
a

b

c

A

I
O
m
p
e
i
c
p
g
p
t
l
c
f
o
i
i
o
c

a

Preserving complex object-centric graph structures to improvemachine
learning tasks in process mining
Jan Niklas Adams a,∗, Gyunam Park a, Wil M.P. van der Aalst a,b,c
Chair of Process and Data Science, RWTH Aachen University, Ahornstraße 55, Aachen, 52074, North Rhine-Westphalia, Germany
Fraunhofer FIT, Schloß Birlinghoven, Konrad-Adenauer-Straße, Sankt Augustin, 53757, North Rhine-Westphalia, Germany
Celonis SE, Theresienstr. 6, Munich, 80333, Bavaria, Germany

B S T R A C T

nteractions of multiple processes and different objects can be captured using object-centric event data.
bject-centric event data represent process executions as event graphs of interacting objects. When applying
achine learning techniques to object-centric event data, the event log has to be flattened into sequential
rocess executions used as input for traditional process mining approaches. However, sequentializing the
vents by flattening removes the graph structure of object-centric event data and, therefore, constitutes an
nformation loss. In this paper, we present a general approach to preserve the graph structures of object-
entric event data across machine learning tasks in process mining. We provide two different techniques to
reserve these structures depending on the required input format of machine learning techniques: as direct
raph encodings or as graph embeddings. We evaluate our contributions by applying three different predictive
rocess monitoring tasks to direct graph encodings, graph embeddings, and flattened event logs. Based on
he relative performances, we assess the information contained in the graph structure of object-centric event
ogs that is, currently, lost in machine learning approaches for traditional process mining. Furthermore, we
ompare different graph embedding techniques for object-centric event logs to derive recommendations for
uture research and deployment. To conclude, we assess the improvement that graph embeddings constitute
ver state-of-the-art approaches that capture object information through specific features. Our contributions
mprove predictive process monitoring on object-centric event data and quantify the potential performance
ncreases of predictive models. These contributions are especially relevant when looking at real-life applications
f predictive process monitoring which are often applied to information systems with relational databases that
ontain multiple objects and, currently, still enforce flattening.
1. Introduction

Processes are omnipresent in today’s world. Most business activities
are conducted with the (implicit) notion of a process, ranging from
manufacturing (ElMaraghy et al., 2009) to business workflows (Geor-
gakopoulos et al., 1995). These processes are generally supported by
information systems (Dumas et al., 2018). The execution of processes
leaves traces of data in information systems. These data can be ex-
tracted to analyze the underlying process (Calvanese et al., 2015). Tech-
niques delivering insights and operational support concerning the un-
derlying process are summarized under the term process mining (van der
Aalst, 2016). Process mining techniques are usually grouped in four cat-
egories: Process discovery (Augusto et al., 2019), conformance check-
ing (Carmona et al., 2018), process enhancement (de Leoni, 2022),
nd operational support through the application of machine learning

∗ Corresponding author.

techniques such as predictive process monitoring (Francescomarino and
Ghidini, 2022) or clustering (Zandkarimi et al., 2020).

Input data for process mining techniques come in form of an event
log. An event log consists of a set of events. Each event is associated with
an activity, a timestamp, a case identifier, and additional data attributes.
All events belonging to the same case identifier are grouped to an event
sequence referred to as case. Current process mining techniques assume
such an event log as input. In many cases, this is a valid assumption, as
information systems like business process management systems or case
management/ticketing systems work on a single case notion for which
we can record a sequence of events (Weerdt and Wynn, 2022).

However, the vast majority of processes is more complex. Events
are not just related to a single case identifier but to multiple ob-
jects simultaneously. In reality, the support of most processes requires
information systems with complex relational databases (de Murillas

E-mail addresses: niklas.adams@pads.rwth-aachen.de (J.N. Adams), gnpark@pads.rwth-aachen.de (G. Park), wvdaalst@pads.rwth-aachen.de
(W.M.P. van der Aalst).

J.N. Adams, G. Park and W.M.P. van der Aalst Engineering Applications of Artificial Intelligence 125 (2023) 106764
et al., 2020; Jans and Soffer, 2017), expressing the interactions of
different objects (entities) that events are related to Fahland (2022).
Prominent examples of such information systems are like Enterprise
Resource Planning (ERP) systems (Ingvaldsen and Gulla, 2007) or
Manufacturing Executions Systems (MES) (Yang et al., 2014). Such
complex process executions are not simple sequences of events, but
complex interactions of different objects and their individual paths
through a process. This complex behavior can be captured using event
graphs that are constructed by merging the events of different objects
at multiple interaction points (Adams et al., 2022c; Esser and Fahland,
2021; Waibel et al., 2022).

The complex graph structures of event data need to be reduced
to a sequential event log format to apply traditional process mining
techniques. This process is called flattening (Calvanese et al., 2015).
Since flattening forces the complex structure of object interactions into
a relatively less expressive sequential structure, not all the structural
information about objects and their interactions can be preserved. The
quality problems of flattening are known in process mining: Flattening
leads to disappearing events (deficiency), duplicated events (conver-
gence) and indistinguishable event-object relationships with wrong
precedence constraints (divergence) (van der Aalst, 2019; Weber et al.,
2015; Waibel et al., 2022).

To answer the shortcoming of traditional event data when capturing
event data related to multiple objects, object-centric event logs have been
proposed (van der Aalst and Berti, 2020). In an object-centric event log,
an event is no longer associated with exactly one case identifier but
with multiple objects. Therefore, object-centric event logs are able to
capture interactions between objects and allow the individual tracking
of objects through the process. Recently, the move from the traditional
sequential process execution concept to a graph-based process execu-
tion concept has been proposed (Adams et al., 2022c). Building and
adapting process mining techniques on top of the graph-based process
execution concept prevents the flattening of the event log, preserving
the structural information of the object-centric event log.

Machine learning techniques are actively utilized in process mining
to provide operational support. Predictive Process Monitoring (PPM)
(Francescomarino and Ghidini, 2022) summarizes all techniques to pre-
dict the future of ongoing process executions. A wide range of predic-
tion targets are considered, from process execution’s outcomes (Teine-
maa et al., 2019), numerical measures such as performance indica-
tors (Castellanos et al., 2006), or future control-flow behavior such as
the next activity (Tax et al., 2017). Clustering of process executions
provides insights into similar process executions, pointing to potential
problems or outcomes (Zandkarimi et al., 2020). In general, all of these
techniques start from the event log, extract features (de Leoni et al.,
2016), and encode them for the corresponding machine learning tech-
nique. Applying all of these techniques to more complex object-centric
event data with multiple objects per event requires the flattening of the
event log, as proposed by current state-of-the art techniques (Galanti
et al., 2023). However, as already discussed, flattening is associated
with quality problems ranging from removed information over dupli-
cated entries to incorrect precedence constraints. This raises two main
questions:

RQ1 How much information is lost through the process of flattening
and removing the graph structure of process executions?

RQ2 What is the best way to preserve the graph structure of object-
centric event data for machine learning applications in process
mining?

In this paper, we tackle these two research questions by providing
a general machine-learning approach to preserve the graph structure
of object-centric event data to improve machine learning results. Our
contributions are as follows:

C1 We define a general approach for preserving the graph structure
of object-centric event data for machine learning applications
using graphs and graph embeddings.
2

C2 We quantify the potential value of preserving the graph structure
by isolating its predictive value for different predictive process
monitoring tasks.

C3 We compare our proposed technique of graph embeddings
against current state-of-the-art methods that capture object-
centric structures through manually designed features. To this
end, we quantify the predictive delta between our proposed
method and these manual graph embeddings.

C4 We provide implementations and our experiments in publicly
available repositories which can be used for new developments
of machine learning applications and adaption of current appli-
cations.

The remainder of this paper is structured as follows. We introduce
the related work on object-centric process mining and machine learning
in process mining in Section 2. The preliminaries on object-centric
event data are presented in Section 3. We present our framework
to preserve the structure of object-centric event data for machine
learning tasks and present examples of structural information loss
through flattening in Section 4. In Section 5, we evaluate our frame-
work by quantifying the information contained in the graph structure
of object-centric process executions. Furthermore, we compare our
proposed method of graph embeddings to state-of-the-art techniques
of embedding information about objects. We conclude this paper in
Section 6.

2. Machine learning and object-centric process mining

The object-centric nature of processes has been known for a long
time (Cohn and Hull, 2009). More than a decade ago, the problem of
algorithms to handle object-centric event data was formulated as one
of the main challenges in process mining (van der Aalst et al., 2011).
In this section, we will first discuss existing work on object-centric
processes from a modeling, data storing, and algorithmic perspective
and discuss the recently introduced graph-based view on object-centric
event data. Furthermore, we will introduce graphs in machine learning
and depict the shortcoming of machine learning techniques in process
mining to incorporate the graph structure of object-centric event data.

2.1. Processes with multiple case notions

One of the earliest modeling techniques for interacting processes
were artifact-centric business process models (Calvanese et al., 2014;
Meyer et al., 2013; Popova et al., 2015) and Proclets (Fahland, 2019).
Both modeling notations show a collection of connected, individual
models per object type rather than one single model capturing ex-
plicit causality constraints. Object-centric behavioral constraint (OCBC)
models (van der Aalst et al., 2017) explicitly capture causality con-
straints between object types and depict them in one single model.
Since the discovery of OCBC models is not scalable, object-centric
Petri nets (van der Aalst and Berti, 2020) were proposed, unifying all
object types in one comprehensive model and exhibiting promising
scalability for process discovery. Other object-centric modeling no-
tations include Information Systems Modeling Suite (ISML) (van der
Werf and Polyvyanyy, 2020), Catalog-nets (Ghilardi et al., 2020), and
DB-nets (Montali and Rivkin, 2017)

To enable process mining, one must extract and store data in the
appropriate format for process discovery algorithms and analysis of
object-centric processes. Different event log formats were proposed.
Artifact-centric event logs (Nooijen et al., 2012; Moctar-M’Baba et al.,
2022) are the earliest storage format for event data with multiple
objects per event. eXtensible object-centric (XOC) event logs (Li et al.,
2018) event logs were proposed to be used for the discovery and
analysis of OCBC models, storing the whole evolution of the underly-
ing database. This has obvious scalability issues for large event logs.
Object-centric event logs (OCELs) (Ghahfarokhi et al., 2021) were re-
cently proposed as a lightweight way to store object-centric event data,

J.N. Adams, G. Park and W.M.P. van der Aalst Engineering Applications of Artificial Intelligence 125 (2023) 106764

m
o
b
c
o
l

T
e

r
p
t
d
a
w
a
K

o
g
e
G
t

a
S
a
o
2

2

a
d
d
l
g
n

e
i
t
e
2
b

t
w
A
r
i
a
i
p
p
l
t
d
a
W
p
u
a
c

s
s
t
p
l
a
w
o

recording the objects per event and their attributes. Furthermore, graph
databases (Esser and Fahland, 2021) have recently been introduced as
a storage format for object-centric event data.

Based on an event log capturing real-life process executions, pro-
cess mining algorithms provide insights into the executed process.
Several specific algorithms have been developed for different storage
formats and different modeling notations of object-centric processes.
For artifact-centric processes, discovery algorithms (Nooijen et al.,
2012; Lu et al., 2015) and conformance checking techniques (Fahland
et al., 2011) have been introduced. Process models can, also, be dis-
covered from graph databases (Eldin et al., 2022). Furthermore, OCBC
models can automatically be discovered from XOC event logs (Li et al.,
2017). However, the most variety of algorithms exists for object-centric
event logs and object-centric Petri nets. Next to object-centric vari-
ants (Adams et al., 2022c), two different types of models can be
discovered from OCELs: multiple viewpoint models (Berti and van der
Aalst, 2019) and object-centric Petri nets (van der Aalst and Berti,
2020). Object types exhibiting similar control-flow behavior can be
clustered using a Markov Directly-Follows Multigraph (Jalali, 2022).
Furthermore, conformance-checking techniques for OCELs and object-
centric Petri nets were recently proposed (Adams and van der Aalst,
2021; Park and van der Aalst, 2022). Model-based performance analysis
with novel performance measures was proposed as a data-driven way
to analyze the interplay of processes (Park et al., 2022). At last, a native
feature extraction and encoding for OCELs was proposed, enabling PPM
for object-centric event logs (Adams et al., 2022a).

