
A natural language querying interface for process mining

Luciana Barbieri1 · Edmundo Madeira1 · Kleber Stroeh2 · Wil van der Aalst3,4

Abstract
In spite of recent advances in process mining, making this new technology
accessible to non-technical users remains a challenge. Process maps and dashboards
still seem to frighten many line of business professionals. In order to democratize this
technology, we propose a natural language querying interface that allows non-technical
users to retrieve relevant information and insights about their processes by simply asking
questions in plain English. In this work we propose a reference architecture to support
questions in natural language and provide the right answers by integrating to existing
process mining tools. We combine classic natural language processing techniques (such
as entity recognition and semantic parsing) with an abstract logical representation for
process mining queries. We also provide a compilation of real natural language questions
and an implementation of the architecture that interfaces to an existing commercial tool:
Everflow. We also introduce a taxonomy for process mining related questions, and use
that as a background grid to ana-lyze the performance of this experiment. Finally, we
point to potential future work oppor-tunities in this field.

Keywords Process mining · Process querying · Natural language interface · Taxonomy

 * Luciana Barbieri
luciana.barbieri@ic.unicamp.br

Edmundo Madeira
edmundo@ic.unicamp.br

Kleber Stroeh
kleber.stroeh@pega.com

Wil van der Aalst
wvdaalst@pads.rwth-aachen.de

1 Institute of Computing, University of Campinas, Campinas, Brazil
2 Pega Systems, São Paulo, Brazil
3 Chair of Process and Data Science, RWTH Aachen University, Aachen, Germany
4 Fraunhofer Institute for Applied Information Technology FIT, Sankt Augustin, Germany

114	 Journal of Intelligent Information Systems (2023) 61:113–142

1  Introduction

Process mining aims to discover, monitor and enhance processes using information
extracted from event logs (van der Aalst 2016). There exist mature academic and commer-
cial process mining techniques and tools that provide analyses over event log data (Viner
et al. 2020). The use of these tools, however, requires knowledge of the technology itself
and is mostly done by technical teams (process analysts, data scientists and alike).

To make process mining more ubiquitous, i.e., accessible on a daily basis by non-techni-
cal teams, we propose a natural language conversational querying interface. Business level
and operations teams, for example, can take great benefit from the insights produced by
process mining tools when accessed through such an intuitive interface.

In spite of recent advances in Natural Language Processing (NLP), understanding the
semantics of a natural language question and translating it to a correct corresponding logi-
cal query is still a challenging task. Problems such as ambiguity (same natural language
expression having multiple interpretations) and variability (many different expressions hav-
ing the same meaning) are still difficult to handle.

On the other hand, other works that tackle the NLP side of the problem generally map
questions to queries over the event log, itself. This approach is suboptimal as it misses the
opportunity to leverage all the advanced algorithms and insights provided by more mature
process mining techniques and tools.

Our previous work (Barbieri et al. 2021) proposes an architecture for a process mining
natural language query interface that takes questions and translates them to logical que-
ries that can be run against existing process mining tools. It is a general architecture, in the
sense that, by interfacing with these tools, it is able to handle not only queries over event
log data, but also over all types of analyses and algorithms they support. On the other hand,
other aspects of our previous work, such as the logical representation of queries, the set of
semantic rules, the implementation and the evaluation of the proposed method, focused
only on questions over process execution data.

The main objective of this work is to expand our previous research by tackling ques-
tions leveraging the analysis capabilities supported by process mining tools, including the
behavioral aspects of process execution. The contributions presented in this paper are:

• Extend the abstract logical representation for process mining queries proposed in Bar-
bieri et al. (2021) and their corresponding set of semantic rules to support queries over
process behavior and process mining analyses

• Introduce a taxonomy for natural language questions for process mining, to help guide
the architecture implementation, better understand limitations and challenges, help
frame the tests of the experiment (measure performance) and lay the foundation for
future research (such as combining Artificial Intelligence (AI) and rule-based tech-
niques for question understanding, for example)

• A classification of the initial set of questions presented in Barbieri et al. (2021) according
to the proposed taxonomy, aiming to create a public dataset of process mining questions

• An evaluation of the proposed architecture, including integration to a commercial tool
(Everflow Process Mining1) through its Representation State Transfer (REST or REST-
ful) Application Programming Interface (API), and an analysis on its performance vis-
à-vis the proposed taxonomy for the questions

1  https://​everf​low.​ai/

115Journal of Intelligent Information Systems (2023) 61:113–142	

1 3

The remainder of this paper is organized as follows. Section 2 reviews related work. Sec-
tion 3 introduces our taxonomy for process mining natural language questions. Section 4
presents the proposed method for our natural language interface and logical representa-
tion of process mining queries. Section 5 describes the question dataset under construction.
Section 6 presents the conducted experiment and the obtained results. Section 7 concludes
this paper.

2 � Related work

This section reviews work related to this research from the NLP application perspective, as
well as from process management and process mining.

2.1 � Natural language interfaces to databases

From the many existing NLP applications, the ones that are mostly related to this research
are the so called Natural Language Interfaces to Databases (NLIDB). The main objective
of NLIDB is to enable users who are not familiar with complex query languages such as
Structured Query Language (SQL) to easily formulate queries over information stored in
databases using natural language.

Even though NLIDB is not a new research topic (Hendrix et al. 1978; Androutsopoulos
et al. 1995), recent advances in NLP have raised its importance and popularity during the
last decade (Affolter et al. 2019; Mishra & Jain 2016). Current methods differ in the use of
natural language itself (from queries restrictedly written according to specific grammatical
constraints to full natural language sentences), as well as in the technical approaches used
to parse and convert them to a machine-readable format such as SQL or SPARQL (recur-
sive acronym for SPARQL Protocol and RDF - Resource Description Framework - Query
Language). Most common parsing techniques are based on rule matching or machine
learning. In either case, the types of queries that can be handled by the system are limited
either by the set of rules, in the first case, or by the training data in the second.

SODA (Search over Data Warehouse) (Blunschi et al. 2012) is an example of an NLIDB
system that takes keywords as input and automatically generates executable SQL queries.
The method applies a graph pattern matching algorithm using a metadata model of the
data warehouse that includes database schemas and domain ontologies. Athena (Saha et al.
2016) is also an ontology-driven rule-based NLIDB system. It uses domain specific ontolo-
gies mapped to database schemas to handle full natural language sentences. Queries are
first translated into an intermediate query language over the ontology and subsequently
converted to SQL.

Another category of methods apply machine learning to handle the translation problem.
The main advantage of these approaches is that they support a richer language variability
at the cost of requiring large training datasets. Seq2SQL (Zhong et al. 2017) is an example
of such systems. The method applies a deep neural network with reinforcement learning
to translate natural language questions to SQL and is able to address single table queries.
Another neural approach for NLIDB is presented in Iyer et al. (2017), which proposes the
adaptation of neural sequence models to map utterances directly to SQL. The system solic-
its user feedback on query results to reduce SQL annotation efforts and improve the model.

While these methods (like most of the existing NLIDB methods) are designed to handle
queries over any domain (metadata and/or domain ontologies are usually taken as input

116	 Journal of Intelligent Information Systems (2023) 61:113–142

to map domain terminology to database entities), their application to the process mining
domain would be limited to querying raw event data stored in a database. Using specific
process mining domain knowledge yields context to the design of a potentially more robust
natural language interface.

2.2 � Process querying

Processy Querying has become an important subfield of Business Process Management
(BPM). The ability to retrieve knowledge from process models has propelled this area of
study. Notable is the work presented in Polyvyanyy et al. (2017), where the authors propose
a framework for devising process querying methods. The Process Querying Framework
(PQF) connects and organizes elements in four different groups: (a) prepare; (b) execute;
(c) model, simulate, record and correlate; and (d) interpret.

In Polyvyanyy, (2022), the editor describes the area of process querying, as well as
compiles prominent works in the fields of Event Log Querying, Process Model Query-
ing, combinations of both and other approaches (model similarity, logic-based, among oth-
ers). We highlight the work presented in Polyvyanyy (2022), where the author proposes the
Process Query Language (PQL) to query and manipulate process models. The language
implements two classes of predicates: behavioral predicates to query behavior relations
in processes and process scenarios to check for sequences of actions. On a more specific
take, in Álvarez et al. (2022), the authors propose a new language named Process Instance
Query Language (PIQL) to help measure KPIs or PPIs from logged events. The chapter
defines the grammar for the language as well as examples of its use. It is worth to mention
that none of those works addresses or includes natural language querying capabilities.

2.3 � NLP applications in business process management and process mining

The possible applications of NLP techniques to the BPM and process mining domain are
countless. In Section 2.3.1 we review work on general applications, while Section 2.3.2
focuses on natural language interfaces inside the domain.

2.3.1 � General applications

As business processes are commonly documented by organizations in unstructured textual
format rather than as structured models, one of the most important applications of NLP
techniques to the BPM domain is the extraction of process models from natural language
text (Riefer et al. 2016; van der Aa et al. 2018).

