
Modelling and analysing workflow using
a Petri-net based approach
W.M.P. van der Aalsty K.M. van Heezy G.J. Houbeny

y Eindhoven University of Technology, Dept. of Mathematics and Computing Science,
P.O. Box 513, 5600 MB Eindhoven, The Netherlands.
z Bakkenist Management Consultants, Wisselwerking 46, 1112 XR Diemen, The Nether-
lands.

Contact author:

Dr. Ir. W.M.P. van der Aalst
Eindhoven University of Technology
Dept. of Mathematics and Computing Science
P.O. Box 513
5600 MB Eindhoven
The Netherlands

Telephone: +31 40 2474295
Telefax: +31 40 2436685
E-mail: wsinwa@win.tue.nl



Modelling and analysing workflow using
a Petri-net based approach
W.M.P. van der Aalsty K.M. van Heezy G.J. Houbeny

y Eindhoven University of Technology, Dept. of Mathematics and Computing Science,
P.O. Box 513, 5600 MB Eindhoven, The Netherlands.
z Bakkenist Management Consultants, Wisselwerking 46, 1112 XR Diemen, The Nether-
lands.

Abstract

High-level Petri nets have been used to model systems in a variety of applica-
tion domains, ranging from protocols to logistics. This paper addresses an applica-
tion domain which is receiving more and more attention: workflows in offices and
their management. High-level Petri nets are used to model (1) the workflow in an of-
fice environment and (2) the workflow management system to support the control of
office work. In this way we will be able to formalize the main concepts. As a result
we can use Petri net based analysis techniques to analyse the workflow in an office.
Moreover, this formalization can be used to develop a prototype of a workflow man-
agement system.

Keywords: Application of nets to workflow management, High-level Petri nets, Business
process reengineering, Groupware, CASE tools.

1 Introduction

Workflow management systems (wfms) are modern software tools to support and control
administrative tasks in large organizations. It is becoming clear that wfms’s are the next
step in supporting office work, after other tools like database management systems, spread-
sheets and electronic mail systems. There are several commercial wfms’s on the market
(e.g. OPEN/workflow by Wang and WorkFlo by Olivetti) and experiments have shown that
they are successful (cf. Van den Berg et al. [4]). However, none of them have the function-
ality that is needed. Another problem is that there is no clear definition of these systems.
Moreover, there is no general conceptual model for workflow management systems, like
the relational data model for most database management systems.

To tackle these problems we propose an approach based on high-level Petri nets. Petri
nets have been used to model a variety of systems ranging from operating systems to lo-
gistic systems. We will see that we can use high-level Petri nets to model workflows and
workflow management systems, cf. Bracchi and Pernici [6]. This is not a surprise given
the fact that Petri nets have been successfully applied in the two application domains just
mentioned (i.e. operating systems and logistics). Note that wfms’s can be considered as
operating systems that control tasks outside computers. Moreover, there are many sim-
ilarities between flows inside an office environment and flows of goods and information



inside a logistic system. In fact the term ‘office logistics’ is often used to refer to the flow
of documents inside an office.

There have been other attempts to model workflow in terms of Petri nets, cf. Ellis and Nutt
[8], Cindio et al. [7] and Zisman [23]. Ellis and Nutt ([8]) also emphasize the need for
high-level Petri nets. However, there are several differences between our approach and
the approach presented in in [8], e.g. the workflow concepts and their definitions differ and
another Petri net model is used. Our approach integrates in a common formal framework
three different aspects of an office: the office functional specification, the organizational
structure and the communication aspects.
We will use the results reported in this paper to build a prototype of a workflow manage-
ment system. In fact, at the moment we are using ExSpect ([14]), a software package based
on high-level Petri nets, to develop such a wfms prototype.

In section 2 we will discuss the main concepts encountered in the workflow application do-
main. These concepts will be mapped onto high-level Petri nets in section 3. Both work-
flows and workflow management systems are modelled in terms of high-level Petri nets.
In the appendix a summary of the used Petri net formalism is given. A simple example is
given to illustrate our approach.

2 Workflow concepts

In this section we introduce the concepts of workflow management informally and in the
next section we give their formalisation in terms of (high-level) Petri nets.

Definition task, resource, resource class, document
The key concept of workflow management is task. A task is a piece of work to be done
by one or more resources in a pre-determined time interval. A task is atomic which means
that it is not considered to be split into smaller tasks. A resource can perform tasks (on
its own or together with other resources). The resources performing a task are occupied
doing the task from the start until the end of the time-interval. A resource class is a set of
resources. Each task will require resources from given resource classes. A document is
the input or output of a task, as far as this is relevant for the wfms.

