
 1

XML Based Schema Definition for Support of Inter-organizational Workflow

W.M.P. van der Aalst1,2 and Akhil Kumar1,3

1 College of Business and Administration, University of Colorado,
Campus Box 419, Boulder, CO 80309-0419, USA.

2 Faculty of Technology and Management, Eindhoven University of Technology,
PO Box 513, NL-5600 MB, Eindhoven, The Netherlands.

3 Database Systems Research Department, Bell Laboratories,
600 Mountain Avenue, Room 2A-406, Murray Hill, NJ 07974.

E-mail: w.m.p.v.d.aalst@tm.tue.nl,akhil@acm.org

Abstract

The full potential of the web as a medium for electronic commerce can be realized only when multiple
partners in a supply chain can route information among themselves in a seamless way. Commerce on the
Internet is still far from being "friction-free" because business partners cannot exchange information
about their business processes in an automated manner. In this paper, we propose the design for an
eXchangeable Routing Language (XRL) using XML syntax. XML (eXtendible Markup Language) is a
means for trading partners to exchange business data electronically. The novel contribution of our work
is to show how XML can also be used to describe workflow process schemas to support flexible routing
of documents in the Internet environment. The design of XRL is grounded in Petri nets, which is a well-
known formalism. By using this formalism, it is possible to analyze correctness and performance of
workflows described in XRL. Architectures to facilitate inter-operation through loose and tight
integration are also discussed. Examples illustrate how this approach can be used for implementing inter-
organizational electronic commerce applications. As a proof of concept we have also developed
XRL/flower, a prototype implementation of a workflow management system based on XRL.

1. Introduction

With the rapid expansion seen in electronic commerce1, there is a major need for infrastructures and

frameworks that can be used to implement inter-organizational applications. In particular it is essential to

provide support for routing of documents across organizations in a standardized and yet flexible manner

to enable open electronic commerce [18,19,26,27,33,36,53]. Developing more homogeneous languages

for various electronic commerce activities [21] is one way to facilitate increased productivity and

interoperability. In this paper, we describe an architecture and a language called XRL (eXchangeable

Routing Language) that provide support for routing of workflow among trading partners for Internet-

based electronic commerce services.

1 In 1998, about $ 43 billion worth of business was done over the Web. This volume was projected to

increase to $1.3 Trillion by 2003.

 2

Current workflow products are generally intra-organizational and based on centralized architectures.

Therefore, they typically lack scalability and are also not very useful for implementing inter-

organizational applications [1,4,5,6,36]. Moreover, these systems use propriety languages for specifying

workflow processes. Despite efforts by the Workflow Management Coalition (WfMC, [30]), a lingua

franca for workflow management is lacking. The Workflow Process Definition Language (WPDL) of the

WfMC has no formal semantics, i.e., the dynamics of many of its constructs are ill-defined, and most

systems only support a subset of WPDL. The standard proposed by the WfMC for interoperability among

different workflow systems (Wf-XML [50]) is based on WPDL and traditional centralized architectures.

Such an approach does not address some of the fundamental problems related to cross-organizational,

highly-dynamic workflows. The only way to support such workflows is for each organization to have a

common understanding for the workflow processes at hand. Therefore, we propose a new language which

enables the easy and unambiguous exchange of process information, i.e., a lingua franca for cross-

organizational workflow.

An inter-organizational workflow involves communication between two (or more) parties with different

information systems. Although various suppliers of products and services, such as Dell, Federal Express,

etc., already make order tracking information available on their web sites, the next level of customer

support will allow customers to perform more detailed order status inquiries, and to make changes

dynamically to their orders (e.g., "change the cd-rom in my laptop order to a DVD"). For instance, a

customer should be able to find out why his or her order is delayed, and what are possible alternatives for

expediting it (perhaps, the delayed component or feature is not so important and can be omitted, or a

substitute can be used, etc.). Process information is also very useful because it encapsulates the business

rules of an organization. For instance, one supplier may expect to receive payment after delivery, while

another may have the opposite policy. Therefore, a customer who deals with both suppliers, and does not

pay careful attention to these rules, may be held up waiting for the shipments to arrive not realizing that

the payment has not been made in one case. Currently, such misunderstandings are prevented by paying

careful attention to business rules of organizations, which are available in hardcopy form. Often

considerable manual interaction between personnel of the buyer and supplier organizations is required to

parse and understand these rules. This is time consuming and expensive, and incurs delays, especially in

setting up new arrangements between two partners. We anticipate that friction-less e-commerce will

only be possible if such arrangements can be established on the fly, in an automated manner. This

requires that each partner make its processes (at least, selectively) transparent to its other partners (e.g.,

the process schema would show whether payment occurs prior to, or after, delivery).

Inter-organizational workflows are problematic because the process information of each partner is hidden

from other partners, and there is no easy or common way of describing such information. While the

 3

partners are able to exchange transactional data based on prior arrangements, through means such as EDI

(described shortly), it is not possible to exchange detailed process level information. Such information is

crucial for close interaction and cooperation to enable frictionless e-commerce.

XML and EDI are two technologies for data exchange. While EDI is a well-known standard for data

exchange, XML is not a standard in the same sense; instead, it has the capability to define the contents of

documents through a set of elements or tags. EDI is based on the notion of transaction sets, which are

standard, formatted documents such as a purchase order, delivery agreement, etc. Each transaction set

defines the precise structure of the corresponding document, and is used to exchange business information

between partners. XML, on the other hand, is designed to be "extendible" by allowing users to define

various entities on a form such as, name, address, price, quantity, etc. as tags or elements, thus creating

user-defined forms. The structure or schema of an XML document is described by its Document Type

Definition (DTD). When setting up a relationship through EDI or XML, business partners must still

agree before hand on the sequence in which these documents are exchanged, and what action a partner

must perform upon receiving a certain document. Partners must agree, for example, on how stock-outs

will be handled, who specifies delivery dates and what is done if a delivery date cannot be met, and what

is done if a trading partner specifies an improper product number or there is a disagreement on pricing.

This is essentially process information, which is not automated in current solutions. These issues are

typically agreed to outside of the electronic exchange and can cause significant problems if partners do

not agree to them in advance. Our proposal in this paper is an attempt to extend data exchange

technologies such as EDI and XML with the exchange of process information as well, by making inter-

organizational workflows explicit. This is the main motivation for developing XRL.

At the outset, it is important to clarify that XRL is not XML; rather, XRL uses XML syntax to define a

DTD, consisting of a set of elements or tags for describing workflow applications. It consists of routing

constructs that are used as building blocks to design routing schemas for inter-organizational applications.

It is described in XML syntax because XML parsers are easily available and XML is rapidly becoming an

international standard [15,39,52]. According to InformationWeek [24], a widely-read magazine, “As a

basis for universal data interchange among companies, XML has permeated every sector of business,

from aviation and accounting to weather and workflow.” Moreover, query languages for XML data (such

as Xpath) are also becoming available; thus, if a workflow is described in XML, it can be queried [16]. In

Section 7, we compare XRL with existing standards for workflow management (e.g. SWAP, JFLOW, and

Wf-XML), and electronic commerce solutions (e.g., ebXML, OBI, xCBL, RosettaNet, UDDI, and

OAGIS).

Four important features of XRL should be noted. One core feature of XRL is that it provides a mechanism

to describe processes at an instance level, i.e., an XRL routing schema describes the partial ordering of

 4

tasks for one specific instance. Traditional workflow modeling languages describe processes at a class or

type level [20,25,30,44]. However, in the context of inter-organizational workflow, it is unrealistic to

assume that the different organizations share a common process model. Moreover, it should be possible to

modify and migrate instances (or parts of instances) from one organization to another without prior

agreement on the precise order in which tasks are executed. Therefore, while modeling at a schema level

is still possible, instance level modeling gives additional flexibility. A second important feature is that

XRL lends itself well to both distributed and asynchronous modes of operation. Section 3 will describe

a distributed architecture, which is more scalable and reliable than a centralized one [12]. Moreover, in

many real applications (e.g., in supply chain management [13,14,31]), asynchronous transmission of

messages can be more reliable and efficient than synchronous transmission. A third feature is that the

semantics of XRL are expressible in terms of Petri nets [7,11,17,41]. Such formal semantics allow for

powerful analysis techniques, an efficient and compact implementation, interfaces to many existing tools,

and, last but not least, an unambiguous understanding of XRL. As workflows get increasingly complex

the need for tools for analysis and formal verification of workflows will assume even greater importance.

A fourth important feature is the expressive power of the language, i.e., the ability to realize desirable

routing constructs in a succinct and direct manner. In our research on workflow patterns [9,10], we

compared the expressive power of many contemporary workflow management systems including COSA,

HP Changengine, Forté Conductor, I-Flow, InConcert, MQ Series Workflow, R/3 Workflow, Staffware,

Verve, and Visual WorkFlo using a set of workflow patterns (http://www.tm.tue.nl/it/research/patterns/).

Based on the workflow patterns supported by these systems and their relative use in practice, we carefully

selected the most relevant constructs for XRL. Note that the extendible nature of XRL allows for the

addition of new constructs by simply adding the construct to the XRL DTD (see Appendix 1) and

providing the corresponding Petri-net semantics (see Appendix 2).

A prototype workflow management system named XRL/flower has been developed as a proof of concept.

