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Abstract. Contemporary workflow management systems are driven by explicit
process models, i.e., a completely specified workflow design is required in or-
der to enact a given workflow process. Creating a workflow design is a compli-
cated time-consuming process which is often hampered by the limitations of the
workflow language being used. To identify the differences between the various
languages, we have collected a fairly complete set of workflow patterns. Based
on these patterns we have evaluated 15 workflow products and detected consid-
erable differences in expressive power. Languages based on Petri nets perform
better when it comes to state-based workflow patterns. However, some patterns
(e.g. involving multiple instances, complex synchronizations or non-local with-
drawals) are not easy to map onto (high-level) Petri nets. These patterns pose
interesting modeling problems and are used for developing the Petri-net-based
language YAWL (Yet Another Workflow Language).

1 Introduction

Workflow technology continues to be subjected to on-going development in its tra-
ditional application areas of business process modeling and business process coor-
dination, and now in emergent areas of component frameworks and inter-workflow,
business-to-business interaction. Addressing this broad and rather ambitious reach, a
large number of workflow products, mainly workflow management systems (WFMS),
are commercially available, which see a large variety of languages and concepts based
on different paradigms (see e.g. [1, 4, 12, 19, 23, 28, 31, 30, 40, 47]).

As current provisions are compared and as newer concepts and languages are em-
barked upon, it is striking how little, other than standards glossaries, is available for
central reference. One of the reasons attributed to the lack of consensus of what con-
stitutes a workflow specification is the variety of ways in which business processes are
otherwise described. The absence of a universal organizational “theory”, and standard
business process modeling concepts, it is contended, explains and ultimately justifies
the major differences in workflow languages - fostering up a “horses for courses” di-
versity in workflow languages. What is more, the comparison of different workflow
products winds up being more of a dissemination of products and less of a critique of



workflow language capabilities - “bigger picture” differences of workflow specifica-
tions are highlighted, as are technology, typically platform dependent, issues.

Workflow specifications can be understood, in a broad sense, from a number of dif-
ferent perspectives (see [4, 23]). The control-flow perspective (or process) perspective
describes activities and their execution ordering through different constructors, which
permit flow of execution control, e.g., sequence, choice, parallelism and join synchro-
nization. Activities in elementary form are atomic units of work, and in compound form
modularize an execution order of a set of activities. The data perspective layers business
and processing data on the control perspective. Business documents and other objects
which flow between activities, and local variables of the workflow, qualify in effect
pre- and post-conditions of activity execution. The resource perspective provides an or-
ganizational structure anchor to the workflow in the form of human and device roles
responsible for executing activities. The operational perspective describes the elemen-
tary actions executed by activities, where the actions map into underlying applications.
Typically, (references to) business and workflow data are passed into and out of ap-
plications through activity-to-application interfaces, allowing manipulation of the data
within applications.

Clearly, the control flow perspective provides an essential insight into a workflow
specification’s effectiveness. The data flow perspective rests on it, while the organiza-
tional and operational perspectives are ancillary. If workflow specifications are to be
extended to meet newer processing requirements, control flow constructors require a
fundamental insight and analysis. Currently, most workflow languages support the ba-
sic constructs of sequence, iteration, splits (AND and XOR) and joins (AND and XOR)
- see [4, 30]. However, the interpretation of even these basic constructs is not uniform
and it is often unclear how more complex requirements could be supported. Indeed,
vendors are afforded the opportunity to recommend implementation level “hacks” such
as database triggers and application event handling. The result is that neither the cur-
rent capabilities of workflow languages nor insight into more complex requirements of
business processes is advanced.

We indicate requirements for workflow languages through workflow patterns [5–8,
48]. As described in [36], a pattern “is the abstraction from a concrete form which
keeps recurring in specific nonarbitrary contexts”. Gamma et al. [17] first catalogued
systematically some 23 design patterns which describe the smallest recurring interac-
tions in object-oriented systems. The design patterns, as such, provided independence
from the implementation technology and at the same time independence from the essen-
tial requirements of the domain that they were attempting to address (see also e.g. [15]).