A task can be any piece of work, for example the examination of a patient by a physician,
the typing of a letter by a secretary or the computing of the roots of a numerical equation
by a computer. From the point of view of the wfms the task is performed externally, i.e. the
wfms is only concerned with the management issues of the task, such as: which resource
will perform the task and what documents are needed for the resource to perform the task.
Some resources are automated (e.g. printers, software), others are ‘human’ (e.g. clerks).
In the specification of a task one is generally not interested in the actual resource perform-
ing the task, but only in the class of all resources that can perform the task: for this reason
resource classes are tied to tasks, so the wfms can choose any of the resources from a re-
source class to perform a task. The documents that are considered within the wfms are only



those messages that are needed in the communication between different tasks: the docu-
ments that are part of the object system for which the wfms is used are seen as external to
the wfms and are treated in the same way as any other physical item involved in executing
a task.

Definition resource manager
The resources needed for tasks are managed by one or more resource managers. They con-
trol the allocation of resources to tasks. A resource manager can be a person, a computer
system or a combination of the two. A resource may be assigned to two or more tasks at
the same time.

When a task requires several resources resource management is not trivial. Resource man-
agement happens outside of the wfms, i.e. the actual allocation process itself is not part of
the wfms.

Definition procedure, control activity
A procedure is a (partially) ordered set of control activities, pairs of tasks and sets of re-
source classes, and (sub)procedures. The ordering models the precedence relations for the
control activities, tasks and procedures that have to be done. The pairs of tasks and sets
of resource classes represent the tasks to be done and the classes of resources required for
those tasks. A control activity specifies the routing of the work within the procedure and
the synchronisation of tasks.

A procedure has one input and one output: the entities serving as input and output of pro-
cedures are documents, just as the entities communicated between tasks. If multiple inputs
or outputs are needed a control activity can be used to compose or decompose documents.

Definition job, job state, job identification, job attributes
A job is a process modelling the execution of an amount of work according to a given pro-
cedure. So, as a job is a kind of process, it can be characterized by a sequence of events,
or alternatively, by a sequence of states. We use the second characterization. A job state
is a snapshot of the job at some moment in time. The job state contains all the relevant
information of the history and (known) future of the job at that moment; such as the work
progress, i.e. the tasks that are currently being executed, references to documents that are
processed for the job, a job identification and some job attributes that are used to deter-
mine the routing of the job.

A job asks for one procedure, but at any moment there may be many jobs for which the
same procedure is preformed. Another term for a job is a project. A procedure is in that
case a type of project. A job is active at some moment in time if this moment occurs after
the initialization of the process and before it reaches is final state. The state of each active
job is recorded in the wfms.



Definition workflow, wfms
A workflow is a partially ordered set of jobs. There are several ways to order the jobs; for
example jobs x and y satisfy x � y if and only if x is ready before y starts. A wfms is a
computer system (or a software package) that manages workflows. It provides a number
of functions:

� definition of tasks, procedures and jobs,

� processing of the information that is needed to perform the tasks of the jobs,

� the management of resources,

� routing of job information between procedures and resources,

� supervision over the workflow, i.e. collecting management information.

The last function is optional.

We conclude this section with an example in which the introduced concepts are illustrated.
Consider a medical centre for diagnoses. A job is the check up of a client (or patient).
There are three different procedures, depending on what initiative the client comes to the
clinic. The client may come for a general check up of his own initiative. Secondly the
client may come for a fitness test for some sports club. Thirdly, the client may be sent by
his family physician for a specific check up. The last procedure consists of several sub-
procedures: a blood test, an x-ray, cardiogram and a mri-scan. A job contains information
in its job attributes that is used to select a next sub-procedure depending on the outcomes
of former tasks. For example if the x-ray is all-right then there is no need for an mri-scan.

3 Mapping the concepts onto Petri nets

In this paper high-level Petri nets are used to model workflows and workflow manage-
ment systems. We will use the term ‘high-level Petri nets’ to refer to Petri nets extended
with ‘colour’, ‘time’ and ‘hierarchy’. Commercial tools such as ExSpect, CPN/Design
and Pace are based on high-level Petri nets (cf. appendix A.5). We will use ExSpect to
model, analyse and prototype workflow (management) systems. Therefore, we will map
the workflow concepts defined in the previous section onto the high-level Petri net model
used by ExSpect. An informal introduction to this high-level Petri net model is given in
appendix A. For a more formal introduction to this net model the reader is referred to Van
der Aalst [2, 3] and Van Hee et al. [13, 14, 15].
Tasks, procedures and resource managers will be modelled by (Petri net) systems. (A sys-
tem is a subnet which may communicate via connectors, see appendix A.) Control activi-
ties will be modelled by transitions. Jobs are represented by (job) tokens.

