
A generic approach to extract object-centric event data from
databases supporting SAP ERP

Alessandro Berti1 · Gyunam Park1 · Majid Rafiei1 · Wil M.P. van der Aalst1

Abstract
Process mining provides a collection of techniques to gain insights into business processes
by analyzing event logs. Organizations can gain various insights into their business
processes by using process mining techniques. Such techniques use event logs extracted
from rela-tional databases supporting the business process as input. However, extracting
event logs is challenging due to the size of the data, and it remains ad-hoc. Existing
commercial tools partly support the extraction of event logs, but they are proprietary and
focus on the main-stream processes such as Purchase-To-Pay (P2P) and Order-To-Cash
(O2C). Moreover, the extracted event logs suffer from well-known deficiency,
convergence, and divergence issues. For example, due to convergence events are
unintentionally duplicated causing unreliable or confusing performance diagnostics. In this
paper, we propose an approach to extract event logs while avoiding the aforementioned
issues. More in detail, we extract object-centric event logs by using an abstraction layer of
the database, called Graph of Relationships (GoRs), designing blueprints with domain
knowledge, and converting the database and blueprint into object-centric event logs.We
fully implemented the proposed approach, which can extract object-centric event logs from
SAP ERP systems, and evaluate the utility and scalability of the proposed approach.

Keywords Object-centric event data · Graph event data · Database event log extraction ·
SAP ERP

1 Introduction

Process mining provides a collection of techniques for gaining insights into business processes
by analyzing event logs. Such event logs are extracted from the database of information
systems supporting the business process (de Murillas et al., 2015) . However, the task of
extracting event logs logs is often challenging due to the size and complexity of the underlying
databases.

B Alessandro Berti
a.berti@pads.rwth-aachen.de

836 Journal of Intelligent Information Systems (2023) 61:835–857

We identify four different steps for the extraction of an event log from a database: process
identification, table selection, extraction, andpreprocessing (Berti et al., 2021) . First, process
identification aims to identify a collection of business processes supported by information
systems and choose a target business process to analyze. Next, the table selection aims to
select a set of tables to extract for analyzing the business process. Third, the extraction of an
event log aims to extract event logs by formulating data-retrieving queries and assigning a
case identifier to correlate a group of events. Note that process mining traditionally assumes
a single case notion, e.g., patient in a healthcare process (Diba et al., 2020) . Finally,
the preprocessing aims to prepare the event log that is used by different process mining
techniques.

Each of the aforementioned phases is challenging. First of all, process identification is not
trivial since a database contains records of hundreds of different business processes. Despite
knowing the target process to analyze, inferring the set of tables related to the target process is
challenging, e.g., a database supporting an SAP ERP system contains hundreds of thousands
of tables. Furthermore, formulating querying statements, e.g., SQL queries, requires a huge
amount of domain knowledge. In this paper, we aim to support each step of the event log
extraction.

The event log extracted by existing techniques assumes that an event is associated with a
single case identifier. However, such event logs have deficiency, convergence, and divergence
issues (van der Aalst, 2019) . The selection of a case notion may lead to the unintentional
removal of events (deficiency) or the unintentional duplication of events (convergence). Also,
causalities may get lost leading to spaghetti-like process models (convergence).Recently
object-centric event logs have been introduced as a more natural way to represent event data
extracted from real-life databases (van der Aalst and Berti, 2020) . An event in object-centric
event logs can be associated with several objects of different object types. In this paper, we
aim to extract object-centric event logs from relational databases to avoid the issues that a
traditional event log has.

To summarize, this paper introduces an approach to extracting object-centric event logs
by supporting process analysts in each step of the event log extraction. To that end, we first
introduce an abstraction of the database and a representation of the main relationships at
the database level, called Graph of Relationships (GoRs). The abstraction layer supports the
process identification and table selection steps. Next, we introduce blueprints that specify
how the data of selected tables are associated with the events of object-centric event logs to
support the extraction step.

Moreover, we present an implementation on top of a database supporting SAP ERP. We
introduce the list of queries needed to retrieve: i) the graph of relationships (nodes and edges);
ii) the rows of the selected set of tables, which are needed to apply the blueprint. We evaluate
that the execution time of such queries is acceptable, and the extracted event logs provide
insightful knowledge of the business process.

The contribution in Berti et al. (2021) exploits the relational structure of SAP in order to
build a Graph of Relationships (GoR) that is useful for identifying the set of tables of interest
for a process. After the selection of the set of tables, an object-centric event log is extracted
from the relational database supporting the SAP instance. The contribution of the current
paper extends (Berti et al., 2021) by:

• Clearly defining the abstraction at the database level and connecting the GoR to the
underlying table entries.

• Introducing a database abstraction.
• Describing in detail the database abstraction used on SAP.

Journal of Intelligent Information Systems (2023) 61:835–857 837

• Introducing the concept of blueprint to define different activity/timestamp/related object
concepts on each table entry.

Moreover, the tool support has been improved, thanks to the usage of graph databases,
especially in the process identification and selection phases.

The rest of the paper is organized as follows. Section 2 introduces the concept of object-
centric event logs and corresponding process mining approaches. Section 3 defines the
database abstraction used throughout the paper, alongwith the translation to an object-centric
event log. Section 4 shows how the database abstraction can be built on top of SAP ERP
instances, introduces the tool support, and proposes an assessment of the methods. Section
5 presents the related work. Eventually, Section 6 concludes the paper.

2 Object-centric process mining

Object-centric process mining techniques have been developed in the last years, considering
the intrinsic relationships between the objects (i.e., orders, invoices) and the events (i.e.,
the creation of an invoice) recorded in the database. Three different types of relationships
are used by object-centric process mining techniques: event-to-object relationships (e.g., the
creation of an invoice is related to an invoice and some orders), object-to-object relationships
(e.g., an order is related to the corresponding order items) and event-to-event relationships
(e.g., events of invoice approval executed in the same batch).

The current standard for the storage of object-centric event logs is the OCEL standard
http://www.ocel-standard.org/, which allows the storage of the events and the objects (along
with their attributes), along with the event-to-object relationships (Ghahfarokhi et al., 2021)
. A formal definition of OCEL is proposed in Def. 2 (after the introduction of some universes
in Def. 1). Two different implementations of the standard are provided (JSON-OCEL and
XML-OCEL), which are based on popular file formats.

Definition 1 (Universes) U� is the universe of all the strings; Ue is the universe of event
identifiers; Uact is the universe of activities; Utimest is the universe of timestamps; Uatt is
the universe of attribute names; Uval is the universe of attribute values; Ut yp is the universe
of attribute types; Uo is the universe of object identifiers; Uot is the universe of object types;
Udom is the universe of attribute domains; Utransact is the universe of database transactions.

An example object-centric event log is contained in Table 1. There, a tabular notation is
used, where each row is an event of the object-centric event log. The first row is related to
the event with the identifier e1.

Definition 2 (Object-Centric Event Log) An object-centric event log is a tuple L = (E, AN ,

AV , OT , O, πact , πtime, πvmap, πomap, πotyp, πovmap,≤) such that:

• E ⊆ Ue is a set of event identifiers.
• AN ⊆ Uatt is a set of attribute names.
• AV ⊆ Uval is a set of attribute values (with the requirement that AN ∩ AV = ∅).
• OT ⊆ Uot is a set of object types.
• O ⊆ Uo is a set of object identifiers.
• πact : E → Uact is a function associating an event (identifier) to its activity.
• πtime : E → Utimest is a function associating an event (identifier) to a timestamp.
• πvmap : E → (AN � AV) is a function associating an event (identifier) to its attribute

value assignments.