We built our method and evaluation based on existing work on
object-centric event logs. We chose object-centric event logs for the
following reason: A rich ecosystem of algorithms and implementation
around object-centric event logs enables us to integrate our method and
make it available for future research. We implement our method in the
recently introduced ocpa library (Adams et al., 2022b). However, our
method can equally be applied to other existing storage formats such
as graph databases or XOC event logs. All storage formats are united by
the graph-based view on event data, in contrast to the sequence-based
view traditionally taken in process mining.

2.2. Graphs in machine learning

Many real-life settings closely resemble a graph structure and re-
quire adapted machine learning techniques working on graph input
data. These application domains include traffic analysis (Zhang et al.,
2022), visual scene understanding (Ding et al., 2022), or chemistry and
molecules (Ma et al., 2022). A plethora of machine learning tasks has
been adapted to the graph input setting, e.g., prediction (Ali et al.,
2022), outlier detection (Li et al., 2022), or clustering (Mishra et al.,
2022). Tasks can generally be performed on the graph level (e.g., clas-
sifying properties of a molecule), the edge level (e.g., predicting the
traffic delay on a certain street), or the node level (e.g., classifying
outliers in a network).

Graph isomorphism is a fundamental problem in analyzing graphs.
The problem can be solved in quasipolynomial time (Babai, 2016).
In machine learning applications, however, instead of determining
whether two graphs are identical, one aims to analyze the similarity
between graphs, e.g., classifying graphs based on their similarity. This
can be done by learning a model directly on the graph data, i.e., a graph
neural network (Kipf and Welling, 2017; Wu et al., 2021). Throughout
ultiple convolutional layers, values are propagated along the edges
f the graph according to learned weights. The final layers can then
e pooled to perform a classification/regression. Another approach to
omputing the similarity between graphs is to learn a representation
f the graph as a vector, called graph embedding, and adopt machine
earning models to learn the similarity.
Many prior studies have explored learning graph representations.

he methods for graph embedding can be grouped into three cat-

gories: graph kernel-based methods, deep learning-based methods, and r

3

epresentation-based methods. First, graph kernel-based methods decom-
ose a graph into small sub-structures and build graph kernels using
he similarity defined over these components. Different graph kernels
ecompose graphs in different manners. Graphlet kernels (Yanardag
nd Vishwanathan, 2015) are based on subgraphs up to a fixed size,
hereas Weisfeiler–Lehman graph kernels (Shervashidze et al., 2011)
re based on subtree patterns. Shortest path kernel (Borgwardt and
riegel, 2005) are based on the shortest paths between node pairs.
Deep learning-based graph embedding applies deep learning models

n graphs. Graph2Vec (Narayanan et al., 2017) extract rooted sub-
raph features using the Weisfeiler–Lehman kernel and learn graph
mbedding by passing them to a Doc2Vec (Mikolov et al., 2013) model.
L2Vec (Chen and Koga, 2019) extends Graph2Vec by using line graphs
o incorporate edge features into graph representations.
Representation-based graph embedding uses statistical properties of
graph to generate a graph signature vector to represent the graph.
uch statistical properties include local characteristics such as node’s
nd its neighbors’ degrees (Cai and Wang, 2018). More advanced meth-
ds use global features such as skew spectrum (Kondor and Borgwardt,
008) and its successor, graphlet spectrum (Kondor et al., 2009).

.3. Machine learning in process mining

This section discusses the central methodological gap our paper
ddresses: On the one hand, research interest in object-centric event
ata and its graph-based structure has drastically increased over the last
ecade. On the other hand, an extensive amount of general machine
earning methods based on graphs has been proposed. However, the
raph-based structure of object-centric event data has, so far, been
eglected in machine learning tasks in process mining.
Machine learning has become a central pillar in providing op-

rational support for processes. While predictive process monitor-
ng (Francescomarino and Ghidini, 2022) has received the most at-
ention, other machine learning tasks such as clustering (Zandkarimi
t al., 2020), outlier detection (Sani et al., 2018), sampling (Bauer et al.,
019), or concept drift adaptation (Chamorro et al., 2022) have also
een adapted to process mining use cases.
Traditional process mining is built around the assumption of a

raditional event log, i.e., an event log where each event is associated
ith exactly one object of the same type, forming an event sequence.
pplying any machine learning technique for process mining follows a
igid pipeline: First, the process data recorded in information systems
s transformed into traditional event log format Calvanese et al. (2015)
nd, second, the traditional event log is transformed into the required
nput format for the machine learning technique. In this two-step
rocess, research progress focused on advancing the second step of this
ipeline, i.e., extracting features and transforming the traditional event
og into different input formats to support all kinds of machine learning
echniques: based on tabular data (de Leoni et al., 2016), sequential
ata (Tax et al., 2017; Leontjeva et al., 2015; Evermann et al., 2017),
nd graphs constructed from instance graphs (Chiorrini et al., 2021).
hile this has led to important developments of, especially, predictive
rocess monitoring, the first part of this pipeline has stayed mostly
ntouched, leaving opportunities for further improvement. This paper
ddresses how graph-based process executions from object-centric event logs
an be preserved throughout this two-step pipeline.
Incorporating object-centric event logs into machine learning tasks

uch as predictive process monitoring has recently been studied by
ome papers. However, the proposed approaches still require the flat-
ening of the event log, removing structural information. Galanti et al.
roposed a framework for predictive analytics on object-centric event
ogs (Galanti et al., 2023) that incorporates object interactions as
dditional features into a traditional predictive process analytics frame-
ork, namely aggregations over object attributes, the number of objects
f a certain type per event, and the percentage of objects that have

un through an activity. These features should capture the object flow and

J.N. Adams, G. Park and W.M.P. van der Aalst Engineering Applications of Artificial Intelligence 125 (2023) 106764

f
a
c
p
a
p
c
t
o
g
f
t
b
t
e
l
i
a
a
i
e
e

3

W
o

e
e
o
T
o
t
𝜋
u
w
o
d

𝑋
d
⟨

D
t

r
t
m
o
o
a
i
e
a
e

I
t
t

D
𝑂
r
(

t
e
o
j
t

4

s
e
t
f
F
l
d
t
f
d
M
f
p
i

4

c
i
g
t

D
(
a
e

object associations of events, essentially functioning as some manual em-
bedding. They report an increase in predictive performance using these
three additional object-centric features. However, as the event log still
needs to be flattened and the added features are only a small selection
of possible features, these features cannot compensate for the structural
information loss in flattening (cf. extensive examples in Section 4:
Fig. 3 (rework cannot be distinguished using these features), Fig. 4
(individual object flows cannot be substituted using these features),
and Fig. 5(activities cannot be associated to a specific object using
these features)). Adams et al. (2022a) introduced a comprehensive
ramework for object-centric feature extraction and encoding forming
n object-centric adaptation of de Leoni et al. (2016), proposing object-
entric adaptations of commonly used features, e.g., moving from one
receding activity in traditional process mining to multiple preceding
ctivities in object-centric feature extraction or using object-centric
erformance metrics. The features building on the object perspective
an also be used as a manual embedding of object information. While
his framework provides an extensive adaptation and implementation
f new features, these features can either be encoded directly as a
raph and used in, e.g., a graph neural network, or the structure can be
lattened to fit tabular/sequential machine learning models. Therefore,
he graph-based structure of object-centric process executions cannot
e preserved for machine learning techniques with vector input using
he authors’ framework. In this work, we close this gap by using graph
mbeddings to preserve the structure of process executions for machine
earning tasks with vector input. Furthermore, we also quantify the
nformation contained in the graph-based process executions through
comparison of predictive utility between object-centric structures
nd flat event data structures. We compare the amount of predictive
nformation captured by our proposed graph embeddings to the manual
mbedding approaches contained in Galanti et al.’s (2023) and Adams
t al.’s (2022a) work.

. Object-centric event data

This section introduces key concepts for object-centric event data.
e accompany these with examples of an object-centric event log and
bject interactions.
First, we introduce some notations used throughout this paper. An

vent log consists of events. The universe of events is denoted as  . Each
vent happens at a certain point in time where  denotes the universe
f timestamps. Event logs record events that are associated with objects.
he universe of objects is denoted with . Each object is of exactly
ne type, describing an instance of this type. The universe of object
ypes is denoted by  . The object type of an object is mapped through
𝑡𝑦𝑝𝑒 ∶  →  . Each event describes the occurrence of an activity. The
niverse of activities is given by . Events are, furthermore, associated
ith different attributes and values to these attributes. The universe
f attributes is given by  , and the universe of attribute values is
enoted as  .
A sequence 𝛿 ∶ {1,… , 𝑛} → 𝑋 assigns an order to elements of a set
and is denoted with ⟨𝑥1,… , 𝑥𝑛⟩. The subsequences of a sequences are
efined by 𝑠𝑢𝑏𝑠𝑒𝑞(⟨𝑥1,… , 𝑥𝑛⟩)={⟨𝑥1⟩,… , ⟨𝑥𝑛⟩, ⟨𝑥1, 𝑥2⟩,… , ⟨𝑥𝑛−1, 𝑥𝑛⟩,… ,
𝑥1,… , 𝑥𝑛−1⟩, ⟨𝑥2,… , 𝑥𝑛⟩, ⟨𝑥1,… , 𝑥𝑛⟩}.

efinition 1 (Object-Centric Event Log). An object-centric event log is a
uple 𝐿 = (𝐸,𝑂𝑇 ,𝑂, 𝜋𝑡𝑖𝑚𝑒, 𝜋𝑡𝑟𝑎𝑐𝑒, 𝜋𝑜𝑏𝑗 , 𝜋𝑎𝑐𝑡, 𝜋𝑎𝑡𝑡) consisting of

1. a set of events 𝐸 ⊆  ,
2. a set of object types 𝑂𝑇 ⊆  and objects 𝑂 ⊆ ,
3. a function 𝜋𝑡𝑖𝑚𝑒 ∶ 𝐸 →  mapping each event to its timestamp,
4. a function 𝜋𝑡𝑟𝑎𝑐𝑒 ∶ 𝑂 → 𝐸∗ mapping each object to a sequence of
events such that ∀𝑜∈𝑂 𝜋𝑡𝑟𝑎𝑐𝑒(𝑜) = ⟨𝑒1,… , 𝑒𝑛⟩ ∧ ∀𝑖∈{1,…,𝑛−1} 𝜋𝑡𝑖𝑚𝑒(𝑒𝑖)
≤ 𝜋𝑡𝑖𝑚𝑒(𝑒𝑖+1),

5. a function providing the objects associated to an event 𝜋𝑜𝑏𝑗 (𝑒) =
{𝑜 ∈ 𝑂 ∣ 𝑒 ∈ 𝜋 (𝑜)},
𝑡𝑟𝑎𝑐𝑒

4

6. a function 𝜋𝑎𝑐𝑡 ∶ 𝐸 →  mapping events to activities,
7. a function 𝜋𝑎𝑡𝑡 ∶ 𝐸 × ↛  mapping events and attributes to
attribute values.

An object-centric event log consists of events and objects. Events are
elated to objects through the 𝜋𝑡𝑟𝑎𝑐𝑒 function, which maps each object
o a sequence of events. Events can belong to the event sequences of
ultiple objects of different types, expressing the interaction between
bjects and object types. The left-hand side of Fig. 2 depicts an example
f an object-centric event log. An event (a row in the table) can be
ssociated with objects of three types: job offers, applications, and
nterviews. Next to the activities and the objects of different types, each
vent is also associated with a timestamp. Each object is associated with
sequence of events, e.g., 𝜋𝑡𝑟𝑎𝑐𝑒(𝑖1) = ⟨𝑒3, 𝑒9, 𝑒10⟩ is the sequence of
vents associated with interview i1.
Object relationships are recorded through co-appearances at events.

f an event refers to two different objects, these objects are in some rela-
ionships. We can build the graph of object relationships by traversing
he event log for co-appearing objects (Adams et al., 2022c).

efinition 2 (Object Graph Adams et al., 2022c). Let 𝐿 = (𝐸,𝑂𝑇 ,
, 𝜋𝑡𝑖𝑚𝑒, 𝜋𝑡𝑟𝑎𝑐𝑒, 𝜋𝑜𝑏𝑗 , 𝜋𝑎𝑐𝑡, 𝜋𝑎𝑡𝑡) be an object-centric event log. All object
elationships of the event log are captured in the object graph 𝑂𝐺𝐿 =
𝑂, 𝐼) with 𝐼 = {{𝑜, 𝑜′} ∣ 𝑜 ≠ 𝑜′ ∧ ∃𝑒∈𝐸 {𝑜, 𝑜′} ⊆ 𝜋𝑜𝑏𝑗 (𝑒)}.