A task corresponds to a system composed of five transitions p1, p2, p3, p4 and p5 and
four places s1, s2, s3 and s4 (see figure 1). Recall that tasks are atomic, i.e. a task can-
not be decomposed into other tasks. Every task is modelled by a system similar to the one



i

o

i

o

i

o

o

s1

s2

s3

s4

p1

p2

p3

p4

p5

begin_task

terminate_task

assigned_resource

request_resource

release_resource

finish_task

execute_task

Figure 1: The structure of a task.

shown in figure 1. A task modelled by such a system interacts with a procedure (via input
connector begin task and output connector terminate task), a resource manager
(via request resource, assigned resource and release resource) and a
resource (via execute task and finish task). Transition p1 is triggered by a job
token arriving via input connector begin task and sends a request to the resource man-
ager via output connector request resource.1 The job token consumed by p1 is put
on place s1. Each of the places s1, s2, s3 and s4 marks a stage in the ‘life-cycle’ of
the task. Transition p2 will fire the moment the resource manager assigns a resource to a
task to be performed for a specific job. The corresponding job token is moved from stage
s1 to stage s2 (transition p2 has a precondition which selects the corresponding token
from place s1, see appendix A.2). The information about the assigned resource is added
to the value of the job token produced for place s2. Transition p3 sends all this informa-
tion to the resource assigned to execute the task (via output connector execute task).
Note that this resource was selected by the resource manager. The resource will execute
the task and trigger transition p4 when it terminates (via finish task). Transition p4
will move the corresponding job token from s3 to s4. Finally, transition p5 fires. This
transition sends a token to the resource manager to indicate that the assigned resource has

1In this section, we assume that each task requires precisely one resource. The extension to multiple
resources is straightforward.



i

o

o

i

o

i

o

begin_procedure

C

C
c1

c2

P
p2

terminate_procedure

T
t1

T
t2

assigned_resource

request_resource

release_resource

execute_task

finish_task

Figure 2: The procedure p1.

been released. Transition p5 also returns the job token to the procedure that started up the
task.

A procedure is also represented by a system (see figure 2). Since a task is some kind of el-
ementary (i.e. atomic) procedure, it is not a surprise that tasks and procedures have similar
connectors. However, a procedure is composed of tasks, control activities and/or subpro-
cedures.
Control activities are represented by transitions marked with a C. Tasks and procedures
are marked with a T and P respectively. Figure 2 shows that procedure p1 is composed of
two control activities (c1 and c2), two tasks (t1 and t2) and one procedure (p2).
Control activities are used to:

� route jobs (work) inside a procedure,

� synchronize the work in a procedure,

� duplicate job tokens.

Note that control activities are not allowed to interact with the resource manager or the
resources. If a control activity requires such interaction, then it is preceded by a task. In



procedure p1 control activity c1 starts up two tasks (t1 and t2) by duplicating the job
token arriving via begin procedure. Control activity c2 starts up procedure p2 when
both tasks have been executed.

Job tokens exchanged via input connectorbegin procedure and output connectorter-
minate procedure mark the beginning and ending of a procedure preformed for a
specific job. Tasks and sub-procedures inside a procedure communicate with the resource
manager and the resources via the other connectors. The output connectorrequest re-
source of task t1 is connected to output connector request resource of p1, etc.
The connectors of tasks and procedures are connected in a straightforward manner. There-
fore, we could have omitted the five connectors on the right side of the procedure shown
in figure 2. (These connections and connectors can be added automatically.)

The only tokens allowed in the places of a procedure are job tokens. A job token refers to a
specific job. However, inside a procedure there may be several job tokens referring to the
same job. Therefore, the procedure should satisfy the following constraint; a procedure
executed for a specific job terminates if and only if all job tokens referring to this job have
been removed. Note that the state of a job j is given by the configuration and values of job
tokens referring to j.
The value (colour) of a job token is composed of (1) a job identification, (2) references to
documents and (3) a set of attributes. These attributes can be used for the routing of the
job token, i.e. control activities may only inspect these attributes. Note that the document
itself cannot be used to route the job.

