Patterns and XPDL: A Critical Evaluation of
the XML Process Definition Language

Wil M.P. van der Aalst

Department of Technology Management
Eindhoven University of Technology, The Netherlands
w.m.p.v.d.aalst@tm.tue.nl

Abstract. XML Process Definition Language (XPDL) is the language
proposed by the Workflow Management Coalition (WIMC) to inter-
change process definitions between different workflow products. The goal
of XPDL is to provide a Lingua Franca for the workflow domain allowing
for the import and export process definitions between a variety of tools
ranging from workflow management systems to modeling and simulation
tools. Staring point of XPDL is a minimal set of constructs present in
most workflow products. Unfortunately, this minimal set does not offer
direct support to many of the workflow patterns encountered in practice
and present in more mature workflow products. To address this problem,
XPDL offers vendor specific extensions. However, this approach definitely
does not result in a Lingua Franca. Moreover, to date, even the seman-
tics of the core constructs of XPDL remain undefined. This paper will
analyze XPDL using a set of 20 basic workflow patterns and expose some
of the semantic problems.

Keywords: Workflow management, Workflow management systems, Work-
flow patterns, XML Process Definition Language (XPDL).

1 Introduction

The Workflow Management Coalition (WfMC) was founded in August
1993 as a international non-profit organization. Today there are about
300 members ranging from workflow vendors and users to analysts and
university /research groups. The mission of the WfMC is to promote and
develop the use of workflow through the establishment of standards for
workflow terminology, interoperability and connectivity between workflow
products. The WfMC’s reference model identifies five interfaces. One of
the main activities since 1993 has been the development of standards for
these interfaces. Interface 1 is the link between the so-called “Process
Definition Tools” and the “Enactment Service”. The Process Definition
Tools are used to design workflows while the Enactment Service can exe-
cute workflows. The primary goal of Interface 1 is the import and export

Patterns and XPDL 2

of process definitions. The WfMC defines a process definition as “The
representation of a business process in a form which supports automated
manipulation, such as modeling, or enactment by a workflow management
system. The process definition consists of a network of activities and their
relationships, criteria to indicate the start and termination of the process,
and information about the individual activities, such as participants, as-
sociated IT applications and data, etc.” [26]. Clearly, there is a need for
process definition interchange. First of all, within the context of a single
workflow management system there has to be a connection between the
design tool and the execution/run-time environment. Second, there may
be the desire to use another design tool, e.g., a modeling tool like ARIS
or Protos. Third, for analysis purposes it may be desirable to link the
design tool to analysis software such as simulation and verification tools.
Fourth, the use of repositories with workflow processes requires a stan-
dardized language. Fifth, there may be the need to transfer a definition
interchange from one engine to another.

To support the interchange of workflow process definitions, there has
to be a standardized language [4,11,14,17,19,20]. The WIMC started
working on such a language soon after it was founded. This resulted in the
Workflow Process Definition Language (WPDL) [27] presented in 1999.
Although many vendors claimed to be WfMC compliant, few made a
serious effort to support this language. At the same time, XML emerged
as a standard for data interchange. Since WPDL was not XML-based, the
WIMC started working a new language named XML Process Definition
Language (XPDL). The starting point for XPDL was WPDL. However,
XPDL should not be considered the XML version of WPDL. Several
concepts have been added/changed and the WEMC remains fuzzy about
the exact relationship between XPDL and WPDL. In October 2002, the
WIEMC released a “Final Draft” of XPDL [28].

In [28], the authors state “More complex transitions, which cannot be
expressed using the simple elementary transition and the split and join
functions associated with the from- and to- activities, are formed using
dummy activities, which can be specified as intermediate steps between
real activities allowing additional combinations of split and/or join oper-
ations. Using the basic transition entity plus dummy activities,
routing structures of arbitrary complexity can be specified. Since
several different approaches to transition control exist within the indus-
try, several conformance classes are specified within XPDL. These are de-
scribed later in the document.” The sentence “Using the basic transition

Patterns and XPDL 3

entity plus dummy activities, routing structures of arbitrary complexity
can be specified.” triggered us to look into the expressive power of XPDL.

For a critical evaluation of XPDL, we use the set of workflow patterns
described in [5,6,30]. We have collected a set of about 30 workflow pat-
terns and have used 20 of these patterns to compare the functionality of
15 workflow management systems (COSA, Visual Workflow, Forté Con-
ductor, Lotus Domino Workflow, Meteor, Mobile, MQSeries/Workflow,
Staffware, Verve Workflow, I-Flow, InConcert, Changengine, SAP R/3
Workflow, Eastman, and FLOWer). The result of this evaluation reveals
that (1) the expressive power of contemporary systems leaves much to be
desired and (2) the systems support different patterns. Note that we do
not use the term “expressiveness” in the traditional or formal sense. If
one abstracts from capacity constraints, any workflow language is Turing
complete. Therefore, it makes no sense to compare these languages using
formal notions of expressiveness. Instead we use a more intuitive notion
of expressiveness which takes the modeling effort into account. This more
intuitive notion is often referred to as suitability. See [15, 16] for a discus-
sion on the distinction between formal expressiveness and suitability.

The observation that the expressive power of the available workflow
management systems leaves much to be desired, triggered the question:
How about XPDL as a workflow language?. Thus far a rigorous analysis
has been missing. Note that reports such as [22] do not use objective
measures to compare XPDL to other standards and languages.

The remainder of the paper is structured as follows. Section 2 provides
an overview of the XPDL language. In Section 3 the language is analyzed
using a basic set of 20 workflow patterns. Section 4 discusses one of the
core semantical problems: The join construct. Finally, Section 5 concludes
the paper after comparing XPDL with workflow management systems and
other standards such as UML Activity Diagrams, BPEL4WS, BPML,
WSFL, XLANG, and WSCI.

