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Abstract. One of the key issues of object-oriented modeling and design is in-
heritance. It allows for the definition of subclasses that inherit features of some
superclass. Inheritance is well defined for static properties of classes such as at-
tributes and operations. However, there is no general agreement on the meaning of
inheritance when considering the dynamic behavior of objects, captured by their
life cycles. This paper studies inheritance of behavior in the context of UML. This
work is based on a theoretical framework which has been applied and tested in
both a process-algebraic setting (ACP) and a Petri-net setting (WF-nets). In this
framework, four inheritance rules are defined that can be used to construct sub-
classes from (super-)classes. These rules and corresponding techniques and tools
are applied to UML activity diagrams, UML statechart diagrams, and UML se-
quence diagrams. It turns out that the combination of blocking and hiding actions
captures a number of important patterns for constructing behavioral subclasses,
namely choice, sequential composition, parallel composition, and iteration. Both
practical insights and a firm theoretical foundation show that our framework can
be used as a stepping-stone for extending UML with inheritance of behavior.

1 Introduction

The Unified Modeling Language (UML) [11, 21] has been accepted throughout the soft-
ware industry as the standard object-oriented framework for specifying, constructing,
visualizing, and documenting software-intensive systems. One of the main goals of
object-oriented design is the reuseof system components. A key concept to achieve
this goal is the concept of inheritance. The inheritance mechanism allows the designer
to specify a class, the subclass, that inherits features of some other class, its superclass.
Thus, it is possible to specify that the subclass has the same features as the superclass,
but that in addition it may have some other features.

The concept of inheritance is usually well defined for the static structureof a class
consisting of the set of operations (methods) and the attributes. However, as mentioned,
a class should also describe the dynamic behavior of an object. We will use the term
“object life cycle” to refer to this behavior. The current version of UML, Version 1.4
[11], supports nine types of diagrams: class diagrams, object diagrams, use case di-
agrams, sequence diagrams, collaboration diagrams, statechart diagrams, activity di-
agrams, component diagrams, and deployment diagrams. Four of these types of dia-
grams, namely sequence diagrams, collaboration diagrams, statechart diagrams, and
activity diagrams capture (part of) the behavior of the modeled system. Sequence di-
agrams and collaboration diagrams typically only model examples of interactions be-
tween objects (scenarios). Activity diagrams emphasize the flow of control from activity



to activity, whereas statechart diagrams emphasize the potential states and the transi-
tions among those states. Both statechart diagrams and activity diagrams can be used
to specify the dynamics of various aspects of a system ranging from the life cycle of
a single object to complex interactions between societies of objects. Activity diagrams
typically address the dynamics of the whole system including interactions between ob-
jects. Statechart diagrams are typically used to model an object’s life cycle. Note that
UML joins and/or is inspired by the earlier work on Message Sequence Diagrams [20]
(for sequence diagrams), Statecharts [13] (for statechart diagrams), and Petri nets [19]
(for activity diagrams).

Looking at the informal definition of inheritance in UML, it states the following:
“The mechanism by which more specific elements incorporate structure and behavior
defined by more general elements.” [21]. However, only the class diagrams, describing
purely structural aspects of a class, are equipped with a concrete notion of inheritance.
It is implicitly assumed that the behavior of the objects of a subclass is an extension
of the behavior of the objects of its superclass. Clearly, this is not sufficient to realize
the full potential of inheritance [8, 14, 22, 23]. Therefore, our ultimate quest is to extend
each diagram type of UML with suitable notions of inheritance. For this purpose we use
theoretical results presented in [1–3, 5, 6] as a stepping stone. These results provide four
notions of behavioral inheritance, inheritance preserving transformation rules, transfer
rules, and advanced notions such as the Greatest Common Divisor (GCD) of a set of
behavioral models.
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Fig. 1. Mapping UML behavior diagrams onto three semantic domains.