A resource manager is modelled by a system with at least three connectors (see figure 3).
This system is triggered by tasks sending requests via input connectorrequest resource.
Via the output connectorassigned resource the corresponding task is informed about
the resource selected to execute the task. When the task terminates, the resource man-
ager is informed via the input connector release resource. The resource manager
shown in figure 3 is very simple. Each token in the place resources represents a free
resource. Transition r1 handles each request and removes the corresponding resource de-
scriptor from the place resources. Transition r2 returns the resource descriptor into
the place resources.
In practice the resource manager will be much more complex. For example, an advanced
resource manager will try to anticipate tasks in the future, critical jobs, set-up times of
resources, etc. In fact, the resource manager has to schedule tasks using simple heuristics,
humans or complex optimization techniques. Depending on the knowledge the resource
manager has of the workflow, it can become very complex.

Tokens exchanged via request resource have a value composed of: (1) a job iden-
tification, (2) a task identification, (3) a resource class and (4) some additional attributes.
Note that each task has a unique identification, i.e. it is possible to distinguish between
tasks having identical names in different procedures. The resource class indicates the type
of resource that is required. Recall that a resource may belong to many resource classes.



i

o

irelease_resource

assigned_resource

request_resource r1

r2

resources

Figure 3: A resource manager.

The token returned via assigned resource has a value composed of (1) a job iden-
tification, (2) a task identification, (3) a resource identification. The job identification and
task identification are used to assign the resource to the proper job token.
The value of a token exchanged via release resource is equal to the resource iden-
tification of the released resource.

Finally, we have to define a workflow management system (wfms) is terms of a high-level
Petri nets. Although a wfms can be used to define tasks and procedures, we will restrict
ourselves to the execution, monitoring and supervision of workflows. Adding a procedure
implies an update of the high-level Petri net which represents the wfms. Under these con-
ditions we can model a wfms as shown in figure 4.
There are n procedures that can handle jobs generated by the environment of the wfms
(via begin procedure). Note that inside these procedures there may be many other
subprocedures. The wfms shown in figure 4 has only one resource manager (rm1). In
general there will be multiple resource managers. Besides this resource manager there is
also a system called supervisor. The supervisor collects management information and
uses this information to control the workflow. We have omitted the connections between
the supervisor system and the procedures and resource manager because of their ad-hoc
nature. An advanced wfms may have a very complex supervisor that monitors the status
of each job and each resource. In this case there will be many interactions. If the wfms is
more simple or tailored towards a specific application area, then there will be a different
interaction structure.

We have mapped the workflow concepts defined in section 2 onto the high-level Petri net
model used by ExSpect. Note that we could have used any other Petri net model extended
with ‘colour’, ‘time’ and ‘hierarchy’. The extension with ‘colour’ is needed to model at-
tributes of jobs and resources. The ‘time’ extension is used to model durations. The ‘hi-
erarchy’ concept is used to decompose procedures into subprocedures and tasks.

There are several reasons for using high-level Petri nets for the modelling of workflows
and workflow management systems.
First of all, it is a way to formalize the important concepts. The mapping of concepts such



o

i

o

i

request_resource

assigned_resource

release_resource

terminate_procedure

begin_procedure

execute_task

finish_task

P P
p2

P
p1 pn

supervisor

rm1
RM

Figure 4: The architecture of the wfms.

as tasks, resources, procedures and jobs onto high-level Petri nets is used to provide the
semantics of workflow and wfms’s. Note that we did this in an ‘object-oriented fashion’.
The transitions inside a task system can be regarded as methods, the tokens exchanged
between tasks and resources (or resource managers) can be seen as messages, etc. For
more information on this subject the reader is referred to [13].
Another reason for using high-level Petri nets is the fact that we can use these nets for
analysis purposes. We can use Petri net based analysis techniques to verify a number of
properties. Interesting properties that can be verified are:

� Do all jobs terminate properly?

� Are the tasks properly synchronized?

� Are there any subprocedures that are never used?

� Etc.

It is also possible to evaluate the ‘performance’ of alternative workflows.
Finally, there are there are several software tools available (see appendix A.5) that can be
used to model and analyse high-level Petri nets. If fact, by modelling a wfms we obtain a
prototype of the wfms. This prototype can be used to evaluate the design of a wfms. At the



moment, we are using the software package ExSpect ([14]) to develop such a prototype.
ExSpect is used to interpret high-level Petri nets representing procedures, tasks, resources
managers etc. However, there are other approaches possible to build a (prototype) wfms,
e.g. an active database which manages the execution of procedures.