The right-hand side of Fig. 2 depicts the object graph derived from
he object-centric event log. The nodes are the objects appearing in the
vent log. Edges are introduced if two objects share an event. Using the
bject graph, one can spot dependencies between objects. For example,
ob offer o1 and interview i1 do not share events, however, they are
ransitively connected through application a2.

. Encoding structural information of object-centric event data

We present our method for preserving complex object-centric graph
tructures in this section. We accompany our method with in-depth
xamples of structural information loss when using state-of-the-art
echniques, i.e., flattening. Our framework for encoding structural in-
ormation of the object-centric for machine learning tasks is depicted in
ig. 1 and highlighted in orange. Starting from the object-centric event
og, we extract the graph-based process execution. Subsequently, we
ifferentiate between two types of machine learning tasks depending on
heir required input format: Graph-based input format and vector input
ormat. Machine learning tasks requiring graph-based input format can
irectly be applied on the process executions with trivial modification.
achine learning tasks that work on vector input – arguably the most
requently assumed input format – can, however, not directly be ap-
lied to graph-based process executions. Graphs need to be embedded
nto a vector (Cai et al., 2018).

.1. Extracting graph-based process executions

Each object is associated with a sequence of events in an object-
entric event log. Objects that share events influence each other. Merg-
ng the event sequences of two connected objects results in an event
raph. We generalize this to an object-centric process execution defini-
ion of event graphs spanned by multiple, connected objects.

efinition 3 (Process Execution Adams et al., 2022c). Let 𝐿 =
𝐸,𝑂𝑇 ,𝑂, 𝜋𝑡𝑖𝑚𝑒, 𝜋𝑡𝑟𝑎𝑐𝑒, 𝜋𝑜𝑏𝑗 , 𝜋𝑎𝑐𝑡, 𝜋𝑎𝑡𝑡) be an object-centric event log. For
set of objects 𝑋 ⊆ 𝑂 forming a connected subgraph in 𝑂𝐺𝐿, a process
xecution is an event graph 𝑝𝑋 = (𝐸𝑋 , 𝐷𝑋) composed of

1. nodes 𝐸𝑋 = {𝑒 ∈ 𝐸 ∣ 𝜋𝑜𝑏𝑗 (𝑒) ∩𝑋 ≠ ∅}, and
2. edges 𝐷 = {(𝑒, 𝑒′) ∈ 𝐸 × 𝐸 ∣ ∃ ⟨𝑒, 𝑒′⟩ ∈ 𝑠𝑢𝑏𝑠𝑒𝑞(𝜋 (𝑜))}.
𝑋 𝑋 𝑋 𝑜∈𝑋 𝑡𝑟𝑎𝑐𝑒

J.N. Adams, G. Park and W.M.P. van der Aalst Engineering Applications of Artificial Intelligence 125 (2023) 106764

Fig. 1. Overview of our approach to preserving object-centric graph structures for machine learning tasks in process mining. In traditional process mining, object-centric event
data are flattened first; the structure of the event log containing objects, frequencies, and interactions is lost. We either use the graph-based event structure directly or transform
into a vector representation using graph embeddings.

Fig. 2. Example of an object-centric event log and the object graph that is induced by the event log.

Fig. 3. When flattening and using the event activity attribute as feature, one cannot distinguish between two situations where one activity is either rework for one object or
associated with a different object.

5

J.N. Adams, G. Park and W.M.P. van der Aalst Engineering Applications of Artificial Intelligence 125 (2023) 106764
Fig. 4. The two process executions contain different numbers of objects and different individual object flows. However, they become indistinguishable when flattening.
Fig. 5. The two process executions show two situations where an activity is associated with different objects. This information is lost when flattening.
b

e

f
t
l
t
t
u

A process execution contains the precedence constraints of events
induced by different, connected objects in the form of a graph. Process
executions capturing all the object relationships in an event log can be
extracted by computing the connected components of the object graph.
Among other extraction techniques (Adams et al., 2022c), we consider
only an extraction through connected components for our definitions.

Definition 4 (Execution Extraction). Let 𝐿=(𝐸,𝑂𝑇 ,𝑂, 𝜋𝑡𝑖𝑚𝑒, 𝜋𝑡𝑟𝑎𝑐𝑒, 𝜋𝑜𝑏𝑗 ,
𝜋𝑎𝑐𝑡, 𝜋𝑎𝑡𝑡) be an object-centric event log. 𝑝𝑒𝑥(𝐿) = {𝑝𝑋 ∣ 𝑋 ⊆ 𝑂 ∧
𝑋 is a connected component in 𝑂𝐺𝐿} are the process executions ex-
tracted using the connected components of the object graph.

We can transform a graph-based process execution to the sequential
case concept traditionally used in process mining to assess the impact
of flattening. We do this by sorting events according to execution
time and forcing them into sequential order. Note that, we could also
flatten the process execution using only the events of a single object
type (van der Aalst, 2019). However, flattening to a single object
type is almost always associated with problems of disappearing events

or duplicated events. Using all connected objects and flattening all b

6

associated events (Calvanese et al., 2015), we avoid these problems and
preserve all events without changing event frequencies. Therefore, we
choose the second form of flattening as a baseline.

Definition 5 (Flattening). Let 𝐿 = (𝐸,𝑂𝑇 ,𝑂, 𝜋𝑡𝑖𝑚𝑒, 𝜋𝑡𝑟𝑎𝑐𝑒, 𝜋𝑜𝑏𝑗 , 𝜋𝑎𝑐𝑡, 𝜋𝑎𝑡𝑡)
be an object-centric event log. A process execution 𝑝𝑋 = (𝐸𝑋 , 𝐷𝑋) can
e flattened into an event sequence through 𝑓𝑙𝑎𝑡𝑡𝑒𝑛𝑖𝑛𝑔((𝐸𝑋 , 𝐷𝑋)) =

(𝐸𝑋 , {(𝑒, 𝑒′) ∈ 𝐸𝑋 × 𝐸𝑋 ∣ 𝜋𝑡𝑖𝑚𝑒(𝑒) ≤ 𝜋𝑡𝑖𝑚𝑒(𝑒′) ∧ ¬∃𝑒′′∈𝐸𝑋
𝜋𝑡𝑖𝑚𝑒(𝑒) ≤

𝜋𝑡𝑖𝑚𝑒(𝑒′′) ≤ 𝜋𝑡𝑖𝑚𝑒(𝑒′)}). The whole event log can be flattened by flattening
ach process execution 𝑓𝑙𝑎𝑡(𝐿) = {𝑓𝑙𝑎𝑡𝑡𝑒𝑛𝑖𝑛𝑔(𝑝𝑋) ∣ 𝑝𝑋 ∈ 𝑝𝑒𝑥(𝐿)}.

We provide three different end-to-end applications of our definitions
in Figs. 3, 4, and 5. These depictions show three situations where
lattening leads to an information loss. On the left-hand side, we show
he object-centric event log and the corresponding process executions
abeled with the event activities. On the right-hand side, we show
he flattened (traditional) event log and the corresponding sequential
raditional cases. In all three cases, situations that are distinguishable
sing an object-centric event log and graph-based process executions

ecome indistinguishable when flattening. Moreover, when considering

J.N. Adams, G. Park and W.M.P. van der Aalst Engineering Applications of Artificial Intelligence 125 (2023) 106764

f

o
f
d

Fig. 6. Features such as the event’s activity can substitute or enrich graph structure contained in the event log. When looking at only the structure of our examples without any
eature, all six situations become indistinguishable when flattening but are perfectly distinguishable when using graph-based process executions.
W
t
t

t
s
m

D
𝑉

nly the structure without additional features such as the event activity,
lattening makes all situations indistinguishable while all situations are
istinguishable when using graph-based process executions (cf. Fig. 6).
Please note that these situations might become distinguishable after
flattening when using features other than the event’s activity. However,
for these features, one could equally well construct examples where
they fail to distinguish other situations. If there is a (set of) feature(s)
that can perfectly distinguish situations, this would constitute a perfect
graph embedding for process executions.

In the following, we discuss the three examples in more depth.
The example in Fig. 3 depicts a situation in which the rework of an
activity and the presence of two objects for which the same activity is
executed become indistinguishable through flattening. This stems form
a general problem associated to flattening: When forcing all events into
sequential format, it becomes untraceable what the object origin of
these events is. Activity repetitions and additional objects with activity
executions become indistinguishable.

The example in Fig. 4 depicts a situation where flattening hides
the number of objects and their individual object traces. While the
second process execution shows a great variance of individual object
flows — some skipping major revisions, some going directly to the final
decision, some skipping minor revision — the first process execution
shows an equal flow with less objects. These differentiations are lost
when flattening as it is impossible to trace objects’ event sequences
when there is only one sequence for all objects.

The example in Fig. 5 depicts a situation in which the object associ-
ation of an (arguably important) activity gets lost when flattening. The
first process execution contains two papers of which one is withdrawn
and the other one has supplementary files added and public access
activated. The second process execution contains only one paper where
supplementary files are added, public access is activated but the paper
is withdrawn afterwards. These situations become indistinguishable in
the flattened event data.

The preceding examples are built on process executions labeled
with the event activity feature. Event features can either enrich or
substitute structural information. We aim to investigate the value of
the structure that is lost when flattening. Therefore, we isolate the
effect of only the structure by not enriching it with any features for
the remainder of this paper. Fig. 6 depicts the consideration of only
the structure and the information carried by it: All six situations are
distinguishable when considering the structure of object-centric process
executions but become completely indistinguishable when considering

traditional, sequential cases. v

7

Fig. 7. There is no unique way to transform a graph into a vector representation.
Depending on the enumeration of the exemplary graph’s nodes, one can construct an
incidence matrix in 24 different ways.

4.2. Machine learning on graph-based process executions

To highlight the necessity for graph embeddings, we will first
demonstrate the problems of transforming graphs into vectors. We
depict a small graph in Fig. 7. When translating a graph to a vector,
one needs to find a function that will yield the same vector for the same
graph. Simple strategies such as constructing the incident matrix do not
work as there are different results for the same graph depending on the
assignment of row/column indices to nodes. This is depicted in Fig. 7.
e retrieve 24 different incident matrices for the same graph. Using
hese as vector embeddings, a machine-learning model would assume
hat these are 24 different graphs.
Graph embeddings address the problem of translating similar graphs

o similar vector representations as accurately as possible. While doing
o, it aims to represent the graph as low dimensional vectors so that
achine learning models can extract useful information.

efinition 6 (Graph Embedding). Let 𝐺 = (𝑉 ,𝐸) be a graph with nodes
and edges 𝐸. A graph embedding 𝑒𝑚𝑏𝑒𝑑(𝐺) ∈ R𝑛 maps a graph to a
ector of length 𝑛 ∈ N.

J.N. Adams, G. Park and W.M.P. van der Aalst Engineering Applications of Artificial Intelligence 125 (2023) 106764

r
r
r

4

T
g
o
p

t
g

𝑖

w

As introduced in Section 2.2, graph embedding methods are catego-
ized into graph kernel-based methods, deep learning-based methods, and
epresentation-based methods. In the following, we briefly introduce the
epresentative techniques for each category.

