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Abstract. At the CAiSE conference in Heidelberg in 1999, Wasim Sadiq and
Maria Orlowska presented an algorithm to verify workflow graphs [19]. The algo-
rithm uses a set of reduction rules to detect structural conflicts. This paper shows
that the set of reduction rules presented in [19] is not complete and proposes
an alternative algorithm. The algorithm translates workflow graphs into so-called
WF-nets. WF-nets are a class of Petri nets tailored towards workflow analysis.
As a result, Petri-net theory and tools can be used to verify workflow graphs. In
particular, our workflow verification tool Woflan [21] can be used to detect design
errors. It is shown that the absence of structural conflicts, i.e., deadlocks and lack
of synchronization, conforms to soundness of the corresponding WF-net [2]. In
contrast to the algorithm presented in [19], the algorithm presented in this paper
is complete. Moreover, the complexity of this alternative algorithm is given.

1 Introduction

Business processes can be formally defined by process models that need to be correct
in order to not directly affect business objectives negatively. Proper definition, analy-
sis, verification, and refinement of these models is indispensable before enacting the
process model using a workflow management system. There are several aspects of a
process model including process structure, data flow, roles, application interface, tem-
poral constraints, and others. The techniques used in this paper, i.e., workflow graphs
[19, 20] and workflow nets [2], focus on the process structure. The structure of a work-
flow defines the way of execution, scheduling, and coordination of workflow tasks.

Various approaches to workflow modeling can be found in literature [2, 4, 7, 9, 12,
13, 16, 18, 19]. Most workflow management systems use a proprietary workflow lan-
guage. Despite the standardization efforts of the Workflow Management Coalition [13]
a “lingua franca” is still missing. The specification of Interface 1/WPDL is ambiguous
(no formal semantics is given) and its expressive power is limited. Moreover, the lan-
guages of many existing tools and Interface 1/WPDL do not provide starting point for
workflow analysis. Therefore, techniques such as workflow graphs [19, 20] and work-
flow nets [2] have been proposed. Workflow nets are based on Petri nets and the appli-
cation of these nets has been explored by many authors [1, 7]. Workflow graphs have
been introduced by Wasim Sadiq and Maria Orlowska as a more direct way of modeling
workflow processes [19, 20].

The design of large workflow specifications can result in hidden errors, which may
lead to undesirable execution of some or all possible instances of a workflow. These



problems should be corrected during the design phase rather than after deploying the
workflow application. Only limited work in literature covers workflow verification.
Some issues of workflow structure verification have been examined in [9] together with
complexity evaluations. In [18] the issue of correctness in workflow modeling has been
identified.

This paper shows that the set of reduction rules for the detection of structural con-
flicts presented by Wasim Sadiq and Maria Orlowska in [19] is not complete. Instead
an alternative algorithm is presented that translates workflow graphs into workflow
nets. Workflow nets are a subclass of Petri nets tailored toward workflow analysis [2].
Through this translation it is possible to verify workflow graphs using Petri-net-based
analysis tools such as Woflan [21]. In contrast to the technique described in [19], the
algorithm presented in this paper is complete. Moreover, the computational complex-
ity of our approach is at least as good as other analysis techniques specifically tailored
towards workflow graphs [14].

In this paper we first present the definition of a workflow graph together with its con-
sistency and correctness criteria. A counter example showing that the reduction rules in
[19] are not complete and an alternative algorithm and its complexity [14], are presented
in Section 3. Section 4 defines Petri nets, workflow nets, and verification criteria. Sec-
tion 5 outlines an algorithm for mapping workflow graphs onto workflow nets. Woflan,
a tool for analyzing workflow process definitions specified in terms of Petri nets is de-
scribed in Section 6. Section 7 draws the conclusion that the algorithm presented in this
paper is complete, efficient, and allows for more advanced constructs such as arbitrary
cycles.

2 Workflow graphs

Figure 1 shows process modeling objects that may be nodes or edges. The control flow
relation links two nodes in a graph and shows the execution order. A node can either
be a task or a choice/merge coordinator. A task stands for work required to reach an
objective and is used to build forks and synchronizers. Choice/merge coordinators are
represented by a circle. In a workflow graph two nodes are linked together by a control
flow relation represented by a directed edge. It shows the execution order between start
tasks and end tasks of a workflow graph.

A sequence consists of a node that has an incoming and an outgoing arc.
A fork node allows independent execution between concurrent paths within a work-

flow graph and is modeled by connecting two or more outgoing control flow relations
to a task.

