
Unveiling Bottlenecks in Logistics: A
Case Study on Process Mining for Root
Cause Identification and Diagnostics

in an Air Cargo Terminal

Chiao-Yun Li1,2(B) , Tejaswini Shinde1 , Wanyi He3, Sean Shing Fung Lau3,
Morgan Xian Biao Hiew3, Nicholas T. L. Tam3, Aparna Joshi1, and Wil M. P.

van der Aalst1,2

1 RWTH Aachen University, Aachen, Germany
{tejaswini.shinde,aparna.joshi}@rwth-aachen.de,

wvdaalst@pads.rwth-aachen.de
2 Fraunhofer FIT, Birlinghoven Castle, Sankt Augustin, Germany

chiaoyun.li@pads.rwth-aachen.de
3 Hong Kong Industrial Artificial Intelligence and Robotics Centre Limited, Shatin,

NT, Hong Kong
{dorahe,seanlau,morganhiew,nicholastam}@hkflair.org

Abstract. To improve processes in logistics, it is crucial to understand
the factors influencing performance. To achieve this, process mining uti-
lizes event data to extract insights into operational processes. In this
paper, we present a case study conducted in an air cargo terminal, where
process mining is applied to event data collected during package distribu-
tion. The primary objective is to identify the root causes of bottlenecks in
the system. However, practical limitations, including noisy sensor data,
scalability challenges, and abstraction limitations, require a different app-
roach than conventional process mining projects. Building upon existing
process mining techniques, we develop a two-fold approach to identify
root causes at the data level and provide diagnostics at the business
level. Through a comprehensive analysis of the provided datasets, we
substantiate the effectiveness and practical applicability of our approach
in analyzing root causes.

Keywords: Process mining · Logistic · Root cause identification ·
Root cause diagnostics · Performance Spectrum · Case study

1 Introduction

Efficient processes are crucial for success in the logistics industry. Businesses
must understand their process performance to attain this objective. Material
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Handling Systems (MHS) are vital to efficient logistics management, facilitating
the timely movement of materials. Evaluating MHS performance enables orga-
nizations to optimize their operational processes by minimizing delays, reducing
manual labor, and overcoming obstacles encountered during the distribution [11].

Process mining aims to enhance the understanding of operational processes
by utilizing event data, consisting of records of process execution stored in infor-
mation systems. A process mining project typically involves discovering a process
model, which abstracts the process behavior, from event data using discovery
techniques [2,14]. The model is then compared with the expectations to identify
deviations or to repair the model [3,18]. Process efficiency is evaluated by ana-
lyzing the model annotated with performance information derived from the event
data [10]. In the case of a large system, activities (i.e., well-defined process steps)
can be abstracted, alongside performance information aggregated, to reduce the
process complexity for human analysis [4]. Leveraging the context provided by
the model and domain knowledge, one can diagnose bottlenecks and optimize
processes. Throughout the process described, it is evident that a reliable model
depicting the behavior in real life is central to a process mining project.

In this study, we aim to discern the underlying causes of bottlenecks affecting
the distribution of packages within the MHS of an air cargo terminal, as depicted
in Fig. 1. The figure delineates our specific focus and case study scope. Using a
logistic log, which captures package distribution data, and a fault log, encom-
passing information on equipment malfunctions and maintenance, we identify
and diagnose the root causes of detected bottlenecks. Subsequently, these identi-
fied root causes are mapped onto the transport layout for business owners to gain
a visual understanding, aiding them in monitoring and further controlling the
system effectively. However, we encounter challenges that compel us to deviate
from the conventional process mining approach [7].

Fig. 1. In this case study, we aim to uncover package distribution inefficiencies at an air
cargo terminal by analyzing logistic and fault logs. The resulting insights will inform
an integrated solution for optimizing the distribution process.
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– Noisy event data: The system consists of thousands of equipment pieces with
sensors generating event data. Sensor data are prone to noise [12], which can
distort the actual relationships between different pieces of equipment.

– Scalability limitations: Given the large number of pieces of equipment and
the substantial volume of event data, existing open-source tools [17] cannot
adequately support the performance requirements to discover a model and to
interactively explore the process performance using the model.