123

838 Journal of Intelligent Information Systems (2023) 61:835–857

Ta
bl
e
1

In
fo
rm

al
re
pr
es
en
ta
tio

n
of

th
e
ev
en
ts
of

an
O
C
E
L

id
ac
tiv

ity
tim

es
ta
m
p

or
de
r

ite
m

pa
ck
ag
e

cu
st
om

er
re
so
ur
ce

pr
ic
e

e 1
pl
ac
e
or
de
r

20
22

-0
7-
09

08
:2
0:
01

.5
27

+
01

:0
0

{o
1
}

{
i 1
,i
2
,i
3
}

∅
{
c 1

}
Jo
hn

20
0.
0

e 2
co
nfi

rm
or
de
r

20
22

-0
7-
10

09
:2
3:
01

.5
27

+
01

:0
0

{
o 1

}
∅

∅
∅

Ja
ne

30
2.
0

e 3
ch
ec
k
av
ai
la
bi
li
ty

20
22

-0
7-
10

17
:1
0:
08

.5
27

+
01

:0
0

{
o 1

}
{
i 1

}
∅

∅
M
ar
c

12
5.
0

..
.

...
...

...
...

...
...

...

123

Journal of Intelligent Information Systems (2023) 61:835–857 839

Fig. 1 Object-centric directly-follows graph of an Order-to-Cash process discovered using the OC-PM tool

• πomap : E → P(O) is a function associating an event (identifier) to a set of related
object identifiers.

• πotyp ∈ O → OT assigns precisely one object type to each object identifier.
• πovmap : O → (AN � AV) is a function associating an object to its attribute value

assignments.
• ≤ is a total order (i.e., it respects the antisymmetry, transitivity, and connexity properties).

We can see that the following properties are associated with the event e1 in the table:
πact (e1) = place order, πtime(e1) = 2022-07-09 08:20:01.527+01:00, πomap(e1) = {o1, i1,
i2, i3, c1 }, so the event is associated to an object of type order (o1) three objects of type item
(i1, i2, i3) and one object of type customer (c1). Moreover, πvmap(e1)(resource) = John and
πvmap(e1)(price) = 200.0.

Some tools are available for object-centric process mining. In particular, the OC-PM
tool https://www.ocpm.info provides a rich set of object-centric process mining features:
ingestion/exporting of object-centric event logs in the OCEL standard format (JSON-OCEL
and XML-OCEL); flattening the object-centric event logs into traditional event logs with the
choice of a case notion; advanced preprocessing features (filtering, sampling); discovering
object-centric process models: object-centric directly-follows graphs (Berti and van der
Aalst, 2022) , object-centric Petri nets (van der Aalst and Berti, 2020) , and object-centric
BPMN models; conformance checking on object-centric event logs based on declarative
and temporal constraints (log skeleton, temporal profile); exploration of the events/objects
of the object-centric event log; machine learning (anomaly detection, correlation analytics,
advanced conformance checking).

In particular, Fig. 1 shows an example of object-centric directly-follows multigraph of an
Order-to-Cash process containing three different object types (quotation, order, and invoice).
The event-to-object relationships are exploited to show in the model the activities in which
the interaction between different object types occurs. For example, the activity Create Order
involves objects of type quotation and order, and we can understand that the quotation is
placed before the order. We can also see that the lifecycle of the objects of type quotation
starts with the activity Create Quotation and either terminates (when the quotation is not
converted to order) or is completed with the activity Create Order.

Object-centric process mining is also supported by commercial software. For example,
the Celonis vendor recently introduced the Process Sphere feature, which allows “to analyze
and visualize the complex relationships between events and objects across interconnected
processes”1 and can ingest object-centric event logs in the OCEL standard.

1 https://shorturl.at/azOT9.

123

840 Journal of Intelligent Information Systems (2023) 61:835–857

3 Approach

In this section, we introduce an approach for extracting object-centric event logs from
relational databases. First, the proposed approach supports the table selection step (i.e., iden-
tifying a set of tables necessary to extract OCELs) by providing Graph of Relationships
(GoRs). A GoR graphically represents the key tables and object types of a database that
are related to a specific process of interest. Process analysts can explore the graph to select
the essential tables. Next, the approach supports the extraction step (i.e., extracting OCELs)
in two phases. First, we provide the concept of blueprints that allow for the extraction of
primitive events. Eventually, we automatically translate relational databases and blueprints
into OCELs.

3.1 Step 1: Supporting table selection

In this section, we introduce the concept of GoRs. A GoR highlights the key tables and object
types of a database of an information system, allowing one to select a set of interconnected
tables corresponding to a process in the information system. The visual information provided
by a GoR helps the process identification and table selection steps.

To define the GoR and support the following extraction steps, we need to propose an
abstraction of the concept of database (Def. 3), containing both the relational structure (the
tables, along with their attributes and interconnections) and the data objects (along with their
interconnections). This is independent of the specific technology (MySQL, Oracle, MSSQL)
and implementation (in some information systems, such as SAP ERP, the coherence of the
schema is maintained at the application level; moreover, the database updates could be stored
as REDO logs, in-table versioning, or as separate change tables (de Murillas et al., 2015)).
In the current paper we do not cover the translation from a specific database concept to such
abstraction (except for SAP ERP).

Definition 3 (Database Abstraction)A database is a tuple DB = (T , O, OT , A, D, T R, te,
tr, otyp, attdomain, transact, primary, foreign) such that:

• T ⊆ Utable is a set of tables (identifiers).
• O ⊆ Uo is a set of objects (identifiers).
• OT ⊆ Uot is a set of object types.
• A ⊆ Uatt is a set of attribute names.
• D ⊆ Udom is a set of attribute domains.
• T R ⊆ Utransact is a set of transactions.
• te : T → P(O×T ×Utimest ×(A � Uvalue)) is the table entries function associating to

a table name a set of table entries, each identified by an object identifier, a reference table,
a (creation) timestamp, and an attribute map. We denote T E = O×T ×Utimest × (A �

Uvalue) as the set of table entries.
• tr : T × T → P(O × O) is the tables relationships function associating to each couple

of tables a set of tuples of objects that are related. Given t1, t2 ∈ T , tr(t1, t2) ⊆ AE(t1)×
AE(t2), where AE(t) = {π1(y) | y ∈ te(t)}.

• otyp : O → OT associates to every object (identifier) the corresponding object type.
• attdomain : A → D associates to every attribute name the corresponding domain.
• transact : T E � T R associates to some table entries a transaction.
• primary : T → P(A) associates to every table a set of attributes that are primary keys

for the given table.

123

Journal of Intelligent Information Systems (2023) 61:835–857 841

• foreign : T → P(A) associates to every table a set of attributes that are foreign keys for
the given table.

An important point is that the table entries introduced in Def. 3 are not the events (or the
objects) of the object-centric event log. Instead, each entry could correspond to zero, one, or
many events given the definition of a blueprint (Def. 5). The tables relationship function tr
associates objects that are related in the database. The relationship could be implemented on
the underlying database in many different ways (foreign keys, attributes matching without
explicit foreign keys, …), however, tr is independent from such implementation and just
reports the related objects.

To build the abstraction introduced in Def. 3, we need to extract the set of tables, objects,
columns/attributes along with their type, and the primary/foreign key attributes. Moreover,
we assume that we can extract an object type for every object in the database. A less common
assumption is recording the transaction executed against the data.

