partial order; in order to continue the recursion, the fall-
through returned a concurrency cut between an activity that
occurs in every trace at most once and the rest of the activities.

VI. CONCLUSION

In his paper, we proposed a scalable approach for the
discovery of Partially Ordered Workflow Language (POWL)

Fig. 9: A POWL model discovered by IMPC for the same log
used in Fig. 8. Concurrent activities are subsets together, lead-
ing to the discovery of more structures inside these subsets.

models. Prior to this work, there was no existing discovery
technique for POWL models that is scalable enough to handle
large real-life data sets. Beyond scalability, our discovery
approach provides formal guarantees on the uniqueness, ex-
istence, and quality of the discovered partial orders. We
believe that our approach contributes to the robustness and
dependability of POWL models in practice. We evaluated our
approach using real-life event logs, and the evaluation showed
that our approach is able to scale well on large data sets while
ensuring high quality for the discovered models.

We propose multiple ideas for future work. Firstly, we
recognize the need for filtering mechanisms. In most real-
life event logs, a large fraction of behavior is covered by a
small fraction of trace variants (i.e., unique activity sequences).
Filtering to retain only the most frequent trace variants could
significantly improve the precision of the discovered models.
Secondly, enhancing the visualization of POWL models is a
crucial aspect of future work. Thirdly, our approach extends
the base inductive miner to mine for partial orders after mining
for process tree cuts. One possible extension is to adapt the
approach to directly mine for POWL models without trying
to detect sequence and concurrency process tree cuts first.
Moreover, we can develop a discovery approach for POWL
models that exploits life-cycle information in event logs where
each event has a duration (i.e., each event has a start timestamp
and an end timestamp). Finally, the idea of combining different
modeling notations to create new types of process models is
not restricted to POWL models. This idea can be applied to
combine other types of process models.

REFERENCES

[1] van der Aalst, W.M.P.: The application of petri nets to workflow
management. J. Circuits Syst. Comput. 8(1), 21–66 (1998)

[2] van der Aalst, W.M.P., De Masellis, R., Di Francescomarino, C., Ghidini,
C., Kourani, H.: Discovering hybrid process models with bounds on time
and complexity: When to be formal and when not? Information Systems
116, 102214 (2023)

[3] Augusto, A., Conforti, R., Dumas, M., Rosa, M.L., Maggi, F.M.,
Marrella, A., Mecella, M., Soo, A.: Automated discovery of process
models from event logs: Review and benchmark. IEEE Trans. Knowl.
Data Eng. 31(4), 686–705 (2019)

[4] Bergenthum, R., Desel, J., Lorenz, R., Mauser, S.: Synthesis of petri
nets from infinite partial languages. In: Billington, J., Duan, Z., Koutny,
M. (eds.) ACSD 2008. pp. 170–179. IEEE (2008)

[5] Berti, A., van der Aalst, W.M.P.: Reviving token-based replay: Increasing
speed while improving diagnostics. In: van der Aalst, W.M.P., Bergen-
thum, R., Carmona, J. (eds.) Proceedings of the International Workshop
on Algorithms & Theories for the Analysis of Event Data, Satellite event
of Petri Nets 2019 and ACSD 2019. CEUR Workshop Proceedings,
vol. 2371, pp. 87–103. CEUR-WS.org (2019)

[6] Berti, A., van Zelst, S., Schuster, D.: PM4Py: A process mining library
for python. Software Impacts 17, 100556 (2023)

[7] Blum, F.R.: Metrics in process discovery. Tech. Rep. TR/DCC-2015-6,
Computer Science Department, Universidad de Chile, Chile (2015)

[8] van Dongen, B.: BPI Challenge 2017 (2017)
[9] van Dongen, B.: BPI Challenge 2019 (2019)

[10] van Dongen, B.: BPI Challenge 2020 (2020)
[11] van Dongen, B., Borchert, F.: BPI Challenge 2018 (2018)
[12] van Dongen, B.F., Desel, J., van der Aalst, W.M.P.: Aggregating causal

runs into workflow nets. Trans. Petri Nets Other Model. Concurr. 6,
334–363 (2012)

[13] Dumas, M., Garcı́a-Bañuelos, L.: Process mining reloaded: Event struc-
tures as a unified representation of process models and event logs.
In: Application and Theory of Petri Nets and Concurrency - 36th
International Conference, Proceedings. LNCS, vol. 9115, pp. 33–48.
Springer (2015)

[14] Golani, M., Pinter, S.S.: Generating a process model from a process
audit log. In: Business Process Management, International Conference,
Proceedings. LNCS, vol. 2678, pp. 136–151. Springer (2003)

[15] Kourani, H., van Zelst, S.J.: POWL: partially ordered workflow lan-
guage. In: Francescomarino, C.D., Burattin, A., Janiesch, C., Sadiq, S.
(eds.) BPM 2023. LNCS, vol. 14159, pp. 92–108. Springer (2023)

[16] Leemans, S.J.J.: Robust Process Mining with Guarantees - Process
Discovery, Conformance Checking and Enhancement, LNBIP, vol. 440.
Springer (2022)

[17] Leemans, S.J., van Zelst, S.J., Lu, X.: Partial-order-based process
mining: a survey and outlook. Knowl Inf Syst (2022)

[18] de Leoni, M.M., Mannhardt, F.: Road Traffic Fine Management Process
(2015)

[19] Mannhardt, F.: Sepsis Cases - Event Log (2016)
[20] Mannhardt, F.: Hospital Billing - Event Log (2017)
[21] Mannila, H., Toivonen, H., Verkamo, A.I.: Discovery of frequent

episodes in event sequences. Data Min. Knowl. Discov. 1(3), 259–289
(1997)

[22] Mokhov, A., Carmona, J.: Event log visualisation with conditional
partial order graphs: from control flow to data. In: Proceedings of the
International Workshop on Algorithms & Theories for the Analysis of
Event Data, Satellite event of Petri Nets 2015 and ACSD 2015. CEUR
Workshop Proceedings, vol. 1371, pp. 16–30. CEUR-WS.org (2015)

[23] Mokhov, A., Yakovlev, A.: Conditional partial order graphs: Model,
synthesis, and application. IEEE Trans. Computers 59(11), 1480–1493
(2010)

[24] Munoz-Gama, J., Carmona, J.: A fresh look at precision in process
conformance. In: Hull, R., Mendling, J., Tai, S. (eds.) BPM 2010.
Proceedings. LNCS, vol. 6336, pp. 211–226. Springer (2010)

[25] Slaats, T., Schunselaar, D.M.M., Maggi, F.M., Reijers, H.A.: The
semantics of hybrid process models. In: On the Move to Meaningful
Internet Systems: OTM 2016 Conferences - Confederated International
Conferences: CoopIS, C&TC, and ODBASE 2016, Proceedings. LNCS,
vol. 10033, pp. 531–551 (2016)

[26] van der Werf, J.M.E.M., Polyvyanyy, A., van Wensveen, B.R., Brinkhuis,
M.J.S., Reijers, H.A.: All that glitters is not gold: Four maturity stages
of process discovery algorithms. Inf. Syst. 114, 102155 (2023)

