
On the semantics of EPCs: A vicious circle

Wil van der Aalst
Eindhoven University of Technology

w.m.p.v.d.aalst@tm.tue.nl

Jörg Desel
Katholische Universität Eichstätt-Ingolstadt

joerg.desel@ku-eichstaett.de

Ekkart Kindler
Universität Paderborn

kindler@upb.de

Abstract: Recently, Nüttgens and Rump proposed a formal semantics for Event driven
Process Chains (EPCs), which should be fully compliant with the informal semantics
of EPCs. But, their semantics has a severe flaw. This flaw reveals that there is a
fundamental problem with the informal semantics of EPCs. Here, we pin-point the
cause of this problem, we show that there is no sound formal semantics for EPCs that
is fully compliant with the informal semantics, and we discuss some consequences.

1 Introduction

About ten years ago,Event driven Process Chains(EPCs) have been introduced for mod-
elling business processes [KNS92]. Ever since, there have been different proposals of
formal semantics for EPCs. Most of these semantics, however, consider only a fragment
of EPCs or do not fully comply with the informal semantics of EPCs. Recently, Nüttgens
and Rump proposed a formal semantics for EPCs [Rum99, NR02], and they claimed that
the deficiencies of earlier formalizations have now been overcome.

The semantics of Nüttgens and Rump, however, has several insufficiencies, from a tech-
nical point of view, from a conceptual point of view, as well as from a practical point of
view. These insufficiencies will be discussed in this paper. Moreover, we will show that
these insufficiencies are inherent to the informal semantics of EPCs, to the effect that there
cannot be a formal semantics of EPCs that is fully compliant with the informal seman-
tics. Therefore, any formal semantics for EPCs will impose some restrictions on EPCs or
will deviate form the informal semantics to some extend. Which restrictions or deviations
are adequate, is a matter to be discussed. In this paper, we provide some input to such a
discussion.



2 The informal semantics of EPCs

We start with a brief discussion of the informal semantics of EPCs, where we focus on one
speciality of the semantics of EPCs, which we callnon-locality. Figure 1 shows a simple
example of an EPC. The dynamic behaviour of the EPC is best illustrated byprocess
folders, which are propagated between the different nodes of the EPC along its control
flow arcs. Theconnectors, which are represented as circles, may join and split process
folders. This way, the connectors define the routing and the synchronization of process
folders. For our example, we assume that, initially, there is one process folder on each of
the two eventsStart1 andStart2.

Inner2

f’2f’1

Inner1

Stop2

f2

Start2

By−pass

Empty

f1

Start1

Stop1

Figure 1: A simple EPC

First, we discuss what happens to the process folder onStart1: This process folder is
passed to functionf1. At the XOR-split connector belowf1, the process folder is either
propagated to theBy-pass event or to theInner1 event. If the process folder is propagated
to theBy-pass event, it is further propagated to theEmpty function, and then passed on to
the Stop1 event via the XOR-join connector. If the folder is passed to theInner1 event,
it is further propagated to the functionf’1 and then reaches the AND-split connector. At
the AND-split the process folder is duplicated. The two copies are propagated via the two
outgoing arcs. One process folder is propagated to the XOR-join, the other is propagated
to the OR-join on the right-hand side.

Second, we discuss what happens to the process folder onStart2: This process folder
is propagated to functionf2. What happens at the OR-join below functionf2 depends
on the behaviour of the left-hand part of the EPC. If there is the possibility that a process
folder will arrive from the left-hand part, the OR-join delays the propagation of the process



folder. In our example, this is the case as long as there is a process folder onStart1, f1,
Inner1, or f’1. If no process folder can arrive from the left-hand part anymore, the OR-join
propagates the folder fromf2 to Inner2. In our example, this is the case, once the process
folder has by-passed the AND-split. If eventually a process folder from the left-hand part
arrives at the OR-join, the process folders from both incoming arcs are merged and a single
process folder is propagated to theInner2 event. From theInner2 event, the process folder
is propagated down tof’2 andStop2.

In the following, we will focus on the semantics of the OR-join connector. Its main char-
acteristics is the delay of the propagation of a process folder on one of its incoming arcs
as long as a process folder could possibly arrive at one of the other incoming arcs. Thus,
the semantics of the OR-join isnon-local1. In order to decide whether a process folder at
an OR-join can be immediately propagated or whether the propagation should be delayed,
we need to know whether there will be a process folder arriving at one of the other arcs at
some time in the future. This information is not local to the OR-join, but may depend on
all other parts of the EPC. In our example, it depends on the choice taken at the XOR-split
in the left-hand part of the EPC.