– Abstraction limitations: Typically, abstraction resolves complexity and scala-
bility challenges caused by the excessive number of concepts in a process, like
the conveyor equipment in this case study. Yet, due to the queuing behavior
and equipment faults within the process, abstraction may lead to misleading
conclusions since it does not fully capture the queuing phenomenon.

To address these challenges, we devised a solution that delivers transparent
and reliable results, empowering business owners to make well-informed decisions
regarding their service efficiency. We uncover unbiased behavior and identify inci-
dents that contribute to bottlenecks, including identifying package distributions
that cause bottlenecks on specific pieces of equipment at particular points in
time. Despite the constraints, we devise a two-fold approach that uncovers inef-
ficiencies and provides explanations without relying on a process model. First,
we programmatically detect the root causes of bottlenecks at the data level to
narrow down the analysis scope. Building upon the findings, we derive diagnos-
tics at the business level, leveraging the Performance Spectrum Miner (PSM)
[5]. Our approach is quantitatively evaluated and integrated into the system,
aiming to enhance the overall service performance within the air cargo terminal.

In Sect. 2, we introduce the techniques and notations applied. Section 3
describes the available datasets in the case study. Package distribution behav-
ior is depicted in Sect. 4, while root cause identification is in Sect. 5. Sect. 6
demonstrates the results. We discuss the related work in Sect. 7. Lastly, Sect. 8
summarizes the case study and discusses future work.

2 Background

In this section, we introduce the techniques applied for root cause analysis and
mathematical notations.

2.1 Performance Spectrum

PSM is a visual analytic tool that formats the performance of activities in a
process within the context of a case (i.e., a process instance) [5]. By visualizing
how cases progress through activities over time, the tool enables the observation
of efficiency dynamics and facilitates the analysis of interactions between cases.
Numerous extensions have been developed to quantify [5], predict [6], and visual-
ize the performance within the context of a process model [1]. In our case study,
we employed the implementation which enables the interactive exploration of
performance based on a process model supported by PSM [1].
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However, scalability emerges as a practical challenge in this case study. First,
the existing discovery techniques within the tool exhibit limited scalability when
faced with a significant number of activities, as exemplified in the case study with
thousands of equipment pieces. As the complexity of the model increases, it pro-
gressively poses greater challenges for human analysts to effectively identify all
root causes effectively. Given the case study’s scale, it is challenging to pinpoint
the areas requiring analysis without adequate guidance for navigating the pro-
cess model. To address these issues, we have devised a programmatic approach
that detects root causes at the data level. By narrowing down the analysis scope,
we leverage PSM to facilitate the subsequent diagnosis at the business level.

2.2 Notations

Let X be an arbitrary set. A sequence is a function σ : {1, 2, ..., n} → X, where
σ = 〈x1, x2, x2, .., xn〉 is a sequence over X, and σ(i) = xi denotes the ith element
in σ. We denote |σ| as the length of σ and X∗ as the set of all possible sequences
over X. We write x ∈ σ ⇐⇒ ∃k ∈ N s.t. 1 ≤ k ≤ |σ| and σ(k) = x. The index
of x ∈ σ is denoted as σ−1(x) ∈ N and σ−1(x) = min{1 ≤ i ≤ |σ| | σ(i) = x}. A
path from m to n in σ, where 1 ≤ m < n ≤ |σ|, refers to a segment of σ, written
as pathσ(m,n) = 〈xm, xm+1, ..., xn〉. Note that pathσ(1, |σ|) = σ.

3 Datasets

The case study incorporates two logs: a logistic log and a fault log.1 The logis-
tic log captures the package distribution within the system and the fault log
documents fault instances related to the conveyor equipment.

3.1 Representation of Logistic Log

We represent the logistic log as an event log, i.e., a typical input for most process
mining techniques. Upkg is the universe of package identifiers, Ueqt is the universe
of equipment identifiers, and Utime is the universe of timestamps.

