Pattern Based Analysis of BPML (and WSCI)

Wil M.P. van der Aalst!* Marlon Dumas?
Arthur H.M. ter Hofstede? Petia Wohed3*

! Department of Technology Management
Eindhoven University of Technology, The Netherlands
w.m.p.v.d.aalst@tm.tue.nl
2 Centre for Information Technology Innovation
Queensland University of Technology, Australia
{m.dumas, a.terhofstede}@qut.edu.au
3 Department of Computer and Systems Sciences
Stockholm University/The Royal Institute of Technology, Sweden
petia@dsv.su.se

Abstract. Web services composition is an emerging paradigm for en-
abling application integration within and across organizational bound-
aries. A landscape of languages and techniques for web services composi-
tion has emerged and is continuously being enriched with new proposals
from different vendors and coalitions. However, little or no effort has
been dedicated to systematically evaluating the capabilities and limita-
tions of these languages and techniques. The work reported in this paper
is a step in this direction. It presents an in-depth analysis of the Business
Process modeling Language (BPML). The framework used for this anal-
ysis is based on a collection of workflow and communication patterns. In
addition to BPML, the framework is also applied to the Web Services
Choreography Interface (WSCI). WSCI and BPML have several rout-
ing constructs in common but aim at different levels of the web services
stack.

Keywords: business process modeling, web services composition, BPML,
WSCI

1 Introduction

Web Services is a rapidly emerging paradigm for architecting and imple-
menting business collaborations within and across organizational bound-
aries. In this paradigm, the functionalities provided by business appli-
cations are encapsulated within web services: software components de-
scribed at a semantical level, which can be invoked by application pro-
grams or by other services through a stack of Internet standards including
HTTP, XML, SOAP, WSDL, and UDDI [9]. Once deployed, web services
provided by various organizations can be inter-connected in order to im-
plement business collaborations, leading to composite web services.

* Research conducted while at the Queensland University of Technology.

Pattern-Based Analysis of BPML (and WSCI) 2

Business collaborations require long-running interactions driven by an
explicit process model [1]. Accordingly, a current trend is to express the
logic of a composite web service using a business process modeling lan-
guage tailored for web services. Recently, many languages have emerged,
including WSCT [23], BPML [5], BPELAWS [10], XLANG [8], WSFL [14],
and BPSS [22], with little effort spent on their evaluation with respect to
a common benchmark. Such a comparative evaluation will contribute to
establishing their overlap and complementarities, to delimit their capa-
bilities and limitations, and to detect inconsistencies and ambiguities.

As a step in this direction, this paper reports an in-depth analysis of
two of these emerging languages, namely BPML (Business Process Mod-
eling Language), and its “sibling” language WSCI. The reported analysis
is based on a framework composed of a set of patterns: abstracted forms of
recurring situations found at various stages of software development [13].
Specifically, the framework brings together a set of workflow patterns doc-
umented in [3], and a set of communication patterns documented in [19].

The workflow patterns (WPs) have been compiled from an analysis
of existing workflow languages and they capture typical control flow de-
pendencies encountered in workflow modeling. More than 12 commercial
Workflow Management Systems (WFMS) as well as the UML Activity
Diagrams, have been evaluated in terms of their support for these pat-
terns [3,11]. The WPs are arguably suitable for analyzing languages for
web services composition, since the situations they capture are also rel-
evant in this domain. The Communication Patterns (CPs) on the other
hand, are related to the way in which system modules interact in the
context of Enterprise Application Integration (EAI). They are structured
according to two dichotomies: synchronous vs. asynchronous, and point-
to-point vs. multicast. They are arguably suitable for the analysis of the
communication modeling abilities of web services composition languages,
given the strong overlap between EAI and web services technologies.

A similar analysis using the same framework as in this paper has been
previously conducted on BPEL4AWS and its parent languages XLANG
and WSFL [24]. This paper and [24] together therefore provide a basis for
comparing these emerging business process languages. Some conclusions
of this comparative study are given in the conclusion of this paper.

Two other frameworks for analyzing and comparing business process
modeling languages have been proposed by Rosemann & Green [18] and
Soderstrom et al. [21]. While these two frameworks are motivated by the
same problem that motivates this paper, i.e. the continuously increasing
number of process modeling languages and the need to understand and

FIT Technical Report FIT-TR-2002-05

Pattern-Based Analysis of BPML (and WSCI) 3

compare them, they differ from the pattern-based framework in that they
target a different audience namely, IS/IT-managers, business strategists
and other business stakeholders involved in business process management.
Accordingly, they adopt a higher level of granularity.

There have been several comparisons of some of the languages men-
tioned in this paper. These comparisons typically do not use a framework
and provide an opinion rather than a structured analysis. A positive ex-
ample is [20] where XPDL, BPML and BPEL4WS are compared by re-
lating the concepts used in the three languages. Unfortunately, the paper
raises more questions than it answers.

The rest of the paper is structured as follows. Section 2 provides an
overview of the BPML language. In sections 3 and 4 the BPML language
is analyzed using the set of workflow and communication patterns re-
spectively. Section 5 introduces WSCI and discusses the differences and
commonalities between WSCI and BPML. Finally, Section 6 concludes.

2 BPML

BPML (Business Process Modeling language) is a standard developed and
promoted by BPMI.org (the Business Process Management Initiative). At
the time of writing this paper, BPMIl.org is supported by several organi-
zations, including Intalio, SAP, Sun, and Versata. BPML can be seen as a
language competing with other standards such as IBM’s WSFL (Web Ser-
vices Flow Language) and Microsoft’s XLANG (Web Services for Business
Process Design) which recently merged into BPEL4AWS (Business Process
Execution Language for Web Services).

The main ingredients of BPML are: activities, processes, contexts,
properties, and signals. Activities are components performing specific
functions. There are two types of activities: simple activities and com-
plex activities. Simple activities are atomic while complex activities are
decomposed into smaller activities. A process is a complex activity which
can be invoked by other processes. A process that is defined indepen-
dently of other processes is called a top-level process. A process that is
defined to execute within another process is called a nested process. Fur-
thermore there are two types of special processes: exception processes and
compensation processes.