In Friedrich et al. (2011), the authors present an automatic approach to generate
Business Process Model and Notation (BPMN) models from natural language text
describing processes. The method combines a set of NLP techniques (tokenization,
dependency parsing, etc.) and augment it with an anaphora resolution mechanism to
identify actions and their inter-relationship and build a process model. Instead of tex-
tual descriptions, the method proposed in Epure et al. (2015) takes manual, text-based,
process execution records as input to mine process models. The approach uses part-
of-speech tagging, dependency parsing and rule-based semantic analysis to identify
activities and the relationships between them and create a corresponding textual repre-
sentation (a formal process model is not generated).

117Journal of Intelligent Information Systems (2023) 61:113–142	

1 3

Another application of NLP to BPM is the automatic generation of textual descrip-
tions from process models. The method presented in Leopold et al. (2012) addresses
this task by taking a BPMN model as input, extracting linguistic information from its
activity labels, events and gateways, among others, and building a syntactic tree, which
is used to generate sentences in natural language.

NLP techniques were also used to compare process models to textual descriptions.
The method proposed in van der Aa et al. (2017) aims to automatically detect incon-
sistencies between models and their corresponding descriptions, such as the represen-
tation of activities in different orders. Model and text are both subjected to a linguistic
analysis to process sentences and activities so that their similarity can be assessed.

In addition to these applications, in van der Aa et al. (2018), the authors discuss
future challenges for NLP applications in the BPM field, including the use of conver-
sational systems to support the execution of business processes. The goal would be to
allow process stakeholders to query the process through a natural language dialog sys-
tem that would work on top of a formal model or textual description.

2.3.2 � Natural language interfaces

In the work presented in Han et al. (2020), the authors propose a method to answer
natural language queries over process automation event logs. The method extends
the Athena NLIDB system (Saha et al. 2016) to translate natural language queries to
queries over process execution data (event logs) stored in Elasticsearch. Although the
experimental results show good accuracy (80%), the fact that the system answers natu-
ral language queries directly over event log data restricts the set of questions it is able
to handle to those directly related to raw process execution data and statistics.

Similarly, in Kobeissi et al. (2021) the authors propose a natural language inter-
face to query process execution event data. The method takes a textual natural lan-
guage question and converts it into a query to be executed over a graph database where
event data is stored. A hybrid approach is used for the conversion: machine learning-
based techniques are used for intent detection and named entity recognition, while the
construction of the database query is done using a rule-based component. Although
the paper reports very high accuracy (95%) on question answering, it can only handle
questions directly over event data (event attribute values and aggregations), not being
able to address questions on conformance checking, bottleneck analysis and process
behavior, among others.

Existing process mining techniques and tools can provide automatic analysis over
event log data, which can be used to answer high-level user questions. To the best of
our knowledge, this is the first research work aiming to automatically understand and
answer high-level natural language questions by integrating a natural language inter-
face to existing process mining tools that implement advanced analysis and algorithms.
It is also the first to propose a taxonomy for natural language questions over process
mining. An assessment of the types of questions handled by the works discussed in this
section is presented in Section 3.3.

118	 Journal of Intelligent Information Systems (2023) 61:113–142

3 � Question taxonomy

This work introduces a taxonomy for process mining questions asked in natural language.
The idea is to create a classification framework around the questions that could help:

•	 Organize experiments and support comparison amongst different implementations of
natural language querying interfaces to process mining.

•	 Identify shortcomings in implementations according to the dimensions of the taxonomy.
•	 Create the foundations for hybrid implementations (rule-based and AI-based) by

segmenting the questions into groups that are more likely to be better processed
using one technique or the other.

3.1 � Foundations

The taxonomy introduced in this work is derived from a set of different inputs and
influences:

•	 Examples of questions compiled in our previous work (Barbieri et al. 2021), as well
as other works in healthcare (Mans et al. 2015), linguistic patterns applied to pro-
cess mining (del-Río-Ortega et al. 2016) and conformance checking (Carmona et al.
2018).

•	 Experience in real life projects using Everflow in different scenarios and industries,
as well as commonly asked questions, including aspects such as filtering and aggre-
gation of information.

•	 Support to the basic concepts associated with process mining, including entities
(cases, events, activities, etc.) and their relationships (van der Aalst 2016; Hompes
et al. 2016).

•	 Answering commonly asked questions around Process Performance Indicators
(PIIs) (del-Río-Ortega et al. 2013).

•	 Support the four types of questions presented in Mans et al. (2015), namely: (i) what
happened, (ii) why did it happen, (iii) what will happen, and (iv) what is the best
that can happen.

•	 Instantiating the linguistic patterns introduced in del-Río-Ortega et al. (2016), with
emphasis on measures (time, count, conditions, data, derived, aggregates), targets
(simple and composed) and scopes (number of instances, state condition, temporal
condition), which we call filters.

Our proposition intends to shed some light onto classifying questions, so that patterns
can be identified/created to process them. We don’t claim this taxonomy to be complete.
On the contrary, we encourage others to collaborate by extending it to deliver value to
the research community and users in general.

119Journal of Intelligent Information Systems (2023) 61:113–142	

1 3

3.2 � Proposition

We propose a multi-dimensional, extensible, taxonomy, where different, independent,
“points of view” are applied to classify the questions. These dimensions closely relate to
the concepts mentioned in Section 3.1. Namely they are:

•	 Perspective: how a question relates to fundamental types of process mining, such as
process execution (case/event) data, conformance checking, discovery, performance
analyses, etc.

•	 Relativity: indicates if the question is absolute or relative to some set of entities
(cases, analyses, etc.), i.e., it requires intermediate computations to be answered

•	 Normativity: does the question require normative information, such as a normative
model or Service Level Agreement (SLA) information, to be answered or not (non-
normative)?

•	 Composition: does the sentence indicate a single question (simple) or does it actu-
ally encompass multiple questions (composite), each requiring a separate answer?

•	 Filtering: is the question bounded by some filtering criteria (case identification,
time, etc.) or is it applicable to the whole dataset/model?

•	 Ambiguity: indicates if the question has a single interpretation (unambiguous) or
multiple ones (ambiguous) in the context of process mining.

•	 Context: indicates whether a question requires additional information/knowledge
outside the question (contextual) itself, usually contained in previous questions/
answers made through the natural language interface, or whether all that is needed is
stated in the question itself (self-contained).

Figure 1 depicts the taxonomy breakdown for each dimension. Every dimension is
organized in a hierarchical manner, so that a leaf of each tree (dimension) is assigned
as part of the classification for a question. Colored nodes indicate the types of questions
addressed in this work, as detailed in Section 3.3. Table 1 presents examples of ques-
tions and their corresponding classifications according to the proposed taxonomy.

The dimensions relativity, normativity, composition and context are very straight-
forward. Actually, the reduced size of their underlying tree structures gives little room
for wondering what leaf to use to classify a question. The same holds true for the fil-
tering dimension, which, although having a more complex tree structure, has a clear
interpretation.

Ambiguity, on the other hand, does have a streamlined tree structure, but we observed
that classifying a question as ambiguous (or not) leads to more debate and might pose a
personal preference bias to the stage. This affects question classification not only in the
ambiguity dimension itself, but also into the other dimensions, as different interpreta-
tions may imply fitting into a different perspective, normativity or filtering category, for
example.

Finally, perspective presents the most complex tree structure and, arguably, the most
interesting one too. It is a multi-layered hierarchy, where the root breaks down into the
following subgroups:

•	 Perspective: process execution: questions that can be answered solely from the data
extracted from the event log organized into two database-like tables (one for events
and one for cases).

120	 Journal of Intelligent Information Systems (2023) 61:113–142

Fig. 1   Taxonomic dimensions

121Journal of Intelligent Information Systems (2023) 61:113–142	

1 3

Ta
bl

e 
1  

E
xa

m
pl

es
 o

f q
ue

sti
on

s c
la

ss
ifi

ed
 a

cc
or

di
ng

 to
 th

e
pr

op
os

ed
 ta

xo
no

m
y

Q
ue

sti
on

Pe
rs

pe
ct

iv
e

Re
la

tiv
ity

N
or

m
at

iv
ity

C
om

po
si

tio
n

Fi
lte

rin
g

A
m

bi
gu

ity
C

on
te

xt

W
ha

t i
s t

he
 m

os
t c

om
m

on
 fl

ow
 o

f
ac

tiv
iti

es
?

C
as

e-
le

ve
l d

at
a

A
bs

ol
ut

e
N

on
-n

or
m

at
iv

e
Si

m
pl

e
U

nfi
lte

re
d

U
na

m
bi

gu
ou

s
Se

lf-
co

nt
ai

ne
d

W
ha

t i
s t

he
 m

ea
n

le
ad

 ti
m

e
of

 th
e

pr
oc

es
s i

ns
ta

nc
es

 c
om

pl
et

ed
 to

da
y?

C
as

e-
le

ve
l d

at
a

A
bs

ol
ut

e
N

on
-n

or
m

at
iv

e
Si

m
pl

e
C

om
pl

et
io

n-
tim

e
fil

te
r

U
na

m
bi

gu
ou

s
Se

lf-
co

nt
ai

ne
d

W
ha

t i
s t

he
 b

ig
ge

st
bo

ttl
en

ec
k

in
 th

e
lo

g?
B

ot
tle

ne
ck

 a
na

ly
si

s
A

bs
ol

ut
e

N
on

-n
or

m
at

iv
e

Si
m

pl
e

U
nfi

lte
re

d
A

m
bi

gu
ou

s
Se

lf-
co

nt
ai

ne
d

W
ha

t i
s t

he
 ra

te
 o

f n
on

 c
on

fo
rm

an
ce

s
to

da
y?