2 XPDL: XML Process Definition Language

XPDL [28] uses an XML-based syntax, specified by an XML schema.
The main elements of the language are: Package, Application, Workflow-
Process, Activity, Transition, Participant, DataField, and DataType. The
Package element is the container holding the other elements. The Appli-
cation element is used to specify the applications/tools invoked by the
workflow processes defined in a package. The element WorkflowProcess
is used to define workflow processes or parts of workflow processes. A

Patterns and XPDL 4

WorkflowProcess is composed of elements of type Activity and Transition.
The Activity element is the basic building block of a workflow process
definition. Elements of type Activity are connected through elements of
type Transition. There are three types of activities: Route, Implementa-
tion, and BlockActivity. Activities of type Route are dummy activities
just used for routing purposes. Activities of type BlockActivity are used
to execute sets of smaller activities. Element ActivitySet refers to a self
contained set of activities and transitions. A BlockActivity executes such
an ActivitySet. Activities of type Implementation are steps in the process
which are implemented by manual procedures (No), implemented by one
of more applications (Tool), or implemented by another workflow process
(Subflow). The Participant element is used to specify the participants in
the workflow, i.e., the entities that can execute work. There are 6 types
of participants: ResourceSet, Resource, Role, OrganizationalUnit, Human,
and System. Elements of type DataField and DataType are used to specify
workflow relevant data. Data is used to make decisions or to refer to data
outside of the workflow, and is passed between activities and subflows.

In this paper, we focus on the control-flow perspective. Therefore, we
will not consider functionality related to the Package, Application, and Par-
ticipant elements. Moreover, we will only consider workflow relevant data
from the perspective of routing. Appendix A shows selected parts of the
XPDL Schema [28] relevant for this paper. The listing shows the elements
Activity, TransitionRestriction, TransitionRestrictions, Join, Split, Transition
and Condition. An activity may have one of more “transition restrictions”
to specify the split/join behavior. If there is a transition restriction of
type Join, the restriction is either set to AND or to XOR. The WIMC
defines the semantics of such a restriction as follows: “AND: Join of (all)
concurrent threads within the process instance with incoming transitions
to the activity: Synchronization is required. The number of threads to
be synchronized might be dependent on the result of the conditions of
previous AND split(s).” and “XOR: Join for alternative threads: No syn-
chronization is required.” [28]. Similarly, there are transition restrictions
of type Split that are set to either AND or XOR with the following seman-
tics: “AND: Defines a number of possible concurrent threads represented
by the outgoing Transitions of this Activity. If the Transitions have con-
ditions the actual number of executed parallel threads is dependent on
the conditions associated with each transition, which are evaluated con-
currently.” and “XOR: List of Identifiers of outgoing Transitions of this
Activity, representing. Alternatively executed transitions. The decision
as to which single transition route is selected is dependent on the condi-

Patterns and XPDL 5

tions of each individual transition as they are evaluated in the sequence
specified in the list. If an unconditional Transition is evaluated or tran-
sition with condition OTHERWISE this ends the list evaluation.” [28].
Appendix A also shows the definition of element Transition. A transition
connects two activities as indicated by the From and To field and may
contain a Condition element.

The WEMC acknowledges the fact that workflow languages use differ-
ent styles and paradigms. To accommodate this, XPDL allows for vendor
specific extensions of the language. In addition, XPDL distinguishes three
conformance classes: non-blocked, loop-blocked, and full-blocked. These
conformance classes refer to the network structure of a process definition,
i.e., the graph of activities (nodes) and transitions (arcs). For conformance
class non-blocked there are no restrictions. For conformance class loop-
blocked the network structure has to be acyclic and for conformance class
full-blocked there has to be a one-to-one correspondence between splits
and joins of the same type. These conformance classes correspond to dif-
ferent styles of modeling. Graph based workflow languages like COSA
and Staffware correspond to conformance class non-blocked. Languages
such as MQSeries, WSFL, and BPEL4WS correspond to conformance
class loop-blocked and block-structured languages such as XLANG are
full-blocked.

A detailed introduction to XPDL is beyond the scope of this paper.
For more details we refer to [28].

3 The Workflow Patterns in XPDL

In this section, we consider the 20 workflow patterns presented in [6],
and we discuss how and to what extent these patterns can be captured
in XPDL. In particular, we indicate whether the pattern is directly sup-
ported by a XPDL construct. If this is not the case, we sketch a workaround
solution. Most of the solutions are presented in a simplified XPDL no-
tation which is intended to capture the key ideas of the solutions while
avoiding coding details. In other words, the fragments of XPDL defini-
tions provided here are not “ready to be run”.

WP1 Sequence An activity in a workflow process is enabled after the
completion of another activity in the same process. Example: After the
activity order registration the activity customer notification is executed.

© 0 N U W N =

11
12
13
14

Patterns and XPDL 6

Solution, WP1 This pattern is directly supported by the XPDL as
illustrated in in Listing 1. Within the process Sequence two activities A
and B are linked through transition AB.

Listing 1 (Sequence)
<WorkflowProcess Id="Sequence">
<ProcessHeader DurationUnit="Y"/>
<Activities>
<Activity Id="A">

</Activity>
<Activity Id="B">
</Activity>
</Activities>
<Transitions>
<Transition Id="AB" From="A" To="B"/>

</Transitions>
</WorkflowProcess>

WP2 Parallel Split A point in the process where a single thread of con-
trol splits into multiple threads of control which can be executed in paral-
lel, thus allowing activities to be executed simultaneously or in any order
[17,11]. Example: After activity new cell phone subscription order the
activity insert new subscription in Home Location Registry application
and insert new subscription in Mobile answer application are executed in
parallel.

WP3 Synchronization A point in the process where multiple parallel
branches converge into one single thread of control, thus synchronizing
multiple threads [17]. It is an assumption of this pattern that after an
incoming branch has been completed, it cannot be completed again while
the merge is still waiting for other branches to be completed. Also, it is
assumed that the threads to be synchronized belong to the same global
process instance (i.e., to the same “case” in workflow terminology). Ex-
ample: Activity archive is executed after the completion of both activity
send tickets and activity receive payment. Obviously, the synchronization
occurs within a single global process instance: the send tickets and receive
payment must relate to the same client request.