We have collected a set of about 30 workflow patterns and have used 20 of these pat-
terns to compare the functionality of 15 workflow management systems (COSA, Visual
Workflow, Forté Conductor, Lotus Domino Workflow, Meteor, Mobile, MQSeries/Work-
flow, Staffware, Verve Workflow, I-Flow, InConcert, Changengine, SAP R/3 Workflow,
Eastman, and FLOWer). The result of this evaluation reveals that (1) the expressive
power of contemporary systems leaves much to be desired and (2) the systems support
different patterns. Note that we do not use the term “expressiveness” in the traditional
or formal sense. If one abstracts from capacity constraints, any workflow language is
Turing complete. Therefore, it makes to sense to compare these languages using for-



mal notions of expressiveness. Instead we use a more intuitive notion of expressiveness
which takes the modeling effort into account. This more intuitive notion is often referred
to as suitability. See [27] for a discussion on the distinction between formal expressive-
ness and suitability.

The observation that the expressive power of the available workflow management
systems leaves much to be desired, triggered the question: How about high-level Petri
nets (i.e., Petri nets extended with color, time, and hierarchy) as a workflow language?

Petri nets have been around since the sixties [35] and have been extended with
color [24, 25] and time [32, 33] to improve expressiveness. High-level Petri nets tools
such as Design/CPN (University of Aarhus, http://www.daimi.au.dk/designCPN/) and
ExSpect (EUT/D&T Bakkenist, http://www.exspect.com/) incorporate these extensions
and support the modeling and analysis of complex systems. There are at least three
good reasons for using Petri nets as a workflow language [1]:

1. Formal semantics despite the graphical nature.
2. State-based instead of (just) event-based.
3. Abundance of analysis techniques.

Unfortunately, a straightforward application of high-level Petri nets does not yield the
desired result. There seem to be three problems relevant for modeling workflow pro-
cesses:

1. In a high-level Petri net it is possible to use colored tokens. Although it is possible
to use this to identify multiple instances of a subprocess, there is no specific support
for patterns involving multiple instances and the burden of keeping track, splitting,
and joining is carried by the designer.

2. Sometimes two flows need to be joined while it is not clear whether synchronization
is needed, i.e., if both flows are active an AND-join is needed otherwise an XOR-
join. Such advanced synchronization patterns are difficult to model in terms of a
high-level Petri net because the local transition rule is either an AND-join or an
XOR-join.

3. The firing of a transition is always local only based on the tokens in the input places
and only affecting the output places. However, some events in the workflow may
have an effect which is not local, e.g., because of an error tokens need to be removed
from various places without knowing where the tokens reside. Everyone who has
modeled such a cancellation pattern (e.g., a global timeout mechanism) in terms
of Petri nets knows that it is cumbersome to model a so-called “vacuum cleaner”
removing tokens from selected parts of the net.

In this paper, we discuss the problems when supporting the workflow patterns with high-
level Petri nets. We also briefly introduce a workflow language under development:
YAWL (Yet Another Workflow Language). YAWL is based on Petri nets but extended
with additional features to facilitate the modeling of complex workflows.

2 Workflow patterns

Since 1999 we have been working on collecting a comprehensive set of workflow
patterns [5–8]. The results have been made available through the “Workflow patterns



Basic Control Flow Patterns

• Pattern 1 (Sequence)

• Pattern 2 (Parallel Split)

• Pattern 3 (Synchronization)
• Pattern 4 (Exclusive Choice)

• Pattern 5 (Simple Merge)

Advanced Branching and
Synchronization Patterns

• Pattern 6 (Multi - choice)
• Pattern 7 (Synchronizing Merge)

• Pattern 8 (Multi - merge)

• Pattern 9 (Discriminator)

Structural Patterns
• Pattern 10 (Arbitrary Cycles)

• Pattern 11 (Implicit Termination)

State-based Patterns
• Pattern 16 (Deferred

Choice)

• Pattern 17 (Interleaved
Parallel Routing)

• Pattern 18 (Milestone)

Patterns involving Multiple Instances

• Pattern 12 (Multiple Instances Without
Synchronization)

• Pattern 13 (Multiple Instances With a Priori
Design Time Knowledge)

• Pattern 14 (Multiple Instances With a Priori
Runtime Knowledge)

• Pattern 15 (Multiple Instances Without a Priori
Runtime Knowledge)

Cancellation Patterns
• Pattern 19 (Cancel Activity)

• Pattern 20 (Cancel Case)

Fig. 1. Overview of the 20 most relevant patterns.

WWW site” [48]. The patterns range from very simple patterns such as sequential rout-
ing (Pattern 1) to complex patterns involving complex synchronizations such as the
discriminator pattern (Pattern 9). In this paper, we restrict ourselves to the 20 most
relevant patterns. These patterns can be classified into six categories:

1. Basic control flow patterns. These are the basic constructs present in most workflow
languages to model sequential, parallel and conditional routing.