In this paper we follow the approach proposed in [8], i.e., instead of trying to give
full formal semantics for UML we focus on selected parts of UML and map these
parts onto a so-called semantic domain. A semantic domain is some formal language
allowing for a precise definition of inheritance and equipped with analysis techniques
to verify whether one process is a subclass of another process. Based on the theoretical



results presented in [1–3, 5, 6] we can use three semantic domains. This is illustrated in
Figure 1. The core semantic domainis formed by transition systems using branching
bisimilarity as an equivalence relation [6]. The mapping from specific models in both
a Petri-net and process-algebraic setting to transition systems is given in [1–3, 5, 6].
In this paper, we explore the mapping from UML behavior diagrams to these seman-
tic domains in order to incorporate inheritance of behavior in UML. A direct mapping
from sequence, collaboration, statechart, and activity diagrams to the core semantic do-
main (i.e., transition systems) allows for full flexibility. An indirect mapping through
one of the intermediate semantic domains(i.e., WF-nets and object life cycles in the
Petri-net setting and ACP terms in the process-algebraic setting) allows for powerful
analysis techniques, cf. the structure theory of Petri nets (e.g., invariants) and the equa-
tional theory of ACP. Moreover, the UML behavior diagrams are closely related to the
two intermediate semantic domains. Consider for example the relation between activity
diagrams and Petri nets.

Note that it is not our goal to provide a precise semantics for UML. This topic is
relevant and has be debated many times before [7, 9], but is outside the scope of this
paper.

The remainder of this paper is organized as follows. First, the theoretical results
presented in [1–3, 5, 6] are introduced. Then, the four notions of inheritance are applied
to sequence diagrams (Section 3), statechart diagrams (Section 4), and activity diagrams
(Section 5). To conclude, we provide pointers to related work and summarize the main
results.

2 Inheritance of behaviour

The goal of this section is to introduce four notions of inheritance and highlight some
of the results theoretical results presented in [1–3, 5, 6]. Some of these results have been
developed in a Petri-net setting (cf. [1–3, 5, 6]) others have been developed in a process-
algebraic setting (cf. [5, 6]). However, the main ideas are generic and can be applied
to any of the behavior diagrams in UML (i.e., sequence diagrams, activity diagrams,
collaboration diagrams, and statechart diagrams). Therefore, we present the intuition
behind our results and demonstrate their applicability to sequence diagrams, activity
diagrams, and statechart diagrams.

2.1 An informal introduction to the four notions of inheritance

Diagrams such as sequence diagrams, activity diagrams, and statechart diagrams spec-
ify behavior of an object or system. The most elementary way of modeling behavior is
the so-called labeled transition system. We consider this to be the core semantic domain
(cf. Figure 1). A labeled transition system is a set of statesplus a transition relationon
states. Each transition is labeled with an action. Figure 2 shows a simple transition sys-
tem representing an order processing system with five states (s1, s2, s3, s4, and s5).
There are five transitions each labeled with a different action. The transition labeled
with acceptorder moves the system from the state s1 to the state s2. For simplicity we
assume that each transition system has one initial state (e.g., s1 in Figure 2) and one



final state (e.g., s5 in Figure 2). Note that any transition system with multiple initial
and/or final states can be transformed in a transition system with one initial and one
final state.
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Fig. 2. A labeled transition system specifying an order processing system (TS1).

States, transitions, and actions of a transition system should not be confused with
the meaning of these notions in UML. In the context of this paper, the interpretation
of these concepts depends on the UML diagrams being considered. For example, in a
UML statechart diagram with a composite state consisting of multiple concurrent sub-
states the composite state may correspond to many states in the corresponding labeled
transition system (all possible combinations of states of the concurrent substates). In a
UML sequence diagram, sending a message (i.e., a stimulus) corresponds to the execu-
tion of transition having the appropriate action label. In a UML activity diagram, there
are action states which correspond to actions in the corresponding labeled transition
system. In this section, we use the terms state, transition, and action in the context of
a labeled transition system. In subsequent sections we will put these concepts in the
context of UML diagrams specifying behavior.