A synchronizer node with more than one incoming control flow relation is applied
to synchronize such concurrent paths. A synchronizer waits until all incoming control
flow relations have lead into the task.

A choice node has two or more outgoing control flow relations resulting in mutually
exclusive alternative paths. This ensures that only one alternative outgoing control flow
relation is selected at run-time.

A merge node is the counterpart of the choice node and has two or more incoming
control flow relations. It joins mutually exclusive alternative paths into one path.
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Fig. 1. Process modeling objects

Definition 1 (Workflow graph). A workflow graph is a tuple WG = (N;T; T S; TE;

C; F ):

- N is a finite set of nodes,
- T ⊆ N is a finite set of tasks,
- T S ⊆ T is a finite set of start tasks,
- TE ⊆ T is a finite set of end tasks,
- C ⊆ N is a finite set of choice/merge coordinators,
- N = T ∪ C, and
- F ⊆ N ×N is the control flow relation.

The relation F defines a directed graph with nodes N and arcs F . In this directed
graph, we can define the input nodes and the output nodes of a given node. •x = {y ∈
N | yFx} is the set of input nodes of x ∈ N and x• = {y ∈ N | xFy} is the set of
output nodes of x.

Figure 2 shows a workflow graph in the left column. The nodes are represented
by rectangles and circles where the first stand for tasks and the latter for choice/merge
coordinators. C1 and C2 are choice coordinators. C3 is a merge coordinator. The start
and end tasks of the workflow graph are marked as T1 and T9 respectively. Control flow
relations are modeled as arcs between the nodes. Task T2 serves as an input node for T4
while the latter task represents an output node of T2.

Definition 2 allows for graphs which are unconnected, without start/end tasks, tasks
without any input and output, etc. Therefore we need to restrict the definition to consis-
tent workflow graphs.

Definition 2 (Consistent). A workflow graph WG = (N;T; T S; TE; C; F ) is consis-
tent if:

- for all t ∈ T : •t = ∅ if and only if t ∈ T S,
- for all t ∈ T : t• = ∅ if and only if t ∈ T E,
- (N;F ) is a directed acyclic graph, and



C1

T3T2

T5T4

T6

C2

T8T7

T9

C3

Workflow Graph Instance Subgraphs

C1

T2

T5T4

T6

C3

C1

T3

C2

T7

C3

C1

T3

C2

T8

C3

T9 T9 T9

T1 T1 T1 T1

Fig. 2. A workflow graph (left) and its three instance subgraphs (right)

- every node is on a path from some start task to some end task, i.e., for all n ∈ N :
there is a ts ∈ TS and a te ∈ TE such that tsF ∗n and nF ∗te.

In the remainder we only consider consistent workflow graphs. Moreover, without loos-
ing generality we assume that both T S and TE are singletons, i.e., T S

= {ts} and
TE

= {te}.
We need to define the concept of instance subgraphs before presenting the correct-

ness criteria for workflow graphs. The right column of Figure 2 shows which possible
paths the execution of the workflow graph in the left column might take. Choice coor-
dinator C1 can lead a token to the fork T2 or to task T3. In the latter case the choice
coordinator C2 leads to the creation of two possible paths of workflow instances. Thus,
each of these instance subgraphs represents a subset of workflow tasks that may be
executed for a particular instance of a workflow. They can be generated by visiting a
workflow graph’s nodes on the semantic basis of underlying modeling structures. The
subgraph representing the visited nodes and flows forms an instance subgraph.

The semantics of a workflow graph are given by the set of instance subgraphs. Note
that instance subgraphs correspond to the concept of runs/occurrence graphs of Petri
nets [17]. The concept of instance subgraphs allows us to define the following notion of
correctness.

Definition 3 (Correctness criteria). A workflow graph is correct if and only if there
are no structural conflicts:

- Correctness criterion 1
Deadlock free workflow graphs: A workflow graph is free of deadlock structural
conflicts if it does not generate an instance subgraph that contains only a proper
subset of the incoming nodes of an and-join node (i.e., synchronizer).
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- Correctness criterion 2
Lack of synchronization free workflow graphs: A workflow graph is free of lack of
synchronization structural conflicts if it does not generate an instance subgraph
that contains more than one incoming node of an or-join node (e.g., a merge).