Solutions, WP2 & WP3 This pattern directly supported by the XPDL.
This is illustrated by the example shown in Listing 2. Within the process

Patterns and XPDL

Listing 2 (Parallel Split/Synchronization)

1 <WorkflowProcess Id="Parallel">

2 <ProcessHeader DurationUnit="Y"/>

3 <Activities>

4 <Activity Id="A">

5 R

6 <TransitionRestrictions>

7 <TransitionRestriction>

8 <Split Type="AND">

9 <TransitionRefs>

10 <TransitionRef Id="B"/>
11 <TransitionRef Id="C"/>
12 </TransitionRefs>

13 </Split>

14 </TransitionRestriction>

15 </TransitionRestrictions>

16 </Activity>

17 <Activity Id="B">

18 c..

19 </Activity>

20 <Activity Id="C">

21 e

22 </Activity>

23 <Activity Id="D">

24 -

25 <TransitionRestrictions>

26 <TransitionRestriction>

27 <Join Type="AND"/>

28 </TransitionRestriction>

29 </TransitionRestrictions>

30 </Activity>

31 </Activities>

32 <Transitions>

33 <Transition Id="AB" From="A" To="B"/>
34 <Transition Id="AC" From="A" To="C"/>
35 <Transition Id="BD" From="B" To="D"/>
36 <Transition Id="CD" From="C" To="D"/>
37 </Transitions>

38 </WorkflowProcess>

Patterns and XPDL 8

Parallel four activities are linked trough four transitions. Transitions AB
and AC link the initial activity A to the two parallel activities B and
C. Note that the split in activity A is of type AND and no transition
conditions are specified. Transitions BD and CD link the two parallel
activities B and C to the final activity D. Note that the join in activity D
is of type AND and again no transition conditions are specified.

WP4 Exclusive Choice A point in the process where, based on a deci-
sion or workflow control data, one of several branches is chosen. Exam-
ple: The manager is informed if an order exceeds $600, otherwise not.

WP5 Simple Merge A point in the workflow process where two or
more alternative branches come together without synchronization. It is
an assumption of this pattern that none of the alternative branches is ever
executed in parallel with another one (if it is not the case, then see the
patterns Multi Merge and Discriminator). Example: After the payment
is received or the credit is granted the car is delivered to the customer.

Solutions, WP4 & WP5 XPDL can address the Exclusive choice pat-
tern (WP4) in two ways. In both cases, an activity has a split and multiple
outgoing transitions. One way is to use a split of type XOR, i.e., the first
transition which as no condition or a condition which evaluates to true
is taken. Another way is to use split of type AND and define mutual ex-
clusive transition conditions. Listing 3 shows a solution using the first
alternative. Listing 4 shows a solution using the second alternative. In
the second solution transitions AB and AC have a condition. In the first
solution transitions AB and AC do not have a condition which effectively
implies that always the first one (AB) is taken. Besides normal conditions
based on workflow relevant data, it is also possible to use conditions of
type OTHERWISE (for the default branch to be taken if all other condi-
tions evaluate to false) and of type EXCEPTION (for specifying the branch
to be taken after an exception was raised). Listings 3 and 4 also show the
direct support for the Simple merge (WP5).

WP6 Multi-Choice A point in the process, where, based on a decision
or control data, a number of branches are chosen and executed as parallel
threads. Example: After executing the activity evaluate damage the ac-
tivity contact fire department or the activity contact insurance company
is executed. At least one of these activities is executed. However, it is also
possible that both need to be executed.

Patterns and XPDL

Listing 3 (Exclusive Choice/Simple Merge)

1 <WorkflowProcess Id="Choicel">

2 <ProcessHeader DurationUnit="Y"/>

3 <Activities>

4 <Activity Id="A">

5 .

6 <TransitionRestrictions>

7 <TransitionRestriction>

8 <Split Type="XOR">

9 <TransitionRefs>

10 <TransitionRef Id="AB"/>
11 <TransitionRef Id="AC"/>
12 </TransitionRefs>

13 </Split>

14 </TransitionRestriction>

15 </TransitionRestrictions>

16 </Activity>

17 <Activity Id="B">

18 c..

19 </Activity>

20 <Activity Id="C">

21 e

22 </Activity>

23 <Activity Id="D">

24 -

25 <TransitionRestrictions>

26 <TransitionRestriction>

27 <Join Type="XOR"/>

28 </TransitionRestriction>

29 </TransitionRestrictions>

30 </Activity>

31 </Activities>

32 <Transitions>

33 <Transition Id="AB" From="A" To="B"/>
34 <Transition Id="AC" From="A" To="C"/>
35 <Transition Id="BD" From="B" To="D"/>
36 <Transition Id="CD" From="C" To="D"/>
37 </Transitions>

38 </WorkflowProcess>

Patterns and XPDL

Listing 4 (Exclusive Choice/Simple Merge)
1 <WorkflowProcess Id="Choice2">
2 <ProcessHeader DurationUnit="Y"/>
3 <Activities>
4 <Activity Id="A">

(<

<TransitionRestrictions>

6
7 <TransitionRestriction>

8 <Split Type="AND">

9 <TransitionRefs>

10 <TransitionRef Id="AB"/>
11 <TransitionRef Id="AC"/>
12 </TransitionRefs>

13 </Split>

14 </TransitionRestriction>

15 </TransitionRestrictions>

16 </Activity>

17 <Activity Id="B">

18 .

19 </Activity>

20 <Activity Id="C">

21 c..

