
Discovering Work
ow Performance Models from

Timed Logs

W.M.P. van der Aalst and B.F. van Dongen

Department of Technology Management, Eindhoven University of Technology
P.O. Box 513, NL-5600 MB, Eindhoven, The Netherlands.

w.m.p.v.d.aalst@tm.tue.nl

Abstract. Contemporary work
ow management systems are driven by
explicit process models, i.e., a completely speci�ed work
ow design is
required in order to enact a given work
ow process. Creating a work
ow
design is a complicated time-consuming process and typically there are
discrepancies between the actual work
ow processes and the processes as
perceived by the management. Therefore, we have developed techniques
for discovering work
ow models. Starting point for such techniques are
so-called \work
ow logs" containing information about the work
ow pro-
cess as it is actually being executed. In this paper, we extend our existing
mining technique � [4] to incorporate time. We assume that events in
work
ow logs bear timestamps. This information is used to attribute tim-
ing such as queue times to the discovered work
ow model. The approach
is based on Petri nets and timing information is attached to places. This
paper also presents our work
ow-mining tool EMiT. This tool translates
the work
ow log of several commercial systems (e.g., Sta�ware) to an in-
dependent XML format. Based on this format the tool mines for causal
relations and produces a graphical work
ow model expressed in terms of
Petri nets.

Key words: Work
ow mining, work
ow management, data mining, Petri nets.

1 Introduction

During the last decade work
ow management concepts and technology [2, 3,
11, 17{19] have been applied in many enterprise information systems. Work-

ow management systems such as Sta�ware, IBM MQSeries, COSA, etc. o�er
generic modeling and enactment capabilities for structured business processes.
By making graphical process de�nitions, i.e., models describing the life-cycle of a
typical case (work
ow instance) in isolation, one can con�gure these systems to
support business processes. Besides pure work
ow management systems many
other software systems have adopted work
ow technology. Consider for example
ERP (Enterprise Resource Planning) systems such as SAP, PeopleSoft, Baan
and Oracle, CRM (Customer Relationship Management) software, etc. Despite
its promise, many problems are encountered when applying work
ow technol-
ogy. One of the problems is that these systems require a work
ow design, i.e., a
designer has to construct a detailed model accurately describing the routing of
work. Modeling a work
ow is far from trivial: It requires deep knowledge of the

work
ow language and lengthy discussions with the workers and management
involved.

Instead of starting with a work
ow design, we start by gathering information
about the work
ow processes as they take place. We assume that it is possible
to record events such that (i) each event refers to a task (i.e., a well-de�ned
step in the work
ow), (ii) each event refers to a case (i.e., a work
ow instance),
and (iii) events are totally ordered. Any information system using transactional
systems such as ERP, CRM, or work
ow management systems will o�er this
information in some form. Note that we do not assume the presence of a work
ow
management system. The only assumption we make, is that it is possible to
collect work
ow logs with event data. These work
ow logs are used to construct
a process speci�cation which adequately models the behavior registered. We
use the term process mining for the method of distilling a structured process
description from a set of real executions.

case identifier task identifier timestamp (date:time)

case 1 A 08-05-2002 : 08:15

case 2 A 08-05-2002 : 08:24

case 3 A 08-05-2002 : 09:30

case 2 B 08-05-2002 : 10:24

case 5 A 08-05-2002 : 10:24

case 4 A 08-05-2002 : 10:25

case 3 B 08-05-2002 : 10:26

case 1 F 08-05-2002 : 11:45

case 4 B 08-05-2002 : 11:46

case 2 C 08-05-2002 : 12:23

case 2 D 08-05-2002 : 15:14

case 5 F 08-05-2002 : 15:17

case 3 D 08-05-2002 : 15:19

case 1 G 08-05-2002 : 16:26

case 4 C 08-05-2002 : 16:29

case 5 G 08-05-2002 : 16:43

case 3 C 09-05-2002 : 08:22

case 4 D 09-05-2002 : 08:45

case 3 E 09-05-2002 : 09:10

case 4 E 09-05-2002 : 10:05

case 2 E 09-05-2002 : 10:12

case 2 G 09-05-2002 : 10:46

case 3 G 09-05-2002 : 11:23

case 4 G 09-05-2002 : 11:25

Table 1. A work
ow log.

To illustrate the principle of process mining, we consider the work
ow log
shown in Table 1. This log contains information about �ve cases (i.e., work
ow
instances). The log shows that for two cases (1 and 5) the tasks A, F and G

have been executed. For case 2 and case 4 the tasks A, B, C, D, E and G have
been executed. For case 3 the same tasks have been executed. However, C and
D are swapped. Each case starts with the execution of A and ends with the
execution of G. If task C is executed, then also task D is executed. However, for
some cases task C is executed before task D, and for some the other way around.
Based on the information shown in Table 1 and by making some assumptions
about the completeness of the log (i.e., assuming that the cases are representative
and a suÆcient large subset of possible behaviors is observed), we can deduce
for example the process model shown in Figure 1. The model is represented in
terms of a Petri net [23]. The Petri net starts with task A and �nishes with
task G. These tasks are represented by transitions. After executing A there is
a choice between either executing B or executing F. After executing B, tasks C
and D are executed in parallel, followed by E. Finally, after executing either E
or F, G can be executed. To execute C and D in parallel, tasks B corresponds a
so-called AND-split and task E corresponds a so-called AND-join. Note that for
this example we assume that two tasks are in parallel if they appear in any order.
By distinguishing between start events and end events for tasks it is possible to
explicitly detect parallelism. However, for the moment we assume atomic actions.

A

B

C

D

E

G

F

Fig. 1. A process model corresponding to the work
ow log.