C
on

fo
rm

an
ce

 c
he

ck
in

g
A

na
ly

si
s r

el
at

iv
e

N
or

m
at

iv
e

m
od

el
Si

m
pl

e
C

om
pl

et
io

n-
tim

e
fil

te
r

U
na

m
bi

gu
ou

s
Se

lf-
co

nt
ai

ne
d

W
ha

t a
re

 th
e

m
os

t a
nd

 le
as

t f
re

qu
en

t
ta

sk
s?

Ev
en

t-l
ev

el
 d

at
a

A
bs

ol
ut

e
N

on
-n

or
m

at
iv

e
C

om
po

si
te

U
nfi

lte
re

d
U

na
m

bi
gu

ou
s

Se
lf-

co
nt

ai
ne

d

H
ow

 d
oe

s t
he

 d
is

co
ve

re
d

m
od

el
 lo

ok

lik
e?

Pr
oc

es
s d

is
co

ve
ry

A
bs

ol
ut

e
N

on
-n

or
m

at
iv

e
Si

m
pl

e
U

nfi
lte

re
d

U
na

m
bi

gu
ou

s
Se

lf-
co

nt
ai

ne
d

W
he

re
 m

ay
 th

is
 in

st
an

ce
 h

it
a

bo
t-

tle
ne

ck
 b

ef
or

e
it

co
m

pl
et

es
?

N
ex

t-a
ct

iv
ity

 p
re

di
ct

io
n

A
na

ly
si

s r
el

at
iv

e
N

on
-n

or
m

at
iv

e
Si

m
pl

e
U

nfi
lte

re
d

U
na

m
bi

gu
ou

s
C

on
te

xt
ua

l

122	 Journal of Intelligent Information Systems (2023) 61:113–142

•	 Perspective: process model: questions on discovered and normative process models,
process behavior and model evaluation against the event log (comprising quality met-
rics such as model fitness, precision, etc.).

•	 Perspective: analysis: questions that require process mining analysis algorithms to be
run against the event log data in order to be answered (conformance checking, perfor-
mance analysis, case outcome prediction, etc.).

One could argue that the line that separates these subgroups is thin, and that a given
question could belong both to perspective: process execution and perspective: analysis.
An example of such a question could be: “Which activity has the highest mean resolu-
tion time?”. In this case, some may say that this is clearly a perspective: process execution
question about lead-time, while others would argue that this is a perspective: performance
analysis-related question.

In order to tie-break situations like this, we propose to apply the Occam’s razor princi-
ple. If a question can be answered based solely on process execution information, it will
then belong to that subgroup. To be more specific, if a question could be answered with
an SQL-like query over process execution data, without requiring the launch of a specific
process mining algorithm or analysis, then it is classified as a perspective:process execu-
tion rather than a perspective:analysis question. To further help assist arbitrating situations
like this, we have presented the perspective tree in order of precedence from left to right. In
other words, as soon as a question matches the left-most classification node in the tree, that
is its final classification. Using this strategy brings another practical advantage: it leads to
an implementation that typically requires fewer functionality to be provided by the counter-
part process mining tool, making it easier to integrate to multiple tools.

3.3 � Benchmarking

Colored nodes in Fig. 1 indicate the types of questions addressed by this work. Blue nodes
denote groups that are fully handled, while purple nodes are partially supported. White
nodes are not addressed at this time and are left for future work. In comparison, when
looking at the perspective dimension, the methods presented in Han et al. (2020); Kobeissi
et al. (2021) address questions classified under the perspective:process execution subtree
only. From the normativity point of view, only normativity:non-normative questions are
handled, while from the filtering angle both methods are able to address questions clas-
sified under all but the filtering:KPI filter subtree. From Han et al. (2020); Kobeissi et al.
(2021), it was not possible to assess how these methods deal with the other dimensions.

4 � Natural language querying method

Our previous work (Barbieri et al. 2021) proposes the architecture depicted in Fig. 2 for a
process mining natural language querying interface. The input is a question in regular natu-
ral language such as “What is the average execution time of the process?” or “How many
conformance problems have been identified?”.

Questions go initially through a pre-processing and tagging step, where the text is split
into tokens and tagged with Part-of-Speech (POS), dependency relations and base word
form information. Mentions to real-world entities such as people and geographic location

123Journal of Intelligent Information Systems (2023) 61:113–142	

1 3

names are also identified and tagged during this step. The tagged text is then semanti-
cally parsed in order to extract its meaning and convert it to a logical representation that is
machine readable and actionable. The logical representation is then executed by mapping it
to calls of a process mining tool interface. These architecture components are described in
more details in the following subsections.

4.1 � Pre‑processing and tagging

The raw question text is the input for this component, where the following processing
occurs:

•	 Tokenization, which is the splitting of text into tokens.
•	 Part-of-Speech (POS) tagging, which performs morphological analysis over the text,

marking tokens with tags such as “PRON” (pronoun), “ADJ” (adjective) and “VERB”.
•	 Dependency parsing, which marks tokens with grammatical structure information and

dependency relations.
•	 Lemmatization, which finds the base (non-inflected) form of words.
•	 Entity recognition, which identifies and tags real-world entities in the text.

Entity recognition identifies general entities from pre-defined categories, such as names
of people and organizations, geographic locations, time and quantities, among others. In
addition to that, a natural language interface for process mining must be able to recog-
nize the process mining entities present in sentences. Terms such as event, case, activity,
resource and trace (along with its synonyms) must be recognized and tagged appropriately.
The resulting tags are a crucial input for the next task in the processing pipeline (semantic

Fig. 2   Process mining natural language querying interface architecture (Barbieri et al. 2021)

124	 Journal of Intelligent Information Systems (2023) 61:113–142

parsing). Figure 3 depicts the process mining data model that underlies the recognition of
such terms. The model and the concepts it contains are standard and based on van der Aalst
(2016).

Besides dealing with general process mining terms, the system must be able to recog-
nize domain-specific terms. This includes the names of non-standard attributes present in
the event log along with possible categorical values, among others. To be able to recog-
nize such terms, this module uses event log metadata (names, types and possible values)
of these attributes. The tool interface mapping layer takes the responsibility of interfacing
with the process mining tool to gather these metadata. Figure 4 shows the output of pre-
processing and tagging.

4.2 � Semantic parsing

Semantic parsing aims to understand the meaning of a natural language sentence and map
it to a logical (machine-readable) representation. The most common methods used for
semantic parsing are rule-based and neural approaches. While rule-based methods are usu-
ally more appropriate to build domain specific systems targeted to understand a finite set
of sentences, neural systems are more suitable to handle complex scenarios at the cost of

Fig. 3   Process mining data model underlying entity recognition (Barbieri et al. 2021)

Fig. 4   Questions after pre-processing and tagging

125Journal of Intelligent Information Systems (2023) 61:113–142	

1 3

Ta
bl

e 
2  

S
om

e
Q

D
M

R
 o

pe
ra

to
rs

 u
se

d
fo

r P
M

 q
ue

sti
on

 lo
gi

ca
l r

ep
re

se
nt

at
io

n

O
pe

ra
to

r
D

es
cr

ip
tio

n
Ex

am
pl

e
Lo

gi
ca

l F
or

m

s
e
l
e
c
t

Re
tu

rn
 a

ll
in

st
an

ce
s o

f t
he

 g
iv

en
 c

on
ce

pt
.

Sh
ow

 m
e

al
l c

as
es

.
s
e
l
e
c
t

c
a
s
e

fi
l
t
e
r

Re
tu

rn
 th

e
re

fe
re

nc
ed

 in
st

an
ce

s f
or

 w
hi

ch
 th

e
gi

ve
n

co
nd

iti
on

 h
ol

ds
.

Sh
ow

 m
e

al
l c

as
es

 fr
om

 C
hi

ca
go

.
s
e
l
e
c
t

c
a
s
e

fi
l
t
e
r

c
i
t
y

C
h
i
c
a
g
o

#
1

p
r
o
j
e
c
t

Re
tu

rn
 th

e
gi

ve
n

at
tri

bu
te

/re
la

tio
n

fo
r t

he
 re

fe
r-

en
ce

d
in

st
an

ce
s.

H
ow

 lo
ng

 d
oe

s e
ac

h
pr

oc
es

s i
ns

ta
nc

e
ta

ke
 to

ex

ec
ut

e?
s
e
l
e
c
t

c
a
s
e

p
r
o
j
e
c
t

d
u
r
a
t
i
o
n

#
1

a
g
g
r
e
g
a
t
e

A
pp

ly
 th

e
gi

ve
n

ag
gr

eg
at

io
n

to
 th

e
re

fe
re

nc
ed

va

lu
es

. T
he

 su
pp

or
te

d
ag

gr
eg

at
io

ns
 a

re
 m
a
x

,
m
i
n

, a
v
e
r
a
g
e

, s
u
m

 a
nd

 c
o
u
n
t

.