2. Advanced branching and synchronization patterns. These patterns transcend the
basic patterns to allow for more advanced types of splitting and joining behavior.
An example is the Synchronizing merge (Pattern 7) which behaves like an AND-
join or XOR-join depending on the context.

3. Structural patterns. In programming languages a block structure which clearly
identifies entry and exit points is quite natural. In graphical languages allowing for
parallelism such a requirement is often considered to be too restrictive. Therefore,
we have identified patterns that allow for a less rigid structure.

4. Patterns involving multiple instances. Within the context of a single case (i.e., work-
flow instance) sometimes parts of the process need to be instantiated multiple times,
e.g., within the context of an insurance claim, multiple witness statements need to
be processed.

5. State-based patterns. Typical workflow systems focus only on activities and events
and not on states. This limits the expressiveness of the workflow language because
it is not possible to have state dependent patterns such as the Milestone pattern
(Pattern 18).



6. Cancellation patterns. The occurrence of an event (e.g., a customer canceling an
order) may lead to the cancellation of activities. In some scenarios such events can
even cause the withdrawal of the whole case.

Figure 1 shows an overview of the 20 patterns grouped into the six categories. A detailed
discussion of these patterns is outside the scope of this paper. The interested reader is
referred to [5–8, 48].

We have used these patterns to evaluate 15 workflow systems: COSA (Ley GmbH,
[43]) , Visual Workflow (Filenet, [13]), Forté Conductor (SUN, [14]), Lotus Domino
Workflow (IBM/Lotus, [34]), Meteor (UGA/LSDIS, [41]), Mobile (UEN, [23]), MQ-
Series/Workflow (IBM, [22]), Staffware (Staffware PLC, [44]), Verve Workflow (Ver-
sata, [46]), I-Flow (Fujitsu, [16]), InConcert (TIBCO, [45]), Changengine (HP, [21]),
SAP R/3 Workflow (SAP, [39]), Eastman (Eastman, [42]), and FLOWer (Pallas Athena,
[9]). Tables 1 and 2 summarize the results of the comparison of the workflow manage-
ment systems in terms of the selected patterns. For each product-pattern combination,
we checked whether it is possible to realize the workflow pattern with the tool. If a
product directly supports the pattern through one of its constructs, it is rated +. If the
pattern is not directly supported, it is rated +/-. Any solution which results in spaghetti
diagrams or coding, is considered as giving no direct support and is rated -.

pattern product
Staffware COSA InConcert Eastman FLOWer Domino Meteor Mobile

1 (seq) + + + + + + + +
2 (par-spl) + + + + + + + +
3 (synch) + + + + + + + +
4 (ex-ch) + + +/- + + + + +

5 (simple-m) + + +/- + + + + +
6 (m-choice) - + +/- +/- - + + +
7 (sync-m) - +/- + + - + - -
8 (multi-m) - - - + +/- +/- + -

9 (disc) - - - + +/- - +/- +
10 (arb-c) + + - + - + + -
11 (impl-t) + - + + - + - -

12 (mi-no-s) - +/- - + + +/- + -
13 (mi-dt) + + + + + + + +
14 (mi-rt) - - - - + - - -
15 (mi-no) - - - - + - - -
16 (def-c) - + - - +/- - - -

17 (int-par) - + - - +/- - - +
18 (milest) - + - - +/- - - -
19 (can-a) + + - - +/- - - -
20 (can-c) - - - - +/- + - -

Table 1. The main results for Staffware, COSA, InConcert, Eastman, FLOWer, Lotus Domino
Workflow, Meteor, and Mobile.



pattern product
MQSeries Forté Verve Vis. WF Changeng. I-Flow SAP/R3

1 (seq) + + + + + + +
2 (par-spl) + + + + + + +
3 (synch) + + + + + + +
4 (ex-ch) + + + + + + +

5 (simple-m) + + + + + + +
6 (m-choice) + + + + + + +
7 (sync-m) + - - - - - -
8 (multi-m) - + + - - - -

9 (disc) - + + - + - +
10 (arb-c) - + + +/- + + -
11 (impl-t) + - - - - - -

12 (mi-no-s) - + + + - + -
13 (mi-dt) + + + + + + +
14 (mi-rt) - - - - - - +/-
15 (mi-no) - - - - - - -
16 (def-c) - - - - - - -

17 (int-par) - - - - - - -
18 (milest) - - - - - - -
19 (can-a) - - - - - - +
20 (can-c) - + + - + - +

Table 2. The main results for MQSeries, Forté Conductor, Verve, Visual WorkFlo, Changengine,
I-Flow, and SAP/R3 Workflow.