The �rst two columns of Table 1 contain the minimal information we assume
to be present to provide process models such as the one shown in Figure 1. In [4]
we have provided an algorithm (named �) which can be used to discover a large
class for process models from logs containing this minimal information. However,
in many applications the work
ow log contains a timestamp for each event and
this information can be used to extract information about the performance of the
process, e.g., bottlenecks in the process. In this paper, we explore ways to mine
timed work
ow logs. In the log shown in Table 1 we can only see the completion
time of tasks. In most logs we can also see when tasks are started. However,
even using this minimal information we can calculate all kinds of performance
measures. Figure 2 shows the minimal, maximal, and average time each case
spends in a certain stage of the process. (The times indicated refer to the time a
token spends in a place between production and consumption [23].) For example,
the mean time between the completion of B and the completion of C is 573,

the minimum is 119, the maximum is 1316 minutes.1 Similar information is
given for all other places. Note that because the log shown in Table 1 only
captures completion times, we cannot calculate service times and resource usage.
Moreover, we do not know the exact arrival time of each case. The log only shows
when the �rst step in the process (task A) is completed. Therefore, we can only
calculate the
ow time starting from the completion of A. As indicated the in
Figure 2, the average
ow time is 1101 minutes.

A

B

C

D

E

G

F

mean:152
min:56
max:293

mean:573
min:119
max::1316

mean:614
min:290
max::1259

mean:763
min:80
max::1138

mean:804
min:48
max::1309

mean:123
min:34
max:281

flow time from
A to G

mean: 1101
min: 379

max: 1582

Fig. 2. Performance information (mean, min, and max) extracted from the work
ow
log is indicated in the process model.

For this simple example, it is quite easy to construct a process model that is
able to regenerate the work
ow log and attribute timing information to place.
For larger work
ow models this is much more diÆcult. For example, if the model
exhibits alternative and parallel routing, then the work
ow log will typically not
contain all possible combinations. Consider 10 tasks which can be executed in
parallel. The total number of interleavings is 10! = 3628800. It is not realistic
that each interleaving is present in the log. Moreover, certain paths through
the process model may have a low probability and therefore remain undetected.
Noisy data (i.e., logs containing exceptions) can further complicate matters.

In this paper, we do not focus on issues such as noise. We assume that there
is no noise and that the work
ow log contains \suÆcient" information. Under
these ideal circumstances we investigate whether it is possible to discover the
work
ow process and extract timing information, i.e., for which class of work-

ow models is it possible to accurately construct the model and performance
information by merely looking at their logs. This is not as simple as it seems.
Consider for example the process model shown in Figure 1. The corresponding

1 B and C are executed for three cases: 2, 3, and 4. The time between the completion of
B and C is respectively 119 (case 2), 1316 (case 3), and 283 (case 4) minutes. There-
fore, the average time attached to the corresponding place is (119+1316+283)/3=573
minutes.

work
ow log shown in Table 1 does not explicitly show any information about
AND/XOR-splits and AND/XOR-joins. Nevertheless, this information is needed
to accurately describe the process. These and other problems are addressed in
this paper. For this purpose we use work
ow nets (WF-nets) [1, 3]. WF-nets are
a class of Petri nets speci�cally tailored towards work
ow processes. The Petri
net shown in �gures 1 and 2 is an example of a WF-net.

The remainder of this paper is organized as follows. First, we introduce some
preliminaries, i.e., Petri nets and WF-nets. In Section 3 we present an algorithm
that discovers a large class of work
ow processes. Section 4 extends this algo-
rithm to also extract timing information. Section 5 presents the tool we have
developed to mine timed work
ow logs. The application of this tool to Sta�ware
logs is demonstrated in Section 6. To conclude we provide pointers to related
work and give some �nal remarks.

2 Preliminaries

This section introduces the techniques used in the remainder of this paper.
First, we introduce standard Petri-net notations, then we de�ne a subclass of
Place/Transition nets tailored towards work
owmodeling and analysis (i.e., WF-
nets [1, 3]).

2.1 Petri nets

We use a variant of the classic Petri-net model, namely Place/Transition nets.
For an elaborate introduction to Petri nets, the reader is referred to [10, 22, 23].

De�nition 2.1. (P/T-nets)An Place/Transition net, or simply P/T-net, is a
tuple (P; T; F) where:

1. P is a �nite set of places,

2. T is a �nite set of transitions such that P ∩ T = ∅, and
3. F ⊆ (P × T) ∪ (T × P) is a set of directed arcs, called the
ow relation.

A marked P/T-net is a pair (N; s), where N = (P; T; F) is a P/T-net and
s ∈ B(P), i.e., s is a bag over P , denoting the marking of the net. The set of all
marked P/T-nets is denoted N .

A marking is a bag over the set of places P , i.e., it is a function from P to the
natural numbers. B(P) denotes the set of all bags over P . We use square brackets
for the enumeration of a bag, e.g., [a2; b; c3] denotes the bag with two a-s, one b,
and three c-s. The sum of two bags (X+Y), the di�erence (X−Y), the presence
of an element in a bag (a ∈ X), and the notion of subbags (X ≤ Y) are de�ned
in a straightforward way and they can handle a mixture of sets and bags.

Let N = (P; T; F) be a P/T-net. Elements of P ∪T are called nodes. A node
x is an input node of another node y i� there is a directed arc from x to y (i.e.,

xFy). Node x is an output node of y i� yFx. For any x ∈ P ∪T , N• x = {y | yFx}
and x

N•= {y | xFy}; the superscript N may be omitted if clear from the context.

Figure 1 shows a P/T-net consisting of 8 places and 7 transitions. Transition
A has one input place and one output place, transition B has one input place and
two output places, and transition E has two input places and one output place.
The black dot in the input place of A represents a token. This token denotes the
initial marking. The dynamic behavior of such a marked P/T-net is de�ned by
a �ring rule.