4 Example

In the second section we introduced the example of the medical center for diagnoses. The
work that needs to be done in that center consists of different tests performed for the cen-
ter’s clients (patients). In this section we will consider the workflow in this center using
the Petri nets from the previous section.
A job in this medical center represents the tests performed for a given patient visiting the
center. Such a job can match one of three procedures: a procedure modelling a general
check up on the client’s own initiative, a procedure modelling a fitness test for a sports
club, or a procedure modelling a specific check up on the initiative of the client’s family
physician. The latter procedure consists of subprocedures modelling a blood test, an x-ray,
a cardiogram or an mri-scan.
In the wfms this procedure could look like shown in the figure 5. (Note that we have omit-
ted the five connectors used to interact with the resource manager and the resources.)
In this procedure four subprocedures are used for the different tests to be performed for this
check up. The control activities are used to evaluate the tests done so far and to determine
whether the diagnosis is final or whether further tests are necessary. Depending on the
outcome of the blood test the diagnosis is ready or other tests need to be performed starting
with an x-ray. Again depending on the outcome the diagnosis is ready or a cardiogram
needs to be made. Eventually, if the diagnosis is not ready yet, an mri-scan is the ultimate
test on which the final diagnosis is based.
The (sub)procedure for the blood test is itself a procedure. Figure 6 shows the correspond-
ing net.
In this procedure three tasks need to be executed in a predefined sequence. First, blood has
to be taken from the client. Subsequently, this blood has to be analysed and then a report
has to be produced confirming the result of the analysis. The resources that are necessary
for these tasks come from three different classes (modelled as types of resource tokens).
A nurse is needed for taking the blood from the client. The analysis has to be performed
by a recognized analyst, while the production of the result of the test needs work by the
chief analyst.
The job tokens that flow through these procedure nets contain besides a job identification:

� a reference to the client, as the patient is an essential part of the work to be managed;

� a reference to the client’s file, as the medical data need to be examined in order to
produce the correct diagnosis;

� an attribute state of test stating the result of the test so far, which can be used to route
the job through the entire collection of tests (as soon as the result stands, the test is
ended).



i

o

P

C

P

C

P

C

P

begin_procedure

blood_test

c1

x-ray

c1

cardiagram

mri-scan

Cc1

c2

terminate_procedure

Figure 5: The procedure check up.

The procedure check up contains three instances of the same control activity c1. The
control activitiesc1 in the check up procedure basically verify whether the result is known
or not. For this they redirect their input to either the end of the procedure (output1) or the



i

o

T

T

T

take_blood

analyse

report

begin_procedure

terminate_procedure

Figure 6: The subprocedure blood test.

next test (output2) based on the value of the state of test attribute:
if ready(state of test) then output1 < � input else output2 < � input fi
Note that control activity c1 operates as an ‘OR’ gate, i.e. precisely one of the output
places obtains a token. (This is possible because of the net model used in this paper, see
appendix A.2.)
The control activity c2 collects the information from the previous tests and produces the
final output. For this it uses the documents (tokens) communicated between these tasks.

5 Conclusions and research issues

In this paper we presented an approach to model workflows and workflow management
systems in terms of high-level Petri nets. This way we have been able to formalize the main
concepts. Moreover, the use of high-level Petri nets gives us the opportunity to analyse and
prototype both workflow and workflow management systems. Nevertheless, there remains
a lot of work to be done.
First of all, we need to provide a user-friendly interface to define workflows, i.e. a cus-
tomized editor to define procedures, control activities and tasks.
Secondly, we have to do some research on the scheduling in the wfms, i.e. the assignment
of resources to tasks in a workflow.
Finally, we have to build a prototype wfms. We will use the software package ExSpect (see
appendix A.5) to do this. By applying this prototype to the management of a variety of
workflows, we will be able to evaluate a number of designs. This knowledge will support
the successful implementation of future workflow management systems.



References

[1] W.M.P. VAN DER AALST, Modelling and Analysis of Complex Logistic Systems,
in Integration in Production Management Systems, H.J. Pels and J.C. Wortmann,
eds., vol. B-7 of IFIP Transactions, Elsevier Science Publishers, Amsterdam, 1992,
pp. 277–292.

[2] , Timed coloured Petri nets and their application to logistics, PhD thesis, Eind-
hoven University of Technology, Eindhoven, 1992.