We introduce as an example for the previous definition an abstraction of a database with
three tables, the third one hosting the changes operated to the objects of the other two tables:

• T = {t1, t2, changetab}
• O = {o11, o12, o21, o22}
• OT = {ot1, ot2}
• A = D = ∅
• T R = {TRANSACT1}
• te(t1) = {ent11 = (o11, t1, 2007 − 04 − 05, vmap11), ent12 = (o12, t1, 2007 − 04 −
07, vmap12)}

• te(t2) = {ent21 = (o21, t2, 2007 − 04 − 10, vmap21), ent22 = (o22, t2, 2007 − 04 −
11, vmap22)}

• te(changetab) = {ent31 = (o11, t1, 2007 − 04 − 15, vmap211), ent32 = (o21, t2, 2007 −
04 − 20, vmap221)}• tr(t1, t2) = {(o11, o21), (o12, o22)}

• otyp(o11) = otyp(o12) = ot1
• otyp(o21) = otyp(o22) = ot2
• transact((o11, t1, 2007 − 04 − 05, vmap11)) = TRANSACT1

In this abstraction example, the table t1 has two entries (the object identifiers of such entries
are o11 and o12 respectively, and their object type is ot1), and the table t2 has two entries (the
object identifiers of such entries are o21 and o22, and their object type is ot2). Moreover, the
table changetab hosts some changes happening to the entries of the other two tables. The first
change is related to the entry with object identifier o11 of the table t1, while the second change
is related to the entry with object identifier o21 of the table t2. In the proposed abstraction,
the object o11 is in relationship with o21, while o12 is in relationship with o22 (however, we
do not specify why they are in a relationship). Moreover, the transaction used to create the
first entry of t1 is TRANSACT1.

Def. 4 derives the GoR from the database abstraction.

Definition 4 (Graph of Relationships (GoR))Given a database DB as in Def. 3, the graph of
relationships is defined as the tuple GoR(DB) = (T , A, D, OT , T R, RT ,T , RT ,A, RA,D,

RT ,OT , RT ,T R, RT ,PR, RT ,FR) where:

• T is a set of tables (identifiers).
• A is a set of attribute names.
• D is a set of attribute domains.

123

842 Journal of Intelligent Information Systems (2023) 61:835–857

• OT is a set of object types.
• T R is a set of transactions.
• RT ,T = {(t1, t2) ∈ dom(tr) | |tr(t1, t2)| ≥ 1} is the set of connections between tables.
• RT ,A = {(t, a) ∈ T × A | ∃y∈te(t)a ∈ dom(π4(y))} is the set of connections between

tables and attributes.
• RA,D = {(a, d) ∈ A×D | attdomain(a) = d} is the set of connections between attribute

names and domains.
• RT ,OT = {(t, ot) ∈ T × OT | ∃y∈te(t)otyp(π1(y)) = ot} is the set of connections

between tables and object types.
• RT ,T R = {(t, tra) ∈ T × T R | ∃y∈te(t)y ∈ dom(transact) ∧ transact(y) = tra} is the set

of connections between tables and transactions.
• RT ,PR = {(t, pr) ∈ T × A | a ∈ primary(t)} is the set of connections between tables

and primary keys.
• RT ,FR = {(t, fr) ∈ T × A | a ∈ foreign(t)} is the set of connections between tables and

foreign keys.

The GoR helps in identifying the tables related to the different processes supported by the
information systems. For example, in SAP the tables related to the Procure-to-Pay process
(P2P) are interconnected in the GoR. To identify them, we could, for example, start from an
object type (EINKBELEG), that is connected to a set of tables of interest for a given process
(see Fig. 3) or from a subset of tables, which is then expanded following the edges of the
GoR.

3.2 Step 2: Formulating blueprints

Next, we introduce blueprints associating a table to a set of primitive events. A primitive
event consists of an activity, a timestamp, and a set of related objects, which describes what
happened, when it happened, and which is the set of (business) objects involved in the action.
For instance, a blueprint can map an entry (i.e., a table entry describing that on 1989-02-20
in a table called “BIRTHS”, and the attributes of such entry are BABYNAME corresponding
to Alex, and NURSE corresponding to Lucia) to an event (i.e., an event that a baby is born
on such date and with two related objects (baby Alex and nurse Lucia)). However, a database
entry can also be associated with zero, or more than one, events. Since a database entry is
always related to a single object, this means that the blueprint could associate several events
for each object.

Definition 5 (Blueprint) Given a database DB as in Def. 3, a blueprint is a function bluep :
T → P(Uact ×Utimest ×P(O)), that associates to the tables a set of primitive events having
an activity, a timestamp and a set of related objects.

The information obtained by applying the blueprint can be used to create an object-
centric event log, which can be analyzed with object-centric process mining tools. This will
be introduced in Subsection 3.3.

In the following two subsections, we introduce two different types of blueprints, with the
first not requiring any domain knowledge from the user, and the second requiring domain
knowledge.

123

Journal of Intelligent Information Systems (2023) 61:835–857 843

3.2.1 Basic blueprint

In this subsection, we introduce a basic blueprint that automatically associates a primitive
event to the table entries. This is done by exploiting the timestamp of insertion of the entry
(that is defined on the given abstraction), the object directly related to the entry, and the other
objects related to the given object in the database. Moreover, an activity is associated with
the table entry depending on the type of table. In Def. 6, we introduce a characterization of
some types of tables.

Definition 6 (Types of Tables) Given a database DB as in Def. 3, we identify different types
of tables:

• Change Tables (CT ⊆ T): tables recording changes happening in other tables. If t ∈ CT,
then t /∈ {π2(y) | y ∈ te(t)}.

• TransactionTables (TT⊆T): non-change tables recording different transactions executed
on their entries. Moreover, every entry is associated with a transaction. If t ∈ T T , then

|{transact(y) | y ∈ te(t) ∩ dom(transact)}| ≥ 1 ∧
∀y∈te(t)y ∈ dom(transact)

• Object tables (OT ⊆ T): tables not falling in any of the previous categories.

ConcerningSAPERP,wecouldmention a table for every type:CDHDR is a generic change
table; RBKP contains the transactions executed to verify the invoices (hence it is a transaction
table), VBAK contains information on different sales order documents without reporting the
transaction (hence it is an object table). In Def. 7, the basic blueprint is introduced. We see
that entries of a change table are associated with the label of the table on which the change
is applied; entries of a transaction table are associated with the executed transaction; entries
of a creation table are associated with the label of the table. Variations of the basic blueprint
are possible, for example considering the fields that were inserted/deleted/updated during the
change.

Definition 7 (Basic Blueprint) Given a database DB as in Def. 3, and a labeling function
label : T → U� (which can be the identity function), the basic blueprint is defined as Bbas :
T → P(Uact ×Utimest ×P(O)) such that for t ∈ T , Bbas(t) = {(a(y), ts(y), robj(y)) | y ∈
te(t)} where:

• ts(y) = π3(y)
• robj(y) = {o ∈ O | o = π1(y) ∨ ∃(t1,t2)∈T×T (π1(y), o) ∈ tr(t1, t2) ∨ (o, π1(y)) ∈ tr(t1, t2)}
•

a(y) =

⎧
⎪⎨

⎪⎩

“Changed” ⊕ label(π2(y)) if t ∈ CT .

“Executed” ⊕ transact(y) if t ∈ T T .

“Created” ⊕ label(t) if t ∈ OT .