De�nition 2.2. (Firing rule) Let (N = (P; T; F); s) be a marked P/T-net.
Transition t ∈ T is enabled, denoted (N; s)[t〉, i� •t ≤ s. The �ring rule [〉 ⊆
N ×T ×N is the smallest relation satisfying for any (N = (P; T; F); s) ∈ N and
any t ∈ T , (N; s)[t〉 ⇒ (N; s) [t〉 (N; s− •t+ t•).
In the marking shown in Figure 1 (i.e., one token in the source place), transition
A is enabled and �ring this transition removes the token for the input place and
puts a token in the output place. In the resulting marking, two transitions are
enabled: F and B. Although both are enabled only one can �re. If B �res, one
token is consumed and two tokens are produced.

De�nition 2.3. (Reachable markings) Let (N; s0) be a marked P/T-net in
N . A marking s is reachable from the initial marking s0 i� there exists a sequence
of enabled transitions whose �ring leads from s0 to s. The set of reachable
markings of (N; s0) is denoted [N; s0〉.
The marked P/T-net shown in Figure 1 has 8 reachable markings.

2.2 Work
ow nets

Most work
ow systems o�er standard building blocks such as the AND-split,
AND-join, OR-split, and OR-join [3, 11, 17, 18]. These are used to model sequen-
tial, conditional, parallel and iterative routing (WFMC [11]). Clearly, a Petri
net can be used to specify the routing of cases. Tasks are modeled by transi-
tions and causal dependencies are modeled by places and arcs. In fact, a place
corresponds to a condition which can be used as pre- and/or post-condition
for tasks. An AND-split corresponds to a transition with two or more output
places, and an AND-join corresponds to a transition with two or more input
places. OR-splits/OR-joins correspond to places with multiple outgoing/ingoing
arcs. Given the close relation between tasks and transitions we use these terms
interchangeably.

A Petri net which models the control-
ow dimension of a work
ow, is called a
WorkFlow net (WF-net). It should be noted that a WF-net speci�es the dynamic
behavior of a single case in isolation.

De�nition 2.4. (Work
ow nets) Let N = (P; T; F) be a P/T-net and �t a
fresh identi�er not in P ∪ T . N is a work
ow net (WF-net) i�:

1. object creation: P contains an input place i such that •i = ∅,
2. object completion: P contains an output place o such that o• = ∅,
3. connectedness: �N = (P; T ∪ {�t}; F ∪ {(o; �t); (�t; i)}) is strongly connected,

The P/T-net shown in Figure 1 is a WF-net. Note that although the net is
not strongly connected, the short-circuited net with transition �t is strongly con-
nected. Even if a net meets all the syntactical requirements stated in De�ni-
tion 2.4, the corresponding process may exhibit errors such as deadlocks, tasks
which can never become active, livelocks, garbage being left in the process after
termination, etc. Therefore, we de�ne the following correctness criterion.

De�nition 2.5. (Sound) Let N = (P; T; F) be a WF-net with input place i
and output place o. N is sound i�:

1. safeness: (N; [i]) is safe,

2. proper completion: for any marking s ∈ [N; [i]〉, o ∈ s implies s = [o],

3. option to complete: for any marking s ∈ [N; [i]〉, [o] ∈ [N; s〉, and
4. absence of dead tasks: (N; [i]) contains no dead transitions.

The set of all sound WF-nets is denoted W .

The WF-net shown in Figure 1 is sound. Soundness can be veri�ed using stan-
dard Petri-net-based analysis techniques. In fact soundness corresponds to live-
ness and safeness of the corresponding short-circuited net [1, 3]. This way eÆcient
algorithms and tools can be applied. An example of a tool tailored towards the
analysis of WF-nets is Wo
an [27].

3 Mining untimed work
ow logs

After introducing some preliminaries we return to the topic of this paper: work-

ow mining. The goal of work
ow mining is to �nd a work
ow model (e.g., a
WF-net) on the basis of a work
ow log. In this section we �rst introduce the �
mining algorithm which works on untimed logs. In the next section we focus on
timed logs.

3.1 De�nition of work
ow logs and log-based ordering relations

Table 1 shows an example of a timed work
ow log. In this section we only con-
sider the �rst two columns. Note that the ordering of events within a case is
relevant while the ordering of events amongst cases is of no importance. There-
fore, we de�ne a work
ow log as follows.

De�nition 3.1. (Work
ow trace, Work
ow log) Let T be a set of tasks.
� ∈ T ∗ is a work
ow trace and W ∈ P(T ∗) is a work
ow log.2

The work
ow trace of case 1 in Table 1 is AFG. The work
ow log corresponding
to Table 1 is {ABCDEG; ABDCEG; AFG}. Note that in this paper we abstract
from the identity of cases. Clearly the identity and the attributes of a case
are relevant for work
ow mining. However, for the algorithm presented in this
section, we can abstract from this. For similar reasons, we abstract from the

2 P(T ∗) is the powerset of T ∗, i.e., W ⊆ T ∗.

frequency of work
ow traces. In Table 1 work
ow trace AFG appears twice (case
1 and case 5), work
ow trace ABCDEG also appears twice (case 2 and case 4),
and work
ow trace ABDCEG (case 3) appears only once. These frequencies are
not registered in the work
ow log {ABCDEG; ABDCEG; AFG}. Note that
when dealing with noise, frequencies are of the utmost importance. However, in
this paper we do not deal with issues such as noise. Therefore, this abstraction
is made to simplify notation.

To �nd a work
ow model on the basis of a work
ow log, the log should be
analyzed for causal relations, e.g., if a task is always followed by another task
it is likely that there is a causal relation between both tasks. To analyze these
relations we introduce the following notations.