XRL/flower provides full support for the XRL language presented in this paper.

This paper is organized as follows. Section 2 provides background material related to workflow support

for electronic commerce. Section 3 gives an overview of the architecture based on the idea of routing

slips. Next, Section 4 describes the various constructs of the XRL routing language. Then, Section 5

shows how XRL can be mapped into Petri nets. Section 6 illustrates the language with real examples and

screenshots of our workflow management system XRL/flower. Finally, Section 7 discusses related work

and Section 8 concludes the paper.

http://www.tm.tue.nl/it/research/patterns/

 5

2. Basic Background and Motivation

2.1. Why use XML and what is XML?

The Web has ushered an era of "any time, anywhere, any place" communication. Widely-accepted

standards, like HTML, are crucial to using the Web to its full potential. However, HTML is a visual

display and user interface standard. It allows a page to be created once and be displayed at different times

by anyone with a browser. Since browsers have become universal, millions of people world-wide can

have access to the same content within seconds of its creation.

Clearly, although visual and user interface standards are important, they are insufficient for representing

and managing data. Today, the Internet is primarily an access medium for text and pictures. There are no

standards for intelligent search, data exchange, adaptive presentation, and personalization. As a next step

what is required is a common way of representing data so that software can better search, move, display,

and manipulate information hidden in contextual obscurity. HTML cannot do this because it is a format

that describes how a Web page should look; it does not represent data. For example, HTML does not:

• provide a standard way for a customer to send an order to a supplier.

• specify a standard way for a doctor to send a prescription to a pharmacist.

• enable a company to publish a catalog of products and prices in a standard way that allows a

salesperson to work offline, show the catalog to clients, take orders, and upload those orders in a

standard format.

• describe an electronic payment in a form that any recipient can decode and process.

• provide a standard way to search law libraries for all litigation documents about a certain topic.

In short, while HTML provides rich facilities for display, it does not provide any standards-based way to

manage data. This is where XML serves a useful purpose. XML is a markup language that allows users

to define a set of tags, which describe the structure of a document [15,39,45,46]. For example, a user may

specify tags for NAME, AGE, DEPARTMENT, EMAIL, etc. This logical structure may be stored either

in the document file itself and/or in an associated file called the Document Type Definition (DTD) file

[15] or the XML Schema (XSD) file [52], which is linked to the document file. This facilitates more

precise declaration of content and more meaningful search results across multiple platforms. In addition,

XML will enable a new generation of customized Web-based data manipulation applications.

XML provides a structured representation of data that can be implemented broadly and is easy to deploy.

XML is a subset of SGML (Standard Generalized Markup Language), modified and optimized for

delivery over the Web. This standard has been defined by the World Wide Web Consortium (W3C) [15].

 6

XML, which provides a data standard that can encode the content, semantics, and schemata for a wide

variety of cases, ranging from simple to complex, can be used to mark up a purchase order, an invoice, a

payment advice, a doctor’s prescription, information about people and organizations, etc. Thus, XML

ensures that structured data will be uniform and understandable across a variety of applications, vendors

and customers. This resulting interoperability is kick-starting a new generation of business and electronic-

commerce Web applications.

XML is valuable to the Internet, as well as to large corporate Intranet environments, because it provides

interoperability using a flexible, open, standards-based format, with new ways of accessing legacy

databases and delivering data to Web clients. Applications can be built more quickly, are easier to

maintain, and can easily provide multiple views on the structured data. XML has already opened up a

wide variety of new uses, all based on a standard representation for moving structured data around the

Web as easily as we move HTML pages today. While XML can help in exchange of semantic

information, it still lacks routing information. Such information is critical to enable proper routing of a

document within an organization and across organizations. Our proposal in this paper is to further use

XML for not just data exchange but also for exchange of routing information. We view this as a natural

evolution of XML, which will expand the Internet in much the same way that the HTML standard for

displaying content did a few years ago. Therefore, in a simplistic way, one may think in terms of three

evolutionary stages of Web development:

Stage 1: HTML standard for visual display and user interface

Stage 2: XML standard for data exchange within and among organizations.

Stage 3: Add workflow features with routing semantics and enable interoperability.

Therefore, while stage 2 is an important step towards data integration, our proposal aims towards tighter

interoperability. In the next subsection we provide background on features of workflow systems,

application areas where workflow support is required and the role XML can play.

2.2. Workflows in XML

Workflows are used to represent business processes in a systematic manner. A typical business process

consists of a series of tasks to be performed in accordance with coordination requirements that ensure that

the workflow proceeds correctly. Some tasks have a sequential routing constraint between them, while

others may be done in parallel. Moreover, a workflow should be able to select a path based on the result

of a condition test. Finally, some workflows also allow for iteration so that work can be redone (for

example in case of errors). Therefore, some basic coordination constructs that are present in most

workflow systems are sequential routing, conditional routing, parallel routing, and iterative routing (see

Figure 1). An OR-split is used to specify a choice among several alternatives; an OR-join specifies a node

 7

where several alternative paths in the workflow process definition come together. The routing decisions in

OR-splits are often based on data, such as whether a task was performed correctly, the age of a customer,

or the contents of a letter from the customer. On the other hand, an AND-split and AND-join can be used

to specify the start and end of multiple parallel paths.

sequential routing A B C D

A

B

C

D conditional routing OR-split OR-join

A

B

C

D parallel routing AND-split AND-join

iterative routing A B C D

OR-split OR-join

Figure 1: Four basic routing types using AND/OR and split/join building blocks

Clearly any workflow language should support the four constructs shown in Figure 1. However, as shown

in [9,10] these basic constructs are inadequate. More advanced constructs are needed to easily model and

enact complex real-life workflows. In our research on workflow patterns [9,10], we compared the

expressive power of some of the leading workflow management systems on the market. Using a set of

workflow patterns we evaluated COSA (Thiel Logistik AG/Ley GmbH/COSA Solutions BV), HP

Changengine (Hewlett-Packard), Forté Conductor (Forte/SUN), I-Flow (Fujitsu), InConcert (TIBCO),

MQ Series Workflow (IBM), R/3 Workflow (SAP AG), Staffware (Staffware PLC), Verve (Verve Inc.),

Visual WorkFlo (FileNET), and some research prototypes (cf. http://www.tm.tue.nl/it/research/patterns/

[10]). Based on the workflow patterns supported by these systems and their relative use in practice, we

carefully selected the most relevant constructs for XRL.

Petri nets allow for the modeling of the four constructs shown in Figure 1 and have been proposed for

modeling workflow process definitions long before the term “workflow management” was coined (cf.

http://www.tm.tue.nl/it/research/patterns/

 8

[17] for some historical remarks). However, we do not propose Petri nets as a modeling language. Instead

we propose high-level constructs inspired by our research on workflow patterns [9,10]. Nevertheless, we

provide a mapping from XRL to Petri nets. As a result, we can use the strong theoretical results from Petri

nets, apply various analysis techniques, and use an efficient workflow engine based on Petri nets. For a

more elaborate introduction to Petri nets and the application of Petri nets to workflow management, we

refer the reader to [7,11,17,25,41].

Workflow management systems such as COSA, HP Changengine, Forté Conductor, I-Flow, InConcert,

MQ Series Workflow, R/3 Workflow, Staffware, Verve, and Visual WorkFlo are not interoperable and

they all use proprietary formats to represent workflow schemas. XML, which is rapidly becoming

universal on the Web, can serve as a common language for unifying disparate workflows from different

vendors and reconcile them.

Three broad application areas in which support for workflows and inter-operability is important are:

• Enterprise resource planning (ERP) applications (e.g., from Oracle, PeopleSoft, SAP, etc.)

• Customer relationship management (CRM) applications (e.g., from Siebel, Clarify, etc.)

• Supply chain management (SCM) applications (e.g., from i2, Manugistics, etc.)

In all three areas, vendors are working hard to workflow enable their products. The kinds of problems

that arise in supply chain management are especially suitable for use of workflow technology. The

common aspects of these problems are multiple business partners, flow of information through exchange

of documents, and need for complex coordination using some of the constructs discussed above. In the

next subsection, we describe an example problem that exhibits the characteristics of supply chain

problems. Later we will return to this problem to show how it can be solved using our framework.

2.3. Workflow in Mail Order Processing

In this subsection, we describe an example of a workflow related to electronic commerce in some detail.

This example will be used later to illustrate our techniques. The following description accompanies

Figure 2, where the numbers denote the approximate sequence in which various steps are performed.

Suppose that a customer places an order for three books with Amazon.com. Since these three books come

from different publishers, Amazon in turn places three different orders (one for each book) with the

publishers. Then Amazon must wait for confirmations from the publishers about whether they can deliver

the books within the deadline specified by the customer. Moreover, the customer may also have stated

conditions like "all or nothing" or "at least two out of three" etc. If the conditions stipulated by the

customer cannot be met, then he/she must be notified accordingly. If they can be met, then Amazon must

confirm the order with the publishers involved, and next find a shipper. The shipper coordinates the

receipt of and onward delivery of the three different shipments from the publishers. Here again, several

 9

situations can arise. The books are likely to arrive separately, possibly even on different days, and the

shipper must determine whether to batch the order into one shipment or in multiple shipments as they

arrive. (It is interesting to note that in general, there are 12 −n combinations of partial shipments.)