It has been mentioned that all split structures introduced after a start task must be closed
through a join structure before reaching the final structure. Thus, a synchronizer is used
for joining fork-split paths and a merge for choice coordinator-split paths. Figure 3
shows examples for a deadlock error and lack of synchronization. Joining the choice
coordinator C1 with the synchronizer T6 leads to a deadlock. Similarly, joining the
multiple paths leaving start task T1 with the merge coordinator C2 introduces a lack
of synchronization conflict. It means that the merge coordinator results in unintentional
multiple activation of nodes that follow the merge coordinator.

3 An algorithm and a counter example

As mentioned in Section 1, in [19] a set of reduction rules is presented. The authors
claim that, using these rules, a correct workflow graph can be reduced to an empty
workflow graph, whereas an incorrect workflow graph cannot be reduced to that extent.
In [14], a counter example is presented showing that some correct workflow graphs
cannot be reduced to the empty workflow graphs. This section briefly discusses the set
of reduction rules and presents another counter example.

The set of reduction rules as presented in [19] consist of four rules: the sequential
rule, the adjacent rule, the closed rule, and the overlapped rule. [20] claims that the
complexity of applying these four rules is O(n2

), where n = |N |+ |F |.
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Fig. 4. Reduction rules of [19]

– The sequential rule reduces sequential nodes, that is, nodes that have exactly one
input node and one output node. A sequential node is reduced by removing it from
the graph and adding an arc from its input node to its output node.

– The closed rule collapses multiple arcs between nodes of the same type to a sin-
gle arc. Note that this rule is slightly out of the ordinary, because in a workflow
graph (which is basically a directed acyclic graph [19]) multiple arcs cannot exist.
Evidently, in a reduced workflow graph multiple arcs are allowed to exist.

– The adjacent rule reduces adjacent nodes, that is, nodes that have exactly one input
node or one output node, and where the input node or output node is of the same
type. An adjacent node is reduced by removing it from the graph and adding arcs
connecting all its input nodes to all its output nodes.

– The overlapped rule reduces a subgraph in between a coordinator and a task, pro-
vided that the coordinator has only tasks as output nodes, the task has only coor-
dinators as input nodes, every input node of the task is an output node for every
output node of the coordinator, and every output node of the coordinator is an in-
put node of the task. This subgraph is reduced by removing all output nodes of the
coordinator and all input nodes of the task from the graph and adding an arc from
the coordinator to the task.

Figure 4 visualizes the reduction rules proposed by [19]. The upper row shows workflow
graph constructs before the application of a particular reduction rule. The lower row
displays the results while the columns separate the different rules.

Although [19] claims otherwise, these rules are not complete. Figure 5 shows a
correct workflow graph that cannot be reduced by the rules. This incompleteness was
already signaled in [14], where another counter example is presented. [14] introduces
three additional rules for replacing the overlapped rule, and claims that using the six
remaining rules (i) the set of reduction rules is complete, and (ii) the complexity is
O(n2:m2

), where n = |N | + |F | and m = |N |. Whereas the counter example shown
in [14] only needs two of the three replacement rules (leaving the third rule a bit as a
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surprise), our counter example needs all three replacement rules to reduce the workflow
graph to the empty graph.

4 Workflow nets

The classical Petri net is a directed bipartite graph with two node types called places
and transitions. The nodes are connected via directed arcs. Connections between two
nodes of the same type are not allowed. Places are represented by circles and transitions
by rectangles.

Definition 4 (Petri net). A Petri net is a triple (P; T; F ):

- P is a finite set of places,
- T is a finite set of transitions (P ∩ T = ∅),
- F ⊆ (P × T ) ∪ (T × P ) is a set of arcs (flow relation)

A place p is called an input place of a transition t iff there exists a directed arc from p

to t. Place p is called an output place of transition t iff there exists a directed arc from
t to p. We use •t to denote the set of input places for a transition t. The notations t•,
•p and p• have similar meanings, e.g., p• is the set of transitions sharing p as an input
place. Note that we do not consider multiple arcs from one node to another.

At any time a place contains zero or more tokens, drawn as black dots. The state,
often referred to as marking, is the distribution of tokens over places. We will represent



a state as follows: 1p1 + 2p2 + 1p3 + 0p4 is the state with one token in place p1, two
tokens in p2, one token in p3 and no tokens in p4. We can also represent this state
as follows: p1 + 2p2 + p3. A Petri net PN and its initial marking M are denoted by
(PN ;M)

The number of tokens may change during the execution of the net. Transitions are
the active components in a Petri net: they change the state of the net according to the
following firing rule:

(1) A transition t is said to be enabled iff each input place p of t contains at least one
token.