Please apply the results summarized in tables 1 and 2 with care. First of all, the
organization selecting a workflow management system should focus on the patterns
most relevant for the workflow processes at hand. Since support for the more advanced
patterns is limited, one should focus on the patterns most needed. Second, the fact that
a pattern is not directly supported by a product does not imply that it is not possible to
support the construct at all.

From the comparison it is clear that no tool supports all the of the 20 selected pat-
terns. In fact, many of the tools only support a relatively small subset of the more
advanced patterns (i.e., patterns 6 to 20). Specifically the limited support for the dis-
criminator, and its generalization, the N -out-of-M -join, the state-based patterns (only
COSA), the synchronization of multiple instances (only FLOWer) and cancellation ac-
tivities/cases, is worth noting.

The goal of providing the two tables is not to advocate the use of specific tools.
However, they illustrate that existing tools and languages are truly different and that
most languages provide only partial support for the patterns appearing in real life work-
flow processes. These observations have been our main motivation to look into the
expressiveness of high-level Petri nets (Section 3) and come up with a new language
(Section 4).



3 Limitations of Petri nets

Given the fact that workflow management systems have problems dealing with work-
flow patterns it is interesting to see whether established process modeling techniques
such as Petri nets can cope with these patterns. The table listed in the appendix shows
an evaluation of high-level Petri nets with respect to the patterns. (Ignore the column
under YAWL for the time being.) We use the term high-level Petri nets to refer to Petri
nets extended with color (i.e., data), time, and hierarchy [4]. Examples of such lan-
guages are the colored Petri nets as described in [25], the combination of Petri nets and
Z specification described in [20], and many more. These languages are used by tools
such as Design/CPN (University of Aarhus, http://www.daimi.au.dk/designCPN/) and
ExSpect (EUT/D&T Bakkenist, http://www.exspect.com/). Although these languages
and tools have differences when it comes to for example the language for data transfor-
mations (e.g., arc inscriptions) there is a clear common denominator. When we refer to
high-level Petri nets we refer to this common denominator. To avoid confusion we use
the terminology as defined in [25] as much as possible. It is important to note that for
the table shown in the appendix we have used the same criteria as used in tables 1 and 2
for the 15 workflow systems (i.e., a “+” is only given if there is direct support).

Compared to existing languages high-level Petri nets are quite expressive. Recall
that we use the term “expressiveness” not in the formal sense. High-level Petri nets are
Turing complete, and therefore, can do anything we can define in terms of an algorithm.
However, this does not imply that the modeling effort is acceptable. By comparing the
table in the appendix with tables 1 and 2, we can see that high-level nets, in contrast to
many workflow languages, have no problems dealing with state-based patterns. This is
a direct consequence of the fact that Petri nets use places to represent states explicitly.
Although high-level Petri nets outperform most of the existing languages, the result is
not completely satisfactory. As indicated in the introduction we see serious limitations
when it comes to (1) patterns involving multiple instances, (2) advanced synchroniza-
tion patterns, and (3) cancellation patterns. In the remainder of this section we discuss
these limitations in more detail.

3.1 Patterns involving multiple instances

Suppose that in the context of a workflow for processing insurance claims there is a
subprocess for processing witness statements. Each insurance claim may involve zero
or more witness statements. Clearly the number of witness statements is not known
at design time. In fact, while a witness statement is being processed other witnesses
may pop up. This means that within one case a part of the process needs to be instanti-
ated a variable number of times and the number of instances required is only known at
run time. The required pattern to model this situation is Pattern 15 (Multiple instances
without a priori runtime knowledge). Another example of this pattern is the process
of handling journal submissions. For processing journal submissions multiple reviews
are needed. The editor of the journal may decide to ask a variable number of review-
ers depending on the nature of the paper, e.g., if it is controversial, more reviewers are
selected. While the reviewing takes place, the editor may decide to involve more re-
viewers. For example, if reviewers are not responsive, have brief or conflicting reviews,



then the editor may add an additional reviewer. Other examples of multiple instances
include orders involving multiple items (e.g., a customer orders three books from an
electronic bookstore), a subcontracting process with multiple quotations, etc.

It is possible to model a variable number of instances executed in parallel using a
high-level Petri net. However, the designer of such a model has to keep track of two
things: (1) case identities and (2) the number of instances still running.