In the example presented previously for Def. 3, the basic blueprint would return the
following primitive events:

• For t1:

– a(ent11) = “Created t1”, ts(ent11) = 2007 − 04 − 05, robj(ent11) = {o11, o21}
– a(ent12)= “Created t1”, ts(ent12) = 2007 − 04 − 07, robj(ent12) = {o12, o22}

• For t2:

– a(ent21) = “Created t2”, ts(ent21) = 2007 − 04 − 10, robj(ent21) = {o11, o21}

123

844 Journal of Intelligent Information Systems (2023) 61:835–857

– a(ent22) = “Created t2”, ts(ent22) = 2007 − 04 − 11, robj(ent22) = {o12, o22}
• For changetab:

• a(ent31) = “Changed t1”, ts(ent21) = 2007 − 04 − 15, robj(ent21) = {o11, o21}
• a(ent32) = “Changed t2”, ts(ent22) = 2007 − 04 − 20, robj(ent22) = {o11, o21}

We note that the set of related objects for ent31 and ent32 obtained using the basic blueprint
is suboptimal. Indeed, only o11 should be associated with the primitive event obtained from
ent31, and only o12 should be associated with the primitive event obtained from ent32.

3.2.2 Blueprint with domain knowledge

The basic blueprint introduced in the previous subsection works on the database abstraction
without any further domain knowledge. However, there are situations in which the basic
blueprint cannot capture the correlation between entries reported in different tables. A very
simple example is the situation in which an order is placed along with three items. This
would create one entry in the “orders” table and three entries in the “items” table. These four
different entries would be captured as four different primitive events using the basic blueprint.
If we are able to provide domain knowledge in the process, i.e., explicitly correlating the four
entries of the “orders” and “items” table, we would be able to capture the correct primitive
event.

We introduce the concept of domain knowledge in Def. 8. In this case, a view is used to
group the related entries of the database. Primitive events can be obtained from such groups
by considering as activity the concatenation of the names of the tables of the related entries,
as timestamp an aggregation of the timestamps of the related entries2, and as a set of related
objects the union between the objects involved in the related entries.

Definition 8 (Blueprint with Domain Knowledge) Given a database DB as in Def. 3, T E as
the set of table entries in DB, and a labeling function label : T → U� (which can be the
identity function), let V I EW (DB) ⊆ P(T E) be a collection of related entries specified by
the domain knowledge. Let t ∈ T be a table (which is arbitrarily used to represent the view).
The blueprint Bdomk : T → P(Uact × Utimest × P(O)) is defined such that:

• Bdomk(t ′) = ∅ if t ′ �= t
• Bdomk(t) = {(a(v), ts(v), robj(v)) | v ∈ VIEW} where:

– a(v) = “Updated”
⊕

y∈v label(π2(y)) is the concatenation of the names of the tables
of the related entries.

– ts(v) = miny∈vπ3(y) is the minimum of the timestamps of the related entries.
– robj(v) = {π1(y) | y ∈ v} is the union of the object identifiers of the related entries.

In the example presented previously for Def. 3, we could provide the following domain
knowledge of the relationships between the entries:

VIEW(DB) = {v1 = {ent11, ent21}, v2 = {ent12, ent22},
v3 = {ent31}, v4 = {ent32}}

In this situation, using the blueprint with domain knowledge, we obtain the following prim-
itive events:

2 An example could be the insertion of a purchase order in SAP. The order document is first created and then
filled with the items. This process could take some time for the operator, which could be 10 minutes. In this
case, the creation of the order starts at 09:00:00 and is completed at 09:10:00. Since we need to choose a
timestamp for the aggregated entry, we can choose 09:00:00 or 09:10:00.

123

Journal of Intelligent Information Systems (2023) 61:835–857 845

• a(v1) = “Updated t1 t2”, ts(v1) = 2007 − 04 − 05, robj(v1) = {o11, o21}
• a(v2) = “Updated t1 t2”, ts(v2) = 2007 − 04 − 07, robj(v2) = {o12, o22}
• a(v3) = “Updated t1”, ts(v3) = 2007 − 04 − 15, robj(v3) = {o11}
• a(v4) = “Updated t2”, ts(v4) = 2007 − 04 − 20, robj(v4) = {o12}

3.3 Step 3: Extracting object-centric event logs

In the previous subsection, the concept of blueprints has been introduced, which allows the
extraction of the information (activity, timestamp, set of related objects) about the events
recorded by the information system supported by the database. Here, we build an object-
centric event log on top of the basilar information extracted by the blueprint, associating
additional attributes at the object level. This is the final step of our approach, which translates
the contents of the database into the object-centric event log. Object-centric event logs can be
analyzedwith any application supporting object-centric processmining (for example, OCPM
https://www.ocpm.info).

The conversion to an object-centric event log is described in Def. 9. We see that for
every object, we pick as attribute map the attribute map of the related entry with the greatest
timestamp. This is done to pick the latest version of the object.

Definition 9 (Conversion to Object-Centric Event Log) Given a database DB as in Def. 3, a
blueprint B : T → P(Uact × Utimest × P(O)), the object-centric event log L = (E, AN ,

AV , OT , O, πact , πtime, πvmap, πomap, πotyp, πovmap,≤) is defined in which:

• AN = A.
• AV = {im(π4(y)) | ∃t∈T y ∈ te(t)}.
• πotyp = otyp.
• For any o ∈ O , πovmap(o) = π4(argmaxπ3

{y | ∃t∈T y ∈ te(t) ∧ π1(y) = o})
• For t ∈ T and (a, ts, robj) ∈ B(t), we define an event e with the following properties:

– πact (e) = a
– πtime(e) = ts
– πomap(e) = robj

We may be interested in applying Def. 9 only to a subset of tables of the database. This is
because, generally, we are not interested in generating an object-centric event log from the
entire database, but focusing on the tables related to a process (e.g., in SAP ERP we may
be interested in the P2P, O2C, and inventory management tables). For this, we introduce a
projection function at the database level in Def 10.

Definition 10 (Projecting Database) Given a database DB as in Def. 3 and a subset of tables
T ′ ⊆ T , we define the projected database DB ′ = (T ′, O, OT , A, D, T R, te′, tr|T ′×T ′ , otyp,
attdomain, transact′, primary|T ′ , foreign|T ′) for which given any t, t1, t2 ∈ T :

te′(t) =
{

{y ∈ te(t) | π2(y) ∈ T ′} if t ∈ T ′

∅ otherwise

transact′ = transact|∪t∈T ′ te′(t)

123

846 Journal of Intelligent Information Systems (2023) 61:835–857

4 Implementation on SAP ERP

In this section, we aim to extract an object-centric event log related to a process supported by
the SAP ERP system. This is done by building the database abstraction and then using the
information contained in the corresponding GoR to select the tables related to a given process
(O2C, P2P), perform preprocessing by limiting the allowed values for some attributes, and
eventually extract the object-centric event log.

4.1 Constructing the database abstraction

Here, we build a GoR on top of an instance of SAP ERP. This is done automatically (without
user interaction) in three different steps:

• Extraction of the set of nodes.
• Extraction of the set of arcs.
• Association of a set of table entries.
• Definition of the relationships between the different object identifiers.

Extraction of the set of nodes: the different categories of nodes, and some queries that
can be used to extract them, are presented in Table 2. In particular, five different categories
of nodes are identified: tables (such as EKKO, RBKP, BKPF), transactions (such as MIRO,
MR1M, VA21N), attributes (such as BELNR, which is the invoice number, and GJAHR,
which is the fiscal year), domains (such as a timestamp (DATUM), organizational resource
(USNAM)), and object types (for example, EINKBELEG corresponds to the purchase order
documents and VERKBELEG corresponds to the sales order document).