Finally, billing must be handled. Since customers are normally billed upon shipment, the shipper must

notify Amazon immediately after the shipment is sent, and Amazon or its billing company will bill the

customer at this point. Again, billing can also be either batched, or done singly for each partial order that

is shipped.

This simple example illustrates the complexity that can arise in performing a simple workflow over the

Internet. There are seven parties who have to coordinate among themselves in order to successfully

complete the order. Other complications that can arise are:

• The customer may cancel or change the order before it is shipped.

• A publisher may not be able to ship the book as committed.

• The shipper may not be able to deliver on time.

In all these scenarios there is need for additional coordination, and, possibly negotiation.

Customer
(Joe or Jane)

Amazon Billing

Publisher 1 Publisher 3 Publisher2

Shipping Co.
(1)

(8)

(7)
(6)
(5)

(4) (3)
(2)

Figure 2: A mail order example.

3. Architecture

Our general approach is based on the metaphor of a routing slip that defines the routing schema. A

routing slip is a simple sequence of roles or users who must review the documents in a certain sequence.

One or more documents can be attached to, modified, and detached from the routing slip by various

workers. An owner creates the routing slip and defines the routing patterns in terms of various constructs,

to be discussed in the next section. Each slip has a unique ID that can be used to trace the routing slip.

 10

XRL extends the routing slip metaphor, as we will see at length in Section 4. However, this section will

focus mainly on overall architectural issues.

Figure 3 shows the WfMC (Workflow Management Coalition, [30]) reference architecture which is

centered around the workflow engine. The various interfaces shown here have been partly specified by

WfMC. Unfortunately, precise semantics of these interface specifications are not given and most vendors

have generated their own definitions. The client applications can access the workflow engine over a

network. The process definition tools allow the process to be specified. The administration tools are for

managing the workflow engine. There is also support for additional services. Very recently, the WfMC

has issued a specification for Interface 4 of Figure 3 based on XML [50]. This specification is named Wf-

XML and models the data transfer requirements among different workflow engines in XML. It allows

process status and results to be exchanged among multiple engines. Unfortunately, it does not go into the

specifics of routing. In Section 7, we shall compare XRL with Wf-XML further.

Process
Definition Tools

Administration
& Monitoring

Tools

Interface 1

Interface 4
Interface 5

Workflow Enactment Service

Workflow API and Interchange formats

Other Workflow
Enactment Service(s)

Workflow
Client

Applications

Interface 3Interface 2

Workflow
Engine(s) Workflow

Engine(s)

Invoked
Applications

Figure 3: WfMC reference model architecture (©WfMC [30]).

Figure 4 shows our own architecture of the workflow engine. Our workflow management system

XRL/flower uses this architecture. The routing schema in XRL is received at a node through email. It is

parsed using a standard XML parser and stored as an XML data structure. The core of the engine reads

this parsed structure and creates a Petri-net representation. This representation is used by the engine to

determine the next step(s) to be performed and then to present them to the user through a user interface.

The user then enters the action taken by him/her to complete the step and notifies the workflow engine

which determines the next step(s). When all the steps at this node are completed, the workflow engine

writes out the revised XRL data structure and sends it to the next node in the workflow.

 11

Parse
XRL

User interface
for system

administrator

Write
XRL

Email,
XRL

Convert
XRL into a Petri
net and store in

relational
tables

Engine

E
A

E: Enabled steps
A: Action

Send E-mail
with a URL to
next worker

Task execution
in browser by
(next) worker

Email,
XRL

Tight integration

Loose integration

Figure 4: Architecture of XRL/flower.

We envisage two modes of operation with our architecture as illustrated in Figure 5. The step numbers in

the figure correspond to tasks of a workflow, such as a customer placing an order, Amazon checking

availability, the publisher confirming the order, the publisher giving the book to a shipper, billing, etc. In

the first mode (see Figure 5 (a)) a main workflow (Workflow 1 in Figure 5) performs various steps while

keeping overall control of the the workflow instance. Various steps within this workflow involve

participation of other entities and workflows; however, overall control is retained at one workflow engine.

For instance, a supplier may be asked to access an electronic form at a URL, enter information into it, and

press a submit button to complete this step. Upon completion of this step, the main workflow continues

further based on the information provided by the supplier. This mode of operation results in loose

integration between the two workflows. In the second scenario, one workflow may transfer a running

instance to another workflow and thus completely relinquish its control over it. This situation is

illustrated in Figure 5 (b). Here, Workflow 1 “ships” the XRL file and any associated data files to

Workflow 2 (by mail or ftp, perhaps). (Note that the XRL file also contains markers to record the current

state of a running instance as we will see later.) Upon receiving these documents, Workflow 2 will parse

the XRL file and perform the steps that it is required to do. After performing the steps, Workflow 2 will

rewrite the new XRL file to reflect the new state of the workflow instance. Finally, it will send the

revised XRL file and any modified or newly created data files back to Workflow 1, where the instance

will resume. This produces tight integration between the two workflows.

 12

 Workflow 1
(e.g. Customer) Workflow 2

(e.g. Supplier)
Step 1
Step 2
Step 3

Step 41
Step 43

Step 5
Step 6

XRL file + data

Step 42
XRL file + data

Workflow 1
(e.g. Customer) Workflow 2

(e.g. Supplier)
Step 1
Step 2
Step 3
Step 4
Step 5
Step 6

URL

(a) loose integration (b) tight integration

Figure 5: Two modes of inter-workflow operation.

The XRL routing slip can be created and modified using a GUI editor. In the next section we turn to the

description of the routing schema. Later, in Section 6, we return to our prototype workflow management

system XRL/flower and provide some screenshots also.

4. Defining a Routing Schema in XML

As discussed earlier, XML (eXtensible Markup Language) is very fast becoming a de facto standard for

exchange of information among trading partners. It offers syntax, semantics, and presentation support.

Therefore, XML was chosen as the basis for our routing language called XRL (eXchangeable Routing

Language). In this section we describe various routing constructs that serve as building blocks. These

constructs are the ones that arise most commonly in real-world workflows. Some of the accompanying

examples will serve to motivate the need for them. Later, we show that these constructs can be used to

provide support for designing and implementing complex routing scenarios. Moreover, we provide a

Document Type Definition (DTD) to completely specify the XRL syntax (cf. Section 4.8).

4.1. Route

A routing slip or schema must start with a <route> start-tag and end with a </route> end-tag. The

route element has a reference attribute to uniquely identify the routing slip. A route consists of a routing

element which is described next. The <route> tag has the following attributes associated with it:

 name: Name of the routing slip

 created by: Creator of the routing slip

 date: Creation data

4.2. Routing Element

A routing element is an important building block of XRL and it can be any one of the following:

 13

1. Task: This is a step to be performed.

2. Sequence: A set of tasks to be done in a specific order forms a sequence.

3. Any_sequence: A set of tasks to be done in any order forms an any_sequence.

4. Choice: Any one task out of a set of tasks is called a choice.

5. Condition: Test a condition and determine next step based on the result of the test.

6. Parallel_sync: Create multiple parallel routing elements and later join them.

7. Parallel_no_sync: Create multiple parallel routing elements (which do not have to join).

8. Parallel_part_sync: Create multiple parallel routing elements, some of which must join.

9. Wait_all: Insert a wait step to wait for the completion of a group of events.

10. Wait_any: Insert a wait step to wait for the completion of any one of a group of events.

11. While_do: Enable repetition of a task while a condition is true.

12. Stop: End the execution of this particular path of the workflow instance.

13. Terminate: End this workflow instance.

Note that the selection of these constructs is based on a detailed analysis of workflow patterns needed in

practice and the features offered by the leading workflow management systems [9,10].

4.3. Task

A task is a generic term for a step or action in the workflow. The following attributes are associated with

a task:

 name: name of the task
 address: URL of the task or an email address
 role: information about the actor (person or organization) executing
 the task
 doc_read: documents required by the task that are read-only
 doc_update: documents that can be updated
 doc_create: documents that are to be created by the task
 domain: Internet domain within which the task is performed
 result: result of the task as a string value
 status: status of task (ready|running|enabled|disabled|aborted|null)
 start_time: time at which the task was started
 end_time: time at which task was completed
 notify: email addresses of parties to be notified on task
completion.

 14

A task element must have a unique name attribute which is an id, and an address that is a URL (say,

an HTML page or ASP or JSP page) or an email address. Several other attributes can be associated with a

task. An example of a task specification is as follows:

<task name="task1" address="www.order.xyz.com"
 start_time = "01Oct99;9:30AM" end_time = "">

</task>

The status attribute is initially null and can take one of the values from among the ones listed above. The

start_time and end_time attributes correspond to the start and end times of the task and can be

used to determine how long it lasted. Another example of a task element is:

<task name="task3" address = "john@xyz.com" result = " "
 doc_read ="doc1 doc2"
 start_time = "01Oct99;9:30AM" end_time = "">

</task>

Here the address is an email address of the worker who will perform task3. Moreover, it is possible to

specify documents to be attached using the doc_read attribute. Thus, the workflow engine will send an

email to john@xyz.com and attach doc1 and doc2 to it.

4.4. Sequence

A sequence represents the simplest routing pattern. It is a way to group together multiple steps to be

done in a certain order. Here is an example of how a sequential workflow can be specified using XRL.