Contexts are very important in BPML. A context defines an environ-
ment for the execution of related activities. The context can be used to
exchange information and coordinate execution. A context contains local
definitions that only apply within the scope of that context. Local defini-

FIT Technical Report FIT-TR-2002-05

Pattern-Based Analysis of BPML (and WSCI) 4

tions include properties, processes, and signals, among others. Contexts
can be nested and a child context (recursively) inherits the definitions of
its parent contexts and may override them. A process can have a context
which is shared by all activities that execute as part of that process. Prop-
erties are used to exchange information and can only exist in a context.
A property definition has a name and a type while each property instance
has a value in the range of the type of the corresponding definition. One
can think of properties as attributes (or instance variables) of a process.
Signals are used to coordinate the execution of activities executing within
a common context other than through basic routing constructs such as
sequence. One can think of signals as messages, and there are constructs
to send such a message (raise signal) and wait for a message (synchronize
signal).
BPML offers the following types of simple activities:

action To perform or invoke a single operation that involves the exchange
of input and output messages that are mapped onto properties. Ac-
tions allow two top-level processes to communicate.

assign To assign a new value to a property.

call To instantiate a process (whether a top-level process or a subprocess)
and wait for it to complete.

compensate To invoke compensation for a given process.

delay To wait for a specified period or a specified time.

empty An action that does nothing.

fault To throw a fault in the current context.

raise To raise a signal.

spawn To instantiate a process without waiting for it to complete.

synch To wait for a signal to be raised.

Meanwhile, the types of complex activities offered by BPML are:

all To execute activities in parallel.

choice To choose among multiple alternatives based on the occurrence
of an event.

foreach To execute activities once for each element in a list.

sequence To execute activities in sequence.

switch To conditionally execute one among a set of activities.

until To execute activities once or more times based on an exit condition.

while To execute activities zero or more times based on an exit condition.

For more information on BPML, we refer to [5].

FIT Technical Report FIT-TR-2002-05

=W N =

[I

Pattern-Based Analysis of BPML (and WSCI) 5

3 The Workflow Patterns in BPML

Web services composition and workflow management are related in the
sense that both are concerned with executable processes. Therefore, much
of the functionality in workflow management systems [2,12,17] is also
relevant for web services composition languages like BPML, BPEL4WS,
XLANG, and WSFL. In this section, we consider the 20 workflow patterns
presented in [3], and we discuss how and to what extent these patterns
can be captured in BPML. In particular, we indicate whether the pattern
is directly supported by a BPML construct. If this is not the case, we
sketch a workaround solution. Most of the solutions are presented in a
simplified BPML notation which is intended to capture the key ideas of
the solutions while avoiding coding details. In other words, the fragments
of BPML definitions provided here are not “ready to be run”.

WP1 Sequence An activity in a workflow process is enabled after the
completion of another activity in the same process. Example: After the
activity order registration the activity customer notification is executed.

Solution, WP1 This pattern is directly supported by the BPML con-
struct sequence as illustrated in in Listing 1. This listing uses a simplified
notation: activityA and activityB need to be replaced by concrete activities
when the pattern is applied to a given situation.

In BPML, the activities directly contained within a process are by de-
fault assumed to be executed in sequential order. Therefore, the operator
sequence can be omitted as is shown in Listing 2.

Listing 1 (Sequence) Listing 2 (Sequence)
<process name="SequentialProcessl1"> 1 <process name="SequentialProcess2">
<sequence> 2 activityA
activityA 3 activityB
activityB 4 </process>
</sequence>
</process>

WP2 Parallel Split A point in the process where a single thread of
control splits into multiple threads of control which can be executed in
parallel, thus allowing activities to be executed simultaneously or in any
order [7]. Example: After activity new cellphone subscription order the
activity insert new subscription in Home Location Registry application
and insert new subscription in Mobile answer application are executed in
parallel.

FIT Technical Report FIT-TR-2002-05

Pattern-Based Analysis of BPML (and WSCI) 6

WP3 Synchronization A point in the process where multiple parallel
branches converge into one single thread of control, thus synchronizing
multiple threads [7]. It is an assumption of this pattern that after an in-
coming branch has been completed, it cannot be completed again while
the merge is still waiting for other branches to be completed. Also, it is
assumed that the threads to be synchronized belong to the same global
process instance (i.e., to the same “case” in workflow terminology). Ex-
ample: Activity archive is executed after the completion of both activity
send tickets and activity receive payment. Obviously, the synchronization
occurs within a single global process instance: the send tickets and receive
payment must relate to the same client request.

Listing 3 (Split/Synchronization) Listing 4 (Split/Synchronization)
<process name="ParallelProcessl1"> 1 <process name="ParallelProcess2">
<sequence> 2 <context>
<all> 3 <signal name="tns:completedAl">
activityAl 4 tns is the namespace of this BPML
activityA2 5 process definition
</all> 6 <signal name="tns:completedA2">
activityB 7 <process name="activityA1l">
</sequence> 8
</process> 9 <raise signal="tns:completedAl">
10 </process>
11 <process name="activityA2">
12 .
13 <raise signal="tns:completedA2">
14 </process>
15 </context>
16 <all>
17 <spawn process="activityAl"/>
18 <spawn process="activityA2"/>
19 </all>

20 ...
21 <sequence>

22 <all>

23 <synch signal="tns:completedAl">
24 <synch signal="tns:completedA2">
25 </all>

26 activityB

27 </sequence>
28 </process>

Solutions, WP2 & WP3 The parallel split is realized by defining the
activities to be run in parallel as components of a complex activity of
type all (see Listing 3, lines 3 to 6). Adding an activity after the flow, as

FIT Technical Report FIT-TR-2002-05

Pattern-Based Analysis of BPML (and WSCI) 7

for example activity B in line 7 of this listing, yields the solution to the
Synchronization pattern.

Instead of using the all complex activity to launch and synchronize
parallel activities it is also possible to use the spawn and synch activities
as shown in Listing 4. The context declares two signals (completedAl and
completedA2) and two processes (activityAl and activityA2). First the two
processes are initiated using two spawn activities. Some time later the
two processes are synchronized through two synch activities. Note that
each of the synch activities in the main process waits for the execution
of the raise activity in the corresponding subprocess. This combination of
raise and synch activities effectively captures the Synchronization pattern.
Note that in Listing 4 the spawn activities appear within an all activity.
However, this all activity can be replaced by a sequence activity without
changing the logic of the overall process since the “spawn activities take an
insignificant amount of time to complete” [5, page 48]. A similar remark
applies to the synch activities appearing within an all activity.

The solution of patterns WP2 and WP3 using spawn and synch (List-
ing 4) is more general than the solution using just the all construct (List-
ing 3). For example, the synchronization point appearing between activ-
ities C and D in Figure 1 cannot be captured using a combination of
activities all and sequence, without using a synch activity as in Listing 5.
For a proof that it is not possible to express the process described in Fig-
ure 1 by simply combining structured workflow constructs (i.e. all, switch,
sequence, and while), we refer to [16, 15].

WP4 Exclusive Choice A point in the process where, based on a deci-
sion or workflow control data, one of several branches is chosen. Exam-
ple: The manager is informed if an order exceeds $600, otherwise not.

WP5 Simple Merge A point in the workflow process where two or
more alternative branches come together without synchronization. It is
an assumption of this pattern that none of the alternative branches is ever
executed in parallel with another one (if it is not the case, then see the
patterns Multi Merge and Discriminator). Example: After the payment
is received or the credit is granted the car is delivered to the customer.