[3] W.M.P. VAN DER AALST AND A.W. WALTMANS, Modelling logistic systems with
EXSPECT, in Dynamic Modelling of Information Systems, H.G. Sol and K.M. van
Hee, eds., Elsevier Science Publishers, Amsterdam, 1991, pp. 269–288.

[4] A. VAN DEN BERG, A. BOUWMANS, AND G. SPANHOFF, Workflow management,
Computable, 21 (1993), pp. 26–32.

[5] B. BERTHOMIEU AND M. DIAZ, Modelling and verification of time dependent sys-
tems using Time Petri Nets, IEEE Transactions on Software Engineering, 17 (1991),
pp. 259–273.

[6] G. BRACCHI AND B. PERNICI, Trends in office modelling, in Office Systems, A.A.
Verrijn-Stuart and R.A. Hirschheim, eds., IFIP, Elsevier Science Publishers, Amster-
dam, 1986, pp. 77–92.

[7] F. DE CINDIO, C. SIMONE, R. VASSALLO, AND A. ZANABONI, CHAOS: a
knowledge-based system for conversing within offices, in Office Knowledge: Repre-
sentation, Management and Utilization, W. Lamersdorf, ed., IFIP, Elsevier Science
Publishers, Amsterdam, 1988, pp. 257–275.

[8] C.A. ELLIS AND G.J. NUTT, Modelling and Enactment of Workflow Systems, in Ap-
plication and Theory of Petri Nets 1993, M. Ajmone Marsan, ed., vol. 691 of Lecture
Notes in Computer Science, Springer-Verlag, Berlin, 1993, pp. 1–16.

[9] H.J. GENRICH, Predicate/Transition-Nets, in Advances in Petri Nets 1986 Part I:
Petri Nets, central models and their properties, W. Brauer, W. Reisig, and G. Rozen-
berg, eds., vol. 254 of Lecture Notes in Computer Science, Springer-Verlag, Berlin,
1987, pp. 207–247.

[10] H.J. GENRICH AND K. LAUTENBACH, System modelling with high level Petri nets,
Theoretical Computer Science, 13 (1981), pp. 109–136.

[11] M. HAMMER AND J. CHAMPY, Reengineering the corporation, Nicolas Brealey
Publishing, London, 1993.

[12] K. HAYES AND K. LAVERY, Workflow management software: the business oppor-
tunity, Ovum, 1991.



[13] K.M. VAN HEE, Information System Engineering: a Formal Approach, Cambridge
University Press, 1994.

[14] K.M. VAN HEE, L.J. SOMERS, AND M. VOORHOEVE, Executable specifications
for distributed information systems, in Proceedings of the IFIP TC 8 / WG 8.1
Working Conference on Information System Concepts: An In-depth Analysis, E.D.
Falkenberg and P. Lindgreen, eds., Namur, Belgium, 1989, Elsevier Science Publish-
ers, Amsterdam, pp. 139–156.

[15] K.M. VAN HEE AND P.A.C. VERKOULEN, Integration of a Data Model and High-
Level Petri Nets, in Proceedings of the 12th International Conference on Applications
and Theory of Petri Nets, Gjern, June 1991, pp. 410–431.

[16] K. JENSEN, Coloured Petri Nets: A High Level Language for System Design and
Analysis, in Advances in Petri Nets 1990, G. Rozenberg, ed., vol. 483 of Lecture
Notes in Computer Science, Springer-Verlag, Berlin, 1990, pp. 342–416.

[17] , Coloured Petri Nets. Basic concepts, analysis methods and practical use.,
EATCS monographs on Theoretical Computer Science, Springer-Verlag, Berlin,
1992.

[18] M. AJMONE MARSAN, G. BALBO, AND G. CONTE, A Class of Generalised
Stochastic Petri Nets for the Performance Evaluation of Multiprocessor Systems,
ACM Transactions on Computer Systems, 2 (1984), pp. 93–122.

[19] D. MORRIS AND J. BRANDON, Reengineering your business, McGraw-Hill, New
York, 1993.

[20] T. MURATA, Petri Nets: Properties, Analysis and Applications, Proceedings of the
IEEE, 77 (1989), pp. 541–580.

[21] C.A. PETRI, Kommunikation mit Automaten, PhD thesis, Institut für instrumentelle
Mathematik, Bonn, 1962.

[22] R. ZICARI, M.G. FUGINI, AND R. MAIOCCHI, Time management in the office-
net system, in Office Knowledge: Representation, Management and Utilization,
W. Lamersdorf, ed., IFIP, Elsevier Science Publishers, Amsterdam, 1988, pp. 163–
176.