We distinguish between visible actions and invisible actions. For comparing the
behavior of two labeled transition systems only the visible actions are considered. The
distinction between visible and invisible actions is fairly standard in process theory (see
[6, 10] for pointers). Since it is not possible to distinguish between individual invisible
actions (also referred to as silent actions), these actions are labeled � . Two labeled
transition systems are considered equivalent if their observable behaviors coincide, i.e.,
after abstracting from � -actions one cannot detect any differences. From a formal point
of view, branching bisimulation [6, 10] is used as an equivalence relation. However, we
will avoid getting into formal definitions. Instead we refer to [1–3, 5, 6] for details.

In this paper, we focus on inheritance of dynamic behavior. Translated to labeled
transition systems this translates to the following question: When is one labeled tran-
sition system a subclass of another labeled transition system?There seem to be many
possible answers to this question. It is important to note that we have to ask this question
from the viewpoint of the environment.

Assume that p and q are two labeled transition systems. The first answer is as fol-
lows.

If it is not possible to distinguish the external behavior of p and q when only
actions of p that are also present in q are executed, then p is a subclass of q.

Intuitively, this basic form of inheritance conforms to blockingactions new in p. In the
remainder, labeled transition system p is said to inherit the protocolof q; the resulting



fundamental form of inheritance is referred to as protocol inheritance. Note that pro-
tocol inheritance specifies a lower boundfor the behavior offered, i.e., any sequence
of actions invocable on the superclass can be invoked on the subclass. Therefore, it is
sometimes also referred to as “invocation consistency” [8, 22, 23].

The second answer to the above question is as follows.

If it is not possible to distinguish the external behavior of p and q when arbitrary
actions of p are executed, but when only the effects of actions that are also
present in q are considered, then p is a subclass of q.

This second basic form of inheritance of behavior conforms to hiding the effect of
actions new in p. Transition system p inherits the projection of transition system p

onto the actions of q; the resulting form of inheritance is called projection inheritance.
Note that projection inheritance can be considered as an upper boundfor the behavior
offered, i.e., any sequence of actions observable from the subclass should correspond to
an observable sequence of the superclass (after abstraction). Therefore, it is sometimes
also referred to as “observation consistency” [8, 22, 23].

To illustrate these two basic notions of inheritance we consider the labeled transition
system specifying an order processing system shown in Figure 2. Suppose that this is
the superclass named TS1. Figure 3 shows another labeled transition system named
TS2. TS2 is a subclass with respect to protocol inheritance because if we block the
new actions, the observable behavior of TS2 coincides with the observable behavior
TS1. If action subcontractorder is never executed, the original behavior is preserved.
Note that in Figure 3 and subsequent figures new actions (i.e., action not appearing in
Figure 2) are highlighted. Also note that TS2 is not a subclass of TS1 with respect to
projection inheritance. If we hide the two new actions, there is an occurrence sequence
where receiveorder is directly followed by closeorder without executing reject order
or acceptorderand ship order in-between. Clearly this behavior is not possible in TS 1.

receive
order

ship
order

accept
order

reject
order

close
orders1 s2 s3 s4 s5

subcontract
order

receive
confirmation

ship
order

Fig. 3. A subclass with respect to protocol inheritance (TS2).

Labeled transition system TS3 shown in Figure 4 is a subclass with respect to pro-
jection inheritance. The new action sendinvoiceis executed in parallel with ship order.
(We are assuming interleaving semantics here.) If sendinvoiceis renamed to � , then
action acceptorder is always followed by ship order which in turn is followed by



closeorder. Therefore, the observable behavior of TS 3 coincides with the observable
behavior of TS1 after abstracting from sendinvoice, i.e., TS3 is a subclass of TS1 with
respect to projection inheritance. Note that TS3 is not a subclass of TS1 with respect to
protocol inheritance. If sendinvoiceis blocked, the process gets stuck after executing
ship order.
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Fig. 4. A subclass with respect to projection inheritance (TS3).