W
ha

t i
s t

he
 av

er
ag

e
ca

se
 d

ur
at

io
n?

s
e
l
e
c
t

c
a
s
e

p
r
o
j
e
c
t

d
u
r
a
t
i
o
n

#
1

a
g
g
r
e
g
a
t
e

a
v
e
r
a
g
e

#
2

g
r
o
u
p

A
pp

ly
 th

e
gi

ve
n

ag
gr

eg
at

io
n

to
 e

ac
h

su
bs

et
 o

f
va

lu
es

 c
or

re
sp

on
di

ng
 to

 e
ac

h
ke

y.
W

ha
t i

s t
he

 av
er

ag
e

co
st

of
 e

ac
h

ac
tiv

ity
?

s
e
l
e
c
t

e
v
e
n
t

p
r
o
j
e
c
t

c
o
s
t

#
1

p
r
o
j
e
c
t

a
c
t
i
v
i
t
y

#
1

g
r
o
u
p

a
v
e
r
a
g
e

#
2

#
3

s
u
p
e
r
l
a
t
i
v
e

Re
tu

rn
 th

e
re

fe
re

nc
ed

 in
st

an
ce

s f
or

 w
hi

ch
 th

e
gi

ve
n

va
lu

e
th

e
hi

gh
es

t/l
ow

es
t.

W
ha

t w
as

 th
e

sl
ow

es
t c

as
e?

s
e
l
e
c
t

c
a
s
e

p
r
o
j
e
c
t

d
u
r
a
t
i
o
n

#
1

s
u
p
e
r
l
a
t
i
v
e

m
a
x

#
1

#
2

126	 Journal of Intelligent Information Systems (2023) 61:113–142

requiring large training corpora. Logical representations usually take the form of lambda
calculus, query languages such as SQL and SPARQL or executable programs, among
others.

4.2.1 � Logical representation

The Question Decomposition Meaning Representation (QDMR) proposed in Wolfson et al.
(2020) and inspired by SQL has been used, with some extensions, for the logical represen-
tation of process mining questions.

In QDMR questions are represented by a sequence of steps where each step corresponds
to an operator. Each operator (except for select) is applied to the results of a previous
step in the sequence. Additional parameters may be given to logical operators depending
on the entities (concepts, attributes, aggregations, etc.) recognized in the natural language
question. Table 2 presents the most relevant QDMR operators used in this research work to
compose the logical representation of queries. For the complete set, please refer to Wolfson
et al. (2020).

Notice that hash tags are used to refer to the results of a previous logical operation in
the sequence, which may be a set of event or case instances or their attribute values. For
example, in the following sequence (which logically represents a question such as “What
is the average execution time of the process?”), #1 refers to the results of select case,
which are all case instances and #2 refers to the values of the duration attribute for #1.

select case
project duration #1
aggregate average #2

The original set of QDMR operators was extended by this work to allow querying the
behavioral aspects of process execution. Inspired by and initially based on the set of predi-
cates defined by the PQL Polyvyanyy (2022), the predicate operator was introduced
to logically represent questions over behavioral relations between executed activities.
Supported behavioral predicates can be applied over cases or traces and are presented in
Table 3. Optional parameters are enclosed in square brackets.

The following sequence, for example, represents a query of all activities that immedi-
ately precede activity “payment” over all available cases.

select case
predicate precede payment direct #1

Moreover, this work proposes another set of predicates to logically represent questions
on process mining analyses, such as conformance checking, bottleneck and rework analy-
sis, among others. Supported analysis predicates can be applied over cases and are pre-
sented in Table 4.

The following sequence, for example, logically represents a question such as “How
many conformance issues have been identified?”.

select case
predicate nonconformance #1
aggregate count #2

127Journal of Intelligent Information Systems (2023) 61:113–142	

1 3

Ta
bl

e 
3  

B
eh

av
io

ra
l p

re
di

ca
te

s u
se

d
fo

r p
ro

ce
ss

 m
in

in
g

qu
es

tio
n

lo
gi

ca
l r

ep
re

se
nt

at
io

n

Pr
ed

ic
at

e
Pa

ra
m

et
er

s
D

es
cr

ip
tio

n

oc
cu

rs
ac

tiv
ity

Re
tu

rn
 th

e
re

fe
re

nc
ed

 c
as

es
 o

r t
ra

ce
s t

ha
t e

xe
cu

te
 th

e
gi

ve
n

ac
tiv

ity
.

co
oc

cu
r

ac
tiv

ity
1,

 [a
ct

iv
ity

2]
Re

tu
rn

 th
e

re
fe

re
nc

ed
 c

as
es

 o
r t

ra
ce

s t
ha

t e
xe

cu
te

 b
ot

h
ac

tiv
ity

1
an

d
ac

tiv
ity

2
or

 n
on

e.
 If

 o
nl

y
ac

tiv
ity

1
is

gi

ve
n,

 re
tu

rn
 th

e
ac

tiv
iti

es
 th

at
 c

oo
cc

ur
 w

ith
 it

.
co

nfl
ic

t
ac

tiv
ity

1,
 [a

ct
iv

ity
2]

Re
tu

rn
 th

e
re

fe
re

nc
ed

 c
as

es
 o

r t
ra

ce
s t

ha
t e

xe
cu

te
 e

ith
er

 a
ct

iv
ity

1,
 a

ct
iv

ity
2

or
 n

on
e.

 If
 o

nl
y

ac
tiv

ity
1

is

gi
ve

n,
 re

tu
rn

 th
e

ac
tiv

iti
es

 th
at

 c
on

fli
ct

 w
ith

 it
.

ca
us

al
ac

tiv
ity

1,
 a

ct
iv

ity
2

Re
tu

rn
 th

e
re

fe
re

nc
ed

 c
as

es
 o

r t
ra

ce
s w

he
re

 a
ny

 o
cc

ur
re

nc
e

of
 a

ct
iv

ity
1

pr
ec

ed
es

 a
ny

 o
cc

ur
re

nc
e

of
 a

ct
iv

-
ity

2.
co

nc
ur

re
nt

[a
ct

iv
ity

1]
, [

ac
tiv

ity
2]

Re
tu

rn
 th

e
re

fe
re

nc
ed

 c
as

es
 o

r t
ra

ce
s w

he
re

 so
m

e
oc

cu
rr

en
ce

 o
f a

ct
iv

ity
1

oc
cu

rs
 a

t t
he

 sa
m

e
tim

e
as

 so
m

e
oc

cu
rr

en
ce

 o
f a

ct
iv

ity
2.

 If
 o

nl
y

ac
tiv

ity
1

is
 g

iv
en

, r
et

ur
n

th
e

ac
tiv

iti
es

 th
at

 o
cc

ur
 c

on
cu

rr
en

tly
 to

 it
. I

f
ne

ith
er

 a
ct

iv
ity

 is
 g

iv
en

, r
et

ur
n

th
e

pa
irs

 o
f a

ct
iv

iti
es

 th
at

 o
cc

ur
 c

on
cu

rr
en

tly
.

pr
ec

ed
e

ac
tiv

ity
, [

di
re

ct
]

Re
tu

rn
 th

e
ac

tiv
iti

es
 th

at
 p

re
ce

de
 th

e
gi

ve
n

ac
tiv

ity
. T

he
 “

di
re

ct
”

pa
ra

m
et

er
 is

 a
 fl

ag
 th

at
, w

he
n

pr
es

en
t,

in
di

ca
te

s t
ha

t o
nl

y
th

e
ac

tiv
iti

es
 w

hi
ch

 d
ire

ct
ly

 p
re

ce
de

 th
e

gi
ve

n
ac

tiv
ity

 m
us

t b
e

re
tu

rn
ed

.
su

cc
ee

d
ac

tiv
ity

, [
di

re
ct

]
Re

tu
rn

 th
e

ac
tiv

iti
es

 th
at

 su
cc

ee
d

th
e

gi
ve

n
ac

tiv
ity

. T
he

 “
di

re
ct

”
pa

ra
m

et
er

 is
 a

 fl
ag

 th
at

, w
he

n
pr

es
en

t,
in

di
ca

te
s t

ha
t o

nl
y

th
e

ac
tiv

iti
es

 w
hi

ch
 d

ire
ct

ly
 su

cc
ee

d
th

e
gi

ve
n

ac
tiv

ity
 m

us
t b

e
re

tu
rn

ed
.

se
qu

en
ce

ac
tiv

ity
1,

 a
ct

iv
ity

2,
 ..