22 </Activity>

23 <Activity Id="D">

24 -

25 <TransitionRestrictions>

26 <TransitionRestriction>

27 <Join Type="XOR"/>

28 </TransitionRestriction>

29 </TransitionRestrictions>

30 </Activity>

31 </Activities>

32 <Transitions>

33 <Transition Id="AB" From="A" To="B">
34 <Condition Type="CONDITION">

35 choice == "B" </Condition>

36 </Transition>

37 <Transition Id="AC" From="A" To="C">
38 <Condition Type="CONDITION">

39 choice == "C" </Condition>

40 </Transition>

41 <Transition Id="BD" From="B" To="D"/>
42 <Transition Id="CD" From="C" To="D"/>
43 </Transitions>

44 </WorkflowProcess>

Patterns and XPDL

Listing 5 (Multi Choice/Synchronizing merge)
1 <WorkflowProcess Id="Multi-choice">
2 <ProcessHeader DurationUnit="Y"/>
3 <Activities>
4 <Activity Id="A">

(<

<TransitionRestrictions>

6
7 <TransitionRestriction>

8 <Split Type="AND">

9 <TransitionRefs>

10 <TransitionRef Id="AB"/>
11 <TransitionRef Id="AC"/>
12 </TransitionRefs>

13 </Split>

14 </TransitionRestriction>

15 </TransitionRestrictions>

16 </Activity>

17 <Activity Id="B">

18 .

19 </Activity>

20 <Activity Id="C">

21 c..

22 </Activity>

23 <Activity Id="D">

24 -

25 <TransitionRestrictions>

26 <TransitionRestriction>

27 <Join Type="AND"/>

28 </TransitionRestriction>

29 </TransitionRestrictions>

30 </Activity>

31 </Activities>

32 <Transitions>

33 <Transition Id="AB" From="A" To="B">
34 <Condition Type="CONDITION">

35 amount > 5 </Condition>

36 </Transition>

37 <Transition Id="AC" From="A" To="C">
38 <Condition Type="CONDITION">

39 amount < 10 </Condition>
40 </Transition>

41 <Transition Id="BD" From="B" To="D"/>
42 <Transition Id="CD" From="C" To="D"/>
43 </Transitions>

44 </WorkflowProcess>

Patterns and XPDL 12

Solution, WP6 XPDL provides direct support for the Multi-Choice pat-
tern as shown in Listing 5. Depending on the value of amount activity B
and/or C is/are executed, e.g., if the value of amount is 8 both activities
are executed, otherwise just B (amount> 5) or C (amount< 10).

WP7 Synchronizing Merge A point in the process where multiple
paths converge into one single thread. Some of these paths are “active”
(i.e. they are being executed) and some are not. If only one path is active,
the activity after the merge is triggered as soon as this path completes.
If more than one path is active, synchronization of all active paths needs
to take place before the next activity is triggered. It is an assumption
of this pattern that a branch that has already been activated, cannot be
activated again while the merge is still waiting for other branches to com-
plete. Example: After either or both of the activities contact fire depart-
ment and contact insurance company have been completed (depending
on whether they were executed at all), the activity submit report needs
to be performed (exactly once).

Solutions, WP7 According to [28] XPDL provides direct support for the
Synchronizing merge pattern. Recall the definition of the AND restric-
tion: “AND: Join of (all) concurrent threads within the process instance
with incoming transitions to the activity: Synchronization is required. The
number of threads to be synchronized might be dependent on the result of
the conditions of previous AND split(s).” [28] which suggests direct sup-
port for the Synchronizing merge pattern. If this is indeed the case, then
Listing 5 indeed shows an example where activity D either merges or syn-
chronizes the two ingoing transitions depending on the number of threads
activated by activity A. Unfortunately, few workflow systems that claim
to support XPDL have indeed this behavior. Moreover, XPDL allows for
multiple interpretations as discussed in Section 4.

WP8 Multi-Merge A point in a process where two or more branches
reconverge without synchronization. If more than one branch gets acti-
vated, possibly concurrently, the activity following the merge is started
for every action of every incoming branch. Example: Sometimes two or
more branches share the same ending. Two activities audit application
and process applications are running in parallel which should both be
followed by an activity close case, which should be executed twice if the
activities audit application and process applications are both executed.

Solution, WP8 XPDL only allows for two types of joins: AND and
XOR. The semantics of these two joins is not completely clear. A join

Patterns and XPDL

Listing 6 (Multi-merge?)

1 <WorkflowProcess Id="Parallel">

2 <ProcessHeader DurationUnit="Y"/>

3 <Activities>

4 <Activity Id="A">

5 R

6 <TransitionRestrictions>

7 <TransitionRestriction>

8 <Split Type="AND">

9 <TransitionRefs>

10 <TransitionRef Id="B"/>
11 <TransitionRef Id="C"/>
12 </TransitionRefs>

13 </Split>

14 </TransitionRestriction>

15 </TransitionRestrictions>

16 </Activity>

17 <Activity Id="B">

18 c..

19 </Activity>

20 <Activity Id="C">

21 e

22 </Activity>

23 <Activity Id="D">

24 -

25 <TransitionRestrictions>

26 <TransitionRestriction>

27 <Join Type="XOR"/>

28 </TransitionRestriction>

29 </TransitionRestrictions>

30 </Activity>

31 </Activities>

32 <Transitions>

33 <Transition Id="AB" From="A" To="B"/>
34 <Transition Id="AC" From="A" To="C"/>
35 <Transition Id="BD" From="B" To="D"/>
36 <Transition Id="CD" From="C" To="D"/>
37 </Transitions>

38 </WorkflowProcess>

Patterns and XPDL 14

of type XOR will offer the Simple merge pattern. Recall that the simple
merge assumes that precisely one of the incoming transitions will occur.
However, XPDL allows for situations where the more incoming transitions
will or may occur. Consider Listing 6. Both B and C are executed. Since
activity D has a join of type XOR it can already occur when one of these
two have been executed. However, it is not clear how many times activity
D will occur (and when). In [28] is is stated that “The XOR join initiates
the Activity when the transition conditions of any (one) of the incoming
transitions evaluates true.”. Since it is not specified what should happen
if multiple incoming transitions evaluate to true at the same time, we
conclude that XPDL does not support the Multi-Merge (WP8). See [6]
for typical work-arounds.

WP9 Discriminator A point in the workflow process that waits for
one of the incoming branches to complete before activating the subse-
quent activity. From that moment on it waits for all remaining branches
to complete and “ignores” them. Once all incoming branches have been
triggered, it resets itself so that it can be triggered again (which is im-
portant otherwise it could not really be used in the context of a loop).
Example: To improve query response time a complex search is sent to
two different databases over the Internet. The first one that comes up
with the result should proceed the flow. The second result is ignored.