There are essentially two ways to combine the two basic notions of inheritance
into stronger or weaker notions of inheritance. Protocol/projection inheritance is the
most restrictive form of inheritance which combines both basic notions at the same
time. If p is a subclass of q with respect to protocol/projection inheritance, then p is a
subclass of q with respect to protocol inheritance andprojection inheritance. Life-cycle
inheritance is the most liberal form of inheritance: The set of new actions is partitioned
into hidden and blocked such that the observable behavior of the subclass equals the
behavior of the superclass. Note that protocol and/or projection inheritance implies life-
cycle inheritance.
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Fig. 5. A subclass with respect to protocol/projection inheritance (TS4).

TS4 shown in Figure 5 is a subclass of TS1 with respect to protocol/projection
inheritance because either blocking or hiding the two new actions results the observable
behavior of TS1. If action questionis blocked, the new behavior is never activated. If
actions questionand answerare renamed to � , their presence cannot be observed.

Labeled transition system TS5 shown in Figure 6 is a subclass of TS1 with respect
to life-cycle inheritance. By blocking the new action subcontractorder and hiding ac-
tion sendinvoicethe resulting observable behavior coincides with TS 1. Note that TS5
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Fig. 6. A subclass with respect to life-cycle inheritance (TS5).

is not a subclass of TS1 with respect to any of the other three notions of inheritance.
All the other notions either block and/or hide all the new actions while for life-cycle in-
heritance each individual new action is either blocked or hidden. Note that TS 5 is also
a subclass of TS2 with respect to projection inheritance. Moreover, TS5 is a subclass
of TS3 with respect to protocol inheritance.

To summarize, we have identified four notions of inheritance based on two fun-
damental mechanisms: hiding and blocking. The most restrictive notion of inheritance
is protocol/projection inheritance. Of the four transition systems TS 2, TS3, TS4, and
TS5 only TS4 is a subclass of TS1 with respect to protocol/projection inheritance.
Life-cycle inheritance is the most liberal form of inheritance and each of the four tran-
sition systems TS2, TS3, TS4, and TS5 is a subclass of TS1 with respect to life-cycle
inheritance.

2.2 Inheritance preserving transformation rules and other results

Based on the four notions of inheritance, we have developed a set of tools (e.g., Woflan
[24]) and obtained powerful theoretical results. These theoretical results have been pre-
sented in [1–3, 5, 6] and in this section we only highlight some of them.

In both a Petri-net and a process-algebraic setting we have developed a comprehen-
sive set of inheritance preserving transformation rules(cf. Table 1). A detailed descrip-
tion of these rules is beyond the scope of this paper. Therefore, we give an informal
description of four inheritance preserving transformation rules: PP, PT, PJ, and PJ3.
Transformation rule PP is used to add loops such that each loop eventually returns to the
state where it was initiated. If these loops contain only new or invisible actions, proto-
col/projection inheritance, and therefore also the other three notions of inheritance, are
preserved. TS4 can be constructed from TS1 using this rule, and therefore, it automat-
ically follows that TS4 is a subclass of TS1 under protocol/projection inheritance. PT
preserves protocol inheritance and adds alternative behavior. TS 2 can be constructed
from TS1 using this rule. PJ and PJ3 both preserve projection inheritance. PJ can be
used to insert new actions in-between existing actions. PJ3 can be used to add parallel



behavior. TS3 can be constructed from TS1 using rule PJ3. The four rules (PP, PT, PJ,
and PJ3) correspond to design constructs that are often used in practice, namely iter-
ation, choice, sequential composition, and parallel composition. If the designer sticks
to these rules, inheritance is guaranteed. It should be noted that the precise formulation
of these rules depends of the modeling language being used and is not as straightfor-
ward as it may seem (e.g., the added parts should not introduce deadlocks and terminate
properly). The four inheritance preserving transformation rules have been formulated
in terms of object life cycles and WF-nets (Petri-net-based modeling languages, cf. [1–
3, 5, 6]) but also in terms of ACP (a process-algebraic language, cf. [5, 6]). Moreover,
in the process-algebraic setting additional rules (PJ2, LC1, LC2, and LC3) have been
formulated [5, 6].