<sequence>
 <task name = "task1" address = "user1@xyz.com"
 doc_read = "doc1,doc2" >
 </task>
 <task name = "task2" address = "user3@xyz.com"
 doc_read = "doc3,doc4" >
 </task>
 <task name = "task3" address = "user44@abc.com"
 doc_read = "doc5,doc6" >
 </task>
 <task name = "task4" address = "user99@abc.com" >
 </task>

 </sequence>

Thus, a sequence is a logical way of grouping several sequential tasks.

4.5. Parallel Constructs

There are three related types of parallel constructs: parallel_sync, parallel_part_sync,

and parallel_no_sync.

 15

In all these constructs, the common aspect is that they allow sub-workflows to be created which can

proceed independently. The parallel_sync element corresponds to the traditional notion of parallel

routing: First a number of parallel branches is activated, then the parallel branches are executed

independently, and finally the completed branches are synchronized (see AND-split and AND-join of

Figure 1). In the parallel_part_sync only some of the sub-workflows need to be combined, as

specified by the attribute number. Finally, in a parallel_no_sync element, the sub-workflows are

not synchronized and processing is resumed after all sub-workflows are initiated.

Next we discuss some examples of these three constructs. In the first example below, three vice-

presidents must approve an invoice before it can be paid. The approvals can be done in parallel, but

subsequent steps of the workflow cannot proceed without receiving the approvals.

 <parallel_sync>
 <task name = "vp1" address = "vp1@xyz.com"
 doc_read = "invoice.doc"/>
 <task name = "vp2" address = "vp2@xyz.com"
 doc_read = "invoice.doc"/>
 <task name = "vp3" address = "vp3@xyz.com"
 doc_read = "invoice.doc"/>
 </parallel_sync>

Next, we consider a modified situation where all the tasks do not need to synchronize. In this case we

would express the requirements as follows using the parallel_part_sync construct.

<parallel_part_sync number = 2>
 <sequence>
 <task name = "send-to-vp1" address = "vp1@xyz.com"
 doc_read = "invoice.doc"/>
 <task name = "vp1" address = "vp1@xyz.com"
 doc_update = "invoice.doc"/>
 </sequence>
 <sequence>
 <task name = "send-to-vp2" address = "vp2@xyz.com"
 doc_read = "invoice.doc"/>
 <task name = "vp2" address = "vp2@xyz.com"
 doc_update = "invoice.doc"/>
 </sequence>
 <sequence>

 <task name = "send-to-vp3" address = "vp3@xyz.com"
 doc_read = "invoice.doc"/>

 <task name = "vp3" address = "vp3@xyz.com"
 doc_update = "invoice.doc"/>
 </sequence>
</parallel_part_sync>

In the modified description now, only two of three vice-presidents (any two) are required to approve the

invoice. As soon as any two of them have done so, the workflow may proceed to the next stage. Finally,

 16

the third option (parallel_no_sync) for parallelism in the workflow design is to not require any

synchronization at all. This would effectively mean that as soon as the three approval tasks are assigned,

the workflow may continue to other tasks. In this case some other mechanism may be employed to check

later that the approvals have indeed been done. For instance, while the approvals of an invoice are in

progress, other tasks such as printing the check may be performed. However, the mailing of the check can

be delayed until the approvals are obtained. For brevity, we omit the full XRL syntax for this scenario.

4.6. Condition checking and Looping

The condition element is used to check a general condition statement and direct the workflow based on a

Boolean result. The condition element has an attribute called condition that describes the

condition to be tested. The structure is as follows:

 <condition condition = "result = ‘ok’">
 <true>
 <task name = "send_confirmation"
 address="www.xyz.com/confirm"/>
 </true>
 <false>
 <task name = "notify_customer"
 address="www.xyz.com/notify"/>
 </false>
 </condition>

As shown above, the true and false elements are associated in conjunction with the condition

element, and at least one of them should be present.

The while_do construct allows repetition of workflow routing elements and steps. It has a

condition attribute that describes the condition (as in the condition element), and the elements

enclosed within the while_do construct are executed until the condition evaluates to true.

4.7. Wait, Events, Timeouts, Terminate, Stop and State Elements

These elements of XRL are covered briefly next. The syntax for them is described in the DTD in

Appendix 1. There are two types of wait elements: wait_any and wait_all. Each element encloses

one or more combinations of event references and timeouts. A wait_any element will be considered

complete when any one of the events or timeouts it contains is done. On the other hand, wait_all

requires the completion of all of the events or one of the timeouts it encloses.

An event can be optionally associated with a task by including one or more event elements within a task

element. It is possible to wait for the occurrence of this event within a wait element by specifying an

event reference element. For example,

 <task name = approve>

 17

 <event name = e1 />
 </task>

This construct specifies an approve task and associates an event e1 with it such that upon completion of

the task, event e1 will "fire" (i.e., be triggered). Now, consider the following XML code, which, perhaps,

appears later in the same workflow instance:

 <wait_all>
 <event_ref name = e1/>
 </wait_all>

This is a way to specify that the workflow instance must wait until the approve task is completed, i.e.,

events can be used as milestones. Another way to use the wait constructs is in conjunction with timers.

There is a timeout element with attributes time and type. The time attribute specifies a string value of

time, while the type attribute helps to interpret the string value, either as an absolute time (January

25, 9 AM), relative time to the current time (i.e., like a regular timer) or s_relative, i.e., a time

which is relative to the start of the instance.

The stop element is used to end a sub-workflow of the workflow instance. The terminate element on

the other hand terminates the entire instance that includes all its paths that may be executing separately.

Both stop and terminate do not have any attributes and are typically used within a condition

element. For example, if a condition in one of several parallel branches evaluates to false, the entire

workflow instance is terminated.

The state element is required to write out the state of the workflow at any point. This is a useful feature

to make a record of the exact state of the workflow instance in the XRL routing slip. The location of the

state element determines the progress of one path of the workflow instance. In a purely sequential

process there will be only one state element. In presence of parallelism, there can be multiple state

elements, each indicating the state of one parallel branch. To avoid confusion and maintain readability,

state elements are only allowed inside sequence elements.

4.8. Formal DTD and XML Schema

A Document Type Definition (DTD) which describes all the constructs is given in Appendix 1 using

standard XML notation [15,45]. Any XRL document should be well-formed, i.e., it should confirm to

general XML syntax [15]. Moreover, it should also be valid, i.e., the document should satisfy the

constraints expressed by the declarations in the DTD.

 18

5. Formal Semantics
In Section 4, we introduced the XRL (eXchangeable Routing Language). The syntax of this language was

defined in terms of a DTD. XRL is used to describe the dynamics of inter-organizational workflows.

Therefore, it is of the utmost importance to have clear semantics for each of the constructs supported by

XRL. For this purpose, we map XRL onto Petri nets [41]. On the one hand, Petri nets can be used to

represent the business logic in a graphical manner. In fact, the Petri net language is close to many of the

diagramming languages used by both commercial workflow management systems and researchers active

in this domain [7,11,17,29]. For example, workflow management systems and ERP systems such as

COSA (Software Ley), Income (Promatis), BaanERP (Baan), and ARIS/SAP (IDL/SAP) use (variants of)

Petri nets. On the other hand, Petri nets are a formal language with clear semantics, powerful analysis

techniques, and strong theoretical results. By mapping XRL onto Petri nets, we are able to give formal

semantics, reason about XRL using standard techniques, and also use existing software. Before showing

the mapping of XRL onto Petri nets, we give a quick overview of Petri nets.

5.1. Petri Nets

A Petri net is represented graphically by squares and circles. The squares are called transitions and in the

context of workflow management are tasks to be executed. The circles are used to represent the state of a

workflow and are called places. The arrows between places and transitions are used to specify causal

relations. Figure 5 shows a Petri net composed of six places and six transitions. A place p is called an

input place of a transition t iff there exists a directed arc from p to t. Place p is called an output place of

transition t iff there exists a directed arc from t to p. At any time a place contains zero or more tokens,

drawn as black dots. The state of the net, often referred to as marking, is the distribution of tokens over

places. In Figure 6, only place p1 contains a token. The number of tokens may change during the

execution of the net. Transitions are the active components in a Petri net: They change the state (or

marking) of the net according to the following firing rule:

• A transition t is said to be enabled iff each input place p of t contains at least one token.

• An enabled transition may fire. If transition t fires, then t consumes one token from each input place p

of t and produces one token for each output place p of t.

 19

serve_donut

accept_order

serve_coffee

serve_tea

order_donut

handle_paymentp1

p2

p3 p5

p4

p6

Figure 6: A Petri net modeling the simplified workflow of a waiter in a cafe.

By using this rule and the simple terminology introduced above, it is possible to determine which

transitions can fire and in what order. In Figure 6, transition accept_order is enabled because input place

p1 is marked (i.e., contains a token). Transition accept_order will fire and as a result the token is

consumed from p1 and two tokens are produced: one for p2 and one for p3. Then three transitions are

enabled: serve_donut, serve_coffee, and serve_tea. If transition serve_donut fires, a token is moved from

place p2 to place p4. Transitions serve_coffee and serve_tea both compete for the token in p3, i.e., they

are both enabled, but only one of them can fire. If serve_coffee fires, a token is moved from place p3 to

place p5 and serve_tea becomes disabled. Firing serve_tea results in the same state, thus disabling

serve_coffee. After firing transition serve_donut, transition order_donut becomes enabled. The result of

firing transition order_donut is that place p2 is marked, thus enabling serve_donut again. Transition

handle_payment is enabled if both p4 and p5 contain at least one token. Firing handle_payment results in

the state with just one token in p6. In this state no transitions are enabled.