Solution, WP9 XPDL allows for situations where multiple incoming
transitions will or may occur. However, the precise semantics of a join
of type XOR is not specified and, similar to WP8, we conclude that the
Discriminator (WP9) is not supported.

WP10 Arbitrary Cycles A point where a portion of the process (in-
cluding one or more activities and connectors) needs to be “visited” re-
peatedly without imposing restrictions on the number, location, and nest-
ing of these points. Note that block-oriented languages and languages
providing constructs such as “while do”, “repeat until” typically impose
such restrictions, e.g., it is not possible to jump from one loop into another
loop.

Solution, WP10 XPDL distinguishes three conformance classes: non-
blocked, loop-blocked, and full-blocked. Conformance class “non-blocked”
directly supports this pattern. Note that the transitions basically define a
relation and allow for any graph including cyclic ones. For the other con-
formance classes this is not allowed. For conformance class loop-blocked

Patterns and XPDL 15

the network structure has to be acyclic and for conformance class full-
blocked there has to be a one-to-one correspondence between splits and
joins of the same type.

WP11 Implicit Termination A given subprocess is terminated when
there is nothing left to do, i.e., termination does not require an explicit
termination activity. The goal of this pattern is to avoid having to join
divergent branches into a single point of termination.

Solution, WP11 XPDL, assuming conformance class “non-blocked”,
allows for arbitrary graph-like structures. As a result it is possible to have
multiple activities without input transitions (i.e., source activities) and
multiple activities without output transitions (sink activities). The latter
suggests direct support for WP11. Unfortunately, [28] does not clarify the
semantics of XPDL in the presence of multiple source and sink activities,
e.g., Do all source activities need to be executed or just one? Although
XPDL does not specify the expected behavior in such cases, we give it
the benefit of the doubt. Note that this illustrates that conformance is
still ill-defined in [28] since it refers to syntax rather than semantics.

WP12 MI without Synchronization Within the context of a single
case, multiple instances of an activity may be created, i.e. there is a facility
for spawning off new threads of control, all of them independent of each
other. The instances might be created consecutively, but they will be able
to run in parallel, which distinguishes this pattern from the pattern for
Arbitrary Cycles. Example: When booking a trip, the activity book flight
is executed multiple times if the trip involves multiple flights.

Solution, WP12 An activity may be refined into a subflow. The sub-
flow may be executed synchronously or asynchronously. In case of asyn-
chronous execution, the activity is continued after an instance of the
subflow is initiated. This way it is possible to “spawn-off” subflows and
thus realizing WP12.

WP13-WP15 MI with Synchronization A point in a workflow where
a number of instances of a given activity are initiated, and these instances
are later synchronized, before proceeding with the rest of the process. In
WP13 the number of instances to be started/synchronized is known at
design time. In WP14 the number is known at some stage during run
time, but before the initiation of the instances has started. In WP15 the
number of instances to be created is not known in advance: new instances

Patterns and XPDL 16

are created on demand, until no more instances are required. Example of
WP15: When booking a trip, the activity book flight is executed multiple
times if the trip involves multiple flights. Once all bookings are made, an
invoice is sent to the client. How many bookings are made is only known at
runtime through interaction with the user (or with an external process).

Solutions, WP13-WP15 If the number of instances to be synchronized
is known at design time (WP13), a simple solution is to replicate the
activity as many times as it needs to be instantiated, and run the replicas
in parallel. Therefore, WP13 is supported. However, it is clear that there
is no direct support for WP14 and WP15 because any solution will involve
explicit bookkeeping of the number of active instances. In fact in [28] is is
stated that “Synchronization with the initiated subflow, if required, has to
be done by other means such as events, not described in this document.”
when describing the functionality of asynchronous subflows. Therefore,
we conclude that there is no support for WP14 and WP15. Again we
refer to [6] for typical workarounds.

WP16 Deferred Choice A point in a process where one among several
alternative branches is chosen based on information which is not neces-
sarily available when this point is reached. This differs from the normal
exclusive choice, in that the choice is not made immediately when the
point is reached, but instead several alternatives are offered, and the
choice between them is delayed until the occurrence of some event. Ex-
ample: When a contract is finalized, it has to be reviewed and signed
either by the director or by the operations manager, whoever is available
first. Both the director and the operations manager would be notified that
the contract is to be reviewed: the first one who is available will proceed
with the review.

Solution, WP16 XPDL only allows for choices resulting from conditions
on transitions. Hence each choice is directly-based on workflow relevant
data and it is not possible offer the choice to the environment. XPDL
does not allow for the definition of states (like places in a Petri net) nor
constructs like the choice construct in BPML and WSCI and the pick
construct in XLANG and BPEL4WS. There is no simple work-around
for this omission since it is not possible to shift the moment of decision
from the end of an activity to the start of an activity. Moreover, XPDL
does not allow for the specification of triggers and/or external events.

WP17 Interleaved Parallel Routing A set of activities is executed
in an arbitrary order. Each activity in the set is executed exactly once.

Patterns and XPDL 17

The order between the activities is decided at run-time: it is not until
one activity is completed that the decision on what to do next is taken.
In any case, no two activities in the set can be active at the same time.
Example: At the end of each year, a bank executes two activities for each
account: add interest and charge credit card costs. These activities can be
executed in any order. However, since they both update the account, they
cannot be executed at the same time.

Solution, WP17 Since XPDL does not allow for the definition of states,
it is not possible to enforce some kind of mutual exclusion. Hence there is
no support for WP17. Even the work-arounds described in [6] are difficult,
if not impossible, to apply.

WP18 Milestone A given activity can only be enabled if a certain mile-
stone has been reached which has not yet expired. A milestone is defined
as a point in the process where a given activity has finished and another
activity following it has not yet started. Example: After having placed a
purchase order, a customer can withdraw it at any time before the ship-
ping takes place. To withdraw an order, the customer must complete a
withdrawal request form, and this request must be approved by a cus-
tomer service representative. The execution of the activity approve order
withdrawal must therefore follow the activity request withdrawal, and can
only be done if: (i) the activity place order is completed, and (ii) the
activity ship order has not yet started.