[23] M.D. ZISMAN, Representation, Specification and Automation of Office Procedures,
PhD thesis, University of Pennsylvania, Warton School of Business, 1977.

A High-level Petri nets

In this paper we use high-level Petri nets to model workflows and workflow management
systems (wfms). A high-level Petri net is a Petri net extended with ‘colour’, ‘time’ and
‘hierarchy’. In this appendix, we give an informal introduction to the classical Petri net,
followed by a short description of each of the extensions.



cin

busy

free

cout

finishstart

Figure 7: A classical Petri net which represents a machine.

A.1 The classical Petri net model

Historically speaking, Petri nets originate from the early work of Carl Adam Petri ([21]).
Since then the use and study of Petri nets has increased considerably. For a review of the
history of Petri nets and an extensive bibliography the reader is referred to Murata [20].

The classical Petri net (often called place/transition net) is a directed bipartite graph with
two node types called places and transitions. The nodes are connected via directed arcs.
Connections between two nodes of the same type are not allowed. Places are represented
by circles and transitions by rectangles with a marked corner. (In literature transitions are
often displayed as bars.) Places may contain zero or more tokens, drawn as black dots.
The number of tokens may change during the execution of the net. A place p is called an
input place of a transition t if there exists a directed arc from p to t, p is called an output
place of t if there exists a directed arc from t to p.
We will use the net shown in figure 7 to illustrate the classical Petri net model. This fig-
ure models a resource (e.g. a machine) which processes jobs and has two states (free and
busy). There are four places (cin, free, busy and cout) and two transitions (start
and finish). In the state shown in figure 7 there are four tokens; three in place cin and
one in place free. The tokens in place cin represent jobs to be processed by the ma-
chine. The token in place free indicates that the machine is free and ready to process
a job. If the machine is processing a job, then there are no tokens in free and there is
one token in busy. The tokens in place cout represent jobs which have been processed
by the machine. Transition start has two input places (cin and free) and one out-
put place (busy). Transition finish has one input place (busy) and two output places
(cout and free).

A transition is called enabled if each of its input places contains ‘enough’ tokens. An
enabled transition can fire. Firing a transition t means consuming tokens from the input
places and producing tokens for the output places, i.e. t ‘occurs’.
Transition start is enabled in the state shown in figure 7, because each of its input places
(i.e. cin and free) contains a token. Transition finish is not enabled because there
are no tokens in place busy. Therefore, transition start is the only transition that can
fire. Firing a transition startmeans consuming two tokens, one fromcin and one from
free, and producing one token for busy. The resulting state is shown in figure 8. In
this state only transition finish is enabled, i.e. transition finish fires and the token in



cin

busy

free

cout

finishstart

Figure 8: The state after firing start.

place busy is consumed and two tokens are produced, one for cout and one for free.
Now transition start is enabled, etc. Note that as long as there are jobs waiting to be
processed, the two transitions fire alternately, i.e. the machine modelled by this net can
only process one job at a time.

The classical Petri net model has been used in many application areas, e.g. communication
protocols, flexible manufacturing systems and distributed information systems (see Murata
[20]). However, Petri nets describing real systems tend to be complex and extremely large.
To solve these problems, many authors propose extensions of the basic Petri net model. We
propose three extensions; ‘colour’, ‘time’ and ‘hierarchy’. Such extensions are a necessity
for the successful application of Petri nets to the modelling of workflows and workflow
management systems.

A.2 Adding colour

Tokens often represent objects (e.g. resources, goods, humans) in the modelled system.
Therefore, we often want to represent attributes of these objects. If a truck is modelled by
a token in the Petri net, then we may want to represent the capacity, registration number,
location, etc. of the truck. Since these attributes are not easily represented by a token in
a classical Petri net, we extend the Petri net model with coloured or typed tokens. In a
coloured Petri net each token has a value often referred to as ‘colour’. Many coloured
Petri net models have been proposed in literature ([2, 10, 9, 13, 16, 17]). One of the main
reasons for such an extension is the fact that uncoloured nets tend to become too large to
handle.
We will use the machine modelled in figure 7 to clarify this concept. Tokens in the places
cin and cout represent jobs. These jobs may have attributes like an identification num-
ber, a description and a due-date. We can model this by giving the tokens in cin and
cout a value (colour) which corresponds to these attributes. In figure 9 we see that the
job in cin has an identification number 3241 and a due-date 29-01-94. The token in place
free represents a machine and its value contains information about this machine (type
and mode).
Transitions determine the values of the produced tokens on the basis of the values of the
consumed token, i.e. a transition describes the relation between the values of the ‘input
tokens’ and the values of the ‘output tokens’. Moreover, the number of tokens produced



cin

busy

free

cout

finishstart

prod:TRUCK.A11
id:3241

date:29-01-94

type:M35
mode:FM4

Figure 9: Adding colour.

cin

busy

free

cout

finishstart

0

1
2 9 "d=3"

Figure 10: Adding time.

for each output place may depend upon the values of the input tokens. It is also possible
to specify ‘preconditions’, e.g. transition startmay have a precondition which specifies
that jobs require a machine of a specific type.