.2.1. Graph kernel-based methods
A graph kernel is a function measuring the similarity of two graphs.

o that end, it represents each graph as a vector representation of
raph sub-structures and compares two graphs using an inner product
f vector representations. Such graph sub-structures include shortest
aths, random walks, and subtree patterns.
Graph kernel-based methods use graph kernels’ vector representa-

ions of graphs as graph embedding. For instance, Shortest Path (SP)
raph kernel (Borgwardt and Kriegel, 2005) uses shortest paths as sub-
structures. Suppose graph 𝐺 is decomposed into 𝑛 shortest paths and a
triplet (𝑠𝑖, 𝑒𝑖, 𝑙𝑖) represents the labels of the starting and ending nodes
(i.e., 𝑠𝑖 and 𝑒𝑖) and the length (i.e., 𝑙𝑖 of the 𝑖th path. 𝐺 is represented
as 𝑛-dimensional vector where the 𝑖th dimension is the frequency of the
th triplet occurring in 𝐺.
Moreover,Weisfeiler–Lehman (WL) kernel (Shervashidze et al., 2011)

uses subtree patterns, called Weisfeiler–Lehman subtrees, as
sub-structures. To compute the subtree pattern, we conduct a relabeling
iteration process on a labeled graph. At each iteration, a multiset of
labels is generated for each node based on the label of the node and
the labels of its neighbors. The generated multiset of labels denotes a
subtree pattern, which is then used for the next iteration. Suppose 𝑛
iterations are conducted on graph 𝐺. 𝐺’s embedding contains 𝑛 blocks
here the 𝑖th dimension in 𝑗th block is the frequency of 𝑖th label

assigned to a node in the 𝑗th iteration. Furthermore, Random Walks
(RW) kernel (Vishwanathan et al., 2010) measures the similarity of two
graphs by counting the number of their matching walks, i.e., random
walks are used as sub-structures. A graph is represented as a vector
containing the frequency of the matching walks.

4.2.2. Deep learning-based methods
Deep learning-based graph embedding applies deep learning models

on graphs. Graph2vec is an unsupervised neural embedding framework
to learn representations of whole graphs as feature vectors of a fixed
length (Narayanan et al., 2017). Considering a graph as a document,
it first transforms a graph into the sequence of words. Each word
corresponds to the rooted subgraph of degree 𝑛 of any node of the graph
(i.e., the subgraph including all nodes reachable in 𝑛 hops from the
node). Next, it trains doc2vec skip gram model (Mikolov et al., 2013)
to learn representations of the word sequence (i.e., graph embeddings).

GL2Vec extends Graph2Vec by incorporating line graphs to deal
with edge features (Chen and Koga, 2019). The line graph 𝐿(𝐺) of a
graph 𝐺 is a graph mapping every edge in 𝐺 to a node in 𝐿(𝐺) such
that the nodes in 𝐿(𝐺) hold the edge features in 𝐺 as the node labels.
If 𝐺 does not have edge labels, a node in 𝐿(𝐺) is assigned the degree
of the corresponding edge in 𝐺 as the node label. GL2Vec (1) applies
Graph2Vec to 𝐺 to derive the embedding of 𝐺, (2) applies Graph2Vec to
𝐿(𝐺) to create the embedding of 𝐿(𝐺), and (3) append the embedding
of 𝐺 and the embedding of 𝐿(𝐺) to derive the final embedding.

4.2.3. Representation-based methods
Representation-based graph embeddings use the statistical proper-

ties of a graph to generate a graph signature vector to represent the
graph. Cai and Wang (2018) propose a graph representation based on
local information for non-attributed graphs, called Local Degree Profile
(LDP). For a graph 𝐺 = (𝑉 ,𝐸), the approach extracts features for each
node in the following way. For each 𝑣 ∈ 𝑉 , 𝐷𝑁(𝑣) denotes the multiset
of the degrees of all neighboring nodes of 𝑣, i.e., 𝐷𝑁(𝑣) = [𝑑𝑒𝑔𝑟𝑒𝑒(𝑢) ∣
(𝑢, 𝑣) ∈ 𝐸]. Each node feature 𝐹 (𝑣) contains the node’s degree in-
formation and its 1-neighborhood, i.e., 𝐹 (𝑣)=(𝑑𝑒𝑔𝑟𝑒𝑒(𝑣), 𝑚𝑖𝑛(𝐷𝑁(𝑣)),
𝑚𝑎𝑥(𝐷𝑁(𝑣)), 𝑚𝑒𝑎𝑛(𝐷𝑁(𝑣)), 𝑠𝑡𝑑(𝐷𝑁(𝑣))). The node features are aggre-
gated by applying either a histogram or an empirical distribution
operation to produce LDP.
8

An approach proposed in de Lara and Pineau (2018) uses the
information from the Laplacian matrix and eigenvalues of a graph to
generate its embeddings, called Spectral Features (SF). Let 𝐺 = (𝑉 ,𝐸)
be an undirected and unweighted graph, 𝐴 ∈ {0, 1}|𝑉 |×|𝑉 | its adjacency
matrix w.r.t. an arbitrary indexing of the nodes, and 𝐷 = 𝑑𝑖𝑎𝑔(𝐴) the
matrix of node degrees. The normalized Laplacian of 𝐺 is defined as
 = 𝐼 −𝐷−1∕2𝐴𝐷−1∕2. SF is the 𝑘 smallest positive eigenvalues of  in
ascending order. If the graph has less than 𝑘 nodes, right zero padding
is used to produce a vector of appropriate dimensions.

Verma and Zhang (2017) suggest a more advanced approach to
transform a graph 𝐺 = (𝑉 ,𝐸) with a high-dimensional sparse repre-
sentation into a histogram on the dense biharmonic graph kernel. The
authors define Family of Graph Spectral Distance (FGSD) for each node
pair, i.e., (𝑥, 𝑦) for any (𝑥, 𝑦) ∈ 𝑉 ×𝑉 , and compute a graph spectrum 
as a multiset of the FGSDs for all node pairs, i.e.,  = [(𝑥, 𝑦) ∣ ∀(𝑥, 𝑦) ∈
𝑉]. An embedding  of 𝐺 is computed as the histogram of .

However, FGSD does not capture graph features at different scales
of graph sizes and has quadratic time complexity, hampering its ap-
plication to large graphs. Tsitsulin et al. (2018) propose the Network
Laplacian Spectral Descriptor (NetLSD) that transforms graphs to com-
pact graph signatures based on the heat or wave kernel of the Laplacian,
which inherit the formal properties of the Laplacian spectrum.

Some of the existing approaches use characteristic functions defined
on graph nodes to describe the distribution of node features. For
instance, Wang et al. (2021) use a diffusion-wavelet-based method
as a characteristic function to capture topological similarity. The au-
thors propose a graph embedding (called WaveletCharacteristic) based
on the aggregation of Euclidean node embeddings calculated by the
characteristic functions.

In the experiments explained in the following section, we use the
aforementioned graph embedding techniques to implement graph em-
bedding, including Graph2Vec (Narayanan et al., 2017), GL2Vec (Chen
and Koga, 2019), Local Degree Profile (LDP) (Cai and Wang, 2018),
Spectral Features (SF) (de Lara and Pineau, 2018), Family of Graph
Spectral Distance (FGSD) (Verma and Zhang, 2017), Network Laplacian
Spectral Descriptor (NetLSD) (Tsitsulin et al., 2018), and WaveletCharac-
teristic (Wang et al., 2021).

4.3. End-to-end pipeline

An end-to-end depiction of our predictive pipeline is shown in
Fig. 8. Based on the process execution, we determine features and
target variables. The process executions need to be split into a training
and testing set. When performing a training/testing split later, some
process executions could end up in both the training and testing set.
Subsequently, we extract subgraphs of (a) given size(s). The corre-
sponding target variable of a subgraph is always the target variable
of the (timewise) last event of this subgraph. In general, we allow for
different ways of extracting subgraphs, i.e., one can choose only the
subgraphs that include the process execution start or exclude the last
subgraph. The subgraphs are either directly used as an input for a graph
neural network or first embedded into a vector which is used as an
input for a tabular machine learning technique. The models are trained
on the training set and evaluated on the testing set. Subsequently, these
trained models can be used in a streaming setting with ongoing process
executions.

5. Evaluation

In this section, we evaluate our proposed methods of preserving
object-centric structures through direct graph representations or graph
embeddings for machine learning tasks in process mining. First, we
apply our methods to a synthetic order-management event log as
a proof of concept and show the full end-to-end pipeline from an
object-centric event log to predictions. Second, we use a real-life loan

application process to measure the amount of information contained in

J.N. Adams, G. Park and W.M.P. van der Aalst Engineering Applications of Artificial Intelligence 125 (2023) 106764
Fig. 8. Example of the end-to-end predictive pipeline: We calculate features including target variables from the process executions. To avoid information leakage, we already split
the process executions into training and testing set. Subsequently, we extract subgraphs from the process executions. We either directly train a GNN on the subgraphs or embed
them and train, e.g., a multi-layer perceptron.
2
t
o
o
t
l
f

s
l
i
r
T
s

G

the graph structure of object-centric event data across three different
prediction tasks. We do this by applying graph neural networks and
the previously introduced embedding techniques to graph-based and
flattened process executions. Furthermore, we assess the best-suited
graph embedding techniques to preserve this information. Third, we
compare the effectiveness of our employed graph embeddings to cur-
rent state-of-the-art techniques of preserving object-centric structures
through manually designed features (Galanti et al., 2023; Adams et al.,
2022a).

5.1. General experimental settings

In this section, we introduce the experimental setting that stays con-
sistent across our experiments. We discuss the different steps of Fig. 8,
i.e., the feature extraction, training/testing split, subgraph generation,
employed graph neural network model, and the parameter choices for
the graph embedding techniques. Our experiments are implemented
on the basis of ocpa (Adams et al., 2022b)1 and are publicly available
on GitHub.2

Feature extraction and subgraph generation. We extract the process exe-
cutions according to the connected-components extraction introduced
in Section 4. We consider different target variables: next activity, next
timestamp, and remaining time. To investigate the usefulness of the
graph structure, we do not add any features, i.e., the only available
information is the graph structure. In that way, we can assess the
pure information contained in the graph structure without any features
substituting or enriching it. When flattening the event log, the graph
structures are squashed into sequences. We split the process execution
into training and testing set using a 0.7/0.3 split. We set aside 10%
of the training set as validation set. We generate subgraphs with the
number of nodes 𝑘 = 2 through 𝑘 = 8. For the classification task of
next activity prediction we use accuracy as an evaluation metric, for
the regressive tasks of next timestamp and remaining time we use Mean
Absolute Error (MAE) as an evaluation metric.

Graph neural network. We use a graph neural network to perform a
prediction task directly on the graph structure of the process

1 https://github.com/ocpm/ocpa
2 https://github.com/niklasadams/PreservingOCStructures
9

executions. We implement the graph neural network in the Python
library DGL.3 We use two graph convolution layers (Kipf and Welling,
017) and connect the second convolution layer to a dense layer
ransforming the output of the graph convolution layer to the network
utput. The number of nodes for the graph neural network is fixed in
ur setting, i.e., only graphs with 𝑘 nodes can be used as input. We,
herefore, extract a subgraph of the preceding 𝑘 events for each event,
inking this subgraph to the corresponding target variable at this event
or multiple values of 𝑘.
The graph neural network is also used to make predictions for the

tructure of the flattened event log. The structure of the flattened event
og can be derived by flattening a process execution, i.e., sequentializ-
ng its nodes according to the timestamps. The sequence, which can be
epresented as a graph, is used as an input to the graph neural network.
he performance achieved by the graph neural network on the flattened
tructures is the baseline performance of flattened event logs.

raph embedding. The Karate Club (Rozemberczki et al., 2020) soft-
ware package is used to create graph embeddings based on deep
learning-based methods (Narayanan et al., 2017; Chen and Koga, 2019)
and representation-based methods (Cai and Wang, 2018; de Lara and
Pineau, 2018; Verma and Zhang, 2017; Tsitsulin et al., 2018; Wang
et al., 2021). We use the default hyperparameter settings of the 1.3
release, while limiting the output vector size to the tenfold of the
number of graph nodes when applicable to avoid overfitting. This is
not possible for NetLSD and WaveletCharacteristics which constraint
the vector size to 1000 and 160 elements. The embeddings are used
for predictive tasks by feeding them into either a linear regression or
a simple MLP with two hidden layers of five nodes each. We use an
output layer of one node for regressive tasks and an output layer with
one-hot encoding for classification tasks.