Solution, WP18 XPDL does not provide a direct support for capturing
this pattern. Therefore, a work-around solution has to be used. Again it
is difficult to construct solutions inspired by the ideas in [6]. Since other
patterns like WP16 and WP19 are not supported, potential solutions lead
to complex process definitions for simply checking the state in a parallel
branch.

WP19 Cancel Activity & WP20 Cancel Case A cancel activity
terminates a running instance of an activity, while canceling a case leads
to the removal of an entire workflow instance. Example of WP19: A
customer cancels a request for information. Example of WP20: A cus-
tomer withdraws his/her order.

Solutions, WP19 & WP20 XPDL does not provide explicit constructs
for WP19 and WP20. The concept of exceptions seems to be related,
but like many other concepts ill-defined. The only construct in XPDL

Patterns and XPDL 18

that can raise an exception is the deadline element. Deadlines are used
to raise an exception upon the expiration of a specific period of time. A
deadline can be raised synchronously or asynchronously: “If the deadline
is synchronous, then the activity is terminated before flow continues on
the exception path.” and “If the deadline is asynchronous, then an implicit
AND-SPLIT is performed, and a new thread of processing is started on
the appropriate exception transition.” [28]. An exception may trigger a
transition but cannot be used to cancel activities or cases. Hence, XPDL
does not support WP19 and WP20.

4 Many ways to join

In the previous section, we evaluated XPDL with respect to the patterns.
A more detailed analysis reveals that, not only does XPDL have prob-
lems with respect to several patterns, the semantics of many constructs is
unclear. To illustrate this we focus on transition restrictions of type Join.
The restriction is either set to AND or to XOR and the WIMC defines
these settings as follows: “AND: Join of (all) concurrent threads within
the process instance with incoming transitions to the activity: Synchro-
nization is required. The number of threads to be synchronized might be
dependent on the result of the conditions of previous AND split(s).” and
“XOR: Join for alternative threads: No synchronization is required.” [28].
To demonstrate that these descriptions do not fully specify the intended
behavior, Figure 1 shows seven possible interpretations each expressed
in terms of a Petri net [21]. Note that Petri nets have formal semantics,
and thus, Figure 1 fully specifies the behavior of each construct. Also
note that we restrict ourselves to local constructs, i.e., the there are no
dependencies other than on the activities directly connected to the join.

The first two constructs correspond to the most straightforward in-
terpretations of the AND-join (Figure 1(a)) and XOR-join (Figure 1(b)).
In Figure 1(a), activity C always synchronizes A and B, i.e., if A is never
executed, C is never executed.! In Figure 1(b), activity C is executed once
for each occurrence of A and B. Although Figure 1(a) and Figure 1(b)
seem to correspond to straightforward interpretations of the AND-join
and XOR-join, few workflow management systems actually exhibit this
behavior. The other constructs in Figure 1 show other interpretations for
both the AND-join and/or XOR-join encountered in contemporary sys-
tems. Figure 1(c) shows the situation where activity A is blocked if C
was not executed since the last occurrence of A. Similarly, activity B is

! Note that this is not the case in XPDL.

Patterns and XPDL 19

le———
l——
l————
l———
l———
le——
l«———
le——

>
w
>
w
>
w
>
w

c c c c
l l l l
@) (b) (€) (d)

0 bt

C

l

(e) (f) (9

>
w
>
w

<«—
P s—
<«

o
P

Fig. 1. Seven frequently used ways to join two flows (expressed in terms of Petri nets
with inhibitor arcs [21]).

Patterns and XPDL 20

blocked if C was not executed since the last occurrence of B. Note that
this construct uses two inhibitor arcs (i.e., the two connections involving
a small circle). Unlike a normal directed arc in Petri net, an inhibitor
arc models the requirement that a place has to be empty, i.e., A is only
enabled if the input place (not shown) contains a token and the output
place is empty. Figure 1(d) shows a similar construct but now for the
XOR-join, i.e., both activity A and activity B are blocked if C was not
executed since the last occurrence of A or B. The workflow management
system COSA [23] uses this interpretation for the AND-join and XOR-
join. Figures 1 (c¢) and (d) use inhibitor arcs to make sure that activity C
is only enabled once. This is realized by blocking the preceding activities
if needed. An alternative approach is to simply remove additional tokens.
Figure 1(e) shows an approach where C synchronizes both flows if both A
and B have been executed. If only one of them has been executed, there
is no synchronization. Note that there are three instances of C: one for
the situation where only A was executed, one for situation where both
A and B have been executed, and one where only B was executed. The
two inhibitor arcs make sure that the two flows are synchronized if pos-
sible. Figure 1(f) shows a similar, but slightly different, approach where
simply every attempt to enable C for the second time is ignored. If C is
already enabled, then the right transition will occur, otherwise the left
one. Consider the scenario where A occurs twice before execution C. In
Figure 1(e), C will be executed twice, while in Figure 1(f) C will be exe-
cuted only once. Many systems have a behavior similar to Figure 1(e)/(f),
e.g., a normal step in Staffware [24] behaves as indicated by Figure 1(f).
Although widely supported, the interpretation given in Figure 1(e)/(f)
is not very desirable from a modeling point of view since it introduces
“race conditions”, e.g., the number of times C is executed depends on
the interleaving of A, B, and C activities. Figure 1(g) gives yet another
interpretation of the AND/XOR-join. C is enabled immediately after the
first occurrence of A or B, but after it occurs it is blocked until the other
activity has also been executed, i.e., the construct is reset once each of A,
B, and C has occurred. Note that this interpretation corresponds to WP9
(Discriminator pattern).