Solutions, WP4 & WP5 Listing 6 shows the realization of the Ex-
clusive Choice and Simple Merge patterns using a switch activity. There
are three possibilities. If condition C1 (not specified) evaluates to true,
activityAl is executed. If condition C1 evaluates to false and condition
C2 evaluates to true, activityA2 is executed. If both condition C1 and

FIT Technical Report FIT-TR-2002-05

Pattern-Based Analysis of BPML (and WSCI) 8
Figure 1: Synchronization point Listing 5 (Split/Synchronization)
in the middle of two threads 1 <process name="ParallelProcess3">

2 <context>
@ 3 <signal name="tns:completedT1">
4

<signal name="tns:completedT2">
\ <signal name="tns:completedA">

5
6 <process name="activityT1">
7 activityA
8
9

<raise signal="tns:completedA">

A
activityB
10 <raise signal="tns:completedT1">
w 11 </process>
12 <process name="activityT2">
B

13 activityC
D 14 <synch signal="tns:completedA"
15 activityD
\ 16 <raise signal="tns:completedT2">
17 </process>
w 18 </context>
19 <all>
20 <spawn process="activityT1"/>
21 <spawn process="activityT2"/>
22 </all>

24 <sequence>

25 <all>
26 <synch signal="tns:completedT1">
27 <synch signal="tns:completedT1">
28 </all>

30 </sequence>
31 </process>

condition C2 evaluate to false, the default activity activityA3 is executed.
Clearly, the switch activity (Listing 6, lines 3 to 15) can be used to model
situations where there is a one-to-one correspondence between the Ex-
clusive Choice and the Simple Merge. After executing one of the three
activities, activityB is executed.

WP6 Multi-Choice A point in the process, where, based on a decision
or control data, a number of branches are chosen and executed as parallel
threads. Example: After executing the activity evaluate damage the ac-
tivity contact fire department or the activity contact insurance company
is executed. At least one of these activities is executed. However, it is also
possible that both need to be executed.

FIT Technical Report FIT-TR-2002-05

1
2
3
4
5
6
7
8
9

10
11
12

18

Pattern-Based Analysis of BPML (and WSCI) 9

Listing 6 (Exclusive Choice) Listing 7 (Multi-Choice)
<process name="ChoiceProcessl1"> 1 <process name="ChoiceProcess2">
<sequence> 2 <all>
<switch> 3 <switch>
<case> 4 <case>
<condition> Cl1 </condition> 5 <condition> Cl1 </condition>
activityAl 6 activityAl
</case> 7 </case>
<case> 8 </switch>
<condition> C2 </condition> 9 <switch>
activityA2 10 <case>
</case> 11 <condition> C2 </condition>
<default> 12 activityA2
activityA3 13 </case>
</default> 14 </switch>
</switch> 15 </all>
activityB 16 </process>
</sequence>
</process>

Solution, WP6 BPML does not provide direct support for the Multi-
Choice pattern. Fortunately, as indicated in [3], a workaround solution
of this pattern can be obtained by combining patterns WP2 and WP4.
This solution is sketched in Listing 7. Depending on conditions C1 and
C2, activityAl and/or activityA2 are executed.

WP7 Synchronizing Merge A point in the process where multiple
paths converge into one single thread. Some of these paths are “active”
(i.e. they are being executed) and some are not. If only one path is active,
the activity after the merge is triggered as soon as this path completes.
If more than one path is active, synchronization of all active paths needs
to take place before the next activity is triggered. It is an assumption
of this pattern that a branch that has already been activated, cannot be
activated again while the merge is still waiting for other branches to com-
plete. Example: After either or both of the activities contact fire depart-
ment and contact insurance company have been completed (depending
on whether they were executed at all), the activity submit report needs
to be performed (exactly once).

Solutions, WP7 As for the Multi-Choice pattern, there is no BPML
construct that directly corresponds to this pattern, although there are
workaround solutions to capture it by combining the solutions of pat-
terns WP2, WP3, WP4, and WP5. The idea is to either express the
pattern by nesting switch and all statements (a solution that only works
for structured processes), or to use combinations of raise and synch state-

FIT Technical Report FIT-TR-2002-05

Pattern-Based Analysis of BPML (and WSCI) 10

ments. The latter approach is more general than the former as discussed
in Pattern WP3.

Depending on the place in the process where the synchronizing merge
appears, designing a workaround solution for this pattern may be rel-
atively difficult. For example, if in Figure 1 the Split node at the top
of the diagram was replaced by a Multi-Choice node, and the two Syn-
chronize nodes were replaced by Synchronizing Merge nodes, then the
process would need to somehow keep track of the activation of the left
thread (containing activities A and B) in order to determine whether
activity D should be activated immediately after activity C completes,
or whether it should also wait for activity A to complete. Hence, in the
general case, some bookkeeping of the paths that are taken during the
execution of a process has to be encoded into the process definition in
order to implement this pattern.

WPS8 Multi-Merge A point in a process where two or more branches
reconverge without synchronization. If more than one branch gets acti-
vated, possibly concurrently, the activity following the merge is started
for every action of every incoming branch. Example: Sometimes two or
more branches share the same ending. Two activities audit application
and process applications are running in parallel which should both be
followed by an activity close case, which should be executed twice if the
activities audit application and process applications are both executed.

Solution, WP8 BPML provides a partial solution for this pattern as
shown in Listing 8. Using the all and two switch activities, activityA and/or
activityB are started (or none). After executing either of these activities, a
new instance of the process activityC is created. Therefore, if both C1 and
C2 evaluate to true, two instances of activityC are created thus realizing
the Multi-Merge pattern. We consider this to be only partial support
because the remainder of the process has to be put in a separate process
thus limiting its application (especially if the Multi-Merge is embedded
in a loop). Moreover, the construction involves creating new instances of
another process.

WP9 Discriminator A point in the workflow process that waits for
one of the incoming branches to complete before activating the subse-
quent activity. From that moment on it waits for all remaining branches
to complete and “ignores” them. Once all incoming branches have been
triggered, it resets itself so that it can be triggered again (which is im-
portant otherwise it could not really be used in the context of a loop).

FIT Technical Report FIT-TR-2002-05

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23

Pattern-Based Analysis of BPML (and WSCI) 11

Listing 8 (Multi-Merge) Listing 9 (Discriminator)
<process name="MultiMergel"> 1 <process name="Discriminatoril">
<context> 2 <context>
<process name="activityC"> 3 <signal name="tns:completedA">
Ce 4 <process name="activityAl">
</process> 5 .
</context> 6 <raise signal="tns:completedA">
<all> 7 </process>
<switch> 8 <process name="activityA2">
<case> 9 -
<condition> C1 </condition> 10 <raise signal="tns:completedA">
activityA 11 </process>
<call process="activityC"/> 12 </context>
</case> 13 <sequence>
</switch> 14 <all>
<switch> 15 <spawn process="activityAl"/>
<case> 16 <spawn process="activityA2"/>
<condition> C2 </condition> 17 </all>
activityB 18 .
<call process="activityC"/> 19 <synch signal="tns:completedA">
</case> 20 activityB
</switch> 21 </sequence>
</all> 22 </process>
</process>

Example: To improve query response time a complex search is sent to
two different databases over the Internet. The first one that comes up
with the result should proceed the flow. The second result is ignored.