At the same time multiple cases are being processed. Suppose x and y are two active
cases. Whenever, there is an AND-join only tokens referring to the same case can be
synchronized. If inside x part of the process is instantiated n times, then there are n
“child cases” x:1 : : : x:n. If for y the same part is also instantiated multiple times, saym,
then there are m “child cases” y:1 : : : y:m. Inside the part which is instantiated multiple
times there may again be parallelism and there may be multiple tokens referring to
one child case. For a normal AND-join only tokens referring to the same child case
can be synchronized. However, at the end of the part which is instantiated multiple
times all child cases having the same parent should be synchronized, i.e., case x can
only continue if for each child case x:1 : : : x:n the part has been processed. In this
synchronization child cases x:1 : : : x:n and child cases y:1 : : : y:m should be clearly
separated. To complicate matters the construct of multiple instances may be nested
resulting in child-child cases such as x.5.3 which should be synchronized in the right
way. Clearly, a good workflow language does not put the burden of keeping track of
these instances and synchronizing them at the right level on the workflow designer.

Besides keeping track of identities and synchronizing them at the right level, it is
important to know how many child cases need to be synchronized. This is of particular
relevance if the number of instances can change while the instances are being pro-
cessed (e.g., a witness which points out another witness causing an additional witness
statement). In a high-level Petri net this can be handled by introducing a counter keep-
ing track of the number of active instances. If there are no active instances left, the
child cases can be synchronized. Clearly, it is also not acceptable to put the burden of
modeling such a counter on the workflow designer.

3.2 Advanced synchronization patterns

Consider the workflow process of booking a business trip. A business trip may involve
the booking of flights, the booking of hotels, the booking of a rental car, etc. Suppose
that the booking of flights, hotels, and cars can occur in parallel and that each of these
elements is optional. This means that one trip may involve only a flight, another trip may
involve a flight and a rental car, and it is even possible to have a hotel and a rental car
(i.e., no flight). The process of booking each of these elements has a separate description
which may be rather complex. Somewhere in the process these optional flows need to
be synchronized, e.g., activities related to payment are only executed after all booking
elements (i.e., flight, hotel, and car) have been processed. The problem is that it is not
clear which subflows need to be synchronized. For a trip not involving a flight, one
should not wait for the completion of booking the flight. However, for a business trip
involving all three elements, all flows should be synchronized. The situation where there
is sometimes no synchronization (XOR-join), sometimes full synchronization (AND-



join), and sometimes only partial synchronization (OR-join) needed is referred to as
Pattern 7 (Synchronizing merge).

It is interesting to note that the Synchronizing merge is directly supported by InCon-
cert, Eastman, Domino Workflow, and MQSeries Workflow. In each of these systems,
the designer does not have to specify the type of join; this is automatically handled by
the system.

In a high-level Petri net each construct is either an AND-join (transition) or an
XOR-join (place). Nevertheless, it is possible to model the Synchronizing merge in
various ways. First of all, it is possible to pass information from the split node to the
join node. For example, if the business trip involves a flight and a hotel, the join node is
informed that it should only synchronize the flows corresponding to these two elements.
This can be done by putting a token in the input place of the synchronization transition
corresponding to the element car rental. Second, it is possible to activate each branch
using a “Boolean” token. If the value of the token is true, everything along the branch is
executed. If the value is false, the token is passed through the branch but all activities on
it are skipped. Third, it is possible to build a completely new scheduler in terms of high-
level Petri nets. This scheduler interprets workflow processes and uses the following
synchronization rule: “Fire a transition t if at least one of the input places of t is marked
and from the current marking it is not possible to put more tokens on any of the other
input places of t.” In this last solution, the problem is lifted to another level. Clearly,
none of the three solutions is satisfactory. The workflow designer has to add additional
logic to the workflow design (case 1), has to extend the model to accommodate true and
false tokens (case 2), or has to model a scheduler and lift the model to another level
(case 3).