.
Re

tu
rn

 th
e

re
fe

re
nc

ed
 c

as
es

 o
r t

ra
ce

s t
ha

t e
xe

cu
te

 th
e

gi
ve

n
se

qu
en

ce
 o

f a
ct

iv
iti

es
.

st
ar

t
−

Re
tu

rn
 th

e
st

ar
t a

ct
iv

iti
es

 fo
r t

he
 re

fe
re

nc
ed

 c
as

es
 o

r t
ra

ce
s.

en
d

−
Re

tu
rn

 th
e

en
d

ac
tiv

iti
es

 fo
r t

he
 re

fe
re

nc
ed

 c
as

es
 o

r t
ra

ce
s.

ac
tiv

ity
-c

ou
nt

−
Re

tu
rn

 th
e

nu
m

be
r o

f a
ct

iv
iti

es
 e

xe
cu

te
d

by
 e

ac
h

re
fe

re
nc

ed
 c

as
e

or
 tr

ac
e,

 in
cl

ud
in

g
re

pe
tit

io
ns

.
di

sti
nc

t-a
ct

iv
ity

-c
ou

nt
−

Re
tu

rn
 th

e
nu

m
be

r o
f d

ist
in

ct
 a

ct
iv

iti
es

 e
xe

cu
te

d
by

 e
ac

h
re

fe
re

nc
ed

 c
as

e
or

 tr
ac

e.
oc

cu
re

nc
e-

co
un

t
ac

tiv
ity

Re
tu

rn
 th

e
nu

m
be

r o
f t

im
es

 th
e

gi
ve

n
ac

tiv
ity

 is
 e

xe
cu

te
d

fo
r e

ac
h

re
fe

re
nc

ed
 c

as
e

or
 tr

ac
e.

128	 Journal of Intelligent Information Systems (2023) 61:113–142

Ta
bl

e 
4  

A
na

ly
si

s p
re

di
ca

te
s u

se
d

fo
r p

ro
ce

ss
 m

in
in

g
qu

es
tio

n
lo

gi
ca

l r
ep

re
se

nt
at

io
n

Pr
ed

ic
at

e
Pa

ra
m

et
er

s
D

es
cr

ip
tio

n

ac
tiv

ity
-b

ot
tle

ne
ck

−
Ru

n
ac

tiv
ity

 b
ot

tle
ne

ck
 a

na
ly

si
s f

or
 th

e
re

fe
re

nc
ed

 c
as

es
 a

nd
 re

tu
rn

 th
e

id
en

tifi
ed

 b
ot

tle
ne

ck
 a

ct
iv

iti
es

.
re

so
ur

ce
-b

ot
tle

ne
ck

−
Ru

n
re

so
ur

ce
 b

ot
tle

ne
ck

 a
na

ly
si

s f
or

 th
e

re
fe

re
nc

ed
 c

as
es

 a
nd

 re
tu

rn
 th

e
id

en
tifi

ed
 b

ot
tle

ne
ck

 re
so

ur
ce

s.
re

w
or

k
−

Ru
n

re
w

or
k

an
al

ys
is

 fo
r t

he
 re

fe
re

nc
ed

 c
as

es
 a

nd
 re

tu
rn

 th
e

tra
ce

s i
de

nt
ifi

ed
 a

s c
on

ta
in

in
g

re
w

or
k.

tra
ns

iti
on

[a
ct

iv
ity

1,
 a

ct
iv

ity
2]

Ru
n

a
te

m
po

ra
l a

na
ly

si
s o

ve
r t

ra
ns

iti
on

s a
nd

 re
tu

rn
 st

at
ist

ic
s o

n
th

ei
r d

ur
at

io
n

(m
in

im
um

, m
ax

im
um

,
av

er
ag

e)
. I

f a
 p

ai
r o

f a
ct

iv
iti

es
 is

 g
iv

en
, r

un
 th

e
an

al
ys

is
 o

ve
r t

he
 tr

an
si

tio
ns

 b
et

w
ee

n
th

em
.

sl
ow

-tr
an

si
tio

n
−

Ru
n

sl
ow

 tr
an

si
tio

n
an

al
ys

is
 fo

r t
he

 re
fe

re
nc

ed
 c

as
es

 a
nd

 re
tu

rn
 th

e
id

en
tifi

ed
 sl

ow
 tr

an
si

tio
ns

.
sl

ow
-a

ct
iv

ity
−

Ru
n

sl
ow

 a
ct

iv
ity

 a
na

ly
si

s f
or

 th
e

re
fe

re
nc

ed
 c

as
es

 a
nd

 re
tu

rn
 th

e
id

en
tifi

ed
 sl

ow
 a

ct
iv

iti
es

.
no

nc
on

fo
rm

an
ce

−
Ru

n
co

nf
or

m
an

ce
 c

he
ck

in
g

fo
r t

he
 re

fe
re

nc
ed

 c
as

es
 a

nd
 re

tu
rn

 th
e

id
en

tifi
ed

 n
on

co
nf

or
m

an
ce

s.
df

g
−

Re
tu

rn
 e

ith
er

 a
n

im
ag

e
or

 a
 U

ni
fo

rm
 R

es
ou

rc
e

Lo
ca

to
r (

U
R

L)
 to

 th
e

D
ire

ct
-fo

llo
w

s G
ra

ph
 (D

FG
) t

ha
t

re
pr

es
en

ts
 th

e
re

fe
re

nc
ed

 c
as

es
.

so
ci

al
-n

et
w

or
k

−
Re

tu
rn

 e
ith

er
 a

n
im

ag
e

or
 a

 U
R

L
to

 th
e

so
ci

al
 n

et
w

or
k

di
sc

ov
er

ed
 fr

om
 th

e
re

fe
re

nc
ed

 c
as

es
.

129Journal of Intelligent Information Systems (2023) 61:113–142	

1 3

4.2.2 � Rule‑based semantic parsing

We have initially adopted a rule matching approach for semantic parsing. Besides requiring
no training data, the method has the advantage of achieving high accuracy in answering
predictable questions.

In our experimental implementation, we used the spaCy open-source natural language
processing library (Honnibal et al. 2020,). Its Rule Matcher component allows the defini-
tion of rules that match sequences of tokens. Rules are based on tags filled in the previous
steps in the pipeline (part-of-speech tags, dependency parsing results, entity recognition

Fig. 5   Rule matching examples

130	 Journal of Intelligent Information Systems (2023) 61:113–142

Fig. 6   Rule to logical representation mapping

131Journal of Intelligent Information Systems (2023) 61:113–142	

1 3

labels), together with actual expressions (in our case, words used to express the sort of pro-
cess mining relationship/analysis being queried). They are formed by sequences of condi-
tions, where each condition is composed by tag:value pairs that must match a single token
from the tagged question obtained after pre-processing and tagging, which is the input for
the semantic parsing step).

The set of questions introduced in Barbieri et al. (2021) was the base for the elabo-
ration of the rules used for semantic parsing, resulting in 62 rules covering event log
attribute querying, instance querying and counting, behavioral relations, process min-
ing analysis, filters, aggregations and superlatives (“most”, “least”). Figure 5 presents
examples of semantic rules and their matchings (the matched rules are highlighted,
with the arrows indicating which token in the question matched each condition in the
rule). The “aggregate attribute query” rule (Fig. 5a) aims to match questions asking
for aggregations (minimum, maximum and average, among others) of attribute values,
while “analysis count query” (Fig. 5b) focuses on requests for counting analysis results
(for example, the number of non-conformances identified by a conformance checking
analysis). For the complete set of rules, please see https://​ic.​unica​mp.​br/​~lucia​na.​barbi​
eri/​pmnli-​src.

Once a rule fires, a corresponding logical representation must be put together (this is
the output of the semantic parsing step). This depends not only on what rule has been
matched, but also on the entities (concepts, attributes, etc.) recognized in the sentence.
One should notice at this point that one of the architectural goals of the proposed method
is to allow seamless integration with any process mining tool. Therefore, we make as
few assumptions as possible on how the integrated tool models the event log data. As
a result, a minimal process mining data model based in the eXtensible Event Stream
(XES) standard event log format (Verbeek et al. 2010) drives the mapping of matched
rules to logical representation. Some of the entities tagged and handled as concepts
during entity recognition and rule matching (activity, resource, trace) are, at this point,
mapped to attributes of event and case, which are the only selectable concepts. Non-
standard attributes contained in the event log are mapped based on the metadata obtained
from the process mining tool.

As an example, Fig. 6 depicts the possible logical representations to be created when the
“aggregate attribute query” and “analysis count query” rules are matched.

The matched rule indexes the first column in the tables, while the entities tagged in the
sentence index the next (concept, attribute, filter and aggregation in Fig. 6a, analysis and
filter in Fig. 6b). The last column corresponds to the logical representation that will be used
to drive the calls to the process mining tool API. Asterisks indicate optional entities and the
corresponding logical operations that are added to the sequence when they are present.

Table 5   Everflow’s RESTful API endpoints

Endpoint Description

/cases Return cases and corresponding attributes.
/events Return events and corresponding attributes.
/analyses/modelViolations Run conformance checking and return the nonconforming traces.
/analyses/bottlenecks Run activity bottleneck analysis and return the identified bottleneck activities.
/analyses/reworks Run rework analysis and return the traces identified as containing rework.
/analyses/transitions Return statistics on transitions, such as average duration.
/analyses/slowTransitions Run slow transition analysis and return the identified slow transitions.