A.3 Adding time

For real systems it is often important to describe the temporal behaviour of the system,
i.e. we need to model durations and delays. Since the classical Petri net is not capable of
handling quantitative time, we add a timing concept. There are may ways to introduce time
into the classical Petri net ([2]). We use a timing mechanism where time is associated with
tokens and transition determine delays.
Consider the net shown in figure 10. Each token has a timestamp which models the time
the token becomes available for consumption. The token in free has timestamp 0, the to-
kens in cin have timestamps ranging from 1 to 9. Since these timestamps indicate when
tokens become available, transition start becomes enabled at time 1. (Time 1 is the ear-
liest moment that each of the input places contains a token which is available.) Therefore,
transition start fires at time 1, thereby producing a token for busy with delay 3. The
timestamp of this token is equal to 1+3=4. Transition finish will be the next to fire (at
time 4), etc. The delay of a produced token can be described by a fixed value, an interval
or a probability distribution (cf. [2, 5, 18, 20]).



cin

busy

free

cout

finishstarti o

Figure 11: The definition of the machine system.

arrive leave

machine

machine

machine

Figure 12: Three parallel machines modelled in terms of the machine system.

A.4 Adding hierarchy

Although timed coloured Petri nets allow for a succinct description of many workflows
(and wfms), precise specifications for real workflows have a tendency to become too large
and complex. This is the reason we provide a hierarchy construct, called system. A system
is an aggregate of places, transitions and (possibly) subsystems.
Figure 11 shows the definition of the machine system. This system is composed of two
places (free and busy) and two transitions (start and finish) and two connectors
(cin and cout). These connectors provide an interface with the environment of the ma-
chine system. The cin connector is an input connector (i.e. tokens may enter the system
via this connector), cout is an output connector (i.e. tokens may leave the system via this
connector). If a system is used then the connectors are connected to places at a ‘higher
level’. Consider for example the net shown in figure 12. In this net the same definition
is ‘installed’ three times. In this case, for each of these ‘installations’ the cin connec-
tor is connected to the place arrive and the cout connector is connected to the place
leave, i.e. the connectors inside the machine system are ‘glued’ on top of places at a
higher level.
The system concept allows for hierarchical modelling, i.e. it is possible to decompose com-
plex systems into smaller subsystems. (Note that it is possible to have an arbitrary number
of levels.) For practical applications of Petri nets, the system concept is of the utmost im-
portance. The system concept can be used to structure large specifications. At one level we



want to give a simple description of the system (without having to consider all the details).
At another level we want to specify a more detailed behaviour.
For a more elaborate discussion on hierarchy constructs, the reader is referred to Jensen
[16], van der Aalst [1, 2] and van Hee [13].

A.5 Language and tools

This paper shows that Petri nets extended with ‘colour’, ‘time’ and ‘hierarchy’ (i.e. high-
level Petri nets) are suitable for the modelling of workflows and wfms’s.
Only a few high-level Petri net models (i.e. hierarchical timed coloured Petri net models)
have been proposed in literature. Even fewer high-level Petri net models are supported by
software tools. Nevertheless, there are at least two software products, ExSpect ([2, 14])
and Design/CPN ([16]), that are being distributed on a commercial basis. Both software
products provide a graphical interface to create, modify and simulate high-level Petri nets.
Moreover, they provide analysis tools and reporting facilities.
To specify the behaviour of each transition (i.e. the number of tokens produced and the
value and delay of each produced token), Design/CPN provides an ‘inscription language’
(expressions on the input and output arcs of a transition). ExSpect (Executable Specifi-
cation Tool) uses a specification language to describe the behaviour of a transition. Both
languages originate from ‘pure’ functional languages.
The approach described in this paper uses the software package ExSpect. ExSpect has
been developed by the information systems department of Eindhoven University of Tech-
nology and is being marketed by Bakkenist.