It is interesting to see how the problem of the Synchronizing merge has been han-
dled in existing systems and literature. In the context of MQSeries workflow the tech-
nique of “dead-path elimination” is used [31, 22]. This means that initially each input
arc is in state “unevaluated”. As long as one of the input arcs is in this state, the activity
is not enabled. The state of an input arc is changed to true the moment the preceding
activity is executed. However, to avoid deadlocks the input arc is set to false the moment
it becomes clear that it will not fire. By propagating these false signals, no deadlock is
possible and the resulting semantics matches Pattern 7. The solution used in MQSeries
workflow is similar to having true and false tokens (case 2 described above). The idea
of having true and false tokens to address complex synchronizations was already raised
in [18]. However, the bipolar synchronization schemes presented in [18] are primar-
ily aimed at avoiding constructs such as the Synchronizing merge, i.e., the nodes are
pure AND/XOR-splits/joins and partial synchronization is not supported nor investi-
gated. In the context of Event-driven Process Chains (EPC’s, cf. [26]) the problem of
dealing with the Synchronizing merge also pops up. The EPC model allows for so-
called ∨-connectors (i.e., OR-joins which only synchronize the flows that are active).
The semantics of these ∨-connectors have been often debated [3, 11, 29, 37, 38]. In [3]
the explicit modeling is advocated (case 1). Dehnert and Rittgen [11] advocate the use
of a weak correctness notion (relaxed soundness) and an intelligent scheduler (case 3).
Langner et al. [29] propose an approach based on Boolean tokens (case 2). Rump [38]
proposes an intelligent scheduler to decide whether an ∨-connector should synchronize



or not (case 3). In [37] three different join semantics are proposed for the ∨-connector:
(1) wait for all to come (corresponds to the Synchronizing merge, Pattern 7), (2) wait
for first to come and ignore others (corresponds to the Discriminator, Pattern 9), and
(3) never wait, execute every time (corresponds to the Multi merge, Pattern 8). The
extensive literature on the synchronization problems in EPC’s and workflow systems
illustrates that patterns like the Synchronizing merge are relevant and far from trivial.

3.3 Cancellation patterns

Most workflow modeling languages, including high-level nets, have local rules directly
relating the input of an activity to output. For most situations such local rules suffice.
However, for some events local rules can be quite problematic. Consider for example the
processing of Customs declarations. While a Customs declaration is being processed,
the person who filed the declaration can still supply additional information and notify
Customs of changes (e.g., a container was wrecked, and therefore, there will be less
cargo as indicated on the first declaration). These changes may lead to the withdrawal
of a case from specific parts of the process or even the whole process. Such cancella-
tions are not as simple as they seem when for example high-level Petri nets are used.
The reason is that the change or additional declaration can come at any time (within a
given time frame) and may affect running and/or scheduled activities. Given the local
nature of Petri net transitions, such changes are difficult to handle. If it is not known
where in the process the tokens reside when the change or additional declaration is re-
ceived, it is not trivial to remove these tokens. Inhibitor arcs allow for testing whether
a place contains a token. However, quite some bookkeeping is required to remove to-
kens from an arbitrary set of places. Consider for example 10 parallel branches with 10
places each. To remove 10 tokens (one in each parallel branch) one has to consider 10 10

possible states. Modeling a “vacuum cleaner”, i.e., a construct to remove the 10 tokens,
is possible but results in a spaghetti-like diagram. Therefore it is difficult to deal with
cancellation patterns such as Cancel activity (Pattern 19) and Cancel case (Pattern 20)
and anything in-between.

In this section we have discussed serious limitations of high-level Petri nets when it
comes to (1) patterns involving multiple instances, (2) advanced synchronization pat-
terns, and (3) cancellation patterns. Again, we would like to stress that high-level Petri
nets are able to express such routing patterns. However, the modeling effort is consid-
erable, and although the patterns are needed frequently, the burden of keeping track of
things is left to the workflow designer.

4 YAWL: Yet Another Workflow Language

In a joint effort between Eindhoven University of Technology and Queensland Univer-
sity of Technology we are currently working on a new workflow language based on
Petri nets. The goal of this joint effort is to overcome the limitations mentioned in the
previous section by adding additional constructs. A detailed description of the language
is beyond the scope of this paper. Moreover, the language is still under development.



The goal of this section is to briefly sketch the features of this language named YAWL
(Yet Another Workflow Language).

Condition

Input condition

Output condition

Atomic task

AND-split task

XOR-split task

Composite task

Multiple instances
of an atomic task

Multiple instances
of a composite task

OR-split task

AND-join task

XOR-join task

OR-join task

... remove tokens

Fig. 2. Symbols used in YAWL.

Figure 2 shows the modeling elements of YAWL. YAWL extends the class of work-
flow nets described in [2, 4] with multiple instances, composite tasks, OR-joins, re-
moval of tokens, and directly connected transitions. A workflow specification in YAWL
is a set of extended workflow nets (EWF-nets) which form a hierarchy, i.e., there is a
tree-like structure. Tasks1 are either (atomic) tasks or composite tasks. Each composite
task refers to a unique EWF-net at a lower level in the hierarchy. Atomic tasks form
the leaves of the tree-like structure. There is one EWF-net without a composite task
referring to it. This EWF-net is named the top level workflow and forms the root of the
tree-like structure.