5.2. Synthetic data

We showcase our proposed framework using a synthetic order man-
agement event log.4 This event log consists of 22367 events and 11848
objects. Together, these events and objects span 83 process executions
that vary in size from 9 to over 3000 events. We depict an example vari-
ant using the visualization proposed in Adams et al. (2022c) obtained
from OC𝜋 (Adams and van der Aalst, 2022) in Fig. 9. We show the

3 https://www.dgl.ai/
4 Provided by http://ocel-standard.org

J.N. Adams, G. Park and W.M.P. van der Aalst Engineering Applications of Artificial Intelligence 125 (2023) 106764

l

o

Fig. 9. Variant visualization of one single process execution of the order management event log. Process executions of this log can contain a large number of objects and form
arge graphs.
Fig. 10. Accuracy results for the next activity prediction on the order management
event log. The graph structure of process executions can be leveraged by the graph
neural network.

results for the next activity prediction using the Graph Neural Network
on the process executions and the flattened event data in Fig. 10. We
observe better or equal accuracy results for any size of the subgraphs
𝑘. While the gap between accuracy results is, generally, lower for
smaller 𝑘 values, it increases with growing 𝑘. The results show that
the graph neural network can infer valuable information for the next
activity prediction from the graph structure of the process execution
and, therefore, provides the results as they were expected.

5.3. Quantification of the informational value of the graph structures

In this section, we assess the informational value of object-centric
graph structures using a real-life event log. By doing so, we are able
to quantify the degree of predictive value contained in these structures
and single out the most effective technique to preserve these structures.
To do so, we compare the predictive performances of three different
models:
10
(1) Graph neural networks using the process execution graphs di-
rectly as input.

(2) Regression and Multi-Layer Perceptron (MLP) models using
graph embeddings as input.

(3) The baseline performance of flattened event logs with graph
neural networks using the flattened process executions as input.

First, we introduce the real-life event data used in this evaluation. Sec-
ond, we compare the predictive performance on the graph-based pro-
cess executions with the performance on flattened process executions.
At last, we compare the effectiveness of the different techniques.

5.3.1. Experimental setting
We use a real-life event log of a loan application business process

containing 507553 events of 67498 objects, spanning 31509 process
executions (van Dongen, 2017). This event log describes an application
for a loan that is matched with an offer from a financial institution.
Each event can be associated with objects of type application and offer.
An application can be associated with multiple offers. With only two
object types, shows a comparably small degree of object-centricity.
Exemplary variant visualizations of process executions are depicted in
Fig. 11.

5.3.2. Experimental results
Fig. 12 depicts the performance of the graph neural network, all

graph embeddings with regression and MLP, and the baseline of a
flattened event log for the three different prediction tasks. The y-axes
show the performance while the x-axes show the size of graphs denoted
as 𝑘. The performances of the graph neural network on object-centric
structures and flattened structures are depicted with individual lines,
and the performance of the graph embeddings combined with either re-
gression or MLP is depicted using the average with the 95% confidence
interval to show the range of different graph embedding techniques. We
structure the presentation and discussion of results in two parts: First,
we compare the performances of graph-based techniques against the
baseline performance on sequential structures of flattened event logs.
Second, we compare the performance of graph neural networks and
graph embeddings against each other to single out the most effective
technique.
Fig. 11. Variant visualization of one single process execution of the loan application event log. Process executions of this log, generally, contain one application and one or more
ffers. The corresponding process execution graphs are smaller than the ones of the order management event log.

J.N. Adams, G. Park and W.M.P. van der Aalst Engineering Applications of Artificial Intelligence 125 (2023) 106764

s
f

G
n
f
a
t
p
F
c
l
g
p
s
b
o

u
p
r
e
g
T
c
g
d
w

C
p
a
o
n
t
t
i
F

d
e
g
t
p

F
p
q
s
t
d

Fig. 12. Predictive performance of different techniques for preserving object-centric
tructures compared to the baseline performance on the sequential structure of the
lattened event log.

raphs and flat event logs. We used exactly the same graph neural
etwork and altered the input between process execution graphs and
lattened process executions to produce the lines labeled with GNN
nd Flattened (Baseline) in Fig. 12. The relative difference between
he predictive performances, therefore, provides information about the
redictive value of the graph structures of the object-centric event log.
or any task, event log, and graph size, the graph structure of the object-
entric event log provides additional predictive value over the flattened event
og. Especially for next activity and next timestamp prediction, the
raph structure itself carries a large amount of useful information for
rediction. For many tasks, the gap between flat and object-centric
tructures increases with the size of the graph. However, the difference
etween prediction tasks hints at task-dependent levels of the utility
f the structure itself: While the graph structure can be extremely
11
seful for the next activity and next timestamp prediction, e.g., by
reserving the current activity, the graph structure itself yields compa-
ably less predictive value for the remaining time prediction. However,
nriched with corresponding features of, e.g. current timestamp, the
raph structure should be able to achieve significantly better results.
he performance of graph embeddings with both regression and MLP
onfirms this trend. The performance is almost always comparable to
raph neural networks, sometimes even better, and the graph embed-
ings are able to preserve a significant amount of information, even
hen paired with models as simple as a regression.

omparing different graph embeddings and graph neural networks. In the
revious section, we depicted how using both graph neural networks
nd graph embeddings for process executions enables the improvement
f prediction results by capturing relevant structural information. We,
ow, compare all eight techniques, i.e., the seven graph embedding
echniques and graph neural networks, to single out the most effective
echnique for preserving graph structures of process executions. The
ndividual results of the graph embedding techniques are depicted in
ig. 13.
Fig. 13 depicts the performance of the seven selected graph embed-

ing techniques for all three prediction tasks. We paired each graph
mbedding with a regression and an MLP to learn predictions from the
raph embedding. The color of the line indicates the technique, and the
ype of the line indicates whether a regression or an MLP was used to
erform the prediction.
Several observations can be made across multiple prediction tasks.

irst of all, the best results are usually achieved using an MLP as
rediction technique. The performance of regression is, however, often
uite comparable. The employed graph embedding technique has, un-
urprisingly, a greater effect on the results. Across the different predic-
ion tasks, observed patterns in relative performance between embed-
ing techniques stay quite consistent: GL2Vec (Chen and Koga, 2019)
and FGSD (Verma and Zhang, 2017) are the best-performing graph
embeddings in almost every evaluation. In contrast, NetLSD (Tsit-
sulin et al., 2018) and SF (de Lara and Pineau, 2018) are among the
worst-performing approaches for every evaluation. WaveletCharacter-
istics (Wang et al., 2021) often show promising results but are also
relatively unstable in their performance. LDP (Cai and Wang, 2018) and
Graph2Vec (Narayanan et al., 2017) consistently exhibit performances
ranking them in the midfield. When employing graph embeddings for
object-centric event data, either FGSD or GL2Vec can be the best suited
options preserving the most information. The prediction tasks do not
have a significant influence of the suitability of an individual graph
embedding technique.

To quantify these observations, we aggregate the predictive perfor-
mance in comparison to the flattened baseline (the relative improve-
ment) of all prediction tasks for all graph embeddings and the graph
neural network. We depict the results in Fig. 14. The best-performing
techniques are the Graph Neural Network, Wavelet Characteristics,
LDP, GL2Vec, and FGSD. Due to the consistency of FGSD’s perfor-
mance as well as the good performance for larger graphs, its average
performance is the best. We average the relative improvement of the
prediction when using FGSD and retrieve a value of 40.8%. With
this performance, FGSD even almost defeats the graph neural network
which achieves an average value of 41.7% This also provides an an-
swer to our first research question RQ1: Through flattening, structural
information that is equivalent to an improvement of 41.7% across the three
predictive targets is lost. The results of these experiments also already
point out that FGSD is the most effective among our investigated tech-
niques. When looking at the inherent algorithmic properties of FGSD,
this superior performance might be due to the locality of graph features
that are invariant under isomorphism (Verma and Zhang, 2017): As the
authors elaborate, FGSD graph embeddings capture the sub-structure
similarity between two graphs. This allows learning association for

certain patterns (i.e. subgraphs) that appear in the process executions.

J.N. Adams, G. Park and W.M.P. van der Aalst Engineering Applications of Artificial Intelligence 125 (2023) 106764

p
m

U
c
s
b
f
e
f
f
f
t
F
m

e
c
c

5

e
t

t
s
a
1
g
i

E
F
w
w
t
w

Fig. 13. Performance of different graph embedding techniques for the three different
rediction tasks and two different event logs. The graphs share the legends of the
iddle plot.

sing these associations, the appearance of a pattern in one process exe-
ution can be linked to the target variable. Without such a sub-structure
imilarity, the graph embedding would only be able to distinguish
etween different graphs, effectively only learning loss minimizations
or individual graphs without transferring common characteristics. Our
xperiments validate the statement of the authors that FGSD can ef-
ectively learn sub-structure similarity. This is an interesting pointer to
uture employment and the development of tailored graph embeddings
or process executions. Due to the possibility of adding node labels to
he graph and applying an FGSD embedding (Verma and Zhang, 2017),
GSD can be a promising candidate for end-to-end predictive process
onitoring pipelines.
12
In the next part of our experiment, we analyze whether the graph
mbeddings are able to capture information that current approaches en-
oding object information through manually designed features cannot
apture.

.4. Graph embedding benchmark

In this section, we compare the effectiveness of our employed graph
mbeddings to state-of-the-art approaches of encoding object informa-
ion for machine learning tasks. As discussed in Section 2, current
approaches use features to capture object information. Galanti et al.
(2023) propose to use the number of objects of one type and the relative
share of objects of one type that have run through each activity as
event-level features to encode the object information. Adams et al.
(2022a) also propose to use the number of objects of a type as a feature
capturing the object perspective.

Experimental setting. Our experimental setting aims to quantify how
much added information is contained in the graph embeddings that is
not captured by current feature-based methods (Adams et al., 2022a;
Galanti et al., 2023). To this end, we extract these features for the
process executions, flatten them, and obtain a two-dimensional array
with all feature values for each event. We proceed in two different
ways: First, we append a vector of random noise to the features. Second,
instead of the random noise vector, we append a graph embedding
vector to the features. We train a predictive model on both obtained
feature sets and compare their predictive performance of them. The
relative improvement of the prediction with respect to the naive base-
line is the added value of graph embedding compared to state-or-the-art
feature-based embeddings. We depict the full experimental framework
in Fig. 15. We perform this comparison for a total of 147 MLPs that
are composed as follows: For each of the three targets (next activity,
remaining time, and next timestamp) and each subgraph size 𝑘 = 2
hrough 𝑘 = 8 we train and evaluate seven different models. These
even different models are composed of one linear/logistic regression
nd six MLP Regressors/Classifiers with either one layer of 20, 18, or
6 nodes or two layers with (20,10), (18,9), or (16,8) nodes. For the
raph embeddings, we use FGSD as it have shown the best performance
n previous experiments.

xperimental results. The results of our experiments are depicted in
ig. 16. Across all subgraph sizes, we observe an improved performance
hen using the graph embeddings. The predictive improvement grows
ith larger graphs. When averaging over all subgraph sizes, predictive
argets, and models we achieve an average improvement of 2.43%
hereas the average improvement for the largest subgraph size, 𝑘 =

8, lies at 4.42%. This is the amount of predictive information that
is not captured by the features aiming to encode object information.
When considering the relatively low amount of object-centricity in
the loan application event log, i.e., only two object types and only
one type with more than one object per execution, these results show
a promising basis for the improvement of machine learning tasks in
process mining by incorporating object-centric event logs and graph
embeddings. These experiments provide an answer to our research
question 𝐑𝐐𝟐: The best technique for capturing the graph structures of
object-centric event data is an FGSD Graph Embedding with an average
improvement of 2.43% over the current state-of-the-art for all subgraph
sizes and up to 4.42% for the largest evaluated subgraph size.

5.5. Threats to validity

In this section, we critically discuss our evaluation and the derived
answers to our research questions. We split this into two parts: First, we
discuss the validity of our experimental setup and, second, we assess the
generalizability of our results.

Through our experimental setup, we address several typical issues
that arise with evaluations in machine learning: Overfitting, underfit-
ting, and data preparation issues. We avoid overfitting by employing a

J.N. Adams, G. Park and W.M.P. van der Aalst Engineering Applications of Artificial Intelligence 125 (2023) 106764

s

Fig. 14. Performance relative to the flattened baseline for all embedding techniques and the GNN across all targets and subgraph sizes.
Fig. 15. Our experimental framework to assess the added benefit of graph embeddings compared to any features that aim to capture object information. We evaluate against
tate-of-the-art features.
Fig. 16. Relative performance increase of different predictive models across three
target variables when adding an FGSD graph embedding to state-of-the-art features
capturing object information.

train-test split as well as using a validation split on the training data.
Underfitting can be ruled out due to the comparison to the baseline
performance of flattening. In the data preparation phase, we normalize
the data based on the training set. Furthermore, we ensure that all
prediction instances of the same process execution are assigned to
either the train or test set to prevent information leakage. It is also
notable that we eliminate confounding factors by isolating the effect
of only one component in our experimental setup: The only difference
between the data sets in the first part of the evaluation is the applica-
tion of flattening, in the second part of the evaluation it is replacing
random noise by the graph embedding vector. Therefore, the change
in performance can clearly be associated with these components.