Figure 1 shows that there are many ways to join two flows. In fact,
there are many more interpretations. An example is the so-called “wait
step” in Staffware [24] which only synchronizes the first time if it is put
in a loop. Another example is the join in IBM’s MQSeries Workflow [13],
BPEL4WS [9]), and WSFL (Web Services Flow Language, [18]) which

decides whether is has to synchronize or not based on the so-called “Dead-

Patterns and XPDL 21

Path-Elimination (DPE)” [19]. Given the quote “AND: Join of (all) con-
current threads within the process instance with incoming transitions to
the activity: Synchronization is required. The number of threads to be
synchronized might be dependent on the result of the conditions of pre-
vious AND split(s).” in [28], the latter interpretation seems to be closest
to XPDL. Unfortunately, other than IBM-influenced products and stan-
dards, no other vendors are using nor supporting this interpretation since
it does not allow for Arbitrary cycles (WP10).

The dilemma of joining mixtures of alternative or parallel flows has
been discussed in scientific literature. See [2] for pointers to related papers
and an elaborate discussion in the context of Event-driven Process Chains
(EPC’s).

The fact that there are many ways to join and that in [28] the WIMC
leaves room for multiple interpretations, brings us to the issue of confor-
mance. In [28] is is stated that “A product that claims conformance must
generate valid, syntactically correct XPDL, and must be able to read all
valid XPDL.”. Unfortunately, this quote, but also the rest of [28], does
not address the issue of semantics. Note that it is rather easy to generate
and read valid XPDL. The difficult part is to be able to interpret XPDL
generated by another tool and execute the workflow as intended.

5 Conclusion

In this paper, we provided a critical evaluation of XPDL based on a set of
20 basic workflow patterns. To conclude, we compare XPDL with other
standards and 15 workflow products.

Table 1 shows an evaluation of XPDL and six other standards. If a
standard directly supports the pattern through one of its constructs, it
is rated 4. If the pattern is not directly supported, it is rated +/-. Any
solution which results in spaghetti diagrams or coding, is considered as
giving no direct support and is rated -. The rating of XPDL is as explained
in this paper.

2 Although the description of the AND-join suggests support for WP7, XPDL does
not specify its precise behavior. In fact, for conformance class “non-blocked”, it is
unclear how WP7 could be supported

3 For conformance class “non-blocked”, arbitrary graph-like structures are allowed,
including arbitrary cycles. For the other conformance classes this is explicitly ex-
cluded.

4 For all conformance classes there may be multiple source and/or sink activities.
Hence, from a syntactical point of view WP11 is supported. Unfortunately, no se-
mantics are given for this construct.

Patterns and XPDL 22

pattern standard

UML |BPEL4W$ BPML | XLANG | WSFL WSCI

1 (seq)
2 (par-spl)
3 (synch)
4 (ex-ch)
5 (simple-m)
6 (m-choice)
7 (sync-m)
8 (multi-m)
9 (disc)
10 (arb-c)
11 (impl-t)
12 (mi-no-s)
13 (mi-dt)
14 (mi-rt)
15 (mi-no)
16 (def-c)
17 (int-par)
18 (milest)

+ +
+ +

L+t

s

Lt
4 4
Dt
Dt

+/-

19 (can-a) + + + + + +
20 (can-c) + + + + + +

IIIIIII+++>I>+WII+M++++++§
-

Table 1. A comparison of XPDL with other standards such as UML Activity Diagrams,
BPEL4WS, BPML, XLANG, WSFL, and WSCI.

UML activity diagrams [12] are intended to model both computational
and organizational processes. Increasingly, UML activity diagrams are
also used for workflow modeling. Therefore, it is interesting to analyze
their expressiveness using the set of basic workflow patterns as shown in
the table. for more information see [10].

The recently released BPEL4AWS (Business Process Execution Lan-
guage for Web Services, [9]) specification builds on IBM’s WSFL (Web
Services Flow Language, [18]) and Microsoft’s XLANG (Web Services for
Business Process Design, [25]). XLANG is a block-structured language
with basic control flow structures such as sequence, switch (for condi-
tional routing), while (for looping), all (for parallel routing), and pick
(for race conditions based on timing or external triggers). In contrast to
XLANG, WSFL is not limited to block structures and allows for directed
graphs. The graphs can be nested but need to be acyclic. Iteration is
only supported through exit conditions, i.e., an activity /subprocess is it-
erated until its exit condition is met. The control flow part of WSFL is
almost identical to the workflow language used by IBM’s MQ Series Work-

Patterns and XPDL 23

flow. See [29] for more information about the evaluation of BPEL4WS,
XLANG, and WSFL using the patterns.

BPML (Business Process Modeling language, [8]) is a standard de-
veloped and promoted by BPMI.org (the Business Process Management
Initiative). BPMILorg is supported by several organizations, including
Intalio, SAP, Sun, and Versata. The Web Service Choreography Inter-
face (WSCI, [7]) submitted in June 2002 to the W3C by BEA Systems,
BPMlI.org, Commerce One, Fujitsu Limited, Intalio, IONA, Oracle Corpo-
ration, SAP AG, SeeBeyond Technology Corporation, and Sun Microsys-
tems. There is a substantial overlap between BPML and WSCI. See [3]
for more information about the evaluation of BPML and WSCI using the
patterns.

In addition to comparing XPDL to other standards, it is interesting
to compare XPDL with contemporary workflow management systems.
Tables 2 and 3 summarize the results of the comparison of 15 workflow
management systems in terms of the selected patterns. These tables are
taken from [6] and have been added to compare contemporary workflow
products with XPDL.

pattern product
Staffwar¢ COSA |InConcer{EastmanFLOWer| Domino | Meteor | Mobile
1 (seq) + + + + + + + +
2 (par-spl) + + + + + + + +
3 (synch) + + + + + + + +
tlexc) |+ |+ |4~ | o+ | o+ |+ |+ |+
5 (simple-m)|| + + +/- + + - + +
6 (m-choice) - + +/- +/- - + + +
Temem) | - | 4~ | o+ | o+ | - | + | - '
8 (multi-m) - - - + +/- +/- + -
9 (disc) - - - + +/- - +/-
10 (arb-c) + + - + - + + -
11 (impl-t) + - + + - + - -
12 (mino-s) | - | 4f | - I A
13 (mi-dt) + + + + + + - +
14 (mi-rt) - - - - + - _ .
15 (mi-no) - - - - + , . _
16 (def-c) - + - - +/- - - -
17 (int-par) - + - - +/- - . +
18 (milest) - + - - +/- - ; -
19 (can-a) + + - - +/- - ; -
20 (can-c) - +/- + -

Table 2. The main results for Staffware, COSA, InConcert, Eastman, FLOWer, Lotus
Domino Workflow, Meteor, and Mobile.