De�nition 3.2. (Log-based ordering relations) Let W be a work
ow log
over T , i.e., W ∈ P(T ∗). Let a; b ∈ T :

{ a >W b if and only if there is a trace � = t1t2t3 : : : tn−1 and i ∈ {1; : : : ; n−2}
such that � ∈W and ti = a and ti+1 = b,

{ a →W b if and only if a >W b and b �>W a,

{ a#W b if and only if a �>W b and b �>W a, and

{ a‖W b if and only if a >W b and b >W a.

Consider the work
ow log W = {ABCDEG; ABDCEG; AFG} (i.e., the log
shown in Table 1). Relation >W describes which tasks appeared in sequence (one
directly following the other). Clearly, A >W B, A >W F , B >W C, B >W D,
C >W E, C >W D, D >W C, D >W E, E >W G, and F >W G. Relation →W

can be computed from >W and is referred to as the causal relation derived from
work
ow logW . A →W B, A →W F , B →W C, B →W D, C →W E, D →W E,
E →W G, and F →W G. Note that C �→W D because D >W C. Relation ‖W
suggests potential parallelism. For log W tasks C and D seem to be in parallel,
i.e., C‖WD and D‖WC. If two tasks can follow each other directly in any order,
then all possible interleavings are present and therefore they are likely to be
in parallel. Relation #W gives pairs of transitions that never follow each other
directly. This means that there are no direct causal relations and parallelism is
unlikely.

Property 3.3. Let W be a work
ow log over T . For any a; b ∈ T : a →W b or
b →W a or a#W b or a‖W b. Moreover, the relations →W , →−1

W , #W , and ‖W are
mutually exclusive and partition T × T .3

This property can easy be veri�ed. Note that →W= (>W \ >−1
W), →−1

W = (>−1
W

\ >W), #W = (T × T) \ (>W ∪ >−1
W), ‖W = (>W ∩ >−1

W). Therefore, T × T =
→W ∪→−1

W ∪#W ∪ ‖W . If no confusion is possible, the subscript W is omitted.
To simplify the use of logs and sequences we introduce some additional no-

tations.

De�nition 3.4. (∈, �rst, last) Let A be a set, a ∈ A, and � = a1a2 : : : an ∈ A∗

a sequence over A of length n. ∈, �rst , last are de�ned as follows:

3 →−1

W
is the inverse of relation →W , i.e., →−1

W
= {(y; x) ∈ T × T | x→W y}.

1. a ∈ � if and only if a ∈ {a1; a2; : : : an},
2. �rst(�) = a1, and

3. last(�) = an.

To reason about the quality of a work
ow mining algorithm we need to make
assumptions about the completeness of a log. For a complex process, a handful
of traces will not suÆce to discover the exact behavior of the process. Relations
→W , →−1

W , #W , and ‖W will be crucial information for any work
ow-mining
algorithm. Since these relations can be derived from >W , we assume the log to
be complete with respect to this relation.

De�nition 3.5. (Complete work
ow log) Let N = (P; T; F) be a sound
WF-net, i.e., N ∈ W . W is a work
ow log of N if and only if W ∈ P(T ∗) and
every trace � ∈ W is a �ring sequence of N starting in state [i], i.e., (N; [i])[�〉.
W is a complete work
ow log of N if and only if (1) for any work
ow log W ′ of
N : >W ′⊆>W , and (2) for any t ∈ T there is a � ∈ W such that t ∈ �.

A work
ow log of a sound WF-net only contains behaviors that can be exhibited
by the corresponding process. A work
ow log is complete if all tasks that poten-
tially directly follow each other in fact directly follow each other in some trace
in the log. Note that transitions that connect the input place i of a WF-net to
its output place o are \invisible" for >W . Therefore, the second requirement has
been added. If there are no such transitions, this requirement can be dropped.

3.2 Work
ow mining algorithm

We now present an algorithm for mining processes. The algorithm uses the fact
that for many WF-nets two tasks are connected if and only if their causality can
be detected by inspecting the log.

De�nition 3.6. (Mining algorithm �) LetW be a work
ow log over T . �(W)
is de�ned as follows.

1. TW = {t ∈ T | ∃�∈W t ∈ �},
2. TI = {t ∈ T | ∃�∈W t = �rst(�)},
3. TO = {t ∈ T | ∃�∈W t = last(�)},
4. XW = {(A;B) | A ⊆ TW ∧B ⊆ TW ∧ ∀a∈A∀b∈Ba →W b ∧ ∀a1;a2∈Aa1#W a2 ∧

∀b1;b2∈Bb1#W b2},
5. YW = {(A;B) ∈ XW | ∀(A′;B′)∈XWA ⊆ A′ ∧B ⊆ B′ =⇒ (A;B) = (A′; B′)},
6. PW = {p(A;B) | (A;B) ∈ YW } ∪ {iW ; oW },
7. FW = {(a; p(A;B)) | (A;B) ∈ YW ∧ a ∈ A} ∪ {(p(A;B); b) | (A;B) ∈

YW ∧ b ∈ B} ∪ {(iW ; t) | t ∈ TI} ∪ {(t; oW) | t ∈ TO}, and
8. �(W) = (PW ; TW ; FW).

The mining algorithm constructs a net (PW ; TW ; FW). Clearly, the set of tran-
sitions TW can be derived by inspecting the log. In fact, if there are no traces
of length one, TW can be derived from >W . Since it is possible to �nd all initial

transitions TI and all �nal transition TO, it is easy to construct the connec-
tions between these transitions and iW and oW . Besides the source place iW
and the sink place oW , places of the form p(A;B) are added. For such place, the
subscript refers to the set of input and output transitions, i.e., •p(A;B) = A and
p(A;B)• = B. A place is added in-between a and b if and only if a →W b. However,
some of these places need to be merged in case of OR-splits/joins rather than
AND-splits/joins. For this purpose the relations XW and YW are constructed.
(A;B) ∈ XW if there is a causal relation from each member of A to each member
of B and the members of A and B never occur next to one another. Note that if
a →W b, b →W a, or a‖W b, then a and b cannot be both in A (or B). Relation
YW is derived from XW by taking only the largest elements with respect to set
inclusion.