3 A technical problem

In principle, there is no problem with the non-locality of the informal semantics of EPCs.
But, a formalization requires some care, because the definition of such a semantics in some
way refers to itself again: The semantics to be defined (propagation of process folders)
occurs in its own definition (propagation of process folders to an incoming arc of an OR-
join). This may easily result in a cyclic definition without any meaning. And this is
what happened in the definition of the semantics in [Rum99, NR02]: There, a state is the
assignment of process folders to the different nodes of the EPCs, and atransition relation
→TR between these states defines the state changes. Unfortunately, the transition relation
→TR occurs in its own definition again.

One way out of this cyclic definition would be to consider the definition as a fixed-point
equation. Then,→TR would be the least fixed-point of this equation. Unfortunately,
the relation→TR occurs under a negation in its definition, to the effect that the fixed-point
does not exist in all cases2. Fortunately, fixed-points seem to exist in all practically relevant
cases. In particular, a fixed-point exists for the example given in the next section.

1Here, we focus on the non-locality of the OR-join connector. According to Nüttgens and Rump [NR02],
the XOR-join connector has a non-local semantics, too. But we do not deal with the XOR-join in the rest of the
paper.

2For the experts, the Appendix shows an example of an EPC, for which a recursive interpretation of the
definition of→TR runs into an infinite cycle.



4 A conceptual problem

Figure 2 shows another EPC3 with two OR-joins in a feedback loop, which is a vicious
circle, as we will see. With the above mentioned fixed-point interpretation, the semantics
of [NR02] is that the process folders are stuck atf1 and f2. The two OR-joins will not
propagate the process folders to theInner events.

Start1

Stop1

Inner2

Start2

Stop2

Inner1

f1

f’1 f’2

f2

Figure 2: A vicious circle

Is this the intended semantics of this EPC? We will argue that it is not. To this end, we
consider the OR-join above theInner1 event. Since theInner2 event will never occur, we
know that no process folder will ever arrive at the other incoming arc of the OR-join. So,
according to the informal semantics, the OR-join should propagate the process folder from
f1 to the eventInner1. Symmetrically, we can argue that the process folder fromf2 should
be propagated toInner2. So, we have shown that the process folders should not be delayed
at f1 andf2 according to the informal semantics of EPCs.

Is this the intended semantics of this EPCs? Again, we will argue that it is not. We will
argue that the OR-joins should not propagate the process folders fromf1 and f2. To this
end, we consider the OR-join before theInner1 event again. SinceInner2 will eventually
occur, we know that eventually there will be a process folder arriving at the second incom-
ing arc. According to the informal semantics, this implies that the OR-join should wait
with the propagation of the process folder until the second folder arrives. Symmetrically,
we can argue that the process folder fromf2 should not be propagated. So, we know that
the process folders should be delayed atf1 andf2 according to the informal semantics of
EPCs.

3Rump [Rum99] gives a similar example. But his point is that, in some situations, OR-joins may result in a
deadlock. Here, we argue that the situation is much worse: the intuitive semantics of EPCs fails.



Altogether, we have established a vicious circle. In a situation with process folders onf1
andf2, we do not know whether the OR-joins should propagate the process folders or not.
Both alternatives result in a contradiction to the informal semantics of EPCs. This shows
that there is no formal semantics that precisely captures the informal semantics of EPCs.

Every formalization will deviate from the informal semantics in some way or the other.
Either it will impose some syntactical restrictions on EPCs, or it will deviate from the
informal semantics in some way. We believe that this choice depends on the purpose of
the semantics.

5 A practical problem

In the previous sections, we have shown that the non-locality of the semantics of EPCs
results in some technical and conceptual problems. But, non-locality is problematic from
a practical point of view, too. The reason is that, for routing the process folders through
an EPC, one needs to know the complete EPC, since process folders could arrive at an
OR-join from far away parts of the EPC. This is acceptable for workflows of a single or-
ganization4. For inter-organizational workflows, however, this is not acceptable anymore,
because different parts of the workflow belong to different organizations, which will not
reveal their part to the others. Due to the non-locality of the semantics of EPCs, this would
be necessary. Another solution to this problem would be a mechanism for a check-back
with the other organizations whether a process folder will be arriving from them in the
future. This does not not appear to be a realistic situation. Even worse, there could be a
vicious cycle of check-backs.

6 Pragmatic solutions

Though the non-locality of the OR-join has its complications, it is a pattern frequently
occurring in a wide variety of workflow processes. Therefore, dealing with this problem
is a practical issue, and vendors of workflow management systems have found ways to
deal with it. Most of the systems require the workflow designer to replace OR-splits and
OR-joins by AND/XOR-splits and AND/XOR-joins. However, there are also systems
that directly offer constructs that resemble the OR-join as discussed in this paper. For an
overview of these systems we refer to [AHKB02, Kie02] where 15 systems are evaluated
on the basis of 20 workflow patterns. Pattern 7, also referred to as thesynchronizing merge,
corresponds to the OR-join with a non-local semantics. The synchronization merge is fully
or partially supported by InConcert, Eastman, Domino Workflow, eProcess, and MQSeries
Workflow. In these systems, the designer does not have to specify the type of the join; this
is automatically handled by the system. Here, we will briefly discuss how these systems
support the synchronizing merge, i. e. the OR-join with a non-local semantics.