Solution, WP9 This pattern is not directly supported in BPML. How-
ever, there is a workaround solution using spawn, raise, and synch activities
as shown in Listing 9. In lines 15 and 16 two subprocesses are instantiated.
Each of these subprocess instances will raise the signal completedA (line
6 and line 10) just before completion. In Line 19 the process waits for the
first one to complete using a synch activity. Although this solution works,
it is indirect and requires some bookkeeping. In addition, there are also
some issues to be resolved when this construction is embedded in a loop,
since the signal is then raised twice for each iteration of the loop, but it
is only used once in each iteration. It is also not straightforward to apply
this workaround solution in situations where the discriminator is used for
inter-thread communication. For example, assume that in Figure 1 the
“Synchronize” node which appears between tasks C and D was replaced
by a “Discriminator” node, meaning that activity D can start as soon
as either activity A or activity C completes. To capture this situation
using spawn, raise, and synch, 3 subprocesses would need to be defined:

FIT Technical Report FIT-TR-2002-05

Pattern-Based Analysis of BPML (and WSCI) 12

one containing activity A and B, one containing activity C alone, and one
containing activity D alone. One can imagine from this example, that in
more complex scenarios, capturing the Discriminator pattern in BPML
would not be straightforward.

WP10 Arbitrary Cycles A point where a portion of the process (in-
cluding one or more activities and connectors) needs to be “visited” re-
peatedly without imposing restrictions on the number, location, and nest-
ing of these points. Note that block-oriented languages and languages
providing constructs such as “while do”, “repeat until” typically impose
such restrictions, e.g., it is not possible to jump from one loop into another
loop.

Solution, WP10 This pattern is not fully supported in BPML. Although
the while, foreach, and until activities allow for various types of structured
cycles, it is not possible to jump back to arbitrary parts of the process,
i.e. only loops with one entry point and one exit point are allowed.?

WP11 Implicit Termination A given subprocess is terminated when
there is nothing left to do, i.e., termination does not require an explicit
termination activity. The goal of this pattern is to avoid having to join
divergent branches into a single point of termination.

Listing 10 (Imp. Termination) Listing 11 (MI without sync)
1 <process name="ImpTermination"> 1 <process name="MIwithoutSyncl">
2 <context> 2 <context>
3 <process name="activityAl"> 3 <property name="tns:set_of_objects"
4 4 type="..."/>
5 </process> 5 <process name="activityA">
6 <process name="activityA2"> 6 .
7 . 7 </process>
8 </process> 8 </context>
9 </context> 9 <foreach select="$tns:set_of_objects">
10 <all> 10 <spawn process="activityA"/>
11 <spawn process="activityAl"/> 11 </foreach>
12 <spawn process="activityA2"/> 12 </process>
13 </all>

4 ...
15 </process>

4 For a discussion on non-structured cycles that can not be unfolded into structured
cycles see [16,15].

FIT Technical Report FIT-TR-2002-05

Pattern-Based Analysis of BPML (and WSCI) 13

Solution, WP11 Using the spawn activity type it is possible to have di-
vergent branches which do not need to come together into a single point
of termination, i.e., there is no need to join concurrent or conditional
threads. Therefore, Implicit Termination is supported through the exis-
tence of the spawn activity type. Listing 10 shows two spawn activities
creating process instances that are never synchronized. Note that the
spawn activity type is the only activity type enabling such behavior: all
other activity types (including call, all, and while) have a single point of
termination.

WP12 MI without Synchronization Within the context of a single
case multiple instances of an activity may be created, i.e. there is a facility
for spawning off new threads of control, all of them independent of each
other. The instances might be created consecutively, but they will be able
to run in parallel, which distinguishes this pattern from the pattern for
Arbitrary Cycles. Example: When booking a trip, the activity book flight
is executed multiple times if the trip involves multiple flights.

Solution, WP12 Multiple instances of an activity can be created by
using the spawn activity embedded in a while, until, or foreach loop. List-
ing 11 shows an example where for each element in some set of objects
an instance of activityA is created.

WP13-WP15 MI with Synchronization A point in a workflow where
a number of instances of a given activity are initiated, and these instances
are later synchronized, before proceeding with the rest of the process. In
WP13 the number of instances to be started/synchronized is known at
design time. In WP14 the number is known at some stage during run
time, but before the initiation of the instances has started. In WP15 the
number of instances to be created is not known in advance: new instances
are created on demand, until no more instances are required. Example of
WP15: When booking a trip, the activity book flight is executed multiple
times if the trip involves multiple flights. Once all bookings are made, an
invoice is sent to the client. How many bookings are made is only known at
runtime through interaction with the user (or with an external process).

Solutions, WP13-WP15 If the number of instances to be synchronized
is known at design time (WP13), a simple solution is to replicate the
activity as many times as it needs to be instantiated, and run the replicas
in parallel by placing them in an all activity. In fact, in BPML there is
no need to replicate the activity as a process can be instantiated multiple

FIT Technical Report FIT-TR-2002-05

Pattern-Based Analysis of BPML (and WSCI) 14

times as was shown in Listing 12. The all activity will only complete when
all four instances of activityA have completed. The solution becomes more
complex if the number of instances to be created and synchronized is only
known at run time (WP14). Listing 13 shows a solution using a property
called counter to keep track of the number of instances created/completed,
and a property called nofi which records the total number of instances to
be created. The property nofi needs to be set through an assign statement
before the instantiation of subprocesses starts. The first while activity
creates instances using a spawn activity. The second while activity records
the number of completed instances using a synch activity.

This solution can be extended to deal with pattern WP15. However,
it is clear that there is no direct support for WP14 and WP15 because
any solution will involve explicit bookkeeping of the number of active
instances.

WP16 Deferred Choice A point in a process where one among several
alternative branches is chosen based on information which is not neces-
sarily available when this point is reached. This differs from the normal
exclusive choice, in that the choice is not made immediately when the
point is reached, but instead several alternatives are offered, and the
choice between them is delayed until the occurrence of some event. Ex-
ample: When a contract is finalized, it has to be reviewed and signed
either by the director or by the operations manager, whoever is available
first. Both the director and the operations manager would be notified that
the contract is to be reviewed: the first one who is available will proceed
with the review.