When looking at the generalizability of our results, we investigate
two different perspectives: The generalizability of the experiments
13
for the specific data sets and the generalizability of our conclusions
for the research questions. On the specific data sets, we ran a large
number of experiments: seven subgraph sizes, three target variables,
eight graph embeddings, and two prediction models for the first part
of the evaluation, and seven subgraph sizes, three target variables, and
seven different models for the second part of the evaluation. The results
generated for all these experiments support our answers to the research
questions. The only limiting threat to validity is the number of data
sets: The results were generated using two data sets. Once more data
sets become publicly available, the validity of the results should be
confirmed.

6. Conclusion

Existing techniques for machine learning tasks in process mining
flatten object-centric event data into traditional event data. The flat-
tening process eliminates important structural information about the
interaction between objects and subprocesses from the event data. In
this paper, we introduced a general approach to preserve this structural
information for machine learning tasks by using direct graph encodings
or graph embeddings. We show how much information is captured in
the structure – which is eliminated when flattening – by comparing
the results of three different prediction tasks on the graph structures
of object-centric event data and the sequential structures of flattened
real-life event data. Through our experiments, we answer both research
questions: RQ1: Flattening eliminates structural information that is
equivalent to an average 41.7% performance increase across all pre-
dictive tasks. RQ2: These results are achieved when using graph neural
networks, closely followed by the performance of the best-performing
graph embedding FGSD. To compare against existing approaches, we
assessed how much structural information can be captured by FGSD
that cannot be captured by current approaches of encoding object
information through manually-designed features. The graph embedding
of FGSD contains structural information that is equivalent to an average
2.43% performance increase across predictive tasks.

J.N. Adams, G. Park and W.M.P. van der Aalst Engineering Applications of Artificial Intelligence 125 (2023) 106764
6.1. Future work

Our work provides a foundation for three future research directions:
First, based on our findings, current predictive analytics frameworks
can be adapted to object-centric event data such that structure is con-
sidered and predictions are improved. This is already relevant when ex-
tracting the data in an object-centric way. Second, the best-performing
graph embedding techniques can be adapted according to assumptions
of object-centric process mining to develop even better-specialized
techniques. Furthermore, for these techniques, computational demands
and resource efficiency specifically in the setting of object-centric pro-
cess mining can be evaluated between models. Third, the demonstrated
shortcoming of current approaches to encode object-centricity into
predictive process monitoring frameworks leads to research questions
on optimal feature sets to encode object-centricity. Even though current
features can contain a lot of information about individual object flow,
they were missing information that graph embeddings could capture. A
systematic evaluation could assess which features and which combina-
tion of features could work best to close this gap, effectively functioning
as a graph embedding.

6.2. Implications

Our paper has exposed a critical weak point of current machine
learning frameworks for process mining: Important structural infor-
mation is lost by flattening the event log. This has far-reaching im-
plications for research and practical deployments: First, state-of-the-
art machine learning frameworks, e.g., predictive process monitoring
or clustering frameworks, should better caption object-centricity, ei-
ther through graph embeddings, graph neural networks, or through
more dedicated features capturing object-centricity. Second, practical
deployments should adapt their event log extraction to accurately cap-
ture object-centric event logs and, therefore, object interactions. These
adoptions would increase the performance of operational support with
machine learning models, increasing the value provided to customers.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Data availability

Code and data are available in the public Github repository and the
Python library.

Acknowledgments

We thank the Alexander von Humboldt (AvH) Stiftung, Germany for
supporting our research.

Appendix A. Supplementary data

Supplementary material related to this article can be found online
at https://doi.org/10.1016/j.engappai.2023.106764.

References

van der Aalst, W.M.P., 2016. Process Mining - Data Science in Action, second ed.
Springer, http://dx.doi.org/10.1007/978-3-662-49851-4.
14
van der Aalst, W.M.P., 2019. Object-centric process mining: Dealing with divergence
and convergence in event data. In: Ölveczky, P.C., Salaün, G. (Eds.), Software
Engineering and Formal Methods - 17th International Conference, Proceedings.
SEFM 201, Oslo, Norway, September 18–20, 2019, In: Lecture Notes in Computer
Science, vol. 11724, Springer, pp. 3–25. http://dx.doi.org/10.1007/978-3-030-
30446-1_1.

van der Aalst, W.M.P., Artale, A., Montali, M., Tritini, S., 2017. Object-centric behav-
ioral constraints: Integrating data and declarative process modelling. In: Artale, A.,
Glimm, B., Kontchakov, R. (Eds.), Proceedings of the 30th International Workshop
on Description Logics, July 18–21, 2017. In: CEUR Workshop Proceedings, 1879,
CEUR-WS.org, Montpellier, France.

van der Aalst, W.M.P., Berti, A., 2020. Discovering object-centric Petri nets. Fundam.
Inform. 175 (1–4), 1–40. http://dx.doi.org/10.3233/FI-2020-1946.

van der Aalst, W.M.P., et al., 2011. Process mining manifesto. In: Daniel, F.,
Barkaoui, K., Dustdar, S. (Eds.), Business Process Management Workshops - Inter-
national Workshops, Revised Selected Papers, Part I. BPM 2011, Clermont-Ferrand,
France, August 29, 2011, In: Lecture Notes in Business Information Processing, vol.
99, Springer, pp. 169–194. http://dx.doi.org/10.1007/978-3-642-28108-2_19.

Adams, J.N., Park, G., Levich, S., Schuster, D., van der Aalst, W.M.P., 2022a. A
framework for extracting and encoding features from object-centric event data.
In: Troya, J., Medjahed, B., Piattini, M., Yao, L., Fernández, P., Ruiz-Cortés, A.
(Eds.), Service-Oriented Computing - 20th International Conference, Proceedings.
ICSOC 2022, Seville, Spain, November 29 - December 2, 2022, In: Lecture Notes in
Computer Science, vol. 13740, Springer, pp. 36–53. http://dx.doi.org/10.1007/978-
3-031-20984-0_3.

Adams, J.N., Park, G., van der Aalst, W.M., 2022b. ocpa: A Python library for object-
centric process analysis. Softw. Impact. 14, 100438. http://dx.doi.org/10.1016/j.
simpa.2022.100438.

Adams, J.N., Schuster, D., Schmitz, S., Schuh, G., van der Aalst, W.M.P., 2022c. Defining
cases and variants for object-centric event data. In: Burattin, A., Polyvyanyy, A.,
Weber, B. (Eds.), 4th International Conference on Process Mining. ICPM 2022,
Bolzano, Italy, October 23–28, 2022, IEEE, pp. 128–135. http://dx.doi.org/10.
1109/ICPM57379.2022.9980730.

Adams, J.N., van der Aalst, W.M.P., 2021. Precision and fitness in object-centric process
mining. In: Ciccio, C.D., Francescomarino, C.D., Soffer, P. (Eds.), 3rd International
Conference on Process Mining. ICPM 2021, Eindhoven, the Netherlands, October
31 - Nov. 4, 2021, IEEE, pp. 128–135. http://dx.doi.org/10.1109/ICPM53251.2021.
9576886.

Adams, J.N., van der Aalst, W.M.P., 2022. OC𝜋: Object-centric process insights. In:
Bernardinello, L., Petrucci, L. (Eds.), Application and Theory of Petri Nets and
Concurrency - 43rd International Conference, Proceedings. PETRI NETS 2022,
Bergen, Norway, June 19-24, 2022, In: Lecture Notes in Computer Science, vol.
13288, Springer, pp. 139–150. http://dx.doi.org/10.1007/978-3-031-06653-5_8.

Ali, A., Zhu, Y., Zakarya, M., 2022. Exploiting dynamic spatio-temporal graph convo-
lutional neural networks for citywide traffic flows prediction. Neural Netw. 145,
233–247. http://dx.doi.org/10.1016/j.neunet.2021.10.021.

Augusto, A., Conforti, R., Dumas, M., Rosa, M.L., Maggi, F.M., Marrella, A., Mecella, M.,
Soo, A., 2019. Automated discovery of process models from event logs: Review and
benchmark. IEEE Trans. Knowl. Data Eng. 31 (4), 686–705. http://dx.doi.org/10.
1109/TKDE.2018.2841877.

Babai, L., 2016. Graph isomorphism in quasipolynomial time [extended abstract]. In:
Proceedings of the Forty-Eighth Annual ACM Symposium on Theory of Computing.
STOC ’16, Association for Computing Machinery, New York, NY, USA, pp. 684–697.
http://dx.doi.org/10.1145/2897518.2897542.

Bauer, M., van der Aa, H., Weidlich, M., 2019. Estimating process conformance by
trace sampling and result approximation. In: Hildebrandt, T.T., van Dongen, B.F.,
Röglinger, M., Mendling, J. (Eds.), Business Process Management - 17th Inter-
national Conference, Proceedings. BPM 2019, Vienna, Austria, September 1–6,
2019, In: Lecture Notes in Computer Science, vol. 11675, Springer, pp. 179–197.
http://dx.doi.org/10.1007/978-3-030-26619-6_13.

Berti, A., van der Aalst, W.M.P., 2019. Extracting multiple viewpoint models from
relational databases. In: Ceravolo, P., van Keulen, M., López, M.T.G. (Eds.), Data-
Driven Process Discovery and Analysis - 8th IFIP WG 2.6 International Symposium,
SIMPDA 2018, Seville, Spain, December 13–14, 2018, and 9th International
Symposium, Revised Selected Papers. SIMPDA 2019, Bled, Slovenia, September 8,
2019, In: Lecture Notes in Business Information Processing, vol. 379, Springer, pp.
24–51. http://dx.doi.org/10.1007/978-3-030-46633-6_2.

Borgwardt, K.M., Kriegel, H., 2005. Shortest-path kernels on graphs. In: Proceedings
of the 5th IEEE International Conference on Data Mining. ICDM 2005, Houston,
Texas, USA, 27-30 November 2005, IEEE Computer Society, pp. 74–81. http:
//dx.doi.org/10.1109/ICDM.2005.132.

Cai, C., Wang, Y., 2018. A simple yet effective baseline for non-attributed graph
classification. http://dx.doi.org/10.48550/ARXIV.1811.03508, arXiv.

Cai, H., Zheng, V.W., Chang, K.C., 2018. A comprehensive survey of graph embedding:
Problems, techniques, and applications. IEEE Trans. Knowl. Data Eng. 30 (9),
1616–1637. http://dx.doi.org/10.1109/TKDE.2018.2807452.

Calvanese, D., Montali, M., Estañol, M., Teniente, E., 2014. Verifiable UML artifact-
centric business process models. In: Li, J., Wang, X.S., Garofalakis, M.N.,
Soboroff, I., Suel, T., Wang, M. (Eds.), Proceedings of the 23rd ACM International
Conference on Conference on Information and Knowledge Management. CIKM
2014, Shanghai, China, November 3–7, 2014, ACM, pp. 1289–1298. http://dx.doi.
org/10.1145/2661829.2662050.

J.N. Adams, G. Park and W.M.P. van der Aalst Engineering Applications of Artificial Intelligence 125 (2023) 106764

C

C

C

C

C

D

v

D

E

E

E

d

d

d

L

L

L

L

L

M

M

Calvanese, D., Montali, M., Syamsiyah, A., van der Aalst, W.M.P., 2015. Ontology-driven
extraction of event logs from relational databases. In: Reichert, M., Reijers, H.A.
(Eds.), Business Process Management Workshops - 13th International Workshops,
Revised Papers. BPM 2015, Innsbruck, Austria, August 31 - September 3, 2015, In:
Lecture Notes in Business Information Processing, vol. 256, Springer, pp. 140–153.
http://dx.doi.org/10.1007/978-3-319-42887-1_12.