name adds preserves
PP loops containing new behavior all notions of inheritance
PT new alternatives starting with a new action only protocol and life-cycle inheritance
PJ new actions inserted in-between existing ones only projection and life-cycle inheritance
PJ3 new actions in parallel with existing ones only projection and life-cycle inheritance

Table 1. Overview of inheritance preserving transformation rules.

Based on the inheritance preserving transformation rules we have also developed
a comprehensive set of transfer rules. These transfer rules can be used to migrate in-
stances from a subclass to a superclass and vice versa. Suppose that p is a subclass of q
constructed using the rules PP, PT, PJ, and PJ3. For any state in p it is possible to transfer
an instance (e.g., an object of a class whose life-cycle is specified by transition system
p) to q such that the transfer is instantaneous (i.e., no postponements needed) and does
not introduce syntactic errors (e.g., deadlocks, livelocks, and improper termination) nor
semantic errors (e.g., the double execution of actions or unnecessary skipping of ac-
tions). Moreover, it is also possible to transfer instances from subclass p to superclass q
without any problems. Note that the transfer rules are derived from the transformation
rules introduced earlier. The transfer rules to move a case to a subclass are: rPT , rPP ,
rPJ , rPJ3;C and rPJ3;P . The transfer rules to move a case to a superclass are: r−1

PT;C ,

r−1

PT;P , r−1

PP , r−1

PJ , and r−1

PJ3. See [3] for the specification of these transfer rules in a
Petri-net setting.

Each of the four inheritance relations provides an ordering on labeled transition sys-
tems and can be used to define concepts such as the GCD (Greatest Common Divisor)
of two processes. The concept of GCD was introduced in [3] and a detailed analysis
of this concept is given in [2]. Since none of the inheritance relations is a lattice, there
is a trade-off between “uniqueness” and “existence”. By using a weak notion of GCD,
existence is guaranteed but there may be multiple GCD’s. By using a stronger notion,
existence is no longer guaranteed but if the GCD exists, it is unique. Given this tradeoff,
we define the notion of Maximal Common Divisor (MCD). An MCD is a “smallest”
superclass of both p and q under life-cycle inheritance. If a set of labeled transition sys-
tems is related under inheritance via subclass-superclass relationships, it is generally



quite easy to find the GCD. If this is not the case, the computation of a GCD is more in-
volved and there are typically multiple candidates (i.e., MCD’s). Similarly results hold
for LCM’s (Least Common Multiple) and MCM’s (Minimal Common Multiple) [2, 3].

These results illustrate the strong theoretical foundation for inheritance of dynamic
behavior. Unfortunately, its application has been limited to the workflow domain [3].
In this paper, we want to demonstrate that these results can also be used as a stepping
stone for extending the behavior diagrams in UML (i.e., sequence diagrams, activity
diagrams, collaboration diagrams, and statechart diagrams) with inheritance.

2.3 Checking inheritance using Wolfan

To illustrate the applicability of the four inheritance concepts we refer to our workflow
analysis tool Woflan [24]. Woflan is based on Petri-nets and aims at the verification of
workflow processes. Besides checking for deadlocks and other design errors, Woflan
also supports the four notions of inheritance. Given two workflow models, Woflan is
able to check whether one model is a subclass of the other model. The current ver-
sion assumes that these models are expressed in terms of Petri nets. However, we have
developed translations from concrete systems such as COSA (COSA Solutions/Thiel
AG), Staffware (Staffware PLC), and Protos (Pallas Athena) and alternative modeling
techniques such as workflow graphs and event-driven process chains [3]. Moreover, the
inheritance-checker is relatively independent of the modeling language used and the re-
sults are not restricted to workflow processes but apply to any behavioral model. These
practical results demonstrate the practical potential of the results presented in [1–3, 5,
6] in the context of UML.