Solution, WP16 This pattern is realized through the choice construct.
The semantics of choice, i.e. awaiting for the arrival of an event and
depending on the event selecting a prespecified route, captures the key
idea of this pattern, namely a choice is not made immediately when a
certain point (i.e. the choice activity) is reached, but delayed until receipt
of some kind of external trigger. Listing 14 shows the application of the
choice activity to choose between two activities based on the first action to
take place. There are three types of event-triggered activity types: action,
synch, and delay. In Listing 14 both events are of type action. Listing 15
shows another realization of the deferred choice using two events of type
delay and one of type synch. The first event catches the signal startA, the
second event waits for a specified amount of time (duration), and the third
event waits until a specified time (instant).

FIT Technical Report FIT-TR-2002-05

Pattern-Based Analysis of BPML (and WSCI) 15

Listing 12 (MI with sync) Listing 13 (MI with sync)
1 <process name="MIwithSyncl"> 1 <process name="MIwithSync2">
2 <context> 2 <context>
3 <process name="activityA"> 3 <property name="tns:counter"
4 4 type = "xsd:integer">
5 </process> 5 <value>0</value>
6 </context> 6 </property>
7 <all> 7 <property name="tns:nofi"
8 <call process="activityA"/> 8 type = "xsd:integer" />
9 <call process="activityA"/> 9 <process name="activityA">
10 <call process="activityA"/> 10 R
11 <call process="activityA"/> 11 <raise signal="tns:completedA">
12 </all> 12 </process>
13 </process> 13 </context>
14 <while>
15 <condition>
16 $tns:counter <= $tns:nofi
17 </condition>
18 <spawn process="activityA"/>
19 <assign property=""tns:counter">
20 <value>$tns:counter + 1</value>
21 </assign>
22 </while>
23
24 <assign property="tns:counter">
25 <value>0</value>

26 </assign>
27 <while>

28 <condition>

29 $tns:counter <= $tns:nofi

30 </condition>

31 <synch signal="activityA"/>

32 <assign property="tns:counter">
33 <value>$tns:counter + 1</value>
34 </assign>

35 </while>
36 </process>

FIT Technical Report FIT-TR-2002-05

1
2
3
4
5
6
7
8
9

10
11
12
13
14

Pattern-Based Analysis of BPML (and WSCI) 16

Listing 14 (Deferred Choice) Listing 15 (Deferred Choice)
<process name="DeferredChoicel"> 1 <process name="DeferredChoice2">
<choice> 2 <context>
<event> 3 <signal name="tns:startA"/>
<action portType="tns:portX" 4 <property name="tns:duration"
operation="messageA"/> 5 type="xsd:duration"/>
activityA 6 <property name="tns:instant"
</event> 7 type="xsd:dateTime"/>
<event> 8 </context>
<action portType="tns:portX" o ...
operation="messageB"/>0 <choice>
activityB 11 <event>
</event> 12 <synch signal="tns:startA"/>
</choice> 13 activityA
</process> 14 </event>
15 <event>
16 <delay duration="tns:duration/>
17 activityB
18 </event>
19 <event>
20 <delay instant="tns:instant/>
21 activityC
22 </event>

23 </choice>
24 </process>

WP17 Interleaved Parallel Routing A set of activities is executed
in an arbitrary order. Each activity in the set is executed exactly once.
The order between the activities is decided at run-time: it is not until
one activity is completed that the decision on what to do next is taken.
In any case, no two activities in the set can be active at the same time.
Example: At the end of each year, a bank executes two activities for each
account: add interest and charge credit card costs. These activities can be
executed in any order. However, since they both update the account, they
cannot be executed at the same time.

Solution, WP17 BPML does not offer direct support for this pattern.
There are several ways to work around this problem. One work-around
solution uses the deferred choice (i.e. the choice construct in BPML) as
proposed in [3]. The drawback of such a solution is its complexity, which
grows exponentially with the number of activities to be interleaved. An-
other possible solution is to place each activity to be interleaved in a sepa-
rate subprocess, and to have a “routing” process which invokes these sub-
processes in turn using the call construct. This “routing” process would
need to do some bookkeeping in order to determine which subprocesses

FIT Technical Report FIT-TR-2002-05

Pattern-Based Analysis of BPML (and WSCI) 17

have already been invoked at a given point in time, and which have not. It
will also encode the policy to be used in order to determine which activity
will be executed next.

WP18 Milestone A given activity can only be enabled if a certain mile-
stone has been reached which has not yet expired. A milestone is defined
as a point in the process where a given activity has finished and another
activity following it has not yet started. Example: After having placed a
purchase order, a customer can withdraw it at any time before the ship-
ping takes place. To withdraw an order, the customer must complete a
withdrawal request form, and this request must be approved by a cus-
tomer service representative. The execution of the activity approve order
withdrawal must therefore follow the activity request withdrawal, and can
only be done if: (i) the activity place order is completed, and (ii) the
activity ship order has not yet started.

Solution, WP18 BPML does not provide a direct support for capturing
this pattern. Therefore, a work-around solution has to be used. Once
again it is possible to construct solutions inspired by the ideas in [3].
For example, it is possible to have one of the processes raising signals
like EnableMilestone and DisableMilestone using activities of type raise.
The other process which is running in parallel uses a choice activity with
events for catching these signals, etc. Clearly, this leads to complex process
definitions for simply checking the state in a parallel branch.

WP19 Cancel Activity & WP20 Cancel Case A cancel activity
terminates a running instance of an activity, while canceling a case leads
to the removal of an entire workflow instance. Example of WP19: A
customer cancels a request for information. Example of WP20: A cus-
tomer withdraws his/her order.

Solutions, WP19 & WP20 Both patterns are solved using exceptions.
When an exception process is instantiated, all other activities in that
context are terminated. Putting the exception process in a certain context
can therefore be used to scope the cancellation. Listing 16 shows WP19:
activityA is cancelled the moment signal cancelA is received. As a result
everything in the context, i.e., just activityA, is terminated. WP20 (Cancel
Case) is supported by putting the exception process in the context of the
top level process. This way the whole process is cancelled, cf. Listing 17.

FIT Technical Report FIT-TR-2002-05

1

© 00 N O O W N

14

Pattern-Based Analysis of BPML (and WSCI) 18

Listing 16 (Cancel Activity) Listing 17 (Cancel Case)
<process name="CancelActivityl"> 1 <process name="CancelCasel">
<context> 2 <context>
<signal name="tns:cancelA"> 3 <signal name="tns:cancelCase">
</context> 4 <exception name="cancelCase">
. 5 <synch signal="tns:cancelCase"/>
<sequence> 6 </exception>
<context> 7 </context>
<exception name="cancelA"> 8 ...
<synch signal="tns:cancelA"/> 9 </process>
</exception>
</context>
activityA
</sequence>
</process>

4 The Communication Patterns in BPML

In this section we evaluate BPML according to the communication pat-
terns presented in [19]. Since communication is realized by exchanging
messages between different processes, it is explicitly modeled by sending
and receiving messages. Two types of communications are distinguished,
namely synchronous and asynchronous communication.