If the � algorithm is applied to the log shown in Table 1, then the WF-net
shown in Figure 1 is discovered. In fact the � algorithm will detect this WF-
net from any complete work
ow log of this work
ow model. In [4] we prove
the correctness of the mining algorithm for a large class of work
ow processes.
However, a precise description of this class and correctness proofs are beyond
the scope of this paper because we focus on timed work
ow logs. The interested
reader is referred to [4].

4 Mining timed logs

The mining algorithm presented in the previous section ignores timing informa-
tion. Therefore, we extend the algorithm to incorporate time information. Event
logs typically add one timestamp to every line in the log. Therefore, we use the
following de�nition.

De�nition 4.1. (Timed work
ow trace, Timed work
ow log) Let T be
a set of tasks and D a time domain (e.g., D = {: : : ;−2;−1; 0; 1; 2; : : :} or any
totally ordered domain with >, +, and − de�ned on it.). � ∈ (T ×D)∗ is a timed

work
ow trace and W ∈ B((T ×D)∗) is a timed work
ow log.4

Each line in the work
ow log has a timestamp indicating at what time the
corresponding event took place. A timed work
ow trace is simply a sequence
of such timed events. Note that a timed log is a bag of traces rather than a
set of traces. In contrast to the untimed case (cf. De�nition 3.1), we have to
take into account the frequencies of traces. Without these frequencies we cannot
calculate estimates for probabilities and averages because these depend to how
many times a speci�c trace occurred.

Since each line in the work
ow log has a single timestamp and no duration
attached to it, we will associate time to places, i.e., the �ring of a transition is
an atomic action and tokens spend time in places. The time tokens spend in
places is referred to as sojourn time or holding time. We distinguish between
two kinds of sojourn time: waiting time and synchronization time. The waiting

4 T ×D is the Cartesian product of T and D.

time is the time that passes from the enabling of a transition until its �ring.
The synchronization time is the time that passes from the partial enabling of
a transition (i.e., at least one input place marked) until full enabling (i.e., all
input places are marked). Note that these times should be viewed from a token
in a place, i.e., when a token arrives in a place p, the synchronization time is the
time it takes to enable one of the output transitions in p• and the waiting time
is the additional time it takes to �re the �rst transition in p•.

Besides sojourn times we also want to analyze other metrics such as the
probability of taking a speci�c path and the
ow time (i.e., the time from the
arrival of a case until its completion).

To calculate sojourn times, probabilities,
ow times, and other metrics we
�rst apply the � algorithm and then replay the log in the resulting WF-net. For
each case in the log, we have a timed work
ow trace � ∈ (T × D)∗. We know
that the case starts in marking [i]. Therefore, we will start by putting a token
with a timestamp equal to that of the �rst �ring transition in place i. Then,
one by one, each transition in the timed work
ow trace may �re, thus collecting
tokens from its input places and placing them in its output places. Every time
a transition �res the waiting and synchronizing times will be calculated for the
input places in the following way: (1) the maximum m of the timestamps of
tokens in all input places is calculated, (2) if the transition has more than 1
input place, then for each place a \synchronization-time observation" will be
added which will be the di�erence between the timestamp of the token in that
place and m, and (3) for each of the input places a \waiting-time observation"
is added. The latter observation is equal to the di�erence between m and the
time the transition �res according to the log. This is repeated until the case
reaches marking [o]. This analysis is done for each case, resulting in a number
of synchronization-time observations and waiting-time observations per place.
Based on these observations metrics such as average, variance, maximum and
minimum synchronization/waiting time can be calculated.

By replaying the log in the discovered WF-net, also other metrics such as
routing probabilities and
ow times can be calculated. For example, if a place
has multiple output transitions, then the probability that a speci�c transition
will be chosen equals the number of occurrences of that transition in the log,
divided by the total number of occurrences of all the enabled transitions.

To conclude this section, we point out legal issues relevant when mining
timed work
ow logs. Clearly, timed work
ow logs can be used to systematically
measure the performance of employees. The legislation with respect to issues such
as privacy and protection of personal data di�ers from country to country. For
example, Dutch companies are bound by the Personal Data Protection Act (Wet
Bescherming Persoonsgegeven) which is based on a directive from the European
Union. The practical implications of this for the Dutch situation are described
in [6, 16, 24]. Timed work
ow logs are not restricted by these laws as long as the
information in the log cannot be traced back to individuals. If information in the
log can be traced back to a speci�c employee, it is important that the employee is
aware of the fact that her/his activities are logged and the fact that this logging

is used to monitor her/his performance. Note that in the timed work
ow log
as de�ned in De�nition 4.1 there is no information about the workers executing
tasks. Therefore, it is not possible to distill information on the productivity of
individual workers and legislation such as the Personal Data Protection Act does
not apply. Nevertheless, the logs of most work
ow systems contain information
about individual workers, and therefore, this issue should be considered carefully.

5 EMiT: A tool for mining timed work
ow logs

This section introduces our tool EMiT (Enhanced Mining Tool). EMiT has been
developed to mine timed work
ow logs from a range of transactional systems
including work
ow management systems such as Sta�ware and ERP systems
such as SAP.

Staffware
...

transactional
information

systems

XML timed
workflow log

format

...

product
specific

translators

WF-net
(untimed)

mining
algorithm

collect
statistics

dot files
(graphical
WF-net)

html files
(performance

indicators)

web
server

report
generator

Fig. 3. The architecture of EMiT.