3 Sequence diagrams

The first diagram type we consider is the UML sequence diagram. A sequence diagram
has two dimensions: (1) the vertical dimension represents time and (2) the horizon-
tal dimension represents different instances. Sequence diagrams are typically used to
describe specific scenarios of interaction among objects. Although UML allows for
variations such as iteration, conditional, and timed behavior, we assume that the se-
quence diagram is restricted to lifelines, messages (i.e., communications of type proce-
dure call, asynchronous, and return), activation, and concurrent branching. Under these
assumptions it is fairly straightforward to map a sequence diagram onto an labeled tran-
sition system (core semantic domain) or a Petri net (intermediate semantic domain) [16,
20]. In fact, under these assumptions any sequence diagram corresponds to a so-called
marked graph [19], i.e., a Petri net where places cannot have multiple inputs/outputs.
This observation indicates that only projection inheritance is relevant for this diagram
type. (If there are no choices, it makes no sense to block behavior since this will only
cause deadlocks.) As a result, only the projection-inheritance preserving transformation
rules are relevant.

Consider the two sequence diagrams shown Figure 7. The right-hand side diagram
is a subclass of the left-hand side diagram under projection inheritance. There are two
ways to verify this. First of all, we can map both sequence diagrams onto any of the
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Fig. 7. A subclass sequence diagram constructed using rules PJ and PJ3.

semantics domains shown in Figure 1 and then check inheritance in the corresponding
domain. Second, one can apply the projection-inheritance preserving transformation
rules PJ and PJ3 described in Section 2.2. PJ can be used to add action preparebill and
PJ3 can be used to add the lifeline workerand the actions inform, order, and complete.
Note that in Figure 7 we assumed a one-to-one correspondence between messages and
actions. Moreover, we did not use communications of type procedure call, activation,
and concurrent branching. However, translation of PJ and PJ3 to sequence diagrams can
easily deal with these concepts.

Collaboration diagramsare closely related to sequence diagrams. In essence they
provide a different view on the identical structures [21]. Therefore, the results obtained
for inheritance of sequence diagrams can easily be transferred to collaboration dia-
grams.

4 Statechart diagrams

In contrast to sequence diagrams, statechart diagrams are typically not used to specify
scenarios. Instead they are used to model the life cycle of object. Since the 1987 paper
by David Harel [13] there has been an ongoing discussion on the semantics of state-
charts. Clearly, any of these semantics can be mapped onto our core semantic domain
(transition systems) and thus implicitly use the four notions of inheritance described in
Section 2.1. Moreover, in [8] a partial mapping onto CSP is given (we can use a similar
semantic mapping to ACP) and in [22, 23] a mapping onto object behavior diagrams
is given. Instead of providing yet another mapping of statechart diagrams onto some
semantic domain we provide two examples to demonstrate our inheritance notions and
the related transformation rules.
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Fig. 8. A subclass statechart diagram constructed using rules PP and PT.

Figure 8 shows two statechart diagrams. The right-hand side diagram is a subclass
of the left-hand side diagram under protocol inheritance. Any sequence of actions pos-
sible in the left-hand side diagram is also possible in the right-hand side diagram. The
superclass statechart diagram models a Dutch traffic light which is either in state blink-
ing or in composite state TL. The composite state is decomposed in three substates: red,
green, and yellow. The subclass statechart diagram extends the superclass in two ways.
First of all, the self transition blink is added. Second, the composite state is extended to
allow for a traffic light which fails. State no light corresponds to a malfunctioning traf-
fic light which is shut down. The extension involving transition blink can be realized
by applying PP, this is the protocol/projection inheritance preserving transformation
rule which introduces loops which can be blocked or hidden. The extension involving
state no light can be realized by applying PT, this is the protocol inheritance preserving
transformation rule which introduces alternatives which can be blocked.