Extraction of the set of arcs: The different categories of arcs, and some queries that can
be used to extract them, are presented in Table 3. In particular, seven different categories of
arcs are identified: attribute arcs (connecting the tables to some attributes that aren’t primary
or foreign keys for the given table), primary key arcs (connecting the tables to some attributes
that are primary keys, but not foreign keys, for the given table), foreign key arcs (connecting
the tables to some attributes that are foreign keys), domain arcs (connecting the attributes to
the corresponding domain(s)), object type arcs (connecting the tables to the corresponding
object type(s)), transaction arcs (connecting the tables to the corresponding transaction(s)),
relationship arcs (connecting a table to another related table, i.e., two tables having a couple
of related objects).

Table entries association: here, we associate each table with its entries. A strategy for
this is to consider each row of each table in SAP as a different entry. In this case, the attributes
of the table entry and the transactions executed against it depend only on the attributes of
each row.

Table 2 SQL queries to extract different categories of nodes of the GoR built on top of SAP ERP

Node Type SQL query

tables SELECT DISTINCT TABNAME FROM DD02L

transactions SELECT DISTINCT TCODE FROM TSTCT

attributes SELECT DISTINCT FIELDNAME FROM DD03L

domains SELECT DISTINCT DOMNAME FROM DD03L

object types SELECT DISTINCT OBJECT FROM TCDOB

123

Journal of Intelligent Information Systems (2023) 61:835–857 847

Table 3 SQL queries to extract different categories of arcs of the GoR built on top of SAP ERP

Category SQL query

attribute arcs SELECT TABNAME,FIELDNAME FROM DD03L WHERE KEYFLAG!=’X’

AND CHECKTABLE=’ ’

primary key arcs SELECT TABNAME,FIELDNAME FROM DD03L WHERE KEYFLAG=’X’

AND CHECKTABLE=’ ’

foreign key arcs SELECT TABNAME,FIELDNAME FROM DD03L WHERE CHECKTABLE!=’ ’

domain arcs SELECT DISTINCT FIELDNAME,DOMNAME FROM DD03L

object type arcs SELECT DISTINCT TABNAME,OBJECT FROM TCDOB

transaction arcs SELECT DISTINCT TABNAME,TCODE FROM CDHDR a JOIN CDPOS b

ON a.MANDANT = b.MANDANT AND a.CHANGENR = b.CHANGENR

relationship arcs SELECT DISTINCT TABNAME,CHECKTABLE FROM DD03L

Relationships between different object identifiers: some tables in the graph can define
relationships between object identifiers. This is done by connecting all the object identifiers
referenced by the foreign keys of the rows of such a table.

4.2 Process identification and selection

The database abstraction built in the previous section is the starting point for the extraction of
an object-centric event log from an SAP ERP instance. SAP ERP contains different processes
(for example, Order-to-Cash and Procure-to-Pay) involving different tables. Therefore, a
subset of tables needs to be selected to extract an object-centric event log. A strategy to
choose the subset of tables is:

• Extracting the GoR from the database.
• Starting from a representative table for the process (for example, EKKO for Procure-
to-Pay) or to the tables belonging to a given object type (for example, EINKBELEG is
associated with different tables of the Procure-to-Pay process, including EKKO, EKET,
EKPA).

• Expanding the set of tables based on the relationships in the GoR.

The expansion step visits the relationships arcs having as the target node one of the tables
included in the initial set. Then, every source table of such arcs is included in the expanded
set of tables. This expansion step can be repeated several times, increasing the size of the set
of tables progressively.

Here, the user needs to choose the representative tables and evaluate which tables of the
proposed expansion could be interesting for the extraction.

4.3 Preprocessing the table entries

The preprocessing step helps to reduce the number of entries associated with the tables of the
provided set by checking the values allowed by some attributes. For example, in a Procure-
to-Pay process, we might be interested in considering only the orders having a given material
(in this case, the attribute is MATNR).

This step is fully manual (e.g., the user selects the values admitted for the attributes).

123

848 Journal of Intelligent Information Systems (2023) 61:835–857

4.4 Extracting an object-centric event log

The object-centric event log can be extracted as described in Def. 9 with the provision (from
the user) of a blueprint.

4.5 Tool support - extraction from SAP

After presenting the implementation of the database abstraction on top of SAP ERP, we
present the tool Interactive SAP Explorer. The tool encodes the database abstraction of SAP
in a labeled property graph inserted inside a graph database. Then, a web interface is provided
that permits the exploration of the relational structure of the SAP instance, the identification
of the most important processes, and the creation of a list of tables for extraction. The list of
tables is eventually provided to another component of the tool which creates an object-centric
event log from such a list of tables.

The process identification and selection (see Fig. 2) is implemented as follows:

• The elements of the relational structure of SAP that are important for the definition of a
set of classes related to a given process are imported inside a graph database (Neo4J).

– A graph database permits a faster exploration of the neighboring entities to a given
concept because the connections are referenced inside the node object.

– The chosen graph database (Neo4J) provides efficient implementations of layout
algorithms, which can be executed on a significant amount of nodes/edges to provide
an understandable graphical representation of the relational structure in SAP.

• Then, the identification process can be started. The first step is to identify an object type
of interest (for example, the purchase orders and sales orders). This is directly connected,
in the relational structure of SAP, to a set of tables (purchase orders are connected to the
tables EKKO, EKPO, EKPA, EKET, EKKN).

• The next step is expanding the aforementioned set of tables. Starting from the initial set
of tables, we identify the tables connected to the initial tables via the relational structure.
The union of these tables contains the set of events regarding a process in SAP. For

Fig. 2 GoR visualized using the tool support Interactive SAP Explorer

123

Journal of Intelligent Information Systems (2023) 61:835–857 849

example, by expanding the tables related to the purchase orders object type, we get
a set of tables including purchase requisitions (EBAN), goods/invoice receipts (EKBE),
accounting documents (BKPF), and other tables containing the events of the P2P process
in SAP.

Theprocess extraction component,whichuses the approachdescribed inBerti et al. (2021),
aims to extract an object-centric event log out of the SAP system based on the relevant tables
identified in the previous step. There is no need to specify any SQL query.

• A pre-processing step is performed to restrict the extraction to the desired configuration.
• The extraction of the object-centric event log is performed, with an output following the
OCEL specification http://www.ocel-standard.org/.

The source codes of the different components of the tool are available in the following
repositories:

• Layer of web services that can be run on IIS: this component can be down-
loaded at https://github.com/Javert899/interactive-extractor-from-sap-main/tree/main/
Backend-C%23/SAPExtractorAPI.

• Angular web application: this component can be downloaded at https://github.com/
Javert899/interactive-extractor-from-sap-main/tree/main/Frontend/InteractiveSAPExtra
ctor.

• Python web services for the extraction of the object-centric event log: this component
can be downloaded at https://github.com/Javert899/sap-extractor.

Note that there is a dependency on non-open source UI components which need to be
licensed to a single user. Therefore, the application is not directly runnable from the afore-
mentioned source repositories. Also, the extractor requires the availability of an SAP ECC
instance supported by the Oracle database and the installation of the Neo4J graph database,
which is released under a proprietary license.