The Petri net shown in Figure 6, contains all kinds of routing constructs, e.g., sequential routing

(serve_donut can only be executed if accept_order is executed), conditional routing (the choice between

serve_coffee and serve_tea), parallel routing (serve_donut can be executed in parallel with serve_coffee or

serve_tea), and iteration (serve_donut can be executed arbitrarily many times by executing order_donut).

A transition can be thought of as an AND-join/AND-split building block. A place corresponds to an

XOR-join/XOR-split building block. By using these building blocks accordingly, it is fairly

straightforward to model the routing constructs present in today's workflow management systems. In

addition, as is shown in [7], the Petri net model provides useful routing constructs missing in some of

these systems.

 20

5.2. Mapping the DTD onto Petri-net Constructs

A routing schema specified in XRL should be consistent with the DTD specified in Section 4, i.e., the

XML document should be both valid and well-formed according to the W3C standard for XML [45]. In

this subsection we map routing elements identified in the DTD onto Petri net constructs. For this purpose

we introduce the symbols shown in Figure 7. In addition to places, transitions, and arcs, we allow for

routing elements, interfaces, and routing transitions. Routing transitions are shown by dark rectangles

and are internal transitions associated with the start and end of various routing elements. They facilitate

explanation of the decomposition. The vertical dashed lines are added to model the interface or boundary

between one routing element and another.

routing element

������������������������������
������������������������������
������������������������������
������������������������������

interface

place

transition

����������������
����������������
���������������� routing transition

arc

Figure 7: The symbols used to illustrate the mapping from XRL to Petri nets

The most fundamental routing element is a task. Whereas the firing of a transition in a Petri net is

instantaneous, the actual execution of a task takes time. Therefore, we model a task as shown in Figure 8.

The transition begin signifies the start of the task; transition end signifies the completion of the task. For

transactional workflows, one might also associate a status with tasks (e.g., aborted, ready, partial commit,

etc.). The status is stored in the XML file as an attribute of task and can be used for conditional routing.

The dashed lines indicate the interface of the task. Note that all connections with the task are made to

begin and end.

begin

����������������
����������������
����������������
����������������

�����������������������������
�����������������������������
�����������������������������
�����������������������������

���������������
���������������
���������������
���������������

endexecutingtask

Figure 8: The Petri-net equivalent of a task construct.

Routing elements can be linked together using the sequence routing construct. Figure 9 shows the

corresponding Petri net semantics of the sequence and parallel_sync constructs. The routing

elements in the sequence construct (Figure 9(a)) are connected through places to make sure that

execution occurs in a predefined order. In contrast, the parallel_sync construct allows simultaneous

 21

execution of routing elements and can also be modeled straightforwardly in terms of a Petri net (Figure

9(b)).

���������������������������
���������������������������
���������������������������

re_1

�����������������������������
�����������������������������
�����������������������������

re_2

���������������������������
���������������������������
���������������������������

re_n

...

(a) Sequence

�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������

������������������
������������������
������������������
������������������

re_n

�������������������
�������������������
�������������������
�������������������

�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������

re_2

�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������

re_1

...

AND-split AND-join

(b) Parallel_sync

Figure 9: Sequence and parallel_sync constructs

The any_sequence routing construct is used to specify that routing elements are executed sequentially

but in any order. Figure 10 shows the corresponding semantics for modeling this construct as a Petri net

in a novel way. Routing transition AND-split enables all routing elements and marks the special place

called mutex. Although all routing elements are enabled, only one of them can be executed at one time,

i.e., by temporarily removing the token from place mutex the other routing elements are blocked until the

active routing element terminates. If all routing elements have been executed, routing transition AND-join

fires thus removing the token from place mutex.

 22

������������������������������������
������������������������������������
������������������������������������

��������������������
��������������������
��������������������

re_n

�������������������
�������������������
�������������������

������������������������������������
������������������������������������
������������������������������������
������������������������������������

re_2

������������������������������������
������������������������������������
������������������������������������

re_1

...

mutex

AND-split AND-join

Figure 10: Construct any_sequence.

For brevity, the remaining XRL constructs are summarized in Appendix 2 (see Figures A1 through A9).

In this discussion on mapping of XRL to Petri nets, we showed how every construct in the DTD is

translated into Petri nets. The benefits of this mapping are:

• formal semantics: the behavior of a workflow can be fully specified in XRL and all ambiguity is

removed;

• availability of analysis techniques and tools: by mapping XRL onto Petri nets we can use the many

techniques and tools developed for Petri nets (see Section 5.3);

• a ready to use implementation model: it is easy to implement a workflow engine using existing Petri-

net-based simulation and enactment tools (see Section 3); and,

• knowledge about the expressive power of XRL: the expressive power of XRL (minus data attributes)

is comparable to ordinary Petri nets, i.e., it is possible to emulate state machines (processes without

concurrency), it is also possible to emulate marked graphs (processes with concurrency but without

choices), and, using the event mechanism, it is possible to create non-free-choice constructs [7]. State

machines, marked graphs, and free-choice nets are well known subclasses of Petri nets [41]. Note that

most workflow languages only allow for free-choice constructs, i.e., synchronization and choice are

separated. As shown in [7,9,10], real life workflows require non-free-choice constructs.

 23

5.3. Analysis

XRL is aimed towards application domains where workflows cross organizational boundaries and change

over time. In these application domains, the correctness issues are particularly relevant because the

distributed and dynamic nature of the workflow is a potential source of errors. Unfortunately, today’s

workflow management systems do not support advanced techniques to verify the correctness of workflow

process definitions. These systems typically restrict themselves to a number of simple syntactic checks.

Therefore, erroneous conditions such as deadlocks and livelocks may remain undetected. Thus, an

erroneous workflow may go into production and cause major problems for the organization. An erroneous

workflow may lead to extra work, legal problems, angry customers, managerial problems, and depressed

employees. Therefore, it is important to verify the correctness of a workflow process definition before it

becomes operational. In fact, for interorganizational workflows, the costs of putting an erroneous

workflow process definition into production are enormous because of the efforts required to repair errors

that may cross organizational boundaries. Therefore, Petri net theory and Petri-net-based tools can help

to ensure the correctness of the workflows at hand.

The soundness property, defined in [7], relates to the dynamics of the workflow process definition. A

Petri net representing a workflow process definition is called a workflow net. A workflow net is sound if

the following requirements are satisfied: (1) termination is guaranteed, (2) upon termination, no dangling

references (tokens) are left behind, and (3) there are no dead tasks, i.e., some instance of the workflow

can reach every task. Soundness is the minimal property any workflow process definition should satisfy.

Note that soundness implies the absence of livelocks and deadlocks. Soundness can be verified using

Petri net techniques. In fact, we have developed a workflow verification tool, named Woflan, to determine

soundness [7,8]. For a given workflow net, Woflan is able to decide whether it is sound. For this purpose,

Woflan uses an interesting relation between soundness on the one hand, and liveness and boundedness on

the other. A workflow net is sound, if and only if, the net obtained by connecting the sink place to the

source place via an additional transition t* is live and bounded. This relationship enables the use of

efficient analysis techniques and the deployment of powerful software packages. Woflan

(http://www.tm.tue.nl/it/woflan) is designed as a WFMS-independent analysis tool. In principle it can

interface with many workflow management systems. At present, Woflan can interface with COSA (Thiel

Logistic AG/Software Ley), METEOR (LSDIS), Staffware (Staffware), and Protos (Pallas Athena). There

is also an automatic translation from XRL to Woflan. This way any workflow management based on XRL

can benefit from state-of-the-art verification software.

http://www.tm.tue.nl/it/woflan

 24

6. A Complete Example and Implementation
Now we turn to show how the various XRL constructs can be integrated to design a complete workflow

routing schema for the mail order processing example described in Section 2.2. Figure 11 gives the XRL

description, while Figure 12 shows a graphical representation. The various control constructs are shown

within ovals in Figure 12, while the actual tasks or steps are inside rectangles. Please note that Figure 12

has well-defined semantics but some of the details of Figure 11 are omitted for the sake of clarity.

The route element denotes the start of the route. It has a reference attribute to uniquely identify an

instance. Next there is a parallel_sync element which contains three branches. In each branch, an

inquiry is made with a publisher about whether it can provide a book in a timely manner. These three

inquires are made in parallel. After the parallel_sync construct finishes, the condition element

checks if at least two of the publisher inquiry steps were completed with a result value of "OK". If so, the

while_do loop is used to find a shipper. The loop is required because, if the first shipper that is

contacted is unable to perform the work, then another one may have to be contacted, presumably from a

list of shippers. The next construct in the workflow is a parallel_no_sync that consists of three

parallel branches. In each branch, an order is confirmed with one of the publishers. Moreover, an event is

associated with each of these tasks. The events will be triggered when the publishers ship the orders.