4.1 Synchronous Communication

Synchronous communication denotes the situation in which the sender
and the receiver coordinate their processing according to their communi-
cation. This kind of communication is preferable when the sender needs
input from the processing of the receiver, or requires notification of re-
ceipt, before it can continue the processing.

CP1 Request/Reply Request/Reply communication is a form of syn-
chronous communication where a sender makes a request to a receiver and
waits for a reply before continuing to process. The reply may influence
further processing on the sender’s side.

CP2 One-Way A form of synchronous communication where a sender
makes a request to a receiver and waits for a reply that acknowledges the
receipt of the request. Since the receiver only acknowledges the receipt,
the reply is “empty” and only delays further processing on the sender’s
side.

Solutions, CP1 & CP2 These patterns are captured in BPML by using
the action construct, which essentially performs or invokes an operation

FIT Technical Report FIT-TR-2002-05

© 00 9 3 O R W N =

(=}

Pattern-Based Analysis of BPML (and WSCI) 19

specified in WSDL. Both the sender’s and the receiver’s processes defini-
tions should include an action element for the communication to occur.
In the case of pattern CP1, the operation performed by the receiver’s
action should be of type “request-response” and the operation invoked by
the sender’s action should be of type “solicit-response”. Accordingly, the
action elements in both the sender’s and the receiver’s process should con-
tain at least one input and one output element as sketched in listings 18
and 19.5 We have omitted most details to avoid getting into WSDL. It
is important to note the difference between both listings: In Listing 18
the output comes before the input (solicit-response: the sender first sends
an output message, followed by the receipt of an input message) while
in Listing 19 the order is reversed (request-response: the receiver first
receives an input message and then sends a reply). In the case of CP2,
the same solution applies, except that the output of the receiver’s ac-
tion statement, and the input of the sender’s action statement are empty.
Empty (or irrelevant) replies in two-way WSDL operations are thereby
used to capture the notion of acknowledgment.

Listing 18 (Request/Reply: sender) Listing 19 (Request/Reply: receiver)

<process name="processA"> 1 <process name='"processB">
. 2 e
<action portType=... 3 <action portType=...
operation=... 4 operation=...
locate = ... > 5 locate=... />
<output ... /> 6 <input ... />
<input ... /> 7 <output ... />
</action> 8 Activities to be executed
c 9 when message is received
</process> 10 </action>

11 .
12 </process>

If the purpose of the inter-process communication is to create a new
instance of a process on the receiver’s side, then pattern CP1 can also
be captured through the call activity. Indeed, the call activity allows a
process to create an instance of another process (specified in BPML) and
wait for the completion of the created process instance. The call activity
also supports the specification of input and output messages which are
then mapped into output and input parameters of the invoked process.

5 Note that the output element of an action statement corresponds to the input pa-
rameters of the WSDL operation invoked by this statement.

FIT Technical Report FIT-TR-2002-05

Pattern-Based Analysis of BPML (and WSCI) 20

Similarly, pattern CP2 can be captured using the spawn activity, which
allows a process to create an instance of another BPML process, but
without waiting for the created process instance to complete. The spawn
activity supports the specification of input parameters for the created
process. Note that one can argue whether this is in fact a solution for
CP2 since there is no explicit acknowledgement.

Finally, if the communication involves two BPML process instances
running within a common context, then pattern CP2 can also be imple-
mented using a raise activity on the sender’s side, and a synch activity
on the receiver’s side. The contents of the message can then be passed as
parameters of the generated signal.

CP3 Synchronous Polling Synchronous polling is a form of synchronous
communication where a sender communicates a request to a receiver but
instead of blocking (waiting for a reply), it continues processing. From
times to time, the sender checks to see if the reply has arrived. When it
detects a reply, it processes it and stops any further polling for a reply.
Example: During a game session, the system continuously checks if the
customer has terminated the game.

Solution, CP3 Since BPML supports parallelism, and since an action
activity only blocks the thread in which it executes, this pattern is directly
captured by a complex activity of type all with two threads: one for the
receipt of the expected response, and another for the sequence of activities
that can be performed without waiting for the response (see lines 6-11
in Listing 20). Communication is initiated beforehand through an action
statement (lines 3-5 in the listing). To be able to proceed, this action is
specified to send data (i.e. it contains at least one output element) but not
wait for a reply (i.e. it contains no input element). The receiver process
(not shown in the listing) should have an action to receive the request,
and another one for sending the reply.

4.2 Asynchronous Communication

In contrast to synchronous communication, asynchronous communication
does not require the sender to synchronize processing with communica-
tion. The sender sends a message and continues processing immediately.
It does not concern itself with how its message is processed by the re-
ceiver, nor does it need feedback from the receiver in order to continue.
This kind of communication arises when the purpose is information or
control transfer.

FIT Technical Report FIT-TR-2002-05

1
2
3
4
5
6
7
8
9
10

14

Pattern-Based Analysis of BPML (and WSCI) 21

Listing 20 (Synchronous Polling)

<process name="SynchronousPolling"

<sequence>
<action portType=... operation=... locate=...>
<output>...</output>
</action>
<all>
<sequence> actions not requiring the reply ... </sequence>
<action portType=... operation=... locate=...>
<input> ... </input>
</action>
</all>
action(s) requiring the reply ...
</sequence>
</process>

CP4 Message Passing Message passing is a form of asynchronous com-
munication where a request is sent from a sender to a receiver. When
the sender has made the request it essentially forgets about sending the
request (unless this knowledge is stored in properties) and continues pro-
cessing. The request is delivered to the receiver and is processed. Ex-
ample: When an order is received, a log is notified, before the system
executes the order.

Solution, CP4 The solution for this pattern has already been shown as
part of the solution for CP3. Specifically, the action statement with no
input element (lines 3-5 in Listing 20) implements asynchronous message
sending, while the action statement with no output element (lines 8-10)
implements asynchronous message receiving [5, page 63].

CP5 Publish/Subscribe A form of asynchronous communication where
a request is sent by the sender and the receiver is determined by a declara-
tion of interest in receiving that type of message. Example: An organiza-
tion offers information about products to its customers. If the customers
are interested in receiving such information, they have to notify a system,
which lists interested customers. When product information is going to
be distributed to the customers, the organization requests the current list
(which will also include the newly added customers).

CP6 Broadcast A form of asynchronous communication in which a
request is sent to all participants, the receivers, of a network. Each par-
ticipant determines whether the request is of interest by examining the
content. Example: Before a system is shut down for maintenance, every
client connected to it is informed about the situation.