The existing version of the tool can connect only to an SAP ECC instance supported by
the Oracle database. Despite this being a popular option, this limits the possibility to apply
the extractor in a generic setting. The extractor needs different components to run. This is
architecturally complicated and, therefore, highly dependent on the functioning of existing
queries/connectors on different versions of the software.

Our extractor overcomes the following limitations of existing SAP extractors; they are
process-specific, they rely on traditional event logs, and suffer from convergence/divergence
issues. However, there are remaining limitations, including the fairly basic definition of
activity/timestamp concepts. The choice of the graph database to navigate the relational
structure of SAP is advantageous in terms of performance.After the selection of a set of tables,
the extraction of an object-centric event log is left to the Python component, which executes
many SQL queries to load the information needed in memory. Therefore, the extractor is
limited by the amount of memory of the client.

4.6 Assessment - SAP ERP

In this section, we assess the proposed method’s utility and scalability in encoding the rela-
tional structure and extracting object-centric event logs from SAP ERP.

123

850 Journal of Intelligent Information Systems (2023) 61:835–857

Table 4 Extraction of the
different nodes of the GoR

Category Number of Nodes Query Time(s)

tables 662161 0.43 s

transactions 103060 0.80 s

attributes 934546 4.05 s

domains 115484 2.29 s

object types 1885 0.15 s

For every category,we report the number of nodes and the time in seconds
needed for the extraction

4.6.1 Scalability

In this subsection, we assess the scalability of the proposed approach. We saw in Section
4 that the process identification and selection, the pre-processing, and also the extraction
of the object-centric event logs are quite straightforward when the database abstraction is
built. Here, some measurements are done to assess the time needed to build the database
abstraction, which is the main source of computational complexity.

For our experiments, we used an educational instance of SAP ERP with demonstra-
tion data. While the number of different documents contained in this instance is limited, the
relational structure is quite complete. Therefore, the number of nodes/edges is quite represen-
tative. In the experimental results,we do not report the time of insertion in the graph (database)
but focus on the times needed to extract the information from the relational database support-
ing SAP ERP, and on the pre-processing time needed to identify the connections between
the concepts before the insertion in the graph database.

Tables 4 and 5 assess the retrieval of the nodes/edges of the GoR. The extraction of the
table-to-table relationships needs postprocessing since it is extracted in our implementa-
tion by associating the tables sharing a foreign key with a given table, and all the pairwise
relationships between the tables are considered. For these queries and postprocessing oper-
ations, the execution time is very good, and, therefore, the database abstraction is identified
in a reasonable time (24 seconds in our experiment).

Table 6 considers some tables that are important for the Procure-to-Pay process (purchase
requisitions, purchase orders, invoices, and payments) and the time needed to extract the
entries from such tables. The number of entries, and the execution time, are influenced by
the educational nature of our instance. Table 7 shows how much time is needed to extract

Table 5 Extraction of the arcs of the GoR

Arc Type Number of Arcs Query Time(s) Postprocessing Time(s)

attribute arcs (RT ,A) 9628155 6.71 s 0.0 s

domain arcs (RA,D) 1311489 9.64 s 0.0 s

object type arcs (RT ,OT) 4803 0.12 s 0.0 s

relationship arcs (RT ,T) 1671478 6.83 s 16.28 s

primary key arcs (RT ,PR) 412183 6.71 s 0.0 s

foreign key arcs (RT ,FR) 1931064 1.73 s 0.0 s

For every category, we report the number of arcs, the time in seconds needed for the extraction, and the
postprocessing time

123

Journal of Intelligent Information Systems (2023) 61:835–857 851

Table 6 Extraction of the table entries for some tables in our educational instance in SAP ERP

Table Description Num. Entries Query Time(s)

EBAN Purchase Requisitions (Master) 4281 0.18 s

EBKN Purchase Requisitions (Detail) 1042 0.15 s

EKKO Purchase Orders (Master) 16214 0.20 s

EKPO Purchase Orders (Detail) 30985 0.25 s

RBKP Invoices (Master) 5720 0.18 s

RSEG Invoices (Detail) 14802 0.22 s

BKPF Payments (Master) 664021 0.41 s

BSEG Payments (Detail) 1844532 1.25 s

For every table, we report the number of extracted entries and the time needed for the query

the relationships between object identifiers given the table containing such relationships. For
example, EKPO relates purchase requisitions and purchase orders, andRSEG relates invoices
and purchase orders. The majority of the time is spent finding the relationships between the
object identifiers; therefore, this is the biggest bottleneck in the overall process.

4.6.2 Quality of the database extraction

The initial step of the extraction is the process identification and selection step. In this step,
starting from an object type, a set of interconnected tables is identified, which is eventually
used to extract the object-centric event log. Here, we assess the set of interconnected tables
found starting from the purchasing order type (EINKBELEG). This object type is related to
the Procure-to-Pay process. Hence, we expect that in this step also the tables related to the
purchase requisitions, the invoices, and the payments are found. The subgraph of the GoR
represented in Fig. 3, shows that (as expected) the purchasing order type is interconnected
to tables of other object types, including invoices, payments, and purchase requisitions.

As we run the tool on our educational SAP ERP instance, the process identification step
identifies the object types described in Table 8. Proceedingwith the subsequent table selection
and extraction phases, we are able to connect every object type to a set of tables, and extract
events from such tables.

The main issue is the naming of the activities if the basic blueprint is applied. Purchase
orders are associated indistinctly with the same activity; invoices are associated with the

Table 7 Extraction of the relationships between object identifiers defined in some tables of our educational
instance in SAP ERP

Table Description Num. Relationships Query Time(s) Postprocessing Time(s)

EBKN Purchase
Requisitions
(Detail)

8964 0.15 s 0.06 s

EKPO Purchase Orders
(Detail)

748750 0.25 s 3.72 s

RSEG Invoices (Detail) 157086 0.22 s 0.58 s

BSEG Payments (Detail) 2323792 1.25 s 137.79 s

For every table, we report the number of relationships and the query/postprocessing times

123

852 Journal of Intelligent Information Systems (2023) 61:835–857

Fig. 3 Subgraph showing the tables related to the EINKBELEG object type (purchase orders)

transaction executed on the corresponding document; changes are associated with the set of
fields that are changedwithout comparing their values. Therefore, the naming of the activities
is of minor quality in comparison to a more ad-hoc extraction.

4.6.3 Extracted logs - O2C and P2P

In this section, we show some logs extracted on an educational instance of SAP ERP related
to the O2C process (VERKBELEG object type) and the P2P process (EINKBELEG object
type). The two object-centric event logs are in the JSON-OCEL implementation and can be
retrieved at the addresses:

• https://www.ocpm.info/o2c.jsonocel for the O2C process.
• https://www.ocpm.info/p2p.jsonocel for the P2P process.

We can visualize the two event logs inside the OC-PM tool https://www.ocpm.info/. In
particular, we provide the following links:

• https://www.ocpm.info/ocel.html?ocel=o2c.jsonocel for the O2C process.
• https://www.ocpm.info/ocel.html?ocel=p2p.jsonocel for the P2P process.

We see in Fig. 4 the document flow between different sales order documents3, and in Fig.
5 different stages of the purchasing process, including the creation of a purchase requisition
(taken from the table EBAN), the subsequent creation of a purchase order (taken from the
table EKKO) and invoice (taken from the table RBKP). A change activity (Change KEY) has
been recorded for the orders.

In general, the naming of the extracted activities is less understandable than the naming
conventions used in commercial SAP extractors. However, this comes for free with the basic
blueprint.