Figure 3 shows the architecture of EMiT. The mining starts from a tool-
independent XML format. From any transactional information system recording
event logs, we can export to this XML format. The DTD describing this format
is as follows:

<!ELEMENT WorkFlow_log (source?,process+)>

<!ELEMENT source EMPTY>

<!ATTLIST source program (staffware|inconcert|pnet|IBM_MQ|

other) #REQUIRED>

<!ELEMENT process (case*)>

<!ATTLIST process id ID #REQUIRED>

<!ELEMENT case (log_line*)>

<!ATTLIST case id ID #REQUIRED>

<!ELEMENT log_line (task_name, event, date, time)>

<!ELEMENT task_name (#PCDATA)>

<!ELEMENT event EMPTY>

<!ATTLIST event kind (normal|schedule|start|withdraw|

suspend|resume|abort|complete) #REQUIRED>

<!ELEMENT date (#PCDATA)>

<!ELEMENT time (#PCDATA)>

Note that the XML �le not only contains timed work
ow traces as de�ned in
De�nition 4.1 but also information about the source of the information and the
type of event recorded. This information can be used to �lter and extract ad-
ditional knowledge. Using the � algorithm, EMiT constructs a WF-net without
considering timing information. Then the component \collect statistics" replays
the timed traces in the discovered WF-net and outputs both HTML �les and
DOT �les. EMiT exports WF-nets to the .DOT format to visualize the dis-
covered model and performance indicators. There are two ways to view results.
First, it is possible to generate a static report containing the graphical model
and all performance indicators: probabilities, sojourn times (average, variance,
minimum, and maximum), synchronization times, waiting times, etc. A more
sophisticated way to view the results is through a combination of HTML, JPG,
and MAP �les. This requires the use of a web server, but allows for checkable
models and a dynamic hypertext-like report.

Fig. 4. EMiT screenshot.

EMiT has been developed using Delphi and provides an easy-to-use graphical
user interface. Figure 4 shows one of the screens of EMiT while analyzing the log
shown in Table 1. EMiT indeed discovers the correct sojourn times as indicated
in Figure 2.

6 Application: Mining Sta�ware logs

Although EMiT and the underlying analysis routines are tool-independent, we
focus on a concrete system to illustrate the applicability of the results presented
in this paper. Sta�ware [26] is one of the leading work
ow management systems.
We have developed a translator from Sta�ware audit trails to the XML format
described in the previous section. Sta�ware records the completion of each task
in the log. (Note that in Sta�ware tasks are named steps.) However, it does not
record the start of the execution of a task. Instead it records the scheduling of
tasks. In the EMiT XML �le, completion events are distinguished from schedule
events. Other events recorded by Sta�ware and stored in the XML format are
withdraw, suspend, and resume events. Using di�erent pro�les, EMiT either
ignores or incorporates the various events.

Fig. 5. Sta�ware process model.

We have tested EMiT on a wide variety of Sta�ware models. These tests
demonstrate the applicability of the � algorithm extended with time. An ex-
ample is shown in Figure 5. Note that in Sta�ware each step (i.e. task) is an
OR-join/AND-split, and conditions (diamond symbol) and waits (sand-timer
symbol) have been added to model respectively OR-splits and AND-joins. The
work
ow shown in Figure 5 starts with TASKA, followed by TASKD or TASKE,

TASKB followed by TASKF, and TASKC in parallel, and ends with TASKG.
We have handled several cases using the Sta�ware model shown in Figure 5. By
collecting the audit trails of this model and feeding this to EMiT, we obtained
the WF-net shown in Figure 6. It is easy to verify that this WF-net indeed
corresponds to the Sta�ware model of Figure 5. Figure 6 does not show metrics
such as waiting times, etc. However, by clicking on the places one can obtain
detailed information about these performance indicators.

Examples such as shown in �gures 5 and 6 demonstrate the validity and
applicability of our approach. It should be noted that it is not very useful to
mine Sta�ware logs for discovering pre-speci�ed work
ow models. It is much
more interesting to mine process models in the situation where the underlying
model is unknown. However, even in the situation where the work
ow speci�-
cation is already available, it is interesting to compare the speci�ed model with
the discovered model. For example, it is useful to detect deviations between the
actual work
ow and the speci�ed work
ow. Moreover, EMiT also attributes per-
formance indicators to a graphical representation of the real work
ow. Clearly
these features are not supported by contemporary work
ow management sys-
tems.

starttask
normal

TASKA
complete

TASKB
complete

TASKC
complete

TASKD
complete

TASKF
complete

TASKH
complete

TASKG
complete

TerminationTask
normal

TASKE
complete

0.5000

0.5000

Fig. 6. The resulting model.

7 Related Work

The idea of process mining is not new [5, 7{9, 12{15,21, 25]. Cook and Wolf have
investigated similar issues in the context of software engineering processes. In [7]
they describe three methods for process discovery: one using neural networks, one
using a purely algorithmic approach, and one Markovian approach. The authors
consider the latter two the most promising approaches. The purely algorithmic
approach builds a �nite state machine where states are fused if their futures
(in terms of possible behavior in the next k steps) are identical. The Markovian
approach uses a mixture of algorithmic and statistical methods and is able to
deal with noise. Note that the results presented in [6] are limited to sequential
behavior. Cook and Wolf extend their work to concurrent processes in [8]. They
propose speci�c metrics (entropy, event type counts, periodicity, and causality)
and use these metrics to discover models out of event streams. However, they do
not provide an approach to generate explicit process models. Recall that the �nal