Definition 1 (Event Log). E is the universe of events. e ∈ E represents a data
sample collected by sensors for the package distribution, which is characterized
with the corresponding package identifier πpkg(e) ∈ Upkg, equipment identifier
πeqt(e) ∈ Ueqt, and the arrival timestamp πarr(e) ∈ Utime of πpkg(e) on πeqt(e).
An event log L is a set of events L ⊆ E.

A case is a collection of events describing a complete package distribution,
i.e., given pid ∈ Upkg, the case of pid is c = {e ∈ L | πpkg(e) = pid}. The trace
of a case c, denoted as πtrace(c), is a chronologically ordered sequence of events
in a case, where πtrace(c) = 〈e1, e2, ..., e|c|〉 such that ∀1 ≤ i < j ≤ |c|, πarr(ei) ≤
πarr(ej). Additionally, the time that a package distribution exits the system is
provided and we write as πexit(c) ∈ Utime, where πexit(c) ≥ max{πarr(e) | e ∈ c}.
1 For confidentiality, we pseudo-anonymized the datasets, preserving the relative rela-

tion between incidents. In this case study, we only present pertinent attributes.
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Table 1. An excerpt of an event log L. Each row represents an event describing the
arrival of a package (represented by PKG) on a specific piece of equipment (represented
by EQT) at a particular time (represented by ARR). For ease of reference, the event
identifier (represented by Event ID) is provided using the row index, e.g., the first event
is labeled as e1. The completion time of the distribution is also included, denoted as
EXIT, providing additional details about the distribution.

Event ID PKG (πpkg(e)) EQT (πeqt(e)) ARR (πarr(e)) EXIT (πexit(c))

1 2365884457 HXUF1928 2023-05-05 12:12:34 2023-05-05 14:00:31

2 2365884457 TFGT3578 2023-05-05 12:12:53 2023-05-05 14:00:31

3 2365884457 UENF3008 2023-05-05 13:59:51 2023-05-05 14:00:31

4 2459856232 GJWK4805 2023-05-05 13:33:56 2023-05-05 17:44:28

5 2459856232 UENF3008 2023-05-05 17:38:00 2023-05-05 17:44:28

6 2459856232 ITSC0915 2023-05-05 17:38:41 2023-05-05 17:44:28

7 2459856232 LKHS8902 2023-05-05 17:38:54 2023-05-05 17:44:28

8 2459856232 CJIF5952 2023-05-05 17:39:06 2023-05-05 17:44:28

Table 1 displays an excerpt from the event log, illustrating the package dis-
tribution. For example, the case c = {e1, e2, e3} describes the distribution of
package 2365884457, which undergoes three pieces of equipment in the sys-
tem. It first arrives on πeqt(e1) = HXUF1928 at πarr(e1) = 12:12:34, then
moves to πeqt(e2) = TFGT3578 at πarr(e2) = 12:12:53, and finally reaches
πeqt(e3) = UENF3008 at πarr(e3) = 12:59:51 before leaving the system at
πexit(c) = 14:00:31.

3.2 Fault Log

A fault refers to an incident that occurs on a piece of equipment and is unrelated
to the package distribution process. A fault log is a compilation of such incidents,
which we formalize as follows.

Definition 2 (Fault Log). F is the universe of faults. f ∈ F is a fault, which is
characterized by the corresponding equipment identifier πeqt(f) ∈ Ueqt, downtime
of πdt(f) ∈ Utime, and the corresponding uptime πut(f) ∈ Utime where πdt(f) <
πut(f). A fault log FL is a set of faults FL ⊆ F . Since at most one fault can
occur on a piece of equipment at any point in time, the faults on the equipment
form a sequence of faults in time, i.e., ∀f1 ∈ FL∀f2 ∈ FL, f1 
= f2 =⇒
(πdt(f1) ≥ πut(f2))∨ (πdt(f2) ≥ πut(f1)).

Table 2 showcases a sample from the fault log, with each row depicting an
instance of a fault occurrence. For instance, equipment UENF3008 experiences a
fault from 12:15:23 to 12:16:49. Notably, the excerpt demonstrates a sequential
occurrence of five faults on UENF3008.