FIT Technical Report FIT-TR-2002-05

Pattern-Based Analysis of BPML (and WSCI) 22

Solutions, CP5 & CP6 Publish/Subscribe and Broadcast are not di-
rectly supported in BPML. A workaround solution for CP5 is to have the
sender process maintain an “expression of interest” list and then send the
message to be published individually to each member who has expressed
interest in messages of this type. This requires that the process designer
implements the bookkeeping of the expressions of interest, the filtering
according to message types, and the asynchronous sending of multiple
messages. Similar remarks apply to pattern CP6, except that the filtering
phase is not needed (the message is sent to all the partners known to
the process), and the bookkeeping may be simpler than for CP5 if the
partners are known at design time rather than determined at runtime.

5 WSCI

The Web Service Choreography Interface (WSCI) [23] was submitted in
June 2002 to the W3C by BEA Systems, BPMI.org, Commerce One,
Fujitsu Limited, Intalio, IONA, Oracle Corporation, SAP AG, SeeBeyond
Technology Corporation, and Sun Microsystems. The reason we discuss
WSCI in this paper is because there is a substantial overlap between
BPML and WSCI.

The following simple activities types are supported by WSCI: call,
delay, empty, fault, and spawn. In addition, the following complex activities
types are supported: all, choice, foreach, sequence, switch, until, and while.
Although there are subtle differences between these constructs in BPML
and WSCI, their functionalities are comparable. Activity types that are
in BPML but not in WSCI are assign, raise, and synch. Instead of the
raise and synch activities there is another activity type named join which
waits for spawned activities to complete. WSCI does not support the
concept of a signal which limits its expressiveness. Nevertheless, all the
solutions given in this paper can be realized using WSCI. Some things
can be simplified. Consider for example Listing 4. When modeling this in
WSCI, we can remove lines 3, 6, 9, and 13 and replace the activities in
lines 23 and 24 by two join activities. Other things become more involved
in WSCI. For example, to map the solution given in Listing 9 onto WSCI,
we can remove lines 6 and 10 but have to replace Line 19 by a choice with
two events: one for activityAl and one for activityA2. Also noteworthy is
the fact that it is not possible in WSCI to specify the inputs and outputs
of action, call, and spawn activities as in BPML. Finally, the action element
in WSCI has a single attribute for specifying both the port type and the
operation, whilst in BPML these are specified as two separate attributes.

FIT Technical Report FIT-TR-2002-05

Pattern-Based Analysis of BPML (and WSCI) 23

These examples illustrate that the differences between WSCI and
BPML are minimal when it comes to supporting the patterns. Therefore,
we do not give a detailed analysis of WSCI but simply refer to BPML.
Another reason for not going into details is that the status of WSCI and
its relation to BPML are not completely clear. WSCI is positioned as
something in-between languages such as BPML and BPEL4WS on the
one hand, and WSDL on the other. It is intended to model so-called
“choreographed message exchanges”. However, there is too much overlap
between BPML and WSCI to justify their separation.

6 Conclusion

In this paper a framework based on existing workflow and communication
patterns was used for an in-depth analysis of BPML. A summary of the
results from the analysis are presented in Table 6. The table also shows a
comparison of BPML with BPEL4AWS, XLANG, WSFL and WSCI. The
ratings for BPEL4WS, XLANG, WSFL in the table are taken from [24].
The ratings for BPML and WSCI are based on the evaluation reported
in this paper.

A “47 in a cell of the table refers to direct support (i.e. there is a
construct in the language which directly supports the pattern). A “~” in
the table refers to no direct support. This does not mean though that it is
not possible to realize the pattern through some workaround solution. In-
deed, any of the constructs can be realized using a standard programming
language, but this does not imply that such a programming language of-
fers direct support for all of them. Sometimes there is a feature that only
partially supports a pattern, e.g., a construct that implies certain restric-
tions on the structure of the process. In such cases, the support is rated
as “+/-7.

The following observations can now be made from the table:

— As the first five patterns correspond to the basic routing constructs,
they are naturally supported by all languages. In contrast, the pat-
terns referring to more advanced constructs are not all directly sup-
ported in the different languages.

— BPEL4WS as a language integrating the features of the block struc-
tured language XLANG and the directed graphs of WSFL, indeed
supports all patterns supported by XLANG and WSFL. However, this
makes BPEL4WS relatively complex, in the sense it provides many
strongly overlapping constructs.

— BPML and WSCI offer basically the same functionality.

FIT Technical Report FIT-TR-2002-05

Pattern-Based Analysis of BPML (and WSCI)

24

pattern

standard

BPEL

XLANG

WSFL

BPML

WSCI

Sequence

Parallel Split

Synchronization

Exclusive Choice

Simple Merge

Multi Choice

Synchronizing Merge

Multi Merge

Discriminator

Arbitrary Cycles

Implicit Termination

MI without Synchronization

MI with a Priori Design Time Knowledge
MI with a Priori Runtime Knowledge
MI without a Priori Runtime Knowledge
Deferred Choice

Interleaved Parallel Routing

Milestone

Cancel Activity

Cancel Case

e

B e A s

L+ ++ 1

L+ + A+t

+

IS

LI S IS SRR A

Request/Reply
One-Way
Synchronous Polling
Message Passing
Publish/Subscribe
Broadcast

I S e N

L+ [

I e d R

L+ [

R e d han

Table 1. Comparison of BPEL4WS, XLANG, WSFL, BPML and WSCI using both

workflow and communication patterns.

BPML does not offer direct support for the Multi Choice and Synchro-
nizing Merge while BPEL4WS does. This comes from the fact that
BPEL4WS borrows the concept of “dead-path elimination” charac-
teristic of WSFL/IBM MQSeries.

Each of the languages supports Multiple Instances without Synchro-
nization, Multiple Instances with a Priori Design Time Knowledge,
Cancel Activity, and Cancel Case.

Most of the languages support the Implicit Termination and the De-
ferred Choice.

None of the compared languages support arbitrary cycles, although
all of them directly support structured cycles.

When comparing BPEL4AWS, XLANG, WSFL, BPML and WSCI to

contemporary workflow systems [3] on the basis of the patterns discussed

FIT Technical Report FIT-TR-2002-05

Pattern-Based Analysis of BPML (and WSCI) 25

in this paper, they are remarkably strong. Note that only few workflow
management systems support Cancel Activity, Cancel Case, Implicit Ter-
mination, and Deferred Choice. In addition, workflow management sys-
tems typically do not directly support message sending.