Carmona, J., van Dongen, B.F., Solti, A., Weidlich, M., 2018. Conformance Checking
- Relating Processes and Models. Springer, http://dx.doi.org/10.1007/978-3-319-
99414-7.

astellanos, M., Salazar, N., Casati, F., Dayal, U., Shan, M., 2006. Predictive business
operations management. Int. J. Comput. Sci. Eng. 2 (5/6), 292–301. http://dx.doi.
org/10.1504/IJCSE.2006.014772.

hamorro, A.E.M., Nepomuceno-Chamorro, I.A., Resinas, M., Ruiz-Cortés, A., 2022.
Updating prediction models for predictive process monitoring. In: Franch, X.,
Poels, G., Gailly, F., Snoeck, M. (Eds.), Advanced Information Systems Engineering
- 34th International Conference, Proceedings. CAiSE 2022, Leuven, Belgium, June
6–10, 2022, In: Lecture Notes in Computer Science, vol. 13295, Springer, pp.
304–318. http://dx.doi.org/10.1007/978-3-031-07472-1_18.

hen, H., Koga, H., 2019. GL2vec: Graph embedding enriched by line graphs with edge
features. In: Gedeon, T., Wong, K.W., Lee, M. (Eds.), Neural Information Processing
- 26th International Conference, Proceedings, Part III. ICONIP 2019, Sydney, NSW,
Australia, December 12–15, 2019, In: Lecture Notes in Computer Science, vol.
11955, Springer, pp. 3–14. http://dx.doi.org/10.1007/978-3-030-36718-3_1.

hiorrini, A., Diamantini, C., Mircoli, A., Potena, D., 2021. Exploiting instance graphs
and graph neural networks for next activity prediction. In: Munoz-Gama, J., Lu, X.
(Eds.), Process Mining Workshops - International Workshops, Revised Selected
Papers. ICPM 2021, Eindhoven, the Netherlands, October 31 - November 4, 2021,
In: Lecture Notes in Business Information Processing, vol. 433, Springer, pp.
115–126. http://dx.doi.org/10.1007/978-3-030-98581-3_9.

ohn, D., Hull, R., 2009. Business artifacts: A data-centric approach to modeling
business operations and processes. IEEE Data Eng. Bull. 32 (3), 3–9.

ing, C., Wen, S., Ding, W., Liu, K., Belyaev, E., 2022. Temporal segment graph
convolutional networks for skeleton-based action recognition. Eng. Appl. Artif.
Intell. 110, 104675. http://dx.doi.org/10.1016/j.engappai.2022.104675.

an Dongen, B., 2017. BPI Challenge 2017. http://dx.doi.org/10.4121/uuid:5f3067df-
f10b-45da-b98b-86ae4c7a310b.

umas, M., Rosa, M.L., Mendling, J., Reijers, H.A., 2018. Fundamentals of Business
Process Management, second ed. Springer, http://dx.doi.org/10.1007/978-3-662-
56509-4.

ldin, A.N., Assy, N., Kobeissi, M., Baudot, J., Gaaloul, W., 2022. Enabling multi-
process discovery on graph databases. In: Sellami, M., Ceravolo, P., Reijers, H.A.,
Gaaloul, W., Panetto, H. (Eds.), Cooperative Information Systems - 28th Interna-
tional Conference, Proceedings. CoopIS 2022, Bozen-Bolzano, Italy, October 4–7,
2022, In: Lecture Notes in Computer Science, vol. 13591, Springer, pp. 112–130.
http://dx.doi.org/10.1007/978-3-031-17834-4_7.

lMaraghy, H., Azab, A., Schuh, G., Pulz, C., 2009. Managing variations in products,
processes and manufacturing systems. CIRP Ann. 58 (1), 441–446. http://dx.doi.
org/10.1016/j.cirp.2009.04.001.

sser, S., Fahland, D., 2021. Multi-dimensional event data in graph databases. J. Data
Semant. 10 (1–2), 109–141. http://dx.doi.org/10.1007/s13740-021-00122-1.

Evermann, J., Rehse, J., Fettke, P., 2017. Predicting process behaviour using deep
learning. Decis. Support Syst. 100, 129–140. http://dx.doi.org/10.1016/j.dss.2017.
04.003.

Fahland, D., 2019. Describing behavior of processes with many-to-many interactions. In:
Donatelli, S., Haar, S. (Eds.), Application and Theory of Petri Nets and Concurrency
- 40th International Conference, Proceedings. PETRI NETS 2019, Aachen, Germany,
June 23–28, 2019, In: Lecture Notes in Computer Science, vol. 11522, Springer,
pp. 3–24. http://dx.doi.org/10.1007/978-3-030-21571-2_1.

Fahland, D., 2022. Process mining over multiple behavioral dimensions with event
knowledge graphs. In: van der Aalst, W.M.P., Carmona, J. (Eds.), Process Mining
Handbook. In: Lecture Notes in Business Information Processing, vol. 448, Springer,
pp. 274–319. http://dx.doi.org/10.1007/978-3-031-08848-3_9.

Fahland, D., de Leoni, M., van Dongen, B.F., van der Aalst, W.M.P., 2011. Conformance
checking of interacting processes with overlapping instances. In: Rinderle-Ma, S.,
Toumani, F., Wolf, K. (Eds.), Business Process Management - 9th International Con-
ference, Proceedings. BPM 2011, Clermont-Ferrand, France, August 30 - September
2, 2011, In: Lecture Notes in Computer Science, vol. 6896, Springer, pp. 345–361.
http://dx.doi.org/10.1007/978-3-642-23059-2_26.

Francescomarino, C.D., Ghidini, C., 2022. Predictive process monitoring. In: van der
Aalst, W.M.P., Carmona, J. (Eds.), Process Mining Handbook. In: Lecture Notes in
Business Information Processing, vol. 448, Springer, pp. 320–346. http://dx.doi.
org/10.1007/978-3-031-08848-3_10.

Galanti, R., de Leoni, M., Navarin, N., Marazzi, A., 2023. Object-centric process
predictive analytics. Expert Syst. Appl. 213, 119173. http://dx.doi.org/10.1016/
j.eswa.2022.119173.

Georgakopoulos, D., Hornick, M.F., Sheth, A.P., 1995. An overview of workflow man-
agement: From process modeling to workflow automation infrastructure. Distrib.
Parallel Databases 3 (2), 119–153. http://dx.doi.org/10.1007/BF01277643.
15
Ghahfarokhi, A.F., Park, G., Berti, A., van der Aalst, W.M.P., 2021. OCEL: a standard for
object-centric event logs. In: Bellatreche, L., Dumas, M., Karras, P., Matulevicius, R.,
Awad, A., Weidlich, M., Ivanovic, M., Hartig, O. (Eds.), New Trends in Database
and Information Systems - Short Papers, Doctoral Consortium and Workshops:
DOING, SIMPDA, MADEISD, MegaData, CAoNS, Proceedings. ADBIS 2021, Tartu,
Estonia, August 24–26, 2021, In: Communications in Computer and Information
Science, vol. 1450, Springer, pp. 169–175. http://dx.doi.org/10.1007/978-3-030-
85082-1_16.

Ghilardi, S., Gianola, A., Montali, M., Rivkin, A., 2020. Petri nets with parameterised
data - modelling and verification. In: Fahland, D., Ghidini, C., Becker, J., Dumas, M.
(Eds.), Business Process Management - 18th International Conference, Proceedings.
BPM 2020, Seville, Spain, September 13–18, 2020, In: Lecture Notes in Computer
Science, vol. 12168, Springer, pp. 55–74. http://dx.doi.org/10.1007/978-3-030-
58666-9_4.

Ingvaldsen, J.E., Gulla, J.A., 2007. Preprocessing support for large scale process mining
of SAP transactions. In: ter Hofstede, A.H.M., Benatallah, B., Paik, H. (Eds.),
Business Process Management Workshops, International Workshops, BPI, BPD, CBP,
ProHealth, RefMod, Semantics4ws, Revised Selected Papers. BPM 2007, Brisbane,
Australia, September 24, 2007, In: Lecture Notes in Computer Science, vol. 4928,
Springer, pp. 30–41. http://dx.doi.org/10.1007/978-3-540-78238-4_5.

Jalali, A., 2022. Object type clustering using Markov directly-follow multigraph in
object-centric process mining. IEEE Access 1. http://dx.doi.org/10.1109/ACCESS.
2022.3226573.

Jans, M., Soffer, P., 2017. From relational database to event log: Decisions with
quality impact. In: Teniente, E., Weidlich, M. (Eds.), Business Process Management
Workshops - International Workshops, Revised Papers. BPM 2017, Barcelona, Spain,
September 10–11, 2017, In: Lecture Notes in Business Information Processing, vol.
308, Springer, pp. 588–599. http://dx.doi.org/10.1007/978-3-319-74030-0_46.

Kipf, T.N., Welling, M., 2017. Semi-supervised classification with graph convolutional
networks. In: 5th International Conference on Learning Representations, Conference
Track Proceedings. ICLR 2017, Toulon, France, April 24–26, 2017, OpenReview.net,
URL https://openreview.net/forum?id=SJU4ayYgl.

Kondor, R., Borgwardt, K.M., 2008. The skew spectrum of graphs. In: Cohen, W.W.,
McCallum, A., Roweis, S.T. (Eds.), Machine Learning, Proceedings of the Twenty-
Fifth International Conference. ICML 2008, Helsinki, Finland, June 5–9, 2008,
In: ACM International Conference Proceeding Series, 307, ACM, pp. 496–503.
http://dx.doi.org/10.1145/1390156.1390219.

Kondor, R., Shervashidze, N., Borgwardt, K.M., 2009. The graphlet spectrum. In:
Danyluk, A.P., Bottou, L., Littman, M.L. (Eds.), Proceedings of the 26th Annual
International Conference on Machine Learning. ICML 2009, Montreal, Quebec,
Canada, June 14–18, 2009, In: ACM International Conference Proceeding Series,
382, ACM, pp. 529–536. http://dx.doi.org/10.1145/1553374.1553443.

e Lara, N., Pineau, E., 2018. A simple baseline algorithm for graph classification.
CoRR abs/1810.09155 arXiv:1810.09155.

e Leoni, M., 2022. Foundations of process enhancement. In: van der Aalst, W.M.,
Carmona, J. (Eds.), Process Mining Handbook. In: Lecture Notes in Business
Information Processing, vol. 448, Springer, pp. 243–273. http://dx.doi.org/10.
1007/978-3-031-08848-3_8.

e Leoni, M., van der Aalst, W.M.P., Dees, M., 2016. A general process mining
framework for correlating, predicting and clustering dynamic behavior based on
event logs. Inf. Syst. 56, 235–257. http://dx.doi.org/10.1016/j.is.2015.07.003.

eontjeva, A., Conforti, R., Francescomarino, C.D., Dumas, M., Maggi, F.M., 2015.
Complex symbolic sequence encodings for predictive monitoring of business pro-
cesses. In: Motahari-Nezhad, H.R., Recker, J., Weidlich, M. (Eds.), Business Process
Management - 13th International Conference, Proceedings. BPM 2015, Innsbruck,
Austria, August 31 - September 3, 2015, In: Lecture Notes in Computer Science, vol.
9253, Springer, pp. 297–313. http://dx.doi.org/10.1007/978-3-319-23063-4_21.

i, G., de Carvalho, R.M., van der Aalst, W.M.P., 2017. Automatic discovery of
object-centric behavioral constraint models. In: Abramowicz, W. (Ed.), Business
Information Systems - 20th International Conference, Proceedings. BIS 2017, June
28–30, Poznan, Poland, 2017, In: Lecture Notes in Business Information Processing,
vol. 288, Springer, pp. 43–58. http://dx.doi.org/10.1007/978-3-319-59336-4_4.

i, K., Gao, X., Jia, X., Xue, B., Fu, S., Liu, Z., Huang, X., Huang, Z., 2022. Detection of
local and clustered outliers based on the density-distance decision graph. Eng. Appl.
Artif. Intell. 110, 104719. http://dx.doi.org/10.1016/j.engappai.2022.104719.

i, G., de Murillas, E.G.L., de Carvalho, R.M., van der Aalst, W.M.P., 2018. Extracting
object-centric event logs to support process mining on databases. In: Mendling, J.,
Mouratidis, H. (Eds.), Information Systems in the Big Data Era - CAiSE Forum
2018, June 11–15, 2018, Proceedings. In: Lecture Notes in Business Information
Processing, vol. 317, Springer, Tallinn, Estonia, pp. 182–199. http://dx.doi.org/10.
1007/978-3-319-92901-9_16.