Each EWF-net consists of tasks (either composite or atomic) and conditions which
can be interpreted as places. Each EWF-net has one unique input condition and one
unique output condition (see Figure 2). In contrast to Petri nets, it is possible to connect
“transition-like objects” like composite and atomic tasks directly to each other without
using a “place-like object” (i.e., conditions) in-between. For the semantics this construct
can be interpreted as a hidden condition, i.e., an implicit condition is added for every
direct connection.

1 Note that in YAWL we use the term task rather than activity to remain consistent with earlier
work on workflow nets [2, 4].



Each task (either composite or atomic) can have multiple instances as indicated in
Figure 2. It is possible to specify a lower bound and an upper bound for the number
of instances created after initiating the task. Moreover, it is possible to indicate that the
task terminates the moment a certain threshold of instances has completed. The moment
this threshold is reached, all running instances are terminated and the task completes. If
no threshold is specified, the task completes once all instances have completed. Finally,
there is a fourth parameter indicating whether the number of instances is fixed after
creating the instance. The value of the parameter is ”fixed” if after creation no instances
can be added and ”var” if it is possible to add additional instances while there are
still instances being processed. Note that by extending Petri-nets with this construct
with four parameters (lower bound, upper bound, threshold, and fixed/var), we directly
support all patterns involving multiple instances (cf. Section 3.1, and in addition, the
Discriminator pattern (Pattern 9) under the assumption of multiple instances of the same
task. In fact, we also support the more general n-out-of-m join [6].

We adopt the notation described in [2, 4] for AND/XOR-splits/joins as shown in
Figure 2. Moreover, we introduce OR-splits and OR-joins corresponding to respectively
Pattern 6 (Multi choice) and Pattern 7 (Synchronizing merge), cf. Section 3.2.

Finally, we introduce a notation to remove tokens from places independent of the
fact if and how many tokens there are. As Figure 2 shows this is denoted by dashed
circles/lines. The enabling of the task does not depend on the tokens within the dashed
area. However, the moment the task executes all tokens in this area are removed. Clearly,
this extension is useful for the cancellation patterns, cf. Section 3.3. Independently, this
extensions was also proposed in [10] for the purpose of modeling dynamic workflows.

As indicated earlier, YAWL is still under development and the goal of this paper is
not to introduce the language in any detail. Therefore, we restrict ourselves to simply
applying YAWL to some of the examples used in the previous section.

4.1 Example: Patterns involving multiple instances

Figure 3 shows three workflow specifications dealing with multiple witness statements
in parallel. The first workflow specification (a), starts between 1 and 10 instances of
the composite task process witness statement after completing the initial task regis-
ter witness. When all instances have completed, task archive is executed. The second
workflow specification shown in Figure 3(b), starts an arbitrary number of instances
of the composite task and even allows for the creation of new instances. The third
workflow specification (c) starts between 1 and 10 instances of the composite task pro-
cess witness statement but the finishes if all have completed or at least three have com-
pleted. The three examples illustrate that YAWL allows for a direct specification of the
patterns 14, 15, and 9.

4.2 Example: Advanced synchronization patterns

As explained in Section 3.2 an OR-join can be interpreted in many ways. Figure 4
shows three possible interpretations using the booking of a business trip as an example.
The first workflow specification (a) starts with an OR-split register which enables tasks
flight, hotel and/or car. Task pay is executed for each time one of the three tasks (i.e.,
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(a) A workflow processing between 1 and 10 witness statements
without the possibility to add witnesses after registration (Pattern 14).

(b) A workflow processing and arbitrary number of witnesses with
the possibility to add new batches of witnesses (Pattern 15).
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(c) A workflow processing between 1 and 10 witness statements
with a threshold of 3 witnesses (extension of Pattern 9).
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Fig. 3. Some examples illustrating the way YAWL deals with multiple instances.



register

(a) Task pay is executed each time one of the three preceding task
completes (Pattern 8).

flight

hotel

car

pay

register

(b) Task pay is executed only once, i.e., when all started tasks have
completed (Pattern 7).

flight

hotel

car

pay

register

(c) Task pay is executed only once, i.e., when the first task has
completed (Pattern 9).

flight

hotel

car

pay

Fig. 4. Some examples illustrating the way YAWL deals with advanced synchronization patterns.



flight, hotel, and car) completes. This construct corresponds to the Multi merge (Pattern
8). The second workflow specification shown in Figure 4(b) is similar but combines
the individual payments into one payment. Therefore, it waits until each of the tasks
enabled by register completes. Note that if only a flight is booked, there is no synchro-
nization. However, if the trip contains two or even three elements, task pay is delayed
until all have completed. This construct corresponds to the Synchronizing merge (Pat-
tern 7). The third workflow specification (c) enables all three tasks (i.e., flight, hotel, and
car) but pays after the first task is completed. After the payment all running tasks are
canceled. Although this construct makes no sense in this context it has been added to
illustrate how the Discriminator can be supported (Pattern 9) assuming that all running
threads are canceled the moment the first one completes.