Finally, there is a while_do loop that repeats as long as there is a pending event. Inside this loop, there

is a wait_all element that includes a timeout element with a relative time of 2 days. The

wait_all element is followed by the billing task. Thus, the semantics here is that partial (or full) billing

should occur at two-day intervals if during the preceding two days some new shipment event has

occurred. At this point, the customer will be billed for all partial shipments that occurred during the

preceding 2-day window. Eventually, when all the shipments are done, the workflow instance is

completed.

<?xml version="1.0"?>
<!DOCTYPE route SYSTEM "xrl.dtd">
<route name="example" created_by="Wil" date="120999">
 <sequence>
 <parallel_sync>
 <task name="publ1" address="www.taskserver.com/publ1"/>
 <task name="publ2" address="www.taskserver.com/publ2"/>
 <task name="publ3" address="www.taskserver.com/publ3"/>
 </parallel_sync>
 <condition condition="(publ1.result='OK' and publ2.result='OK')
 or (publ1.result='OK' and publ3.result='OK')
 or (publ2.result='OK' and publ3.result='OK')">
 <true>
 <sequence>
 <while_do condition="find_shipper.result='OK'">
 <task name="find_shipper"
 address="www.taskserver.com/find_shipper"/>
 </while_do>

 25

 <parallel_no_sync>
 <condition condition="publ1.result='OK'">
 <true>
 <sequence>
 <task name="confirm_order1"
 address="www.taskserver.com/confirm1"/>
 <task name="ship_order1"
 address="www.taskserver.com/order1">
 <event name="e_order1"/>
 </task>
 </sequence>
 </true>
 </condition>
 <condition condition="publ2.result='OK'">
 <true>
 <sequence>
 <task name="confirm_order2"
 address="www.taskserver.com/confirm2"/>
 <task name="ship_order2"
 address="www.taskserver.com/order2">
 <event name="e_order2"/>
 </task>
 </sequence>
 </true>
 </condition>
 <condition condition="publ3.result='OK'">
 <true>
 <sequence>
 <task name="confirm_order3"
 address="www.taskserver.com/confirm3" />
 <task name="ship_order3"
 address="www.taskserver.com/order3">
 <event name="e_order3"/>
 </task>
 </sequence>
 </true>
 </condition>
 </parallel_no_sync>
 <while_do condition = "(publ1.result = 'OK' AND not_done(e_order1))
 or (publ2.result = 'OK' AND not_done(e_order2))
 or (publ3.result = 'OK' AND not_done(e_order3))">
 <sequence>
 <wait_all>
 <timeout time = "2 days" type = "relative" />
 </wait_all>
 <task name="billing_partial"
 address ="www.taskserver.com/billing_partial" />
 </sequence>
 </while_do>
 </sequence>
 </true>
 </condition>
 </sequence>
</route>

Figure 11: Routing schema description for the mail order example.

 26

Result

 Parallel_sync

/Parallel_sync

Parallel_no_sync

/ Parallel_no_sync
While_do

Condition

/While_do

/While_do

While_do

 Publ1 Publ2 Publ3

Find_Shipper

 Partial_Billing

 Confirm_
Order1

Confirm_
 Order2

Confirm_
Order3

Route

/Route

Result

Result
 Ship_ Order1 Ship_ Order1 Ship_ Order1

Condition ConditionCondition

/Condition/Condition/Condition

Wait_all Timeout /Wait_all

/Condition

Figure 12: Graphical representation of the routing schema for the mail order example.

Figure 13: Screenshot of the main screen of XRL/flower.

 27

Figure 14: Screenshot of page seen by Publisher 1.

We have built an initial prototype of this system: XRL/flower. Figure 13 shows the screenshot for the

main interface of XRL/flower. This interface allows a user to load an XRL file and start a workflow

instance. The top window in Figure 13 shows the entire instance. The second window shows the items

ready to be accepted by workers. The third window gives the list of items that have already been

accepted. It is possible to click on a work item and see its associated attributes in the last window. By

clicking on the URL associated with a task it is possible to bring up a page in a web browser, fill in the

appropriate information and complete the task by clicking on the submit button. For instance, in the mail

order example, a publisher may click on the URL appropriate for him or her, bring up a screen which

looks like Figure 14, and then, after filling in the information required, click submit to complete their

task.

This prototype illustrates the implementation of the first mode of operation described in Section 3 (i.e.,

loose integration). We are currently working on a similar implementation for the second mode of

operation as well.

 28

7. Discussion and Related Work
Petri nets were proposed as a useful technique for modeling process definitions even long before the term

“workflow management” was coined and workflow management systems became available. There is a

large body of literature on Petri nets. For a more elaborate introduction to Petri nets and the application

of Petri nets to workflow management, we refer the reader to [7,11,17,25,41]. Furthermore, for additional

information on the application of Petri nets to inter-organizational workflows, see [1,4,5,6,33,44].

A unique feature of XRL is the ability to model processes at the instance level, in addition to class or

schema level modeling. This is interesting because only a few workflow management systems, e.g.,

InConcert (TIBCO/InConcert Inc., [42]) and Ensemble (FileNET Corp.), currently support such a

capability [2,3]. Most of today's commercial workflow systems focus on production workflows (as

opposed to ad hoc workflows), and handle modeling at a class level only. A serious limitation of these

production workflow systems is that they typically use a centralized enactment service. Therefore, many

recent research prototypes such as MENTOR (University of Saarland at Saarbrucken, [50]), METEOR

(University of Georgia, [39,44]), MOBILE (University of Erlangen, [25]), and WASA (University of

Muenster, [48]) focus on a distributed architecture. An interesting project focusing on the application of

workflow technology to electronic commerce is the WIDE Project and the successor project CrossFlow

[22]. The goal of these projects is to enable inter-organizational workflows across multiple platforms by

linking geographically separated applications. Similar projects, which study architectures for enabling

workflow processes across organizational boundaries, are WISE [31], OSM [37], and COSMOS [38].

Unfortunately, the systems/projects mentioned use proprietary formats which make it hard to exchange

workflow instances between systems of different vendors.

The WfMC recently published the Interoperability Wf-XML Binding [50]. Wf-XML is intended as a basis

for concrete implementations of the WfMC’s Interface 4 [30]. Compared to XRL there are many

differences. First of all, Wf-XML does not address routing issues. For routing it relies on WPDL, which is

not (yet) defined using XML, and has no clear semantics. Second, Wf-XML only allows for loose

integration as described in Section 3. XRL is also different from XML nets [34] and SGML nets [48] in

that, although both approaches use XML-based high-level nets, they do not express the control flow (i.e.,

the Petri-net structure itself) in XML. Therefore, they are less suitable for inter-organizational workflows.

Recent development in Internet technology and “electronic market makers” such as ChemConnect, Ariba,

CommerceOne, Clarus, staples.com, Granger.com, VerticalNet, and mySAP.com have resulted in many

XML-based standards for electronic commerce. The XML Common Business Library (xCBL) by

CommerceOne, the Partner Interface Process (PIP) blueprints by RosettaNet, the Universal Description,

Discovery and Integration (UDDI), the Electronic Business XML (ebXML) initiative by UN/CEFACT

and OASIS, the Open Buying on the Internet (OBI) specification, the Open Application Group

 29

Integration Specification (OAGIS), and the BizTalk Framework are just some examples of the emerging

standards based on XML. These standards primarily focus on the exchange of data and not on the control

flow among organizations. Most of the standards provide standard DTDs or XML schemas for specific

application domains (e.g. procurement). One of the few initiatives which also addresses the control flow

is RosettaNet. The Partner Interface Process (PIP) blueprints by RosettaNet do specify interactions using

UML activity diagrams for the Business Operational View (BOV) and UML sequence diagrams for the

Functional Service View (FSV) in addition to DTDs for data exchange. However, the PIP blueprints are

not executable and need to be predefined.

One distinguishing feature of several standards, such as RosettaNet, is that they are primarily focused on

electronic markets with long-lasting pre-specified relationships, where one party (e.g. the market maker)

can enforce rigid business rules. The big advantage of XRL is that it allows for ad-hoc relationships and is

not limited to specific application domains. Moreover, it is based on XML and is not shackled by the

sepcifics of an existing system.

8. Conclusions

This paper presented a complete framework for implementing inter-organizational workflows. The

workflow is specified in XRL, a routing language based on XML. The semantics of XRL were expressed

in terms of Petri nets by providing a direct mapping from each routing element to a Petri net construction.

Thus, any workflow can be expressed in XRL and then translated into a Petri net representation, which

lends itself easily to analysis. As workflows get more complex, analysis and verification become

increasingly important. A full DTD has also been given to enable users to build their routing slips or

schemas according to it and validate it using a standard XML tool.

We have developed a prototype workflow management system, named XRL/flower, to implement the

architecture described in Section 3. XRL/flower benefits from the fact that it is based on both XML and

Petri nets. Standard XML tools can be deployed to parse, check, and handle XRL documents. The Petri

net representation allows for a straightforward and succinct implementation of the workflow engine. XRL

constructs are automatically translated into Petri net constructs. On the one hand, this allows for an

efficient implementation. On the other hand, the system is extensible: For supporting a new routing

primitive, only the translation to the Petri net representation needs to be added, while the engine itself

does not need to change. Last, but not least, the Petri net representation can be analyzed using state-of-

the-art analysis techniques and tools. For example, given a representation of a workflow in terms of XRL,

our verification tool Woflan [7,8] can detect design errors.