The trade-off between block-structured languages and graph-based
languages is only partly reflected by Table 6. XLANG, BPML, and WSCI
are block-structured languages. WSFL is graph-based. BPEL4AWS is a
hybrid language in the sense that it combines features from both the
block-structured language XLANG and the graph-based language WSFL.
Nearly all workflow languages are graph-based and emphasize the need of
end-users to understand and communicate process models. Therefore, it
is remarkable that of the five languages evaluated in Table 6, only WSFL
is graph based. Moreover, in [14] no attention is paid to the graphical
representation of WSFL. All the five languages are textual (XML-based)
without any graphical representation. This seems to indicate that commu-
nication of the models is not considered as a requirement. In this context,
we refer to the BPMI initiative toward a Business Process Modeling No-
tation (BPMN). BPMN is intended as a graphical language that can be
mapped onto languages such as BPML and BPEL4WS [6]. Although not
reflected by Table 6, the expressiveness of block-structured languages is
limited to “well-structured” processes where there is a one-to-one cor-
respondence between splits and joins. This forces the designer using a
language like BPML to introduce entities of type signal, raise, and synch
which appear to be workarounds to emulate a graph-based language.

Acknowledgments. We sincerely thank Ashish Agrawal and Assaf Arkin
from Intalio for the highly valuable comments, feedback, and technical
material that they provided to us during the writing of this report [4].

Disclaimer. We, the authors and the associated institutions, assume
no legal liability or responsibility for the accuracy and completeness of
any information about BPML, WSCI, XLANG, WSFL, or BPEL4WS,
contained in this paper. However, we made all possible efforts to ensure
that the results presented are, to the best of our knowledge, up-to-date
and correct.

References

1. W.M.P. van der Aalst. Don’t go with the flow: Web services composition standards
exposed. to appear. IEEE Intelligent Systems, Jan/Feb 2003. Electronically ac-
cessible from http://www.tm.tue.nl/it/research/patterns/ieeewebflow.pdf.

2. W.M.P. van der Aalst and K.M. van Hee. Workflow Management: Models, Meth-
ods, and Systems. MIT press, Cambridge, Massachusetts, 2002.

FIT Technical Report FIT-TR-2002-05

Pattern-Based Analysis of BPML (and WSCI) 26

3.

10.

11.

12.

13.
14.

15.

16.

17.

18.

19.

20.

21.

W.M.P. van der Aalst, A.H.M. ter Hofstede, B. Kiepuszewski, and A.P. Barros.
Workflow patterns. Technical report FIT-TR-2002-2, Faculty of IT, Queensland
University of Technology, July 2002. Accessed from http://www.tm.tue.nl/it/
research/patterns. To appear in Distributed and Parallel Databases, Kluwer.
A. Agrawal and A. Arkin. Business process patterns (private communication).
Intalio, San Mateo, CA, USA, 2002.

BPML.org. Business Process Modeling Language (BPML). Accessed November
2002 from www.bpmi.org, 2002.

BPML.org. Business Process Modeling Notation (BPMN), Working Draft (0.9).
Accessed December 2002 from www.bpmi.org, 2002.

Workflow Management Coalition. Terminology and glossary. Document Number
WFMC-TC-1011, Document Status - Issue 3.0, February 1999 http://www.wfmc.
org.

Microsoft Corporation. Xlang web services for business process design. Accessed
November 2002 from www.gotdotnet.com/team/xml_wsspecs/xlang-c/default.
htm, 2001.

F. Curbera, M. Duftler, R. Khalaf, W. Nagy, N. Mukhi, and S. Weerawarana.
Unraveling the Web Services Web: An Introduction to SOAP, WSDL, and UDDI.
IEEE Internet Computing, 6(2):86-93, March 2002.

F. Curbera, Y. Goland, J. Klein, F. Leymann, D. Roller, S. Thatte, and S. Weer-
awarana. Business Process Execution Language for Web Services. http://
dev2dev.bea.com/techtrack/BPEL4WS. jsp.

M. Dumas and A.H.M. ter Hofstede. UML activity diagrams as a workflow spec-
ification language. In M. Gogolla and C. Kobryn, editors, Proc. of the 4th Int.
Conference on the Unified Modeling Language (UMLO01), volume 2185 of LNCS,
pages 76-90, Toronto, Canada, October 2001. Springer Verlag.

L. Fischer, editor. Workflow Handbook 2001, Workflow Management Coalition.
Future Strategies, Lighthouse Point, Florida, 2001.

Hillside.net. Patterns Home Page. http://hillside.net/patterns, 2000-2002.
IBM. Web services flow language. Accessed November 2002 from www-3.1ibm. com/
software/solutions/webservices/pdf/WSFL.pdf, 2001.

B. Kiepuszewski. FEzpressiveness and Suitability of Languages for Control Flow
Modelling in Workflows (Submitted). PhD thesis, Queensland University of Tech-
nology, 2002. http://www.tm.tue.nl/it/research/patterns.

B. Kiepuszewski, A.H.M. ter Hofstede, and C. Bussler. On structured workflow
modelling. In B. Wangler and L. Bergman, editors, Proc. of the 12th Int. Confer-
ence on Advanced Information Systems Engineering (CAiSE00), volume 1789 of
LNCS, pages 431-445, Stockholm, Sweden, June 2000. Springer Verlag.

F. Leymann and D. Roller. Production Workflow: Concepts and Techniques.
Prentice-Hall PTR, Upper Saddle River, New Jersey, 1999.

M. Rosemann and P. Green. Developing a meta model for the Bunge-Wand—Weber
ontological constructs. Information Systems, 27:75-91, 2002.

W.A. Ruh, F.X. Maginnis, and W.J. Brown. Enterprise Application Integration:
A Wiley Tech Brief. John Wiley and Sons, Inc, 2001.

R. Shapiro. A comparison of XPDL, BPML and BPEL4WS (Version 1.4). http:
//xml.coverpages.org/Shapiro-XPDL.pdf, 2002.

E. Séderstrom, B. Andersson, P. Johannesson, E. Perjons, and B. Wangler. To-
wards a framework for comparing process modelling languages. In A.B. Pidduck,
J. Mylopoulos, C.C. Woo, and M.Tamer Ozsu, editors, 14th International Confer-
ence on Advanced Information Systems Engineering, CAiSE 2002, volume 2348 of
LNCS, pages 600-611. Springer, 2002.

FIT Technical Report FIT-TR-2002-05

Pattern-Based Analysis of BPML (and WSCI) 27

22. UN/CEFACT and OASIS. ebXML Business Process Specification Schema (Version
1.01). Accessed November 2002 from www.ebxml.org/specs/ebBPSS.pdf, 2001.

23. W3C. Web Service Choreography Interface (WSCI) 1.0. Accessed November 2002
from www.w3.org/TR/wsci/, 2002.

24. P. Wohed, W.M.P. van der Aalst, M. Dumas, and A.H.M. ter Hofstede. Pattern-
Based Analysis of BPEL4AWS. QUT Technical report, FIT-TR-2002-04, Queens-
land University of Technology, Brisbane, 2002.

FIT Technical Report FIT-TR-2002-05