4.3 Example: Cancellation patterns

Figure 5 illustrates the way YAWL supports the two cancellation patterns (patterns 19
and 20). The first workflow specification (a) shows the Cancel activity pattern which
removes all tokens from the input places of task activity. In the second workflow speci-

(a) Cancel activity (Pattern 19).

(b) Cancel case (Pattern 20).

cancel_activity

activity

Fig. 5. Some examples illustrating the way YAWL deals with cancellation patterns.



fication (b) there is a task removing all tokens and putting a token in the output condition
thus realizing the Cancel case pattern.

The examples given in this section illustrate that YAWL solves many of the problems
indicated in Section 3. The table in the appendix shows that YAWL supports 19 of the
20 patterns used to evaluate contemporary workflow systems. Implicit termination (i.e.,
multiple output conditions) is not supported to force the designer to think about termi-
nation properties of the workflow. It would be fairly easy to extend YAWL with this
pattern (simply connect all output conditions with an OR-join having a new and unique
output condition). However, implicit termination also hides design errors because it is
not possible to detect deadlocks. Therefore, there is no support for this pattern.

5 Conclusion

The workflow patterns described in previous publications [5–8, 48] provide functional
requirements for workflow languages. Unfortunately, existing workflow languages only
offer partial support for these patterns. Compared with the workflow languages used by
commercial tools, high-level Petri nets are acceptable. Nevertheless, when it comes
to patterns involving multiple instances, advanced synchronization, and cancellation,
high-level Petri nets offer little support. Therefore, we are working towards a more
expressive Petri-net-based language supporting most patterns. Moreover, we hope that
the modeling problems collected in this paper will stimulate other researchers working
on high-level Petri nets to develop mechanisms, tools, and methods providing more
support.
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A A comparison of high-level Petri nets and YAWL using the
patterns

The table shown in this appendix indicates for each pattern whether high-level Petri
nets/YAWL offers direct support (indicated by a “+”), partial direct support (indicated
by a “+/-”), or no direct support (indicated by a “-”).



pattern high-level Petri nets YAWL
1 (seq) + +

2 (par-spl) + +
3 (synch) + +
4 (ex-ch) + +

5 (simple-m) + +
6 (m-choice) + +
7 (sync-m) −(i) +
8 (multi-m) + +

9 (disc) −(ii) +
10 (arb-c) + +
11 (impl-t) −(iii) −(iv)

12 (mi-no-s) + +
13 (mi-dt) + +
14 (mi-rt) −(v) +
15 (mi-no) −(vi) +
16 (def-c) + +

17 (int-par) + +
18 (milest) + +
19 (can-a) +=−(vii) +
20 (can-c) −(viii) +

(i) The synchronizing merge is not supported because the designer has to keep track
of the number of parallel threads and decide to merge or synchronize flows (cf.
Section 3.2).

(ii) The discriminator is not supported because the designer needs to keep track of the
number of threads running and the number of threads completed and has to reset
the construct explicitly by removing all tokens corresponding to the iteration (cf.
Section 3.2).

(iii) Implicit termination is not supported because the designer has to keep track of
running threads to decide whether the case is completed.

(iv) Implicit termination is not supported because the designer is forced to identify one
unique final node. Any model with multiple end nodes can be transformed into a
net with a unique end node (simply use a synchronizing merge). This has not been
added to YAWL to force the designer to think about successful completion of the
case. This requirement allows for the detection of unsuccessful completion (e.g.,
deadlocks).

(v) Multiple instances with synchronization are not supported by high-level Petri nets
(cf. Section 3.1).

(vi) Also not supported, cf. Section 3.1.
(vii) Cancel activity is only partially supported since one can remove tokens from the

input place of a transition but additional bookkeeping is required if there are multi-
ple input places and these places may be empty (cf. Section 3.3).

(viii) Cancel activity is not supported because one needs to model a vacuum clearer to
remove tokens which may of may not reside in specific places (cf. Section 3.3).