4 Behavioral Analysis

This section introduces identified constraints and outlines the assumptions of
the system behavior, which serve as the basis for defining the bottlenecks.
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Table 2. Every row in the dataset represents a fault occurrence in the system. A fault
is uniquely identified by three key pieces of information: the piece of equipment where
the fault happens (represented by EQT), the start time of the fault (represented by
DOWN), and the end time of the fault (represented by UP). Likewise, we provide the
fault identifier (represented by Fault ID) using the row index for ease of reference.

Fault ID EQT (πeqt(f)) DOWN (πdt(f)) UP (πut(f))

1 UENF3008 2023-05-05 12:15:23 2023-05-05 12:16:49

2 UENF3008 2023-05-05 12:28:07 2023-05-05 12:30:26

3 UENF3008 2023-05-05 12:31:16 2023-05-05 12:38:00

4 UENF3008 2023-05-05 12:47:23 2023-05-05 12:49:49

5 UENF3008 2023-05-05 13:11:40 2023-05-05 13:30:00

6 UAZB1814 2023-05-05 14:58:35 2023-05-05 15:16:05

4.1 Package Distribution – Constraints and Assumptions

The analysis reveals the following constraints of the package distribution. In col-
laboration with domain experts, we validate the constraints and impose specific
assumptions to facilitate the identification of bottlenecks.

Departure Time. We assume that a package departs from one piece of equip-
ment at the same time as it arrives on the next piece of equipment along its
trajectory. Let L ⊆ E . Given a case c ⊆ L, let σ = πtrace(c). For an event e ∈ σ,
we define the function depc(e) = πarr(σ(σ−1(e) + 1)) ⇐⇒ σ−1(e) < |σ| and
depc(e) = πexit(c) ⇐⇒ σ(|σ|) = e. We name the duration as the dwell time of
a package on a piece of equipment. As an illustration, considering Table 1, we
assume that package 2365884457 departs TFGT3578 at 13:59:51, and the dwell
time of 2365884457 on TFGT3578 is 1 h, 46 min, and 58 s.

Equipment Capacity. At any given time, one equipment piece can accommo-
date a maximum of one package. Let L ⊆ E denote an event log. Given eqt ∈ Ueqt,
∀e1∈L(πeqt(e1) = eqt) ∀e2∈L(πeqt(e2) = eqt), e1 
= e2 =⇒ (πarr(e1) > depc(e2))
∨(πarr(e2) > depc(e1)). This constraint leads to a queuing behavior in the sys-
tem, wherein packages are distributed in a sequential manner, allowing a package
to move to the next piece of equipment only when the preceding package in its
trajectory departs from that piece of equipment.

Fault Impact on Package Distribution. The faults in the fault log can be
classified into three categories: warning, maintenance, and real fault. Warning
and maintenance faults do not have any impact on package distribution. How-
ever, a real fault disrupts the distribution process and may also affect the overall
system performance. Considering a real fault f ∈ F and an event log L ⊆ E ,
during the fault, πeqt(f) is unable to send or receive any packages. In other
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words, there does not exist an event e ∈ L such that πdt(f) < πarr(e) < πut(f)
or πdt(f) < depc(e) < πut(f). Since there are no specific attributes available to
directly determine the category of a fault in the fault log f ∈ FL, we define a
real fault using the function real(f, L) � F if there are no packages arriving or
departing from πeqt(f) during the time period of πdt(f) and πut(f).

4.2 Bottleneck Definition

A bottleneck event refers to an event indicating that a package remains on a piece
of equipment for a longer duration than anticipated. Let Udur be the universe of
time durations, e.g., 5 min, 3 s, etc. A bottleneck event in the system is defined
as follows.

Definition 3 (Bottleneck Event). Let eqt ∈ Ueqt be a piece of equipment
identifier, and thr(eqt) ∈ Udur denotes the theoretical service time of eqt. Let L
be an event log. Given an event e ∈ L and a case c, where e ∈ πtrace(c), e is a
bottleneck event iff depc(e) − πarr(e) > thr(πeqt(e)).