Although the routing elements discussed here were motivated by the needs of common business

situations, we do not make a claim of completeness here. To develop rigorous notions of what constitutes

 30

completeness is a topic for future work. The first author is involved in a project to document all relevant

workflow patterns (http://www.tm.tue.nl/it/research/patterns/ [9,10]). This is just one possible direction

towards tackling the completeness issue. Another interesting research direction that could lead to notions

of completeness is discussed in the context of work on structured workflows [28]. The second author is

involved in a project related to querying of XRL workflows [16]. The goal of this project is to be able to

manipulate workflows described in XML and determine the status of a running instance. Other topics for

future research are improved verification capabilities by applying reduction rules and the use of workflow

templates, i.e., how to instantiate an XRL route and limit changes such that only certain properties are

inherited? Finally, we are also planning to build a front-end tool that would allow users to create an XRL

schema using a graphical interface instead of writing XRL in a text editor.

References
1. Aalst, W.M.P. van der and K. Anyanwu, "Inheritance of Interorganizational Workflows to Enable

Business-to-Business E-commerce," In Proceedings of the Second International Conference on

Telecommunications and Electronic Commerce (ICTEC'99), pages 141-157, Nashville, Tennessee,

October 1999.

2. Aalst, W.M.P. van der, "Generic Workflow Models: How to Handle Dynamic Change and Capture

Management Information." In M. Lenzerini and U. Dayal, editors, Proceedings of the Fourth IFCIS

International Conference on Cooperative Information Systems (CoopIS'99), pages 115-126,

Edinburgh, Scotland, September 1999. IEEE Computer Society Press.

3. Aalst, W.M.P. van der, T. Basten, H.M.W. Verbeek, P.A.C. Verkoulen, and M. Voorhoeve.

"Adaptive Workflow: On the Interplay between Flexibility and Support." In J. Filipe and J. Cordeiro,

editors, Enterprise Information Systems, pages 61-68. Kluwer Academic Publishers, Norwell, 2000.

4. Aalst, W.M.P. van der, "Interorganizational Workflows: An Approach based on Message Sequence

Charts and Petri Nets," Systems Analysis - Modelling - Simulation, 34(3):335-367, 1999.

5. Aalst, W.M.P. van der, "Loosely Coupled Interorganizational Workflows: Modeling and Analyzing

Workflows Crossing Organizational Boundaries," Information and Management, 37(2):67-75, March

2000.

6. Aalst, W.M.P. van der, "Process-oriented Architectures for Electronic Commerce and

Interorganizational Workflow," Information Systems, 25(1):43-69, 2000.

7. Aalst, W.M.P. van der, "The Application of Petri Nets to Workflow Management," Journal of

Circuits, Systems and Computers, 8(1):21-66, 1998.

http://www.tm.tue.nl/it/research/patterns/

 31

8. Aalst, W.M.P. van der, "Woflan: A Petri-net-based Workflow Analyzer," Systems Analysis -

Modeling - Simulation, 35(3):345-357, 1999.

9. Aalst, W.M.P. van der, A.H.M. ter Hofstede, B. Kiepuszewski, en A.P. Barros. "Workflow Patterns,"

BETA Working Paper Series, WP 47, Eindhoven University of Technology, Eindhoven, 2000.

10. Aalst, W.M.P. van der, A.H.M. ter Hofstede, B. Kiepuszewski, en A.P. Barros. "Advanced Workflow

Patterns," In O. Etzion en P. Scheuermann, editors, 7th International Conference on Cooperative

Information Systems (CoopIS 2000), volume 1901 of Lecture Notes in Computer Science, pages 18-

29. Springer-Verlag, Berlin, 2000.

11. Adam, N.R., V. Atluri, and W. Huang, "Modeling and Analysis of Workflows using Petri Nets,"

Journal of Intelligent Information Systems, 10(2):131-158, 1998.

12. Alonso, G., C. Mohan, R. Gunther, D. Agrawal, et al., "Exotica/FMQM: A persistent message-based

architecture for distributed workflow management," Proceedings of IFIP Working Conference on

Information Systems Development for Decentralized Organizations (ISDO '95), Trondheim, Norway,

1-18 (1995).

13. Arntzen, B.C., G.G. Brown, T.P. Harrison, and L.L. Trafton, "Global supply chain management at

Digital Equipment Corporation," Interfaces Vol.25, no.1, 69-93 (1995).

14. Barbuceanu and Fox., "Coordinating multiple agents in the supply chain," Proceedings of the 5th

Workshop on Enabling Technologies: Infrastructure for Collaborative Enterprises, June 1996.

15. Bray, T., J. Paoli, C.M. Sperberg-McQueen, and E. Maler, "eXtensible Markup Language (XML) 1.0

(Second Edition),” http://www.w3.org/TR/REC-xml, World Wide Web Consortium (W3C), October

2000.

16. V. Christophides, R. Hull, A. Kumar, "Querying and Splicing of Workflows," Sixth International

Conference on Cooperative Information Systems (CoopIS 2001), In Cooperation with VLDB 2001,

Trento, Italy, September 2001 (forthcoming).

17. Ellis, C.A. and G.J. Nutt, "Modelling and Enactment of Workflow Systems," In M. Ajmone Marsan,

editor, Application and Theory of Petri Nets 1993, Volume 691 of Lecture Notes in Computer

Science, pages 1-16, Springer-Verlag, Berlin, 1993.

18. Fan, M., J. Stallaert and A.B. Whinston, "A Web-based Financial Trading System," IEEE Computer,

Volume 32, No. 4, April 1999.

19. Fingar, P., "Enterprise Architecture for Open Ecommerce," Component Strategies, February 1999.

http://www.w3.org/TR/REC-xml

 32

20. Georgakopoulos, D., M. Hornick, and A. Sheth, "An overview of workflow management: from

process modelling to workflow automation infrastructure," Distributed and Parallel Databases, vol.

3, no. 2, 119-153 (1995).

21. Glushko, R., J. Tenenbaum and B. Meltzer, "An XML framework for agent-based E-commerce,"

Communications of ACM, Vol. 42, No. 3, March 1999.

22. Grefen, P., K. Aberer, Y. Hoffner, and H. Ludwig, "CrossFlow: Cross-organizational Workflow

Management in Dynamic Virtual Enterprises," International Journal of Computer Systems, Science,

and Engineering, 15(5):277-290, 2001.

23. IEEE Computer, Special Issue on Electronic Commerce, vol. 30, no. 5, May (1997).

24. Information Week, “Technology of the Year XML: The language of E-Business,” Dec 18-25, 2000.

25. Jablonski, S. and C. Bussler, "Workflow Management: Modeling Concepts, Architecture, and

Implementation," International Thomson Computer Press, London, UK, 1996.

26. Jutla, D., et.al, "Making business sense of Electronic Commerce," IEEE Computer, Volume 32, No.

3, March 1999.

27. Kalakota, R. and A.B. Whinston, Frontiers of Electronic Commerce, Addison-Wesley, Reading,

Massachusetts, 1996.

28. B. Kiepuszewski, A. ter Hofstede and C. Bussler, "On Structured Workflow Modeling," Proceedings

of CAISE 2000, Stockholm, Sweden.

29. Kumar, A. and Zhao, J.L. "Dynamic Routing and Operational Integrity Controls in a Workflow

Management System," Management Science, Volume 45, No. 2, February 1999, 253-272.

30. Lawrence, P., editor. Workflow Handbook 1997, Workflow Management Coalition. John Wiley and

Sons, New York, 1997.

31. Lazcano, A., G. Alonso, H. Schuldt, and C. Schuler, "The WISE Approach to Electronic Commerce,"

International Journal of Computer Systems, Science, and Engineering, 15(5):345-357, 2001.

32. Lee, H.L. and C. Billington, "The evolution of supply-chain-management models and practice at

Hewlett-Packard," Interfaces vol.25, no.5, 42-63 (1995).

33. Lee, R.M., "Distributed Electronic Trade Scenarios: Representation, Design, Prototyping,"

International Journal of Electronic Commerce, 3(2):105-120, 1999.

34. Lenz. K. and A. Oberweis, “Modeling Interorganizational Workflows with XML nets,” Proceedings

of 34th Hawai'i International Conference on System Sciences, January 3-6, 2001, Maui, Hawaii.

 33

35. Maes, P., et al., "Agents that buy and sell," Communications of ACM, Vol. 42, No. 3, March 1999.

36. Merz, M., et al. "Supporting electronic commerce transactions with contracting services."

International Journal of Cooperative Information Systems, Dec. 1998, vol.7, (no.4):249-74.

37. Merz, M., B. Liberman, and W. Lamersdorf, "Using Mobile Agents to Support Interorganizational

Workflow-Management," International Journal on Applied Artificial Intelligence, 11(6):551-572,

1997.

38. Merz, M., B. Liberman, and W. Lamersdorf, "Crossing Organisational Boundaries with Mobile

Agents in Electronic Service Markets," Integrated Computer-Aided Engineering, 6(2):91-104, 1999.

39. Miller, J.A., D. Palaniswami, A.P. Sheth, K. Kochut, H. Singh, "WebWork: METEOR2's Web-Based

Workflow Management System," Journal of Intelligent Information Systems, 10(2):185-215, 1998.