(2) An enabled transition may fire. If transition t fires, then t consumes one token from
each input place p of t and produces one token for each output place p of t.

The firing rule specifies how a Petri net can move from one state to the next one. If at
any time multiple transitions are enabled, a non-deterministic choice is made. A firing
sequence � = t1t2 : : : tn is enabled if, starting from the initial marking, it is possible
to subsequently fire t1; t2; : : : tn. A marking M is reachable from the initial marking
if there exists a enabled firing sequence resulting in M . Using these notions we define
some standard properties for Petri nets.

Definition 5 (Live). A Petri net (PN ;M) is live iff, for every reachable state M ′ and
every transition t there is a state M ′′ reachable from M ′ which enables t.

Definition 6 (Bounded, safe). A Petri net (PN ;M) is bounded iff for each place p

there is a natural number n such that for every reachable state the number of tokens in
p is less than n. The net is safe iff for each place the maximum number of tokens does
not exceed 1.

Definition 7 (Strongly connected). A Petri net is strongly connected iff, for every pair
of nodes (i.e., places and transitions) x and y, there is a path leading from x to y.

Free-choice nets from an important subclass of Petri nets for which strong theoretical
results exist. In a free-choice net choice and synchronization are separated.

Definition 8 (Free-choice). A Petri net is a free-choice Petri net iff, for every two tran-
sitions t1 and t2, •t1 ∩ •t2 �= ∅ implies •t1 = •t2.

A Petri net which models the control-flow dimension of a workflow, is called a Work-
Flow net (WF-net). It should be noted that a WF-net specifies the dynamic behavior of
a single case in isolation.

Definition 9 (WF-net). A Petri net PN = (P; T; F ) is a WF-net (Workflow net) if and
only if:

(i) There is one source place i ∈ P such that •i = ∅.
(ii) There is one sink place o ∈ P such that o• = ∅.

(iii) Every node x ∈ P ∪ T is on a path from i to o.



A WF-net has one input place (i) and one output place (o) because any case handled
by the procedure represented by the WF-net is created when it enters the workflow
management system and is deleted once it is completely handled by the workflow man-
agement system, i.e., the WF-net specifies the life-cycle of a case. The third requirement
in Definition 9 has been added to avoid ‘dangling tasks and/or conditions’, i.e., tasks
and conditions which do not contribute to the processing of cases.

The three requirements stated in Definition 9 can be verified statically, i.e., they
only relate to the structure of the Petri net. However, there is another requirement which
should be satisfied:

For any case, the procedure will terminate eventually and the moment the pro-
cedure terminates there is a token in place o and all the other places are empty.

Moreover, there should be no dead tasks, i.e., it should be possible to execute an arbi-
trary task by following the appropriate route though the WF-net. These two additional
requirements correspond to the so-called soundness property.

Definition 10 (Sound). A procedure modeled by a WF-net PN = (P; T; F ) is sound if
and only if:

(i) For every state M reachable from state i, there exists a firing sequence leading
from state M to state o.

(ii) State o is the only state reachable from state i with at least one token in place o.
(iii) There are no dead transitions in (PN ; i).

Note that the soundness property relates to the dynamics of a WF-net. The first re-
quirement in Definition 10 states that starting from the initial state (state i), it is always
possible to reach the state with one token in place o (state o). If we assume a strong
notion of fairness, then the first requirement implies that eventually state o is reached.
Strong fairness means in every infinite firing sequence, each transition fires infinitely
often. The fairness assumption is reasonable in the context of workflow management:
All choices are made (implicitly or explicitly) by applications, humans or external ac-
tors. Clearly, they should not introduce an infinite loop. Note that the traditional notions
of fairness (i.e., weaker forms of fairness with just local conditions, e.g., if a transition
is enabled infinitely often, it will fire eventually) are not sufficient. See [2, 11] for more
details. The second requirement states that the moment a token is put in place o, all the
other places should be empty. The third requirement rules out dead parts.