A baseline for comparison is crucial when evaluating process performance.
In this case study, since the efficiency is significantly influenced by the dynamic
nature of cases within the system, a rigid benchmark is impractical. Therefore,
we employ statistical metrics as a benchmark to evaluate the performance of the
equipment. Specifically, we establish benchmarks for each equipment type by
examining the first quartile of dwell time per equipment type, recognizing that
the dwell time of a piece of equipment varies depending on its type. For instance,
the dwell time of a package on a lift shaft differs from that on a conveyor belt.
Bottleneck events are identified when the corresponding dwell times exceed the
benchmark. Throughout the paper, we refer to these events as bottlenecks.

5 Root Cause Identification and Diagnostics

Considering the inherent complexity of the system, we devise a two-stage app-
roach for root cause analysis, as illustrated in Fig. 2. In the first stage, given
a bottleneck, we narrow down the scope by identifying the root cause at the
data level—extracting specific location and timing information that triggers the
bottlenecks. Next, we gather the relevant incidents and collaborate with domain
experts to visualize the entire process leading to the bottleneck using PSM. This
collaborative process facilitates a comprehensive examination and diagnosis of
the identified root causes from a business perspective. We integrate root cause
identification into our partner’s system, visually displaying the bottleneck and
its cause on their logistic map, enhancing stakeholder understanding.

5.1 Root Cause Identification

The scale and complexity of the system, comprising approximately 800,000
events from around 5,700 equipment pieces, present significant challenges in
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Fig. 2. Two-Stage Root Cause Analysis. The first stage involves narrowing down the
scope through root cause identification. The resulting root cause is visualized on the
logistic map, while the process leading to the bottleneck is visualized with PSM, allow-
ing for collaborative discussions with stakeholders.

systematically uncovering the underlying causes of bottlenecks. To address this,
root cause identification narrows down and extracts a subset of events and/or
faults that contribute to bottleneck occurrences. By focusing on this subset, we
efficiently pinpoint the incidents that are most relevant to our analysis, ensuring
a more targeted approach. In this context, a root cause is defined as an incident
on a piece of equipment that triggers a specific bottleneck. The formal definition
of a root cause is outlined below.

Definition 4 (Root Cause). Let L ⊆ E and FL ∈ F . Given a bottleneck
bn ∈ L, a root cause rc is an incident occurring on a piece of equipment in the
system rc ∈ L ∪ FL that causes bn.

Prior to the algorithm, we establish two conditions for identifying root causes.
First, we determine if a bottleneck occurs due to a fault occurring on the piece
of equipment associated with it. Since real faults do not allow for package recep-
tion nor sending, a package gets stuck due to fault if it arrives on the piece of
equipment before a fault happens and remains there until the fault is repaired.
During this period, the fault prevents the piece of equipment from processing
any packages, resulting in packages becoming stuck until the fault is resolved.

Definition 5 (Stuck due to Fault). Let L ⊆ E and FL ⊆ F . Given a
bottleneck bn ∈ L, stuck(bn, FL) = σ ∈ F∗ extracts a sequence of root causes
where 1 ≤ i ≤ |σ|(πeqt(σ(i)) = πeqt(bn) ∧ πarr(bn) < πdt(σ(i)) ∧ depc(bn) >
πut(σ(i))).

If a bottleneck is not due to a fault in the associated equipment piece, we
investigate the condition of the subsequent equipment along its trajectory. Equip-
ment condition is determined by the incidents at a specific time. In this case
study, two types of incidents are considered: an event indicating the availability
of the equipment piece (i.e., a package is present on the equipment piece) and a
fault indicating the unavailability of the equipment piece.