JavaScript:n("BVD_011.log.XML_Place0.html")
JavaScript:n("BVD_011.log.XML_Place1.html")
JavaScript:n("BVD_011.log.XML_Place2.html")
JavaScript:n("BVD_011.log.XML_Place3.html")
JavaScript:n("BVD_011.log.XML_Place4.html")
JavaScript:n("BVD_011.log.XML_Place5.html")
JavaScript:n("BVD_011.log.XML_Place8.html")
JavaScript:n("BVD_011.log.XML_Place7.html")
JavaScript:n("BVD_011.log.XML_Place6.html")
JavaScript:n("BVD_011.log.XML_Place9.html")
JavaScript:n("BVD_011.log.XML_Place11.html")
JavaScript:n("BVD_011.log.XML_Place10.html")

goal of the approach presented in this paper is to �nd explicit representations
for a broad range of process models, i.e., we want to be able to generate a
concrete Petri net rather than a set of dependency relations between events.
In [9] Cook and Wolf provide a measure to quantify discrepancies between a
process model and the actual behavior as registered using event-based data.
The idea of applying process mining in the context of work
ow management
was �rst introduced in [5]. This work is based on work
ow graphs, which are
inspired by work
ow products such as IBM MQSeries work
ow (formerly known
as Flowmark) and InConcert. In this paper, two problems are de�ned. The �rst
problem is to �nd a work
ow graph generating events appearing in a given
work
ow log. The second problem is to �nd the de�nitions of edge conditions.
A concrete algorithm is given for tackling the �rst problem. The approach is
quite di�erent from the approach envisioned in this proposal. Given the nature
of work
ow graphs there is no need to identify the nature (AND or OR) of
joins and splits. Moreover, work
ow graphs are acyclic. The only way to deal
with iteration is to enumerate all occurrences of a given activity. In [21], a tool
based on these algorithms is presented. Schimm [25] has developed a mining
tool suitable for discovering hierarchically structured work
ow processes. This
requires all splits and joins to be balanced. Herbst and Karagiannis also address
the issue of process mining in the context of work
ow management [12{15]. The
approach uses the ADONIS modeling language and is based on hidden Markov
models where models are merged and split in order to discover the underlying
process. The work presented in [12, 14, 15] is limited to sequential models. A
notable di�erence with other approaches is that the same activity can appear
multiple times in the work
owmodel. The result in [13] incorporates concurrency
but also assumes that work
ow logs contain explicit causal information. The
latter technique is similar to [5, 21] and su�ers from the drawback that the
nature of splits and joins (i.e., AND or OR) is not discovered.

In contrast to existing work we addressed work
ow processes with concurrent
behavior right from the start (rather than adding ad-hoc mechanisms to capture
parallelism), i.e., detecting concurrency is the prime concern of the � algorithm.
Moreover, we focus on the mining of timed work
ow logs to derive performance
indicators such as sojourn times, probabilities, etc. Some preliminary results for
untimed logs have been reported in [4, 20, 28, 29]. In [28, 29] a heuristic approach
using rather simple metrics is used construct so-called \dependency/frequency
tables" and \dependency/frequency graphs". In [20] another variant of this tech-
nique is presented using examples from the health-care domain. The preliminary
results presented in [20, 28, 29] only provide heuristics and focus on issues such
as noise. The approach described in [4] di�ers from these approaches in the sense
that for the � algorithm is proven that for certain subclasses it is possible to
�nd the right work
ow model.

This paper builds on [4, 20, 28, 29]. The main contribution of this paper, com-
pared to earlier work is the incorporation of time, practical experience with
systems such as Sta�ware, and the introduction of EMiT.

8 Conclusion

This paper presented an approach to extract both a work
ow model and per-
formance indicators from timed work
ow logs. The approach is supported by
the EMiT tool also presented in this paper and has been validated using logs of
transactional information systems such as Sta�ware.

It is important to see the results presented in this paper in the context of a
larger e�ort [4, 20, 28, 29]. The overall goal is to be able to analyze any work-

ow log without any knowledge of the underlying process and in the presence
of noise. At this point in time, we are applying our work
ow mining techniques
to two applications. The �rst application is in health-care where the
ow of
multi-disciplinary patients is analyzed. We have analyzed work
ow logs (vis-
its to di�erent specialist) of patients with peripheral arterial vascular diseases
of the Elizabeth Hospital in Tilburg and the Academic Hospital in Maastricht.
Patients with peripheral arterial vascular diseases are a typical example of multi-
disciplinary patients. The second application concerns the processing of �nes by
the CJIB (Centraal Justitieel Incasso Bureau), the Dutch Judicial Collection
Agency located in Leeuwarden. For example �nes with respect to traÆc viola-
tions are processed by the CJIB. However, this government agency also takes
care of the collection of administrative �nes related to crimes, etc. Through
work
ow mining we try to get insight in the life-cycle of for example speeding
tickets. Some preliminary results show that it is very diÆcult to mine the
ow
of multi-disciplinary patients given the large number of exceptions, incomplete
data, etc. However, it is relatively easy to mine well-structured administrative
processes such as the processes within the CJIB. In both applications we are also
trying to take attributes of the cases being processed into account. This way we
hope to �nd correlations between properties of the case and the route through
the work
ow process.

Acknowledgements The authors would like to thank Eric Verbeek, Ton Weij-
ters, and Laura Maruster for contributing to this work.

References

1. W.M.P. van der Aalst. The Application of Petri Nets to Work
ow Management.
The Journal of Circuits, Systems and Computers, 8(1):21{66, 1998.

2. W.M.P. van der Aalst, J. Desel, and A. Oberweis, editors. Business Process Man-
agement: Models, Techniques, and Empirical Studies, volume 1806 of Lecture Notes
in Computer Science. Springer-Verlag, Berlin, 2000.

3. W.M.P. van der Aalst and K.M. van Hee. Work
ow Management: Models, Methods,
and Systems. MIT press, Cambridge, MA, 2002.