Given a WF-net PN = (P; T; F ), we want to decide whether PN is sound. In
[1] we have shown that soundness corresponds to liveness and boundedness. To link
soundness to liveness and boundedness, we define an extended net PN = (P ; T ; F ).
PN is the Petri net obtained by adding an extra transition t∗ which connects o and i.
The extended Petri net PN = (P ; T ; F ) is defined as follows: P = P , T = T ∪ {t∗},
and F = F ∪ {〈o; t∗〉; 〈t∗; i〉}. In the remainder we will call such an extended net
the short-circuited net of PN . The short-circuited net allows for the formulation of the
following theorem. Note that PN is strongly connected.

Theorem 1. A WF-net PN is sound if and only if (PN ; i) is live and bounded.



Proof. See [1]. ��
This theorem shows that standard Petri-net-based analysis techniques can be used to
verify soundness.

For a complex WF-net it may be intractable to decide soundness. (For arbitrary
WF-nets liveness and boundedness are decidable but also EXPSPACE-hard, cf. Cheng,
Esparza and Palsberg [5].)

Free-choice Petri nets have been studied extensively (cf. Best [3], Desel and Es-
parza [6], Hack [8]) because they seem to be a good compromise between expressive
power and analyzability (cf. Definition 8). It is a class of Petri nets for which strong
theoretical results and efficient analysis techniques exist. For example, the well-known
Rank Theorem (Desel and Esparza [6]) enables us to formulate the following corollary.

Corollary 1. The following problem can be solved in polynomial time.
Given a free-choice WF-net, to decide if it is sound.

Proof. Let PN be a free-choice WF-net. The short-circuited netPN is also free-choice.
Therefore, the problem of deciding whether (PN ; i) is live and bounded can be solved
in polynomial time (Rank Theorem [6]). By Theorem 1, this corresponds to soundness.

��
Corollary 1 shows that, for free-choice nets, there are efficient algorithms to decide
soundness.

5 Mapping workflow graphs onto WF-nets

In this section we introduce an approach that maps workflow graphs onto WF-nets. This
way Petri-net-based analysis techniques can be used to verify workflow graphs. Figure
6 visualizes the algorithm for mapping workflow graphs to Petri nets. Tasks are mapped
onto transitions and choice/merge coordinators are mapped onto places. In row a) of
Figure 6 the easiest case of mapping a workflow net to a Petri net can be seen. Whenever
a task is directly followed by a choice/merge coordinator then no mapping adjustments
are required. In Row b) a place has to be put between two directly connected tasks. It is
marked with p and the task labels in brackets.

If two choice/merge coordinators are connected to each other as in row c) of Fig-
ure 6 then a transition must be put between the corresponding places. The place labels
refer to the names of both coordinators. Row d) of the workflow graph column shows
a coordinator connected to a task. In order to achieve Petri net mapping, an additional
transition and place have to be added. Since the choice is made in the coordinator, a
silent transition needs to be introduced. The following definition formatices the map-
ping of workflow graphs onto Petri nets.

Definition 11 (Petrify). Let WG = (N;T; T S; TE; C; F ) be a consistent workflow
graph with a unique source and sink node. The function petrify maps a workflow graph
onto a Petri net PN = (P ′; T ′; F ′

) where:

- P ′
= C ∪ {i; o} ∪ {p(x;y) | xFy ∧ y ∈ T},
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- T ′
= T ∪ {t(x;y) | xFy ∧ x ∈ C},

- F ′
= {(i; t) | t ∈ TS} ∪ {(t; o) | t ∈ TE} ∪ {(t; c) | tF c ∧ t ∈ T ∧ c ∈ C} ∪S{{(c; t(c;t)); (t(c;t); p(c;t)); (p(c;t); t)} | cF t ∧ c ∈ C ∧ t ∈ T} ∪S{{(c; t(c;c′)); (t(c;c′); c′)} | cFc′ ∧ c ∈ C ∧ c′ ∈ C} ∪S{{(t; p(t;t′)); (p(t;t′); t′)} | tF t′ ∧ t ∈ T ∧ t′ ∈ T}

Function petrify results in a Petri net satisfying a number of properties as mentioned
by the following theorem.

Theorem 2. Let WG be a consistent workflow graph and petrify(WG) = PN .

- PN is a WF-net,
- PN is free-choice,
- PN is sound if and only if WG has no structural conflicts.

Proof. It is easy to show that PN is a WF-net. There is one source place i and one
sink place o. These places are explicitly added by the function petrify . Moreover, every
node is on a path from i to o since in the corresponding workflow graph all nodes are
on a path from start to end and all connections are preserved by the mapping given in
Definition 11.