132	 Journal of Intelligent Information Systems (2023) 61:113–142

Ta
bl

e 
6  

E
ve

rfl
ow

’s
 R

ES
Tf

ul
 A

PI
 p

ar
am

et
er

s

Pa
ra

m
et

er
D

es
cr

ip
tio

n
Ex

am
pl

e

fie
ld

s
O

nl
y

th
e

gi
ve

n
at

tri
bu

te
s a

re
 re

tu
rn

ed
 fo

r i
ns

ta
nc

es
 m

at
ch

in
g

th
e

qu
er

y.
/
e
v
e
n
t
s
?
fi
e
l
d
s
=
a
c
t
i
v
i
t
y
,
t
i
m
e
s
t
a
m
p

fil
te

rs
O

nl
y

in
st

an
ce

s m
at

ch
in

g
th

e
gi

ve
n

co
nd

iti
on

s a
re

 re
tu

rn
ed

.
/
e
v
e
n
t
s
?
a
c
t
i
v
i
t
y
=
p
a
y
m
e
n
t

ag
gr

eg
at

e
Th

e
qu

er
y

re
tu

rn
s t

he
 sp

ec
ifi

ed
 a

gg
re

ga
tio

n
fo

r t
he

 g
iv

en
 a

ttr
ib

ut
e.

 S
up

po
rte

d
ag

gr
eg

at
io

ns
 a

re

c
o
u
n
t
(
)

, a
v
g
(
)

, s
u
m
(
)

, m
a
x
(
)

 a
nd

 m
i
n
(
)

.
/
c
a
s
e
s
?
a
g
g
r
e
g
a
t
e
=
a
v
g
(
d
u
r
a
t
i
o
n
)

gr
ou

p_
by

Re
su

lts
 a

re
 g

ro
up

ed
 b

y
th

e
gi

ve
n

at
tri

bu
te

 b
ef

or
e

a
co

rr
es

po
nd

in
g

ag
gr

eg
at

io
n

is
 a

pp
lie

d.
/
e
v
e
n
t
s
?
g
r
o
u
p
_
b
y
=
a
c
t
i
v
i
t
y

&
a
g
g
r
e
g
a
t
e
=
c
o
u
n
t
(
a
c
t
i
v
i
t
y
)

so
rt_

by
Re

su
lts

 a
re

 so
rte

d
by

 th
e

gi
ve

n
at

tri
bu

te
. I

f a
 “
-

”
is

 u
se

d
in

 fr
on

t o
f t

he
 a

ttr
ib

ut
e

na
m

e
re

ve
rs

e
(d

es
ce

nd
in

g)
 so

rti
ng

 w
ill

 b
e

ap
pl

ie
d.

/
c
a
s
e
s
?
s
o
r
t
_
b
y
=
-
d
u
r
a
t
i
o
n

lim
it

Li
m

its
 th

e
nu

m
be

r o
f i

ns
ta

nc
e

to
 b

e
re

tu
rn

ed
.

/
c
a
s
e
s
?
s
o
r
t
_
b
y
=
-
d
u
r
a
t
i
o
n

&
l
i
m
i
t
=
1
0

tra
ce

Th
is

 p
ar

am
et

er
 a

pp
lie

s e
xc

lu
si

ve
ly

 to
 th

e
/
c
a
s
e
s

 e
nd

po
in

t.
Th

e
qu

er
y

re
tu

rn
s t

he
 c

as
es

 w
ho

se
 tr

ac
e

m
at

ch
es

 th
e

sp
ec

ifi
ed

 b
eh

av
io

ra
l a

ct
iv

ity
 re

la
tio

ns
. S

up
po

rte
d

re
la

tio
ns

 a
re

 a
l
w
a
y
s
O
c
c
u
r
s
(
)

,
c
o
o
c
c
u
r
(
)

, c
o
n
fl
i
c
t
(
)

, e
x
i
s
t
C
a
u
s
a
l
(
)

, e
x
e
c
u
t
e
s
(
)

.

/
c
a
s
e
s
?
t
r
a
c
e
=
c
o
o
c
c
u
r
(
a
p
p
r
o
v
a
l
,
p
a
y
m
e
n
t
)

133Journal of Intelligent Information Systems (2023) 61:113–142	

1 3

Ta
bl

e 
7  

L
og

ic
al

 re
pr

es
en

ta
tio

n
to

 A
PI

 m
ap

pi
ng

 e
xa

m
pl

es

Q
ue

sti
on

Lo
gi

ca
l R

ep
re

se
nt

at
io

n
A

PI
 C

al
l

W
ha

t i
s t

he
 av

er
ag

e
ex

ec
ut

io
n

tim
e

of
 th

e
pr

oc
es

s?
s
e
l
e
c
t

c
a
s
e

p
r
o
j
e
c
t

d
u
r
a
t
i
o
n

#
1

a
g
g
r
e
g
a
t
e

a
v
e
r
a
g
e

#
2

/
c
a
s
e
s
?
a
g
g
r
e
g
a
t
e
=
a
v
g
(
d
u
r
a
t
i
o
n
)

W
ha

t i
s t

he
 m

os
t c

om
m

on
 fl

ow
 o

f a
ct

iv
iti

es
?

s
e
l
e
c
t

c
a
s
e

p
r
o
j
e
c
t

t
r
a
c
e

#
1

g
r
o
u
p

c
o
u
n
t

#
1

#
2

s
u
p
e
r
l
a
t
i
v
e

m
a
x

#
2

#
3

/
c
a
s
e
s
?
fi
e
l
d
s
=
t
r
a
c
e

&
a
g
g
r
e
g
a
t
e
=

c
o
u
n
t
(
t
r
a
c
e
)

&
g
r
o
u
p
_
b
y
=
t
r
a
c
e

&

 s
o
r
t
_

b
y
=
-
e
f
_
a
g
g
_
0

&
l
i
m
i
t
=
1

W
ha

t i
s t

he
 av

er
ag

e
co

st
of

 th
e

ap
pr

ov
al

 ta
sk

?
s
e
l
e
c
t

e
v
e
n
t

fi
l
t
e
r

a
c
t
i
v
i
t
y

a
p
p
r
o
v
a
l

#
1

p
r
o
j
e
c
t

c
o
s
t

#
2

a
g
g
r
e
g
a
t
e

a
v
e
r
a
g
e

#
3

/
e
v
e
n
t
s
?
fi
l
t
e
r
=
a
c
t
i
v
i
t
y
=

 a
p
p
r
o
v
a
l

&
a
g
g
r
e
g
a
t
e
=
a
v
g
(
c
o
s
t
)

W
ha

t c
on

fo
rm

an
ce

 p
ro

bl
em

s h
av

e
be

en
 id

en
tifi

ed
?

s
e
l
e
c
t

c
a
s
e

p
r
e
d
i
c
a
t
e

n
o
n
c
o
n
f
o
r
m
a
n
c
e

#
1

/
a
n
a
l
y
s
e
s
/
m
o
d
e
l
V
i
o
l
a
t
i
o
n
s

W
ha

t a
re

 th
e

bo
ttl

en
ec

ks
?

s
e
l
e
c
t

c
a
s
e

p
r
e
d
i
c
a
t
e

b
o
t
t
l
e
n
e
c
k

#
1

/
a
n
a
l
y
s
e
s
/
b
o
t
t
l
e
n
e
c
k
s

W
ha

t a
re

 th
e

ca
se

s i
n

w
hi

ch
 th

e
ap

pr
ov

al
 a

nd
 p

ay
-

m
en

t t
as

ks
 c

oo
cc

ur
?

s
e
l
e
c
t

c
a
s
e

p
r
e
d
i
c
a
t
e

c
o
o
c
c
u
r

a
p
p
r
o
v
a
l

p
a
y
m
e
n
t

#
1

/
c
a
s
e
s
?
t
r
a
c
e
=
c
o
o
c
c
u
r

 (
a
p
p
r
o
v
a
l
,
p
a
y
m
e
n
t
)

134	 Journal of Intelligent Information Systems (2023) 61:113–142

4.3 � Operation execution

After a question has been understood and translated to a logical representation, the opera-
tion execution component orchestrates its execution. This is a simple step which takes the
logical representation obtained after semantic parsing as input and executes each operation
contained in it by invoking the tool interface mapping component. Intermediate operation
results are passed as input to other operations that follow it in the sequence according the
references they contain (# parameters described in Section 4.2.1). Final execution results
are returned back as the response to the question.

4.4 � Tool interface mapping

The final step in the question processing pipeline is to map the operations contained in the
logical representation of the query into real API calls provided by a process mining tool.
Operations are not necessarily mapped to API calls one by one, i.e., multiple operations
contained in a logical representation may be grouped and mapped to a single API call,
while a single operation may be mapped to multiple calls, depending on the underlying
process mining tool. This mapping is done by the tool interface mapping component.

4.4.1 � Everflow API

In this work, we integrated the architecture into Everflow’s RESTful API. This API pre-
sents endpoints that mimic process mining main concepts and naturally maps into the pro-
cess mining data model used to create logical representations. Tables 5 and 6 respectively
depict the API’s endpoints and the optional parameters that can be used for filtering, sort-
ing and aggregating results, among others.

4.4.2 � Logical representation to tool API mapping

Using the aforementioned endpoints and parameters, it is straightforward to map the logi-
cal representation into actual API calls. Table 7 presents examples of this mapping.

The integration of a new process mining tool currently requires a different instantia-
tion of the tool interface mapping component to map the generic logical representation
generated during semantic parsing to its particular query mechanism. Planned future work
includes the definition of a standard API to replace this component and allow process min-
ing tools to easily integrate our natural language conversational interface, as well as inte-
gration with another process mining tool, such as PM4Py (Berti et al. 2019).