4. W.M.P. van der Aalst, A.J.M.M. Weijters, and L. Maruster. Work
ow Mining:
Which Processes can be Rediscovered? BETA Working Paper Series, WP 74,
Eindhoven University of Technology, Eindhoven, 2002.

5. R. Agrawal, D. Gunopulos, and F. Leymann. Mining Process Models from Work-

ow Logs. In Sixth International Conference on Extending Database Technology,
pages 469{483, 1998.

6. College Bescherming persoonsgegevens (CBP; Dutch Data Protection Authority).
http://www.cbpweb.nl/index.htm.

7. J.E. Cook and A.L. Wolf. Discovering Models of Software Processes from Event-
Based Data. ACM Transactions on Software Engineering and Methodology,
7(3):215{249, 1998.

8. J.E. Cook and A.L. Wolf. Event-Based Detection of Concurrency. In Proceedings
of the Sixth International Symposium on the Foundations of Software Engineering
(FSE-6), pages 35{45, 1998.

9. J.E. Cook and A.L. Wolf. Software Process Validation: Quantitatively Measuring
the Correspondence of a Process to a Model. ACM Transactions on Software
Engineering and Methodology, 8(2):147{176, 1999.

10. J. Desel and J. Esparza. Free Choice Petri Nets, volume 40 of Cambridge Tracts
in Theoretical Computer Science. Cambridge University Press, Cambridge, UK,
1995.

11. L. Fischer, editor. Work
ow Handbook 2001, Work
ow Management Coalition.
Future Strategies, Lighthouse Point, Florida, 2001.

12. J. Herbst. A Machine Learning Approach to Work
ow Management. In Proceedings
11th European Conference on Machine Learning, volume 1810 of Lecture Notes in
Computer Science, pages 183{194. Springer-Verlag, Berlin, 2000.

13. J. Herbst. Dealing with Concurrency in Work
ow Induction. In U. Baake, R. Zo-
bel, and M. Al-Akaidi, editors, European Concurrent Engineering Conference. SCS
Europe, 2000.

14. J. Herbst and D. Karagiannis. An Inductive Approach to the Acquisition and
Adaptation of Work
ow Models. In M. Ibrahim and B. Drabble, editors, Proceed-
ings of the IJCAI'99 Workshop on Intelligent Work
ow and Process Management:
The New Frontier for AI in Business, pages 52{57, Stockholm, Sweden, August
1999.

15. J. Herbst and D. Karagiannis. Integrating Machine Learning and Work
ow Man-
agement to Support Acquisition and Adaptation of Work
owModels. International
Journal of Intelligent Systems in Accounting, Finance and Management, 9:67{92,
2000.

16. B.J.P. Hulsman and P.C. Ippel. Personeelsinformatiesystemen: De Wet Persoon-
sregistraties toegepast. Registratiekamer, The Hague, 1994.

17. S. Jablonski and C. Bussler. Work
ow Management: Modeling Concepts, Architec-
ture, and Implementation. International Thomson Computer Press, London, UK,
1996.

18. F. Leymann and D. Roller. Production Work
ow: Concepts and Techniques.
Prentice-Hall PTR, Upper Saddle River, New Jersey, USA, 1999.

19. D.C. Marinescu. Internet-Based Work
ow Management: Towads a Semantic
Web, volume 40 of Wiley Series on Parallel and Distributed Computing. Wiley-
Interscience, New York, 2002.

20. L. Maruster, W.M.P. van der Aalst, A.J.M.M. Weijters, A. van den Bosch, and
W. Daelemans. Automated Discovery of Work
ow Models from Hospital Data. In
B. Kr�ose, M. de Rijke, G. Schreiber, and M. van Someren, editors, Proceedings of
the 13th Belgium-Netherlands Conference on Arti�cial Intelligence (BNAIC 2001),
pages 183{190, 2001.

21. M.K. Maxeiner, K. K�uspert, and F. Leymann. Data Mining von Work
ow-
Protokollen zur teilautomatisierten Konstruktion von Prozemodellen. In Proceed-
ings of Datenbanksysteme in B�uro, Technik und Wissenschaft, pages 75{84. Infor-
matik Aktuell Springer, Berlin, Germany, 2001.

22. T. Murata. Petri Nets: Properties, Analysis and Applications. Proceedings of the
IEEE, 77(4):541{580, April 1989.

23. W. Reisig and G. Rozenberg, editors. Lectures on Petri Nets I: Basic Models,
volume 1491 of Lecture Notes in Computer Science. Springer-Verlag, Berlin, 1998.

24. L.B. Sauerwein and J.J. Linnemann. Guidelines for Personal Data Processors:
Personal Data Protection Act. Ministry of Justice, The Hague, 2001.

25. G. Schimm. Process Mining. http://www.processmining.de/.
26. Sta�ware. Sta�ware 2000 / GWD User Manual. Sta�ware plc, Berkshire, United

Kingdom, 1999.
27. H.M.W. Verbeek, T. Basten, and W.M.P. van der Aalst. Diagnosing Work
ow

Processes using Wo
an. The Computer Journal, 44(4):246{279, 2001.
28. A.J.M.M. Weijters and W.M.P. van der Aalst. Process Mining: Discovering Work-

ow Models from Event-Based Data. In B. Kr�ose, M. de Rijke, G. Schreiber, and
M. van Someren, editors, Proceedings of the 13th Belgium-Netherlands Conference
on Arti�cial Intelligence (BNAIC 2001), pages 283{290, 2001.

29. A.J.M.M. Weijters and W.M.P. van der Aalst. Rediscovering Work
ow Models
from Event-Based Data. In V. Hoste and G. de Pauw, editors, Proceedings of
the 11th Dutch-Belgian Conference on Machine Learning (Benelearn 2001), pages
93{100, 2001.