4Actually, it is only acceptable if the routing is performed by a workflow management system. Nobody wants
to calculate the complete semantics of an EPC by hand just for routing the process folders.



InConcert (TIBCO, [Tib00]) only allows for acyclic workflow graphs and does not allow
for XOR-splits. The only way to model alternatives is through adding conditions to tasks,
i. e., a task is simply skipped when the condition evaluates tofalse. This way the problem
of the OR-join is avoided and every join becomes an AND-join. This solution seems to
be very limiting but is motivated by the fact that InConcert allows for ad-hoc workflows.
End-users can make changes on-the-fly. Therefore, the language has to be very simple and
it should be impossible to design a workflow with deadlocks or livelocks.

Eastman (Eastman, [Sof98]) directly supports the synchronizing merge in most cases.
There are no syntactical requirements like the absence of cycles. However, in certain
circumstances the OR-join does not behave as expected. It appears that, in the system,
there are some heuristics to determine whether to wait or not. In most practical cases these
heuristics work. However, for more involved situations the heuristics fail in the sense that
the OR-join progresses while there is still some input on its way.

Domino Workflow (Lotus/IBM, [NEG+00]) also supports the synchronizing merge with-
out imposing syntactical requirements. It is not clear how the engine detects whether it
should wait or not. For all practical examples, the solution seems to work satisfactory.
However, Domino Workflow has not been tested using nasty examples like the “vicious
circle”.

eProcess (FileNET, [Fil02]) supports the synchronizing merge, but requires a one-to-one
correspondence between AND/OR-splits and AND/OR-joins, and every path starting in
an AND/OR-split should lead to the corresponding AND/OR-join. Then, the OR-join can
be implemented by a counter which is set by the split and inspected and decreased by the
join. After executing the split, the counter is set to the number of parallel threads5 initiated.
Then, the counter is decreased by one for every thread reaching the join. The moment
the counter is set to zero, processing continues. It is interesting to see that the simple
syntactical restriction to a one-to-one correspondence between splits and joins makes the
semantics of the OR-join local.

MQSeries Workflow (IBM, [IBM99]) is one of the most interesting systems when it comes
to the OR-join. MQSeries Workflow only allows for the iteration of entire subprocesses,
i. e., cycles are not allowed in the workflow graph. Note that this requirement does not
imply that there is one-to-one correspondence between splits and joins (like for eProcess).
Nevertheless this requirement is sufficient for implementing the synchronizing merge us-
ing a local rule. MQSeries workflow uses a technique called “dead-path elimination”
[LR99, IBM99]: Initially, each input arc is in state “unevaluated”. As long as one of the
input arcs is in this state, the activity is not enabled. The state of an input arc is changed
to true the moment the preceding activity is executed. However, to avoid deadlocks, the
input arc is set to false the moment it becomes clear that it will not fire. By propagating
these false signals, deadlocks are excluded and the resulting semantics is that of a synchro-
nizing merge. The solution used in MQSeries workflow is similar to having true and false
tokens in Petri nets: true tokens should be executed while false tokens are simply passed
on. The idea of having true and false tokens to address complex synchronizations was
already reported in [GT84]. However, the bipolar synchronization schemes presented in

5In the semantics of EPCs, the threads could be considered as process folders.



[GT84] are primarily aimed at avoiding constructs such as the synchronizing merge, i. e.,
the nodes are pure AND/XOR-splits/joins and partial synchronization is neither supported
nor investigated6.

The examples listed above show that the issue of non-local OR-joins is addressed by
contemporary workflow management systems. Systems like InConcert, eProcess, and
MQSeries have solved the OR-join problem using syntactical restrictions. Other systems
like Eastman and Domino Workflow seem to use a non-local semantics similar to the one
discussed in this paper. Such a non-local semantics may lead to unexpected results. More-
over, a non-local semantics may result in poor performance as is stated in the manual of
Eastman: “Parallel instances can accumulate at a Join workstep if the instances are routed
to the workstep by preprocessing rules. These instances will eventually be joined by a
RouteEngine subprocess (thread) that examines Join worksteps for such instances. This
Join scavenger threadreduces system efficiency, so routing to Join worksteps using pre-
processing rules should be avoided” [Sof98].

7 Conclusion

In this paper, we have discussed a problem of the EPC semantics of Nüttgens and Rump
[Rum99, NR02]. Actually, the problem is inherent to the informal semantics of EPCs. It
came into focus thanks to Nüttgen’s and Rump’s attempt to precisely capture the infor-
mal semantics. We have shown that this is impossible, and that a fully compliant formal
semantics does not exist.