5 � Sample questions

An initial set of natural language questions was collected from graduate students with
beginner to intermediate level of expertise in process mining, resulting in 250 general (not
specific to any existing event log) questions originally written in Portuguese. Free transla-
tion was performed by 3 volunteers resulting in 794 questions in English (multiple trans-
lations were done by the volunteers for some of the questions). The objective of having

135Journal of Intelligent Information Systems (2023) 61:113–142	

1 3

Fig. 7   Question classification distribution

Fig. 8   Perspective distribution
using a high-level classification

136	 Journal of Intelligent Information Systems (2023) 61:113–142

different translations for the same question is to add language variability to the test set and,
as a result, enhance coverage from the natural language processing perspective, while the
resulting logical query to be answered remains the same.

Variability in both language and contents of questions can be further improved in the
future by collecting questions directly in English. Furthermore, the collection of ques-
tion associated to selected, domain-specific, event logs may lead to more realistic ques-
tions (closer to what real business users would ask in a specific domain) and is part of
planned future work. Nonetheless, as no public dataset of process mining questions is
currently available, the samples collected so far played an important role in setting the
ground for this research and being the initial input for building the rules used for seman-
tic parsing.

Questions were manually classified into the seven dimensions of the proposed taxon-
omy. Different translations for the same original question resulted in the same classifica-
tion. Figure 7 depicts the breakdown of the questions into the different dimensions and
their corresponding categories.

Dimension relativity is dominated by relativity:absolute and relativity: analysis rela-
tive questions. When it comes to normativity, most questions are either normativity: non-
normative or normativity: normative model. The latter represents the questions that take a
process model as a norm to be used for conformance checking, for example.

On composition, we see that the majority of the questions are classified as
composition:simple, although we still have 85 questions that are composition:composite
(two or more nuclei in the question).

When it comes to filtering, most questions are filtering: unfiltered. This may be a con-
sequence of the way the questions were compiled, as they were detached from a specific
event log or context. We would expect more questions to be filtered if there were given
context. The same actually applies to dimension context, where the vast majority of the
questions are context: self-contained.

Another striking characteristic of this question dataset is the high number of ambigu-
ity: ambiguous questions. We noticed that ambiguity rises from two different factors: (1)
language, and (2) unrealistic expectations. In the former, we witness what has been repeat-
edly reported in NLP, that is, constructions may naturally lead to more than one interpre-
tation of the sentence. However, we would argue that unrealistic expectations played an
even more important role in ambiguity. The idea is that the user, once faced with a natural
language interface, tends to ask more open questions, as if the system was expected to be
a “know-all” kind of oracle. What seems to happen is that this interface raises expecta-
tions about the capacity of the underlying system to comprehend very abstract questions,
which is not necessarily true. One example of such a question in the dataset is: “Is there
something special I should worry about this weekend?”. No need to say how hard it is to
properly answer such a question.

Finally, the perspective dimension depicts a much wider variety of values. Amongst
all the possible values, special attention goes to perspective: case-level data and
perspective:event-level data, as well as perspective:bottleneck analysis and perspective:
conformance checking.

Given the myriad of categories under perspective, we grouped questions under a higher-
level classification, as seen in Fig. 8. In this more summarized classification, analyses sub-
trees are collapsed under perspective: backward-looking and perspective: forward-looking
only.

Last, but not least, we did a final classification outside the taxonomy realm. In this
additional classification, we basically check whether the question is “corrrect” or if it

137Journal of Intelligent Information Systems (2023) 61:113–142	

1 3

has problems related to language (malformed sentences, misspellings, unknown abbre-
viations) or process mining comprehension (misconception, unknown type of analysis).
Examples of incorrect questions are: “Size of my log” (malformed sentence), and “What
should I do to view the most frequent cases?” (process mining misconception - cases are
unique). Basically, we should not expect the implementation to be able to process most
incorrect questions (some malformed sentences and misspellings may be fixable and
answerable through the application of specific natural language processing techniques).
Luckily, 678 of the 794 questions were deemed “correct”.

6 � Experimental results

In order to verify the applicability of the proposed method, we implemented a subset of
the architecture (blue colored components) presented in Fig. 2. For the experiment, we
used the spaCy open-source natural language processing library, targeting the questions
described in Section 5. The library’s Rule Matcher component was used and fed with
the semantic rules discussed in Section 4. The source code is available at https://​ic.​
unica​mp.​br/​~lucia​na.​barbi​eri/​pmnli-​src.

The testing set was executed against a work force management-based event log that
was uploaded into the Everflow Process Mining tool. However, any process mining
event log could be used, as the collected questions are not context-specific (not bounded
to any particular event log).

Every executed test (question) was labeled with the following statuses:

•	 No match: no rule was fired
•	 Wrong match: the wrong rule was fired
•	 Understood: the question was completely understood, the right rule was fired
•	 Answered: the question was completely understood and the right rule was fired, and

the integration with the Process Mining tool returned a complete and correct answer
to the question

•	 Partially understood: the question was partially understood and the right rule was
fired for the comprehended part (one of two parts of a composite question was
understood, for example)

•	 Partially answered: the question was partially understood and the right rule was fired
for the comprehended part, or the integration with the Process Mining tool returned
a partial answer to the question

Table 8   Experimental results Result Count Ratio

Understood 304 63.9%
Answered 266 55.9%
Partially Understood 42 8.8%
Partially Answered 42 8.8%
No match 67 14.1%
Wrong match 63 13.2%
Total 476 100.0%

138	 Journal of Intelligent Information Systems (2023) 61:113–142

Notice that some of the labels intentionally overlap, as answered questions are also
understood and partially answered are (at least) partially understood.

In order to make the analysis meaningful, we discarded the questions that were
marked “incorrect”, for obvious reasons. We also excluded questions associated to the
perspective: forward-looking subtree or to the relativity: relative subtree, as we did not
implement the semantic rules to support those categories.

This led to a refined subset of 476 questions (59,6% of the original dataset), for
which the summarized results of the processing can be seen in Table 8. Once more,

Fig. 9   Experimental results

139Journal of Intelligent Information Systems (2023) 61:113–142	

1 3

please observe that the counting of understood questions encompasses answered, and
partially understood encompasses partially answered.

Figure 9 depicts the breakdown of the results for each taxonomic dimensions (except
for relativity, as relativity: relative questions were excluded from the experiment).

When we first analyze the results of the experiment, one can easily realize from
Fig. 9a that the performance varies for the different perspectives. Amongst the poor per-
forming ones are perspective: comparative analysis, perspective: performance analysis
(generic, non-leaf, category assigned to open questions such as “Where am I wasting the
most time in the process?”), and perspective: social network. The reason for that is that
the implementation did not provide explicit support (including the required semantic
rules) to these groups.

The same analysis holds true for the filtering, normativity and context dimensions,
where the temporal filter (filtering: timestamp filter, filtering: start-time filter, filtering:
completion-time filter, etc.), normativity:normative SLA and context:contextual catego-
ries, respectively, did not perform well due to limited support from the implementation.
Some other interesting conclusions can be drawn from the experiment:

•	 The suggested architecture does go beyond direct queries on the event log. We can
see that the implementation performed quite well in groups such as perspective: bot-
tleneck analysis, perspective:conformance checking and perspective:process discov-
ery. Answering questions in these groups requires triggering specific process mining
algorithms, that are more commonly found in commercial or academic tools, such as
is the case in this experiment (with Everflow Process Mining).

•	 Understanding a question is a necessary step towards a complete successful answer.
This can be seen in the radar chart depicted in Fig. 9a, where the polygon drawn
by the lines associated with understood questions has a bigger area than the one
associated with answered. If we want to understand the NLP side of the equation,
we should focus on the understood group. Basically, the experiment shows that the
implementation is able to completely understand 63.9% of the questions, while it
can completely answer 55.9%. This decrease is associated with elements beyond
NLP, such as the comprehensiveness of the process mining tool’s API, lack of spe-
cific implementation of the integration part of some dimensions (such as perspec-
tive: log-model evaluation and perspective: comparative analysis), among others.

•	 Some groups present a better “understanding rate” than others. This is likely asso-
ciated to the presence of more defined keywords in the questions, specially around
concepts like perspective: conformance checking, perspective: bottleneck analysis,
perspective:rework analysis and perspective: process discovery. Since the imple-
mentation is rule-based, identifying well-defined keywords makes the rule firing
more assertive.

•	 Very open questions, such as the ones in the perspective: performance analysis non-
leaf category, do harm the ability to properly answer them. Some of these questions
are actually composition: simple questions (single nucleus) that require the execu-
tion of multiple queries to the underlying process mining tool for a correct answer.
These would require additional rules to be fully addressed.

•	 Some questions are really very open, and exemplify the unrealistic expectations men-
tioned before. Examples are: “Where am I wasting the most time in the process?”,
“How can I optimize this process?”, “What is the performance of the model?”. We
would argue that these questions would be hard to answer even by a human being.

140	 Journal of Intelligent Information Systems (2023) 61:113–142

In general, we consider that the rate of questions that were understood is surprisingly high
given the limited set of rules that were used and the high number of different perspectives
to be addressed.

We also believe that a better defined “business” context would probably help cre-
ate more specific questions, and probably improve understanding and execution, but this
remains to be seen in future work.