3 In this case, C, Q, R, J, U, M, 3 are identifiers of document types, which have been reported as raw identifiers
by the current version of the extractor.

123

Journal of Intelligent Information Systems (2023) 61:835–857 853

Table 8 Processes identified on the educational SAP ERP instance

Object type Number of events Number of tables Description of the process

VERKBELEG 412228 11 Management of Sales
Document (O2C)

IFLO 133263 3 PM: Functional Location

EINKBELEG 95490 6 Management of Purchasing
Document (P2P)

VTBFHA 77200 9 Treasury: Transaction

EQUI 66827 4 Equipment change document
objects

STUE 65430 10 Object list change documents

BUPA_BUP 45810 6 Business partner: Use of BUP

PROJ 26067 5 Project structure plan (PSP)

FTR_TCORT_CO 6586 8 Treasury: Correspondence

IMAK 4080 5 Appropriation requests with
variant

EHFND_REGLIST 1447 4 Regulatory List Revision

FARR_CONTRACT 521 4 Financial Accounting
Revenue Recognition

Fig. 4 Object-centric directly follows graph discovered on top of the log extracted for the O2C process

Fig. 5 Object-centric directly follows graph discovered on top of the log extracted for the P2P process

123

854 Journal of Intelligent Information Systems (2023) 61:835–857

5 Related work

In this section, we present some related work on the extraction and analysis of event data
from SAP ERP. This has been done using traditional event logs (with convergence/diverge
issues) or artifact-centric/object-centric paradigms.

Extraction of Traditional Event Logs from SAP ERP: SAP is an interesting system
for process mining since its widespread usage by companies and the unstructuredness of the
supported processes. Hence, several process mining publications targeted the extraction of
data from SAP ERP. In Ingvaldsen and Gulla (2007), a method is proposed for the extraction
and transformation of event logs from SAP ERP, which involves the manual specification of a
meta-model defining howevents, resources, and their relationships are stored. Themethod has
been applied toSAP systemsprovided byNorwegianAgricultural andMarketingCooperative
and Nidar. Some limitations exist: although all the information (transactional, master, and
ontological data) needed to extract meaningful process models is available, the transactions
are not mapped directly to the tasks. Moreover, it was not possible to map the extracted
transaction flow to the processes in the SAP reference model. In de Murillas et al. (2019), a
meta-model that can ingest the contents of a relational database and provide the possibility
to easily specify queries to produce an event log is described. The meta-model can be used
on a database supporting SAP ERP. However, this leads to the generation of traditional event
logs having convergence/divergence issues (van der Aalst, 2019) .

Extraction of Object-Centric Event Data from SAP ERP: Some approaches have
been proposed to avoid the drawbacks of using traditional event logs. In Lu et al. (2015),
the construction of artifact-centric models on top of SAP ERP is proposed, along with an
implementation in the popular ProM6.x framework. An artifact-centric model considers both
the lifecycle of an artifact (purchase order document, invoice document, payment document)
and the interaction between different artifacts. Some limitations exist: the approach requires
some non-trivial manual steps, and the discovery phase is limited to two artifacts. In Berti
et al. (2021), amethod to extract object-centric event logs starting fromSAPERP is proposed,
which is the foundation of the current paper. The proposed prototypal software is limited by
an in-memory approach and customization options.Moreover, some fundamental details (the
construction of the GoR and the extraction of the relationships between the table entries) have
been omitted for space reasons.

Process Mining Case Studies on top of SAP ERP: SAP ERP stores interesting but
company-critical data. Therefore, few case studies in applying process mining on top of SAP
ERP data have been proposed. In Fleig et al. (2018b), an application of process mining to
the Order-to-Cash and Procure-to-Pay processes of a manufacturing company is proposed.
An application of process mining to the Procure-to-Pay and Accounts Payable processes is
proposed in Stolfa et al. (2013); Stephan et al. (2021). The warehouse management process
is considered in ER et al. (2015). Also, Fleig et al. (2018a) discusses the implementation
of a decision support system, supported by process mining, for the standardization of ERP
systems.

Graph-Based Analyses of SAP ERP: The graph-based nature of event data is exploited
in Esser and Fahland (2021). Traditional (and object-centric) event logs can be encoded in
a graph database. This allows for queries that are unfeasible on top of relational databases
since edges are first-class entities in graph databases. An application to ERP systems (BPI
Challenge 2019 log) is proposed. The contribution in Fahland (2022) further exploits the
graph- and object-based nature of event data to build event knowledge graphs. This data
structure allows us to naturally model behavior over multiple entities as a network of events.

123

Journal of Intelligent Information Systems (2023) 61:835–857 855

6 Conclusion

In this paper, we introduced an approach for the extraction of an object-centric event log from
a relational database. This overcomes three challenges in the generation of such an event log:
i) the identification of the processes contained in the database; ii) the identification of the
tables of interest for such processes; iii) the generation of the events (activity, timestamp, set
of related objects). An implementation of the approach has been done on top of an educa-
tional instance of SAP ERP. In particular, a tool is offered to perform process identification,
selection, and extract an object-centric event log from SAP ERP. While commercial extrac-
tors have advanced activity concepts and greater scalability in comparison to the provided
implementation, they support only mainstream processes and need customization if the given
process is executed slightly differently, in contrast to our technique that can support automat-
ically many different processes. Moreover, having object-centric event logs as outputs helps
to avoid deficiency/convergence/divergence issues and have a more natural expression of the
event data. The assessment shows that the techniques proposed in the paper can be used in
reasonable time on an educational instance of SAP ERP. The challenge of the extraction lies
in the identification of a good set of tables covering a target process. Starting from an initial
set of tables connected to an object type, subsequent user interaction, and exploration of the
graph of relationships are needed to expand such a set. For example, in a procure-to-pay pro-
cess, the user initially selects the purchasing document (EINKBELEG) type, and then he gets
the possibility to select other object types (the invoice). Also, the definition of the translation
of the table entries to events (blueprint) influences the quality of the resulting event log. The
paper proposes a basic blueprint that can be applied to any type of table (a change table, a
transaction table, or a record table) but does not ensure an optimal naming for the activities,
and a blueprint based on domain knowledge. Overall, finding criteria to define blueprints
of good quality is an open research topic. The domain knowledge of the user is therefore
required in choosing the tables of interest for a given process (starting from the information
represented in the GoR), preprocessing the information, and defining the blueprint4. While
the implementation and evaluation are mainly focused on the SAP ERP system, the method
can be applied in principle to relational databases (provided that the abstraction in Def. 4
can be computed). A limitation of our approach is the lack of a direct translation from a
database concept to the given database abstraction. We only showcase the translation of an
SAP ERP schema (implemented on the Oracle relational database). While we expect that
the translation can be implemented on many other databases/schemas, the translation of the
current variety of database concepts (temporal, bi-temporal) could not be included in the
scope of the current paper. Moreover, the method does not assure to choose a complete set of
tables for a given process, or to avoid uninteresting tables, and the responsibility is left to the
user.

Acknowledgements We thank the Alexander von Humboldt (AvH) Stiftung.

Author Contributions Alessandro Berti worked on the tool support, the experimental setting, and the first
version of the text of the paper, while Gyunam Park, Majid Rafiei, and Wil van der Aalst contributed to
reviewing the paper and improving its quality.

Funding Alexander von Humboldt (AvH) Stiftung. Open Access funding enabled and organized by Projekt
DEAL.