To show that PN is free-choice, we consider all places with multiple output arcs.
These places all correspond to choice/merge coordinators. All additional places added
by function petrify have only output arc (except o which has none). All outgoing arcs
of a choice/merge coordinators are mapped onto a transition with only one input place.
Therefore, PN is free-choice.

Consider definitions 3 and 10. Clearly, the two requirements stated in Definition 3
correspond to the first two requirements of Definition 10. Remains to prove that the
absence of structural conflicts in WG implies that there are no dead transitions in PN .
This is a direct result of Proposition 13 in [1] which demonstrates that for free-choice
nets the first two requirements imply the third one. ��
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Fig. 7. Three WF-nets corresponding to the three workflow graphs shown in Figure 3

Corollary 2. The following problem can be solved in polynomial time.
Given a consistent workflow graph, to decide if it is correct.

Proof. For free-choice WF-nets, soundness can be checked in polynomial time (Corol-
lary 1). The mapping given in Definition 11 can also be done in polynomial time. There-
fore, correctness of a consistent workflow graph can be verified in polynomial time. ��

The complexity of the algorithm presented by Sadiq and Orlowska is O(n 2
) where

n = |N | + |F | [20]. However, this algorithm does not reduce all workflow graphs
without structural conflicts as indicated in Section 3. Lin, Zhao, Li, and Chen [14]
claim to have solved this problem. The complexity of the algorithm presented in [14] is
O(n2:m2

) where n = |N |+ |F | and m = |N |.
In [10] an algorithm is given which decides whether a strongly-connected free-

choice net is live and bounded. The complexity of this algorithm is O(p 2:t) where p is
the number of places and t the number of transitions. This algorithm is an improvement
of the approach based on the Rank theorem and uses state-machine decomposability
by computing a sufficient set of minimal deadlocks to cover the net. This result can be
used to analyze workflow graphs efficiently as indicated by the following theorem.

Theorem 3. Let WG = (N;T; T S; TE; C; F ) be a consistent workflow graph. An
upper bound for the complexity of checking whether WG has no structural conflicts



through the construction of the corresponding WF-net and verifying whether the short-
circuited net is live and bounded is O(k2:l) where k = |C|+ |F | and l = |T |+ |F |.
Proof. petrify(WG) = PN = (P ′; T ′; F ′

). The number of places in the short-circuited
net is |P ′| < |C|+2+ |F |. The number of transitions is |T ′| < |T |+ |F |+1. The com-
plexity of the algorithm presented in [10] is O(p2:t) where p is the number of places
and t the number of transitions. Hence, deciding whether PN is sound has a complexity
of O(k2:l) where k = |C| + |F | and l = |T | + |F |. The complexity of transforming
WG into PN is smaller. Therefore, the overall complexity is O(k 2:l). ��
This result shows that our approach is at least as good as the algorithm presented in [14].
The complexity of the algorithm presented in [14] is O(n 2:m2

) where n = |N | + |F |
and m = |N |. If we assume that the number of arcs in a workflow graph (i.e., |F |) is
of the same order of magnitude as the number of nodes (i.e., |N |), then the complexity
of the algorithm presented in [14] is O(n2:m2

) = O(x4) and the complexity of the
algorithm presented in this paper is O(k2:l) = O(x3) where x = |N |. If we assume that
the number of arcs is quadratic in terms of the number of nodes, then the complexity
of the algorithm presented in [14] is O(n2:m2

) = O(x6) and the complexity of the
algorithm presented in this paper is O(k2:l) = O(x6) where x = |N |. This means
that only in a worst-case scenario where the graph is dense, the complexities of both
algorithms are comparable. If the graph is not dense, the complexity of our algorithm is
significantly better.

6 Diagnostics and Petri-net-based reduction rules

Theorem 3 shows that Petri-net can be used to analyze workflow graphs efficiently.
However, one of the features of the reduction rules given in [14, 19, 20] is the fact that
useful error diagnostics are given in the form of an irreducible graph. In this section, we
briefly discuss the diagnostics provided by our Petri-net-based verification tool Woflan.
Moreover, we also provide pointers to Petri-net-based reduction rules. These reduction
rules are more powerful than the rules given in [14, 19, 20].