Definition 6 (Equipment Condition). Let L ⊆ E, eqt ∈ Ueqt, and t ∈ Utime.
CONocc : Ueqt ×Utime ×E � E, where CONocc(eqt, t, L) = e ∈ L ⇐⇒ πeqt(e) =
eqt ∧ πarr(e) < t < depc(e). Given FL ⊆ F , CONflt : Ueqt × Utime × F � F ,
where CONflt(eqt, t, FL) = f ∈ FL ⇐⇒ πeqt(f) = eqt ∧ πdt(f) < t < πut(f).
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Algorithm 1 outlines the identification of the root cause given a bottleneck.
The algorithm checks if the bottleneck is caused by being stuck on the associated
equipment piece. If no faults are detected, the algorithm proceeds to examine
the condition of the equipment on the trajectory of the bottleneck and extracts
the last incident until one of the following final conditions is met:

– The associated equipment piece is the last equipment piece on its trajectory;
– The associated equipment piece is empty and without a real fault;
– The associated equipment piece is at real fault.

A piece of equipment can be both at fault and occupied simultaneously.
However, considering that the business owner’s primary interest lies in identify-
ing and addressing faults, the developed method places a stronger emphasis on
identifying root causes related to faults. This focus allows for a more targeted
approach in determining the actions to be taken to address the identified faults.

Algorithm 1. Root Cause Identification

Require: event log L, fault log FL, bottleneck bn ∈ L
Ensure: a root cause rc ∈ E ∪ F
1: if |stuck(bn, FL)| > 0 then return stuck(bn, FL)(1)

2: c ← the corresponding case of bn
3: σ ← πtrace(c)
4: σ′ ← pathσ(σ−1(bn), |σ|)
5: current ← bn
6: for 1 ≤ i < |σ′| do
7: if πeqt(current) = πeqt(σ

′(|σ′|)) then return current

8: time ← πarr(current) + thr(πeqt(current))
9: next ← πeqt(σ

′(i + 1))
10: f ← CONflt(next, time, FL)
11: if real(f, L) then return f

12: e ← CONocc(next, time, L)
13: if e = ⊥ then return current
14: current ← e

5.2 Root Cause Diagnostics

In this section, we delve into a comprehensive analysis of the process leading to
bottlenecks, going beyond the identification of the root cause. We collect and
analyze incidents contributing to the bottleneck since the identified root cause.
This enables us to uncover the cause-effect relationships that influence bottle-
neck occurrences, facilitating a more profound understanding of the underlying
process. To strengthen our analysis, we utilize PSM to visually represent the
behavior of the incidents. Furthermore, engaging in effective discussions with
domain experts provides valuable insights and perspectives. The following diag-
nostics illustrate their implications from a business standpoint.
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Diagnosis 1 (Stuck on Faulty Equipment). Figure 3 depicts the diagnosis of an
internal root cause where a piece of faulty equipment causes a package to be stuck
on it, as described in Definition 5. The performance spectrum displayed on the
right side depicts the efficiency of the selected places in the discovered Petri net
shown on the left side. Selected places representing a single path are colored
in green, while aggregated paths are colored in blue. The example shows that
faulty equipment SRFH2430 blocks the package distribution, which is impossible
to reroute without human intervention.

We project the faults onto the timeline, displaying the downtime and uptime
for the respective piece of equipment. We utilize blue and red arrows to highlight
bottlenecks and the corresponding root causes. This visualization is consistently
applied across figures throughout the subsequent diagnostics.

Diagnosis 2 (Waiting for Repair). Figure 4 depicts a scenario with two bot-
tlenecks stemming from the same root cause, specifically a fault on equipment
UAZB1814. Once the fault is fixed, the distribution process resumes. Further-
more, Fig. 5 illustrates two bottlenecks resulting from a sequence of faults on
equipment UENF3008. For the bottleneck on equipment LFYV0354 in case
2654852459, the first fault is the root cause, while for the bottleneck in case
2365884457, the second fault is identified as its root cause. The figure also high-
lights distribution prioritization, with package 2365884457 being given higher
priority despite arriving later on equipment TFGT3578 due to its importance.

Diagnosis 3 (Waiting to Exit). Figure 6 showcases the cascading package waiting,
highlighting the impact of capacity constraints on the distribution. The packages
queue to exit, resulting in a sequence of bottlenecks. The root cause of the
bottlenecks is identified as the package 2968579218 on equipment KXLJ5003,
which is also a bottleneck itself and is observed waiting at the last piece of
equipment along the distribution trajectory of the bottlenecks. The visualization
emphasizes how the waiting of a single package on a piece of equipment affects
subsequent distributions, leading to inefficiencies propagating throughout the
system. Further investigation reveals that the root cause originates from the
package 2968579218 waiting to be loaded onto an aircraft.