40. Organization for the Advancement of Structured Information Standards (OASIS), “XML.org: The

XML Industry Portal.,” http://www.xml.org, 2000.

41. Reisig, W. and G. Rozenberg, editors, Lectures on Petri Nets I: Basic Models, Volume 1491 of

Lecture Notes in Computer Science, Springer-Verlag, Berlin, 1998.

42. Sarin, S.K., "Workflow and Data Management in InConcert," In S.Y.W Su, editor, IEEE International

Conference on Data Engineering, pages 497-499, 1996.

43. Segev, A., J. Porra and M. Roldan. "Internet-based EDI strategy," Decision Support Systems, Nov.

1997, Vol.21, (No.3):157-70.

44. Sheth, A.P., W.M.P. van der Aalst and I.B. Arpinar, "Processes Driving the Networked Economy:

ProcessPortals, ProcessVortex, and Dynamically Trading Processes," IEEE Concurrency, 7(3):18-31,

1999.

45. Sorenson, J. and L. Wood, "Document Object Model Requirements," WWW Consortium,"

http://www.w3.org/TR/WD-DOM/requirements.html, (1998).

46. St. Laurent, S., XML: A Primer, MIS Press, New York, (1997).

47. Teich, J., H. Wallenius and J. Wallenius, "World-Wide-Web technology in support of negotiation and

communication," International Journal of Technology Management, 1999, vol.17, (no.1-2): 223-38.

48. Vossen, G., M. Weske, "The WASA2 Object-Oriented Workflow Management System," In A. Delis,

C. Faloutsos, S. Ghandeharizadeh, editors, Proceedings ACM SIGMOD International Conference on

Management of Data (SIGMOD 1999), pages 587-589, 1999.

http://www.xml.org/
http://www.w3.org/TR/WD-DOM/requirements.html

 34

49. Weitz, W., “Combining Structured Documents with High-level Petri-nets for Workflow Modeling in

Internet-based Commerce,” International Journal of Cooperative Information Systems, 1998, vol. 7,

(no. 4):275-296.

50. Wodke, D., J. Weissenfels, G. Weikum, A.K. Dittrich, "The Mentor Project: Step Towards

Enterprise-Wide Workflow Management," In S.Y.W Su, editor, IEEE International Conference on

Data Engineering, pages 556-565, 1996.

51. Workflow Management Coalition, "Workflow Standard – Interoperability Wf-XML Binding,"

Document Number WFMC-TC-1023, Version 1.0, http://www.wfmc.org, May 2000.

52. World Wide Web Consortium (W3C), “XML Schema,” http://www.w3.org/XML/Schema.html,

January 2001.

53. Zwass, V., "Electronic commerce: structures and issues," International Journal of Electronic

Commerce, 1(1):3-23, 1996.

http://www.wfmc.org/
http://www.w3.org/XML/Schema.html

 35

Appendix 1: The XRL Document Type Definition (XRL.DTD)

<!ENTITY % routing_element
"task|sequence|any_sequence|choice|condition|parallel_sync|
 parallel_no_sync|parallel_part_sync|wait_all|wait_any|while_do|
 stop|terminate">
<!ELEMENT route (%routing_element;)>
<!ATTLIST route name ID #REQUIRED
 created_by CDATA #IMPLIED
 date CDATA #IMPLIED>
<!ELEMENT task (event*)>
<!ATTLIST task name ID #REQUIRED
 address CDATA #REQUIRED
 role CDATA #IMPLIED
 doc_read NMTOKENS #IMPLIED
 doc_update NMTOKENS #IMPLIED
 doc_create NMTOKENS #IMPLIED
 result CDATA #IMPLIED
 status (ready|running|enabled|disabled|aborted|null) #IMPLIED
 start_time NMTOKEN #IMPLIED
 end_time NMTOKEN #IMPLIED
 notify CDATA #IMPLIED>
<!ELEMENT event EMPTY>
<!ATTLIST event name ID #REQUIRED>
<!ELEMENT sequence ((%routing_element;|state)+)>
<!ELEMENT any_sequence ((%routing_element;)+)>
<!ELEMENT choice ((%routing_element;)+)>
<!ELEMENT condition (true|false)*>
<!ATTLIST condition condition CDATA #REQUIRED>
<!ELEMENT true (%routing_element;)>
<!ELEMENT false (%routing_element;)>
<!ELEMENT parallel_sync ((%routing_element;)+)>
<!ELEMENT parallel_no_sync ((%routing_element;)+)>
<!ELEMENT parallel_part_sync ((%routing_element;)+)>
<!ATTLIST parallel_part_sync number NMTOKEN #REQUIRED>
<!ELEMENT wait_all (event_ref|timeout)+>
<!ELEMENT wait_any (event_ref|timeout)+>
<!ELEMENT event_ref EMPTY>
<!ATTLIST event_ref name IDREF #REQUIRED>
<!ELEMENT timeout (%routing_element;?)>
<!ATTLIST timeout time CDATA #REQUIRED
type (relative|s_relative|absolute) "absolute">
<!ELEMENT while_do (%routing_element;)>
<!ATTLIST while_do condition CDATA #REQUIRED>
<!ELEMENT stop EMPTY>
<!ELEMENT terminate EMPTY>
<!ELEMENT state (event+)>

 36

 Appendix 2: XRL Petri net constructs
In this appendix we give equivalent Petri net representations for the remaining routing constructs of XRL.

For brevity, the discussion is omitted, but the corresponding DTD syntax for them appears in Appendix 1.

Most of the constructs are straightforward. The only constructs which are more intricate are the constructs

involving events (figures A5, A6, and A7). A task can set an event by producing a token for a place which

can be inspected using the wait_all and wait_any constructs. This way events can act as milestones

between different threads of control.

������������������������������������
������������������������������������
������������������������������������
������������������������������������

�������������������
�������������������
�������������������
�������������������

re_n

�������������������
�������������������
�������������������
�������������������

������������������������������������
������������������������������������
������������������������������������
������������������������������������

re_2

������������������������������������
������������������������������������
������������������������������������
������������������������������������

re_1

...
begin end

Figure A1: Construct choice.

��������������������
��������������������
��������������������

��������������������
��������������������
��������������������

������������������������������������
������������������������������������
������������������������������������
������������������������������������

false

��������������������
��������������������
��������������������
��������������������

re_2

������������������������������������
������������������������������������
������������������������������������
������������������������������������

��������������������
��������������������
��������������������
��������������������

re_1true is_true

is_false

begin end

Figure A2: Construct condition.

 37

�����������������������������������
�����������������������������������
�����������������������������������

������������������
������������������
������������������

re_n

��������������������
��������������������
��������������������

�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������

re_2

�����������������������������������
�����������������������������������
�����������������������������������

re_1

...

by_pass

AND_split end

Figure A3: Construct parallel_no_sync.

������������������������������������
������������������������������������
������������������������������������

��������������������
��������������������
��������������������

re_n

��������������������
��������������������
��������������������

������������������������������������
������������������������������������
������������������������������������
������������������������������������

re_2

������������������������������������
������������������������������������
������������������������������������

re_1

...

AND-split AND-join

k

by_pass

count

Figure A4: Construct parallel_part_sync.

 38

begin

���������������������
���������������������
���������������������
���������������������

������������������
������������������
������������������
������������������

endexecuting

...
event_1 event_2 event_n

Figure A5: A task can produce events.

��������������������
��������������������
��������������������
��������������������

��������������������
��������������������
��������������������
��������������������

������������������������������������
������������������������������������
������������������������������������
������������������������������������

time_out

��������������������
��������������������
��������������������
��������������������

re_1

��������������������
��������������������
��������������������
��������������������

timed_out

begin endwait

...
event_1 event_2 event_n

Figure A6: Construct wait_all.

 39

������������������
������������������
������������������
������������������

�����������������
�����������������
�����������������
�����������������

����������������������������������
����������������������������������
����������������������������������

time_out

�����������������
�����������������
�����������������

re_1

�������������������
�������������������
�������������������
�������������������

timed_out

begin endwait

...
event_1 event_2 event_n

������������������
������������������
������������������
������������������

�����������������
�����������������
�����������������
�����������������

wait_1 wait_n...

Figure A7: Construct wait_any.

�����������������
�����������������
�����������������
�����������������

�������������������
�������������������
�������������������
�������������������

false

��������������������
��������������������
��������������������
��������������������

�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������

����������������
����������������
����������������
����������������

re_1true is_true

begin end

Figure A8: Construct while_do.

��������������������
��������������������
��������������������
��������������������

��������������������
��������������������
��������������������
��������������������

begin end

Figure A9: Construct stop.

	Introduction
	Basic Background and Motivation
	Why use XML and what is XML?
	Workflows in XML
	Workflow in Mail Order Processing

	Architecture
	Defining a Routing Schema in XML
	Route
	Routing Element
	Task
	Sequence
	Parallel Constructs
	Condition checking and Looping
	Wait, Events, Timeouts, Terminate, Stop and State Elements
	Formal DTD and XML Schema

	Formal Semantics
	Petri Nets
	Mapping the DTD onto Petri-net Constructs
	Analysis

	A Complete Example and Implementation
	Discussion and Related Work
	Conclusions
	References
	Appendix 1: The XRL Document Type Definition (XRL.DTD)
	Appendix 2: XRL Petri net constructs