Another example illustrating the application of our framework to statechart dia-
grams is given in Figure 9. The right-hand side diagram is a subclass of the left-hand
side diagram under projection inheritance. The subclass statechart diagram (right) ex-
tends the superclass (left) in two ways. First of all, the traffic light has four phases
instead of three including a state red+yellow. Second, the composite state TL has now
two concurrent regions: one corresponding to the original traffic light with one addi-
tional phase and one corresponding to a mechanism to count the number of cars. If we
abstract from this new mechanism and the additional phase, we obtain the original traf-
fic light. Therefore, it is easy to verify that the right-hand side diagram is a subclass of
the left-hand side diagram under projection inheritance. However, it is also possible to
demonstrate this by applying the two projection inheritance preserving transformation
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Fig. 9. A subclass statechart diagram constructed using rules PJ and PJ3.

rules PJ and PJ3 mentioned in Section 2.2. PJ can be used to insert the additional state
red+yellowand PJ3 can be used to add the concurrent region for counting cars.

5 Activity diagrams

An activity diagram is a variation of a state machine in which the states represent the
performance of actions or subactivities and the transitions are triggered by the comple-
tion of the actions or subactivities. Activity diagrams are typically used for modeling
behavior which transcends the life cycle a single object. Therefore, it supports nota-
tions such swimlanes and is often used for workflow modeling. Compared to classical
statecharts, activity diagrams allow for actions states, subactivity states, decisions and
merges (both denoted by a diamond shape), object flows, and concurrent transitions (to
model synchronization and forks). Note that swimlanes do not influence the behavior of
an activity diagram. The semantics of activity diagrams is still under discussion. How-
ever, clearly many ideas have been adopted from Petri nets and in the proposal for UML
2.0 token passing is used as the main mechanism to specify the semantics of activity
diagrams [12]. Therefore, we use WF-nets [3] as the semantic domain to map activity
diagrams on. Concurrent transitions are mapped Petri-net � transitions, decisions and
merges are mapped onto places, actions states are mapped onto Petri-net transitions, ob-
ject flows are mapped onto places, transitions are mapped onto � transitions and places,
etc.

Again we use an example to illustrate the application of our inheritance notions.
Consider the two activity diagrams shown in Figure 10. The right-hand side diagram
is a subclass of the left-hand side diagram under life-cycle inheritance. Note that the
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Fig. 10. A subclass activity diagram constructed using rules PT and PJ3.

right-hand side diagram is not a subclass under any of the other three notions of inheri-
tance: Action sendinvoiceneeds to be hidden while action subcontractorder needs to
be blocked, therefore none of the other notions applies. Also note that left-hand side
diagram corresponds to the labeled transition system shown in Figure 2. The right-hand
side diagram corresponds to the labeled transition system shown in Figure 6. The sub-
class activity diagram (right) extends the superclass (left) in two ways: (1) sendinvoice
can be added using projection inheritance preserving transformation rule PJ3, and (2)
the alternative sequence starting with subcontractorder can be added using protocol
inheritance preserving transformation rule PT.

In Section 2.3 our verification tool Woflan [24] was already mentioned. Using a
straightforward mapping of activity diagrams onto WF-nets, we can use Woflan to
check whether the right-hand side activity diagram in Figure 10 is a subclass of the left-
hand side diagram under life-cycle inheritance. As Figure 11 shows, this is indeed the
case. The interested reader can download Woflan from http://www.tm.tue.nl/it/woflan.