Woflan (WOrkFLow ANalyzer) has been designed to verify process definitions
which are downloaded from a workflow management system [21]. At the moment
there are several workflow tools that can interface with Woflan, among which Staffware
(Staffware plc., Berkshire, UK) and COSA (COSA Solutions/ Software-Ley, Pullheim,
Germany) are the most prominent ones. The BPR tool Protos (Pallas Athena, Plas-
molen, The Netherlands) can also interface with Woflan. If the workflow process def-
inition is not sound, Woflan guides the user in finding and correcting the error. Since
a detailed description of the functionality of Woflan is beyond the scope of this paper,
we will use the example WF-nets shown in Figure 7 and the WF-net shown in Figure 8,
which corresponds to the counter example shown in Figure 5, to illustrate the features
of Woflan. For the Deadlock WF-net, Woflan gives the following diagnostics:

– The net is a WF-net, but is not coverable by so called S-components [6]. Because
we know that the WF-net is (by construction) free-choice, we deduce (see [21])
that the WF-net is not sound, and thus that the corresponding workflow graph (see
Figure 3) is not correct.



– Woflan points out the fact that a PT-handle exists in the WF-net: Starting from place
C1 there exist two mutual disjoint paths to transition T6. This clearly indicates the
source of the error.

The Lack of Synchronization WF-net is diagnosed by Woflan as follows:

– This net is also a WF-net, and like the Deadlock WF-net, it cannot be covered by
S-component. Hence, this WF-net is also not sound.

– In this net, a TP-handle exists: Starting from transition T1 there exists mutual dis-
joint paths to the place C2. Once more, this clearly indicates the source of the error.

Finally, both the correct WF-net shown in Figure 7 and the WF-net shown in Figure 8
are diagnosed as follows:

– These nets are WF-nets, and they can be covered by S-components. As a result, no
unbounded places exist and these WF-nets can still be sound.

– All transitions are live, hence the WF-nets are sound.

Note that the WF-net shown in Figure 8 corresponds to the workflow graph shown in
Figure 5, i.e., the counter example. This graph can not be reduced by the technique
presented in [19, 20]. However, it can be analyzed by Woflan.
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Fig. 8. Counter example mapped to workflow net

Woflan also supports a set of reduction rules. Before the analysis of soundness starts,
the reduction rules presented in [15] can be used to reduce the size of the WF-net. These



rules have be added to improve the analysis of large models. Note that the set of rules
described in [15] is not complete. Therefore, there are sound WF-nets that cannot be re-
duced to the “empty net”. However, for live and bounded free-choice net there is a com-
plete set of reductions rules {�A; �S ; �T }, cf. [6]. Rule �A is an abstraction rule which
replaces place/transition pairs by arcs. Rules �S and �T are linear dependency rules
which remove redundant places respectively transitions. As is shown in [6] these rules
can be used to reduce any live and bounded free-choice net into a net consisting of one
place and one transition. This means that the short-circuited Petri-net representation of
any correct workflow graph can be reduced into a net PN = ({p}; {t}; {〈p; t〉; 〈t; p〉})
in polynomial time. If the workflow graph is not correct, the reduction will stop before
reaching the net consisting of one place and one transition. This will provide similar di-
agnostics as in [14, 19, 20]. However, (1) only three reduction rules are needed (instead
of seven), (2) the reduction applies to a larger class of workflow processes (e.g., having
loops), and (3) the rules are more compact and their correctness can be verified using
standard Petri-net theory. Currently we are investigating if we can map the seven rules
of [14] onto {�A; �S ; �T }.

7 Conclusion

In this paper, we presented an alternative analysis technique for the verification of work-
flow graphs as introduced by Wasim Sadiq and Maria Orlowska [19, 20]. We presented
a counter example showing that the reduction rules given in [19, 20] cannot be applied.
Moreover, we provided an alternative approach for identifying structural conflicts with
an algorithm who’s complexity is O(k2:l) where k = |C| + |F | and l = |T | + |F |.
This algorithm outperforms the algorithm presented in [14] if the workflow graph is
not dense. This is remarkable since the techniques presented in [19, 20, 14] are tailored
towards workflow graphs while our approach is based on standard Petri-net-based tech-
niques.

Within a complexity range that is at least as good as the approach presented in
[14], the algorithm in this paper can handle workflow graphs with cycles and more
advanced synchronization constructs (as long as they correspond to free-choice nets).
The mapping presented in this paper, allows for the verification using our analysis tool
Woflan. Woflan provides high-quality diagnostics in case of an error and allows for a
smooth transition to more expressive models, e.g., workflow languages having non-free
choice constructs.
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