u, X., Nagelkerke, M., van de Wiel, D., Fahland, D., 2015. Discovering interacting
artifacts from ERP systems. IEEE Trans. Serv. Comput. 8 (6), 861–873. http:
//dx.doi.org/10.1109/TSC.2015.2474358.

a, H., Bian, Y., Rong, Y., Huang, W., Xu, T., Xie, W., Ye, G., Huang, J., 2022. Cross-
dependent graph neural networks for molecular property prediction. Bioinformatics
38 (7), 2003–2009. http://dx.doi.org/10.1093/bioinformatics/btac039.

eyer, A., Pufahl, L., Fahland, D., Weske, M., 2013. Modeling and enacting complex
data dependencies in business processes. In: Daniel, F., Wang, J., Weber, B. (Eds.),
Business Process Management - 11th International Conference, Proceedings. BPM

J.N. Adams, G. Park and W.M.P. van der Aalst Engineering Applications of Artificial Intelligence 125 (2023) 106764

M

M

M

M

Z

2013, Beijing, China, August 26–30, 2013, In: Lecture Notes in Computer Science,
vol. 8094, Springer, pp. 171–186. http://dx.doi.org/10.1007/978-3-642-40176-
3_14.

ikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J., 2013. Distributed
representations of words and phrases and their compositionality. In: Burges, C.J.C.,
Bottou, L., Ghahramani, Z., Weinberger, K.Q. (Eds.), Advances in Neural Infor-
mation Processing Systems 26: 27th Annual Conference on Neural Information
Processing Systems 2013. Proceedings of a Meeting Held December 5–8, 2013.
Lake Tahoe, Nevada, United States, pp. 3111–3119.

ishra, K., Basu, S., Maulik, U., 2022. Graft : A graph based time series data mining
framework. Eng. Appl. Artif. Intell. 110, 104695. http://dx.doi.org/10.1016/j.
engappai.2022.104695.

octar-M’Baba, L., Assy, N., Sellami, M., Gaaloul, W., Nanne, M.F., 2022. Extracting
artifact-centric event logs from blockchain applications. In: Ardagna, C.A., Bian, H.,
Chang, C.K., Chang, R.N., Damiani, E., Dustdar, S., Marco, J., Singh, M.P.,
Teniente, E., Ward, R., Wang, Z., Xhafa, F., Zhang, J. (Eds.), IEEE International
Conference on Services Computing. SCC 2022, Barcelona, Spain, July 10–16, 2022,
IEEE, pp. 274–283. http://dx.doi.org/10.1109/SCC55611.2022.00048.

ontali, M., Rivkin, A., 2017. DB-nets: On the marriage of colored Petri nets and
relational databases. Trans. PEtri Nets Other Model. Concurr. 12, 91–118. http:
//dx.doi.org/10.1007/978-3-662-55862-1_5.

de Murillas, E.G.L., Reijers, H.A., van der Aalst, W.M.P., 2020. Case notion discovery
and recommendation: Automated event log building on databases. Knowl. Inf. Syst.
62 (7), 2539–2575. http://dx.doi.org/10.1007/s10115-019-01430-6.

Narayanan, A., Chandramohan, M., Venkatesan, R., Chen, L., Liu, Y., Jaiswal, S., 2017.
graph2vec: Learning distributed representations of graphs. CoRR abs/1707.05005
arXiv:1707.05005.

Nooijen, E.H.J., van Dongen, B.F., Fahland, D., 2012. Automatic discovery of data-
centric and artifact-centric processes. In: Rosa, M.L., Soffer, P. (Eds.), Business
Process Management Workshops - International Workshops, Revised Papers. BPM
2012, Tallinn, Estonia, September 3, 2012, In: Lecture Notes in Business Informa-
tion Processing, vol. 132, Springer, pp. 316–327. http://dx.doi.org/10.1007/978-
3-642-36285-9_36.

Park, G., van der Aalst, W.M.P., 2022. Monitoring constraints in business processes
using object-centric constraint graphs. CoRR abs/2210.12080 arXiv:2210.12080.

Park, G., Adams, J.N., van der Aalst, W.M.P., 2022. OPerA: Object-centric performance
analysis. In: Ralyté, J., Chakravarthy, S., Mohania, M., Jeusfeld, M.A., Karla-
palem, K. (Eds.), Conceptual Modeling - 41st International Conference, Proceedings.
ER 2022, Hyderabad, India, October 17–20, 2022, In: Lecture Notes in Computer
Science, vol. 13607, Springer, pp. 281–292. http://dx.doi.org/10.1007/978-3-031-
17995-2_20.

Popova, V., Fahland, D., Dumas, M., 2015. Artifact lifecycle discovery. Int.
J. Coop. Inf. Syst. 24 (1), 1550001:1–1550001:44. http://dx.doi.org/10.1142/
S021884301550001X.

Rozemberczki, B., Kiss, O., Sarkar, R., 2020. Karate club: An API oriented open-source
Python framework for unsupervised learning on graphs. In: d’Aquin, M., Dietze, S.,
Hauff, C., Curry, E., Cudré-Mauroux, P. (Eds.), The 29th ACM International
Conference on Information and Knowledge Management, Virtual Event. CIKM ’20,
Ireland, October 19–23, 2020, ACM, pp. 3125–3132. http://dx.doi.org/10.1145/
3340531.3412757.

Sani, M.F., van Zelst, S.J., van der Aalst, W.M.P., 2018. Applying sequence mining for
outlier detection in process mining. In: Panetto, H., Debruyne, C., Proper, H.A.,
Ardagna, C.A., Roman, D., Meersman, R. (Eds.), On the Move to Meaningful
Internet Systems. OTM 2018 Conferences - Confederated International Conferences:
CoopIS, C&TC, and ODBASE 2018, October 22–26, 2018, Proceedings, Part II.
In: Lecture Notes in Computer Science, vol. 11230, Springer, Valletta, Malta, pp.
98–116. http://dx.doi.org/10.1007/978-3-030-02671-4_6.

Shervashidze, N., Schweitzer, P., van Leeuwen, E.J., Mehlhorn, K., Borgwardt, K.M.,
2011. Weisfeiler–Lehman graph kernels. J. Mach. Learn. Res. 12, 2539–2561.
http://dx.doi.org/10.5555/1953048.2078187.

Tax, N., Verenich, I., Rosa, M.L., Dumas, M., 2017. Predictive business process
monitoring with LSTM neural networks. In: Dubois, E., Pohl, K. (Eds.), Advanced
Information Systems Engineering - 29th International Conference, Proceedings.
CAiSE 2017, Essen, Germany, June 12–16, 2017, In: Lecture Notes in Computer
Science, vol. 10253, Springer, pp. 477–492. http://dx.doi.org/10.1007/978-3-319-
59536-8_30.
16
Teinemaa, I., Dumas, M., Rosa, M.L., Maggi, F.M., 2019. Outcome-oriented predictive
process monitoring: Review and benchmark. ACM Trans. Knowl. Discov. Data 13
(2), 17:1–17:57. http://dx.doi.org/10.1145/3301300.

Tsitsulin, A., Mottin, D., Karras, P., Bronstein, A.M., Müller, E., 2018. NetLSD: Hearing
the shape of a graph. In: Guo, Y., Farooq, F. (Eds.), Proceedings of the 24th ACM
SIGKDD International Conference on Knowledge Discovery & Data Mining. KDD
2018, London, UK, August 19–23, 2018, ACM, pp. 2347–2356. http://dx.doi.org/
10.1145/3219819.3219991.

Verma, S., Zhang, Z., 2017. Hunt for the unique, stable, sparse and fast feature learning
on graphs. In: Guyon, I., von Luxburg, U., Bengio, S., Wallach, H.M., Fergus, R.,
Vishwanathan, S.V.N., Garnett, R. (Eds.), Advances in Neural Information Process-
ing Systems 30: Annual Conference on Neural Information Processing Systems 2017,
December 4–9, 2017. Long Beach, CA, USA, pp. 88–98.

Vishwanathan, S.V.N., Schraudolph, N.N., Kondor, R., Borgwardt, K.M., 2010. Graph
kernels. J. Mach. Learn. Res. 11, 1201–1242.

Waibel, P., Pfahlsberger, L., Revoredo, K., Mendling, J., 2022. Causal process mining
from relational databases with domain knowledge. CoRR abs/2202.08314 arXiv:
2202.08314.

Wang, L., Huang, C., Ma, W., Cao, X., Vosoughi, S., 2021. Graph embedding via
diffusion-wavelets-based node feature distribution characterization. In: Demar-
tini, G., Zuccon, G., Culpepper, J.S., Huang, Z., Tong, H. (Eds.), The 30th ACM
International Conference on Information and Knowledge Management, Virtual
Event. CIKM ’21, Queensland, Australia, November 1 - 5, 2021, ACM, pp.
3478–3482. http://dx.doi.org/10.1145/3459637.3482115.

Weber, I., Farshchi, M., Mendling, J., Schneider, J., 2015. Mining processes with multi-
instantiation. In: Wainwright, R.L., Corchado, J.M., Bechini, A., Hong, J. (Eds.),
Proceedings of the 30th Annual ACM Symposium on Applied Computing, April
13–17, 2015. ACM, Salamanca, Spain, pp. 1231–1237. http://dx.doi.org/10.1145/
2695664.2699493.

Weerdt, J.D., Wynn, M.T., 2022. Foundations of process event data. In: van der
Aalst, W.M.P., Carmona, J. (Eds.), Process Mining Handbook. In: Lecture Notes
in Business Information Processing, vol. 448, Springer, pp. 193–211. http://dx.doi.
org/10.1007/978-3-031-08848-3_6.

van der Werf, J.M.E.M., Polyvyanyy, A., 2020. The information systems modeling
suite - modeling the interplay between information and processes. In: Janicki, R.,
Sidorova, N., Chatain, T. (Eds.), Application and Theory of Petri Nets and
Concurrency - 41st International Conference, Proceedings. PETRI NETS 2020, Paris,
France, June 24–25, 2020, In: Lecture Notes in Computer Science, vol. 12152,
Springer, pp. 414–425. http://dx.doi.org/10.1007/978-3-030-51831-8_22.

Wu, Z., Pan, S., Chen, F., Long, G., Zhang, C., Yu, P.S., 2021. A comprehensive survey
on graph neural networks. IEEE Trans. Neural Netw. Learn. Syst. 32 (1), 4–24.
http://dx.doi.org/10.1109/TNNLS.2020.2978386.

Yanardag, P., Vishwanathan, S.V.N., 2015. Deep graph kernels. In: Cao, L., Zhang, C.,
Joachims, T., Webb, G.I., Margineantu, D.D., Williams, G. (Eds.), Proceedings of
the 21th ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, August 10-13, 2015. ACM, Sydney, NSW, Australia, pp. 1365–1374.
http://dx.doi.org/10.1145/2783258.2783417.

Yang, H., Park, M., Cho, M., Song, M., Kim, S., 2014. A system architecture for
manufacturing process analysis based on big data and process mining techniques.
In: Lin, J., Pei, J., Hu, X., Chang, W., Nambiar, R., Aggarwal, C.C., Cercone, N.,
Honavar, V.G., Huan, J., Mobasher, B., Pyne, S. (Eds.), 2014 IEEE International
Conference on Big Data. IEEE BigData 2014, Washington, DC, USA, October 27–30,
2014, IEEE Computer Society, pp. 1024–1029. http://dx.doi.org/10.1109/BigData.
2014.7004336.

Zandkarimi, F., Rehse, J., Soudmand, P., Hoehle, H., 2020. A generic framework for
trace clustering in process mining. In: van Dongen, B.F., Montali, M., Wynn, M.T.
(Eds.), 2nd International Conference on Process Mining. ICPM 2020, Padua, Italy,
October 4–9, 2020, IEEE, pp. 177–184. http://dx.doi.org/10.1109/ICPM49681.
2020.00034.

hang, Q., Yin, C., Chen, Y., Su, F., 2022. IGCRRN: improved graph convolution
res-recurrent network for spatio-temporal dependence capturing and traffic flow
prediction. Eng. Appl. Artif. Intell. 114, 105179. http://dx.doi.org/10.1016/j.
engappai.2022.105179.