Fig. 3. Package distribution of package 2679488216 gets stuck at faulty equipment
SRFH2430 during the distribution process. (Color figure online)
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Fig. 4. Two bottlenecks waiting for faulty equipment UAZB1814 to be repaired.

Diagnosis 4 (Unjustified Waiting). If no incidents are identified for a bottle-
neck, the root cause is defined as unjustified waiting, indicating the next piece
of equipment on the package’s trajectory is available for transfer without any
detected incidents. Nevertheless, the distribution inexplicably ceases. While one
reason could be the equipment piece serving as a storage place within the system,
there are root causes that remain unexplainable from a business perspective.

By gathering and analyzing the incidents that contribute to a bottleneck, we
facilitate the diagnostic at the business level through the utilization of a visual
analytic method inspired by PSM. This enables the process owner to identify
the appropriate measures to address the identified bottlenecks effectively.

5.3 Impact of Bottlenecks

Some bottlenecks may be circumvented by navigating around the identified
obstacles. To identify potential detours and their relationship with bottlenecks,

Fig. 5. Two bottlenecks due to waiting for sequential faults to be repaired. The inter-
section highlights the distribution priority of packages. Specific timestamps are anno-
tated to demonstrate the relationship between the arrival time of the packages and the
downtime and uptime of the faults.
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Fig. 6. Packages waiting to be loaded onto an aircraft, where the inefficiency cascades
through the equipment.

we make an assumption that cases with the same source and destination pieces of
equipment follow the same planned route if no obstacles are encountered during
distribution. Building upon this assumption, first, we extract cases that share the
same source and destination as the trajectory of a bottleneck. Next, we identify
the change points of these cases, i.e., the equipment piece where a case deviates
from the originally planned route. To relate the detour with the bottleneck, we
select the cases with the change points preceding the bottleneck on the route,
and the events at these change points temporally take place after the bottleneck.

Figure 7 exemplifies the impact of a bottleneck, which results in a detour
within the system. In this example, case 2159753596 detours on LHWU9366, i.e.,
the change point for its distribution, due to the bottleneck caused by the distri-
bution of package 2736942968 on equipment PGUL9655. Additionally, package
2159753596 experiences a temporary waiting period on LHWU9366 until the
decision to detour is made. As a result, the distribution of 2159753596 is com-
pelled to deviate from its initial planned route, leading to a longer path to reach
its destination. This scenario highlights how bottlenecks impact the overall dis-
tribution process, causing deviations and delays for affected cases.

By illustrating the impact of a bottleneck, we highlight that inefficiencies
may not be readily observable solely based on the presence of a bottleneck. The
distribution, taking a detour to circumvent the bottleneck, follows a longer route,
ultimately leading to increased throughput time in its distribution process.

6 Results

We present the quantitative results from our diagnostics, as depicted in Fig. 8.
The figure provides insights into the distribution of bottlenecks based on their
root causes. Notably, as the number of bottlenecks increased, we observed a
trend where multiple bottlenecks shared the same root causes, highlighting their
interconnectedness and shared contributing factors within the system.
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Fig. 7. An example highlighting the impact of a bottleneck: package 2736942968 on
equipment PGUL9655 triggers a cascading effect, causing 2159753596 to experience
additional waiting and detour, resulting in extended throughput time.

Interestingly, although only a small portion of bottlenecks appeared to be
attributed to equipment faults, our analysis of the root causes of unjustified
waiting reveals another possibility. Approximately 3% of the root causes of the
unjustified waiting could be attributed to storage-related reasons, which are
regarded as more of a business decision rather than operational inefficiencies. For
other root causes, we identified an example that illustrates the impact of design
decisions on threshold settings, as shown in Fig. 9. This instance resulted in unde-
tected root causes, where equipment ZGNT4301 was evaluated at 17:27:20 with
a 14-s threshold, while the fault occurred 17 s later, causing package 2736942868
to become stuck on equipment ZGNT4301. These findings highlight the impor-
tance of thoroughly considering design choices to accurately detect and address
root causes.