Availability of supporting data Not Applicable.

4 A difference from Berti et al. (2021) is that there only an automatic blueprint was defined.

123

856 Journal of Intelligent Information Systems (2023) 61:835–857

Declarations

Ethical Approval Not Applicable.

Competing Interests The authors declare that they have no known competing financial interests or personal
relationships that could have appeared to influence the work reported in this paper.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included in the
article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is
not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

Berti, A., & van der Aalst, W. M. P. (2022). OC-PM: analyzing object-centric event logs and process models.
CoRR. https://doi.org/10.48550/arXiv.2209.09725. arXiv:2209.09725

Berti, A., Park, G., & Rafiei, M., et al. (2021). An event data extraction approach from SAP ERP for process
mining. In: J. Munoz-Gama, & X. Lu (Eds.), Process Mining Workshops - ICPM 2021 International
Workshops, Eindhoven, The Netherlands, October 31 - November 4, 2021, Revised Selected Papers,
Lecture Notes in Business Information Processing, (vol 433, pp. 255-267). Springer, New York City.
https://doi.org/10.1007/978-3-030-98581-3_19

de Murillas, E. G. L., Reijers, H. A., & van der Aalst, W. M. P. (2019). Connecting databases with process
mining: a meta model and toolset. Software & Systems Modeling 18(2), 1209–1247. https://doi.org/10.
1007/s10270-018-0664-7

deMurillas, E. G. L., van der Aalst,W.M. P., &Reijers, H. A. (2015). Processmining on databases: Unearthing
historical data from redo logs. In: H. R.Motahari-Nezhad, J. Recker, &M.Weidlich (Eds.), Business Pro-
cess Management - 13th International Conference, BPM 2015, Innsbruck, Austria, August 31- September
3, 2015, Proceedings, Lecture Notes in Computer Science, (vol 9253, pp. 367–385). Springer, New York
City. https://doi.org/10.1007/978-3-319-23063-4_25

Dibam, K., Batoulis, K., &Weidlich, M., et al. (2020). Extraction, correlation, and abstraction of event data for
process mining.Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery 10(3). https://
doi.org/10.1002/widm.1346

ER, M., Astuti, H. M., & Wardhani, I. R. K. (2015). Material movement analysis for warehouse business
process improvement with process mining: A case study. In: J. Bae, S. Suriadi, & L. Wen (Eds.), Asia
Pacific Business Process Management- Third Asia Pacific Conference, AP-BPM 2015, Busan, South
Korea, June 24-26, 2015, Proceedings, Lecture Notes in Business Information Processing, vol 219, pp.
115-127. Springer, New York City. https://doi.org/10.1007/978-3-319-19509-4_9

Esser, S., & Fahland, D. (2021). Multi-dimensional event data in graph databases. Journal on Data Semantics
10(1-2), 109–141. https://doi.org/10.1007/s13740-021-00122-1

Fahland, D. (2022). Process mining over multiple behavioral dimensions with event knowledge graphs. In:
W. M. P. van der Aalst, & J. Carmona (Eds.), Process Mining Handbook, Lecture Notes in Business
Information Processing, (vol 448, pp. 274-319). Springer, New York City. https://doi.org/10.1007/978-
3-031-08848-3_9

Fleig, C., Augenstein, D., & Maedche, A. (2018a). Designing a process miningenabled decision support
system for business process standardization in ERP implementation projects. In: M. Weske, M. Montali,
I. Weber, et al. (Eds.), Business Process Management Forum - BPMForum 2018, Sydney, NSW, Australia,
September 9-14, 2018, Proceedings, Lecture Notes in Business Information Processing, (vol 329, pp. 228-
244). Springer, New York City. https://doi.org/10.1007/978-3-319-98651-7_14

Fleig, C., Augenstein, D., &Maedche, A. (2018b). Process mining for business process standardization in ERP
implementation projects - an SAP S/4 HANA case study from manufacturing. In: W.M.P. van der Aalst,
F. Casati, R. Conforti, et al (Eds.) Proceedings of the Dissertation Award, Demonstration, and Industrial
Track at BPM 2018 co-located with 16th International Conference on Business Process Management

123

Journal of Intelligent Information Systems (2023) 61:835–857 857

(BPM 2018), Sydney, Australia, September 9-14, 2018, CEUR Workshop Proceedings, (vol 2196, pp.
149-155). CEUR-WS.org, Aachen. http://ceur-ws.org/Vol-2196/BPM_2018_paper_31.pdf

Ghahfarokhi, A. F., Park, G., & Berti, A., et al. (2021). OCEL: A standard for objectcentric event logs. In: L.
Bellatreche, M. Dumas, P. Karras, et al. (Eds.)New Trends in Database and Information Systems - ADBIS
2021 Short Papers, Doctoral Consortium and Workshops: DOING, SIMPDA, MADEISD, MegaData,
CAoNS, Tartu, Estonia, August 24-26, 2021, Proceedings, Communications in Computer and Information
Science, (vol 1450, pp. 169-175). Springer, New York City. https://doi.org/10.1007/978-3-030-85082-
1_16

Ingvaldsen, J. E., & Gulla, J. A. (2007). Preprocessing support for large scale process mining of SAP trans-
actions. In: A. H. M. ter Hofstede, B. Benatallah, & H. Paik (Eds.), Business Process Management
Workshops, BPM 2007 International Workshops, BPI, BPD, CBP, ProHealth, RefMod, semantics4ws,
Brisbane, Australia, September 24, 2007, Revised Selected Papers, Lecture Notes in Computer Science,
(vol 4928, pp. 30-41). Springer, New York City. https://doi.org/10.1007/978-3-540-78238-4_5

Lu, X., Nagelkerke, M., & van de Wiel, D., et al. (2015). Discovering interacting artifacts from ERP systems.
IEEE Transactions on Services Computing 8(6), 861–873. https://doi.org/10.1109/TSC.2015.2474358

Stephan, S., Lahann, J., & Fettke, P. (2021). A case study on the application of process mining in combination
with journal entry tests for financial auditing. In: 54th Hawaii International Conference on System
Sciences, HICSS 2021, Kauai, Hawaii, USA, January 5, 2021. (pp. 1-10) ScholarSpace, Denver. https://
hdl.handle.net/10125/71314

Stolfa, J., Kopka, M., & Stolfa, S., et al. (2013). An application of process mining to invoice verification
process in SAP. In: A. Abraham, P. Krömer, V. Snásel (Eds.), Innovations in Bio-inspired Computing and
Applications- Proceedings of the 4th International Conference on Innovations in Bio-Inspired Computing
and Applications, IBICA 2013, August 22 -24, 2013 - Ostrava, Czech Republic, Advances in Intelligent
Systems and Computing, (vol 237, pp. 61-74). Springer, New York City. https://doi.org/10.1007/978-3-
319-01781-5_6

van der Aalst, W. M. P. (2019). Object-centric process mining: Dealing with divergence and convergence in
event data. In: P. C. Ölveczky ,& G. Salaün (Eds.), Software Engineering and Formal Methods - 17th
International Conference, SEFM 2019, Oslo, Norway, September 18-20, 2019, Proceedings, Lecture
Notes in Computer Science, (vol 11724. pp. 3-25). Springer, New York City. https://doi.org/10.1007/
978-3-030-30446-1_1

van der Aalst, W. M. P., & Berti, A. (2020). Discovering object-centric petri nets. Fundam Informaticae
175(1-4), 1- 40. https://doi.org/10.3233/FI-2020-1946

123