7 � Conclusions

A natural language querying interface has the potential of taking process mining applica-
tions to the next level by making it easily accessible to non-technical users, such as busi-
ness and operations teams. Although approaches exist that address this kind of interface
in a generic way, none has presented a method that is tailored to deal with process mining
data and analyses. In this context, this research presents a reference architecture for such an
interface, a taxonomy for process mining related questions, and a public natural language
question dataset.

In our experiments, implementing the proposed reference architecture and testing it
against the aforementioned sample question dataset has led to several interesting conclu-
sions. Rule-based semantic parsing was an appropriate choice for bootstrapping a natural
language interface for process mining as no training data set of any kind is currently avail-
able to train any supervised or semi-supervised machine learning technique. Furthermore,
as the process mining general ontology is small (few entities and relations), it was possible
to answer questions for a selected, pre-defined, set with high accuracy using a relatively
small number of rules.

However, evaluation shows that the approach has some limitations. Rule-based semantic
parsing does not generalize well, with new rules being required for most new/unpredicted
questions. If, on the one hand, this experiment uncovered these challenges, on the other, it
verified the viability of the proposed architecture.

It is paramount to highlight that the architectural choice to integrate with other process
mining tools gave the approach the ability to add more value to users by exposing advanced
algorithms (discovery, conformance, etc) and going beyond queries on the event log file
information alone.

The proposed taxonomy alongside the reference architecture lay the foundation for addi-
tional work around hybrid approaches (mixing AI and rule-based techniques) to natural
language processing in the context of process mining, extending the question dataset (and
still be able to compare results due to the taxonomy), automatic question classification
(into the proposed taxonomy), additional functionality (forward-looking analyses, natural
language response generation, speech-to-text and text-to-speech, etc.) and more process
mining tool coverage.

Acknowledgements  We would like to thank Coordenação de Aperfeiçoamento de Pessoal de Nível Supe-
rior - Brasil (CAPES) - Finance Code 001, for providing the financial support for this work.

Data availability  The question dataset analysed during the current study is available in https://​ic.​unica​mp.​
br/​~lucia​na.​barbi​eri/​20220​306-​class​ified​pmque​stions.​csv.

141Journal of Intelligent Information Systems (2023) 61:113–142	

1 3

Declarations 

Conflicts of interest  The authors have no competing interests to declare that are relevant to the content of
this article.

References

Affolter, K., Stockinger, K., & Bernstein, A. (2019). A comparative survey of recent natural language inter-
faces for databases. The VLDB Journal, 28(5), 793–819.

Álvarez, J.M.P., Díaz, A.C., Parody, L., Quintero, A.M.R., Gómez-López, M.T. (2022). Process instance
query language and the process querying framework. In: Polyvyanyy, A. (ed.) Process Querying Meth-
ods, pp. 85–111. Springer.

Androutsopoulos, I., Ritchie, G. D., & Thanisch, P. (1995). Natural language interfaces to databases - an
introduction. Natural Language Engineering, 1(1), 29–81.

Barbieri, L., Madeira, E.R.M., Stroeh, K., van der Aalst, W.M.P. (2021). Towards a natural language conver-
sational interface for process mining. In: Process Mining Workshops, ICPM 2021. Springer.

Berti, A., van Zelst, S.J., van der Aalst, W. (2019). Process mining for python (pm4py): bridging the gap
between process-and data science. In: Proceedings of the ICPM Demo Track 2019, Co-located with 1st
International Conference on Process Mining, CEUR Workshop Proceedings 2374, pp. 13–16.

Blunschi, L., Jossen, C., Kossmann, D., Mori, M., & Stockinger, K. (2012). Soda: Generating sql for busi-
ness users. Proceedings of the VLDB Endowment, 5(10), 932–943.

Carmona, J., van Dongen, B.F., Solti, A., Weidlich, M. (2018). Conformance Checking: Relating Processes
and Models. Springer.

del-Río-Ortega, A., Resinas, M., Cabanillas, C., Ruiz-Cortés, A. (2013). On the definition and design-time
analysis of process performance indicators. Information Systems 38(4), 470–490.

del-Río-Ortega, A., Resinas, M., Durán, A., Ruiz-Cortés, A. (2016). Using templates and linguistic patterns
to define process performance indicators. Enterprise Information Systems 10(2), 159–192.

Epure, E.V., Martín-Rodilla, P., Hug, C., Deneckère, R., Salinesi, C. (2015). Automatic process model dis-
covery from textual methodologies. In: 2015 IEEE 9th International Conference on Research Chal-
lenges in Information Science (RCIS), pp. 19–30. IEEE.

Friedrich, F., Mendling, J., Puhlmann, F. (2011). Process model generation from natural language text. In:
Advanced Information Systems Engineering, pp. 482–496. Springer.

Han, X., Hu, L., Sen, J., Dang, Y., Gao, B., Isahagian, V., Lei, C., Efthymiou, V., Özcan, F., Quamar, A.,
Huang, Z., Muthusamy, V. (2020). Bootstrapping natural language querying on process automation
data. In: 2020 IEEE International Conference on Services Computing (SCC), pp. 170–177.

Hendrix, G. G., Sacerdoti, E. D., Sagalowicz, D., & Slocum, J. (1978). Developing a natural language inter-
face to complex data. ACM Trans. Database Syst., 3(2), 105–147.

Hompes, B.F., Buijs, J.C., van der Aalst, W.M. (2016). A generic framework for context-aware process per-
formance analysis. In: OTM Confederated International Conferences” On the Move to Meaningful
Internet Systems”, pp. 300–317. Springer.

Honnibal, M., Montani, I., Van Landeghem, S., Boyd, A.: spaCy: Industrial-strength Natural Language Pro-
cessing in Python.

Iyer, S., Konstas, I., Cheung, A., Krishnamurthy, J., Zettlemoyer, L. (2017). Learning a neural semantic
parser from user feedback. In: Proceedings of the 55th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pp. 963–973. Association for Computational Linguistics.

Kobeissi, M., Assy, N., Gaaloul, W., Defude, B., Haidar, B. (2021). An intent-based natural language inter-
face for querying process execution data. In: 3rd International Conference on Process Mining (ICPM),
pp. 152–159. IEEE.

Leopold, H., Mendling, J., Polyvyanyy, A. (2012). Generating natural language texts from business process
models. In: Advanced Information Systems Engineering, pp. 64–79. Springer.

Mans, R.S., van der Aalst, W.M.P., Vanwersch, R.J.B. (2015). Process Mining in Healthcare: Evaluating and
Exploiting Operational Healthcare Processes. Springer.

Mishra, A., & Jain, S. K. (2016). A survey on question answering systems with classification. Journal of
King Saud University - Computer and Information Sciences, 28(3), 345–361.

Polyvyanyy, A. (2022). Process query language. In: Polyvyanyy, A. (ed.) Process Querying Methods, pp.
313–341. Springer.

142	 Journal of Intelligent Information Systems (2023) 61:113–142

Polyvyanyy, A. (2022). Process Querying Methods. Springer.
Polyvyanyy, A., Ouyang, C., Barros, A., & van der Aalst, W. M. P. (2017). Process querying: Enabling busi-

ness intelligence through query-based process analytics. Decision Support Systems, 100, 41–56.
Riefer, M., Ternis, S.F., Thaler, T. (2016) Mining process models from natural language text: A state-of-the-

art analysis. Multikonferenz Wirtschaftsinformatik (MKWI-16), March, 9–11.
Saha, D., Floratou, A., Sankaranarayanan, K., Minhas, U. F., Mittal, A. R., & Özcan, F. (2016). Athena: an

ontology-driven system for natural language querying over relational data stores. Proceedings of the
VLDB Endowment, 9(12), 1209–1220.

van der Aa, H., Leopold, H., & Reijers, H. A. (2017). Comparing textual descriptions to process models -
the automatic detection of inconsistencies. Information Systems, 64, 447–460.

van der Aalst, W.M.P. (2016). Process mining: data science in action. Springer.
van der Aa, H., Carmona Vargas, J., Leopold, H., Mendling, J., Padró, L. (2018). Challenges and opportuni-

ties of applying natural language processing in business process management. In: International Confer-
ence on Computational Linguistics, pp. 2791–2801. Association for Computational Linguistics.

Verbeek, H.M.W., Buijs, J.C.A.M., van Dongen, B.F., van der Aalst, W.M.P. (2010). Xes, xesame, and prom
6. In: Information Systems Evolution, vol. 72, pp. 60–75. Springer.

Viner, D., Stierle, M., Matzner, M. (2020). A process mining software comparison. In: Proceedings of the
ICPM Doctoral Consortium and Tool Demonstration Track 2020 Co-located with the 2nd Interna-
tional Conference on Process Mining (ICPM2020), Volume 2703 of CEUR Workshop Proceedings,
pp. 19–22.

Wolfson, T., Geva, M., Gupta, A., Gardner, M., Goldberg, Y., Deutch, D., & Berant, J. (2020). Break it
down: A question understanding benchmark. Transactions of the Association for Computational Lin-
guistics, 8, 183–198.

Zhong, V., Xiong, C., Socher, R. (2017). Seq2sql: Generating structured queries from natural language
using reinforcement learning. arXiv: 1709. 00103