The identification of root causes demonstrates efficiency, with an average
time of approximately 0.2 s and a maximum of 2 s per bottleneck. These metrics
highlight a rapid identification process, influential in preserving optimal system
performance. Leveraging this efficiency, the root cause identification developed is

Fig. 8. The number of bottlenecks and the corresponding root causes based on diag-
nostics.
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Fig. 9. An example of unjustified waiting, highlighting the impact of design decisions
where the equipment fault occurred after evaluating the equipment condition.

integrated into the system, as exemplified in Fig. 10. Utilizing a logistic map that
visually represents the equipment layout and relationships within the system,
the root causes are swiftly detected based on the bottlenecks highlighted on the
map. The right panel provides an interactive interface for exploring the detected
root causes, enabling a comprehensive analysis of the distribution process. This
integration emphasizes its practical applicability and highlights its potential to
enhance operational efficiency.

7 Related Work

Diagnosing the root cause is crucial for optimizing service performance. Compre-
hensive process models are typically seen as essential for root cause diagnostics
[8,13,16]. For instance, in one study [13], a descriptive process model with statis-
tical metrics is used to identify root causes by observing resource status during
the bottleneck time periods. Another work in [8] employs conformance checking

Fig. 10. Visualizing root causes of bottlenecks in the distribution process on the logistic
map. note that the diagnostics are renamed for user clarity.
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to diagnose bottlenecks through deviations and cause-effect correlations, demon-
strated through an offshore oil and gas industry case study. However, discovering
a suitable process model is often challenging due to scalability issues with dis-
covery algorithms. Additionally, these models require a substantial amount of
data for each resource, making them less applicable in scenarios where resource
utilization is sparse, as presented in our case study.

Certain approaches rely heavily on knowledge-intensive domain understand-
ing, demanding significant effort and expertise to represent complex causal rela-
tionships. While innovative methodologies show promise in representing knowl-
edge [9,15,16], their effective implementation requires a high level of expertise.
For example, in an approach [15], fusion-based clustering and a hyperbolic neural
network are utilized to represent domain knowledge. Inspired by causality the-
ory, the authors [9] strive to avoid imposing assumptions on the data, enhancing
reliability in practical applications. In the work by Unger et al. [16], an event
log derived from business lawsuits is defined and subsequently analyzed using
process mining techniques. Although the analysis yields valuable insights, identi-
fying the root causes necessitates human analysis and a profound understanding
of the domain to interpret the performance metrics accurately and diagnose the
underlying reasons for bottlenecks. These methods demand specialized knowl-
edge, limiting their practical adoption and applicability.

In practical applications, scalability, accessibility to domain knowledge, and
the necessity of a process model pose significant challenges. In contrast, the
proposed solution automatically identifies root causes at the data level, demon-
strating scalability and potential for real-time application. We emphasize trans-
parency based on unbiased raw data and facilitate business-level interpretation
through visualization using PSM.

8 Conclusion

In this paper, we presented a case study focusing on the identification and diag-
nostics of root causes in the package distribution process of an air cargo terminal.
The process efficiency is closely tied to the dynamic nature of the system. We
formalized the provided datasets and analyzed the observed behavior within the
system. By identifying bottlenecks, we proposed a data-level method for extract-
ing root causes and conducting targeted diagnostics. Moreover, we demonstrated
the effectiveness of the visualization inspired by PSM in aiding the diagnostic
process. Additionally, we showcased the impact of bottlenecks, which led to inef-
ficiencies in the system that cannot be directly observed in individual package
distributions. The results of the case study further establish the practicality and
relevance of our method in real-world scenarios. For future work, we aim to
extend the visualization to include the status of the equipment, which can be
seen as the concept of resources in process mining, as it significantly impacts
the system. Developing a visual analytic tool considering equipment or resource
status would benefit scenarios similar to this case study.
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