Maybe, there is a sound formal semantics that captures the most important aspects of non-
locality of the informal semantics. We see several possibilities to achieve this goal. One
way would be the above mentioned fixed-point interpretation; but this would require to
syntactically exclude those EPCs for which the fixed-point does not exist. Another way
would be to define two transition relations; the first would be completely local, the second
would be non-local, but would only use the first for checking whether a folder can arrive
at an OR-join. But, all these semantics will be quite complex and will have pitfalls, to the
effect that the semantics neither will help to understand EPCs, nor will help to develop
analysis methods, nor will provide efficient routing algorithms.

There are several proposals of much simpler semantics for EPCs, which deliberately have
chosen to be local – either by excluding the problematic connectors (i. e. the OR-join) or
by giving them a local semantics. Clearly, they do not fully capture the informal semantics,
but there simplicity is an argument in favour of these semantics.

Before starting another effort in defining the semantics of EPCs, we think that a discussion
of the degree of non-locality that a semantics for EPCs should and could have is in order.
For this discussion, we need a set of well-accepted practical EPC models of business pro-
cesses, which cover the typical situations in which OR-joins and XOR-joins occur, along
with the intended behaviour.

6Note that Langner et al. [LSW98] build on the work in [GT84] to analyze EPCs.



References

[AHKB02] W.M.P. van der Aalst, A.H.M. ter Hofstede, B. Kiepuszewski, and A.P. Barros. Work-
flow Patterns. QUT Technical report, FIT-TR-2002-02, Queensland University of Tech-
nology, Brisbane, 2002. (Accepted for publication in Distributed and Parallel Databases,
also see http://www.tm.tue.nl/it/research/patterns.).

[Fil02] FileNET. Panagon eProcess Designer 4.2.2. FileNET Corporation, Costa Mesa, CA,
USA, 2002.

[GT84] H. J. Genrich and P. S. Thiagarajan. A Theory of Bipolar Synchronization Schemes.
Theoretical Computer Science, 30(3):241–318, 1984.

[IBM99] IBM. IBM MQSeries Workflow - Getting Started With Buildtime. IBM Deutschland
Entwicklung GmbH, Boeblingen, Germany, 1999.

[Kie02] B. Kiepuszewski.Expressiveness and Suitability of Languages for Control Flow Mod-
elling in Workflows (submitted). PhD thesis, Queensland University of Technology,
Brisbane, Australia, 2002.

[KNS92] G. Keller, M. Nüttgens, and A.-W. Scheer. Semantische Prozessmodellierung auf der
Grundlage Ereignisgesteuerter Prozessketten (EPK). Veröffentlichungen des Instituts
für Wirtschaftsinformatik (IWi), Heft 89, Universität des Saarlandes, January 1992.

[LR99] F. Leymann and D. Roller.Production Workflow: Concepts and Techniques. Prentice-
Hall PTR, 1999.

[LSW98] P. Langner, C. Schneider, and J. Wehler. Petri Net Based Certification of Event driven
Process Chains. In J. Desel and M. Silva, editors,Application and Theory of Petri Nets
1998, LNCS1420, pages 286–305. Springer, 1998.

[NEG+00] S.P. Nielsen, C. Easthope, P. Gosselink, K. Gutsze, and J. Roele.Using Lotus Domino
Workflow 2.0, Redbook SG24-5963-00. IBM, Poughkeepsie, USA, 2000.

[NR02] Markus Nüttgens and Frank J. Rump. Syntax und Semantik Ereignisgesteuerter
Prozessketten (EPK). InPROMISE 2002, Prozessorientierte Methoden und Werkzeuge
fürr die Entwicklung von Informationssystemen, GI Lecture Notes in InformaticsP-21,
pages 64–77. Gesellschaft für Informatik, 2002.

[Rum99] Frank J. Rump. Geschäftsprozeßmanagement auf der Basis ereignisgesteuerter
Prozeßketten. Teubner-Reihe Wirtschaftsinformatik. B.G.Teubner, 1999.

[Sof98] Eastman Software.RouteBuilder Tool User’s Guide. Eastman Software, Inc, Billerica,
MA, USA, 1998.

[Tib00] Tibco. TIB/InConcert Process Designer User’s Guide. Tibco Software Inc., Palo Alto,
CA, USA, 2000.

Acknowledgment We would like to thank Matthias Gehrke for his comments on an
earlier version of this paper.



Appendix

Figure 3 shows a nasty example of an EPC. For this EPC, a recursive interpretation of the
definition of→TR in [NR02] runs into an infinite cycle, when started with a process folder
onStart1 andStart2.

Inner1 Inner2

f’2f’1

Start1

f1

Inner3

f’3

Start2

f2

Figure 3: A vicious circle worse than the one from Fig. 2