6 Related work

The literature on object-oriented design and its theoretical foundations contains several
studies related to the research described in this paper. In [26], abstraction in a process-
algebraic setting is suggested as an inheritance relation for behavior. Other research on
inheritance of behavior or related concepts such as behavioral subtyping are presented
in [4, 15, 17, 18, 25]. The variety of inheritance relations reported in the literature is
not surprising if one considers, for example, the large number of semantics that ex-
ist for concurrent systems (see, for example, [10]). For an elaborate overview of other



Fig. 11. Woflan shows that the right-hand side activity diagram in Figure 10 is indeed a subclass
of the left-hand side diagram under life-cycle inheritance.

approaches we refer to [6]. Although many authors mention the need for inheritance
of behavior in the context of UML, in most cases the application to concrete UML dia-
grams is missing. Consider for example the work presented in [14]. The authors provide
a rigorous framework for behavioral inheritance, but do not “lift” the framework to the
level of statechart or activity diagrams. Other authors focus specifically on inheritance
of statecharts [8, 22, 23]. In [8] inheritance of statechart diagrams is investigated using
CSP as a semantic domain. In [22, 23] Object/Behavior Diagrams are used as a seman-
tic domain. It is encouraging to see that in [8, 22, 23] similar notions of inheritance are
used: “invocation consistency” corresponds to our protocol inheritance and “observa-
tion consistency” corresponds to our projection inheritance. Note that we allow for two
additional notions of inheritance (protocol/projection inheritance and life-cycle inheri-
tance), provide inheritance preserving transformation and transfer rules, and also extend
our work to sequence and activity diagrams.

7 Conclusion

In this paper, we investigated the applicability of the theoretical results on behavioral
inheritance presented in [1–3, 5, 6] to the UML diagrams dealing with behavior. Al-
though these theoretical results have been developed in the context of specific models
for concurrency (i.e., Petri-nets and process algebra) there is a common core which has
been illustrated using labeled transition systems (our core semantic domain). We have
demonstrated that this core can be lifted to the level of concrete UML diagrams. In par-
ticular, we have applied the four inheritance notions and corresponding transformation



rules to sequence diagrams, activity diagrams, and statechart diagrams. In this paper,
we used a rather pragmatic approach not aiming at the full expressive power of UML.
The full UML standard simply contains too many features and is not defined (yet) suf-
ficiently to allow for our ultimate quest: Defining inheritance for sequence diagrams,
activity diagrams, and statechart diagrams as it is defined for object diagrams. How-
ever, the examples presented in this paper show that the theoretical results can be lifted
to the level of concrete UML diagrams.
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P. Azéma and G. Balbo, editors, Application and Theory of Petri Nets 1997, volume 1248 of
Lecture Notes in Computer Science, pages 62–81. Springer-Verlag, Berlin, 1997.

2. W.M.P. van der Aalst and T. Basten. Identifying Commonalities and Differences in Object
Life Cycles using Behavioral Inheritance. In J.M. Colom and M. Koutny, editors, Application
and Theory of Petri Nets 2001, volume 2075 of Lecture Notes in Computer Science, pages
32–52. Springer-Verlag, Berlin, 2001.

3. W.M.P. van der Aalst and T. Basten. Inheritance of Workflows: An Approach to Tackling
Problems Related to Change. Theoretical Computer Science, 270(1-2):125–203, 2002.

4. P. America. Designing an Object-Oriented Programming Language with Behavioral Sub-
typing. In J.W. de Bakker, W.P. de Roever, and G. Rozenberg, editors, Foundation of
Object-Oriented Languages, volume 489 of Lecture Notes in Computer Science, pages 60–
90. Springer-Verlag, Berlin, 1991.

5. T. Basten. In Terms of Nets: System Design with Petri Nets and Process Algebra. PhD thesis,
Eindhoven University of Technology, Eindhoven, The Netherlands, December 1998.

6. T. Basten and W.M.P. van der Aalst. Inheritance of Behavior. Journal of Logic and Algebraic
Programming, 47(2):47–145, 2001.

7. R. Breu, U. Hinkel, C. Hofmann, C. Klein, B. Paech, B. Rumpe, and V. Thurner. Towards a
Precise Semantics for Object-Oriented Modeling Techniques. In M. Aksit and S. Matsuoka,
editors, 11th European Conference on Object-Oriented Programming ECOOP’97, volume
1241 of Lecture Notes in Computer Science, pages 344–366. Springer-Verlag, Berlin, 1997.
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