Patterns and XPDL 24

From the comparison it is clear that no tool supports all of the selected
patterns. In fact, many of these tools only support a relatively small
subset of the more advanced patterns (i.e., patterns 6 to 20). Specifically
the limited support for the discriminator, the state-based patterns (only
COSA), the synchronization of multiple instances (only FLOWer) and
cancellation (esp. of activities), is worth noting.

pattern product
MQSeries| Forté Verve | Vis. WF |Changeng| I-Flow | SAP/R3
1 (seq) + + + + + + +
2 (par-spl) + + + + + + +
3 (synch) + + + + + + +
4 (ex-ch) + + + + + + +
5 (simple-m)(| + + + + + + +
6 (m-choice) + + + + + + +
7 (sync-m) + - - - - - -
8 (multi-m) - + + - - - -
9 (disc) - + + - + -
10 (arb-c) - + + +/- + + -
11 (impl-t) + - - - - - -
12 (mi-no-s) - + + + - + -
13 (mi-dt) + + + + + - -
14 (mi-rt) - - - - - - +/-
15 (mi-no) - - - - - - -
16 (def-c) - - - - - - -
17 (int-par) - - - - - - -
18 (milest) - - - - - - -
19 (can-a) - - - - - - +
20 (can-c) - + + - + - +

Table 3. The main results for MQSeries, Forté Conductor, Verve, Visual WorkFlo,
Changengine, I-Flow, and SAP/R3 Workflow.

Please apply the results summarized in tables 1, 2 and 3 with care.
First of all, the organization selecting a workflow management system/-
standard should focus on the patterns most relevant for the workflow
processes at hand. Since support for the more advanced patterns is lim-
ited, one should focus on the patterns most needed. Second, the fact that
a pattern is not directly supported by a product does not imply that it is
not possible to support the construct at all. As indicated in [6], many pat-
terns can be supported indirectly through mixtures of more basic patterns
and coding. Third, the patterns reported in this paper only focus on the
process perspective (i.e., control flow or routing). The other perspectives
(e.g., organizational modeling) should also be taken into account.

Patterns and XPDL 25

Tables 1, 2 and 3 allow for an objective comparison of the 7 standards and
15 workflow management systems. When comparing XPDL to the 6 other
standards, it is remarkable to see that XPDL seems to be less expressive
than web service composition languages such as BPEL4AWS and BPML.
An important pattern like the Deferred choice (WP16) is supported by
most standards and is vital for practical application of workflow manage-
ment. Nevertheless, it is not even mentioned in [28]. Compared to the 15
workflow management systems, XPDL is not as expressive as one would
expect. Many systems offer functionality (e.g., the Deferred choice and
the Cancel activity patterns), not supported by XPDL. It almost seems
that XPDL offers the intersection rather than the union of the function-
ality offered by contemporary systems. This may have been the initial
goal of XPDL. However, if this is the case, two important questions need
to be answered.

1. If XPDL offers the intersection rather than the union of the function-
ality of existing systems, then how to use XPDL in practice? Should
workflow designers that want to be able to export only use a subset
of the functionality offered by the system? If so, users would not be
able to use powerful concepts like the Deferred choice (WP16) and
the Cancel activity (WP19) patterns.

2. Why does XPDL support the Synchronizing merge (WP7) while it is
only supported by a few systems. Widely-used systems like Staffware
do not support this pattern, and therefore, will be unable to interpret
the AND-join as indicated in [28].

Note that the issues raised cannot be solved satisfactorily. If XPDL offers
the intersection of the functionality of existing systems, it is less expressive
than many of the existing tools and standards. If XPDL offers the union
of available functionality, it may become impossible to import a process
definition into a concrete system and interpret it correctly. (Recall that no
system supports all patterns.) Unfortunately, this dilemma is not really
addressed by the WIMC [28]. The introduction of extended attributes
(i.e., extensions of XPDL for a specific product) and conformance classes
(i.e., restrictions to allow the use of specific products) are no solution and
only complicate matters.

There have been several comparisons of some of the languages men-
tioned in this paper. These comparisons typically do not use a framework
and provide an opinion rather than a structured analysis. A positive ex-
ample is [22] where XPDL, BPML and BPEL4WS are compared by re-

Patterns and XPDL 26

lating the concepts used in the three languages. Unfortunately, the paper
raises more questions than it answers.

Besides the dilemma that XPDL is either not expressive enough or
too expressive, there is the problem of semantics. In [28] the WfMC does
not give unambiguous specification of all the elements in the language.
As a result, many vendors can claim to be compliant while interpreting
constructs in a different way. In Section 4, we demonstrated that there are
many interpretations of seemingly basic constructs like the AND-join and
XOR-join. The lack of semantics restricts the application of XPDL and
does not allow for a meaningful realization of the topic of conformance.
As indicated before, [28] defines conformance as follows: “A product that
claims conformance must generate valid, syntactically correct XPDL, and
must be able to read all valid XPDL.”. Clearly, this inadequate and will
not stimulate further standardization in the workflow domain. As a result,
web service composition languages like BPML and BPEL4WS may take
over the role of XPDL [1].

Acknowledgments. The author would like to thank Arthur ter Hof-
stede, Marlon Dumas, Petia Wohed, Bartek Kiepuszewski, and Alistair
Barros, for their collaborative work on the workflow patterns.

Disclaimer. We, the authors and the associated institutions, assume
no legal liability or responsibility for the accuracy and completeness of
any information about XPDL or any of the other standards/products
mentioned in this paper. However, we made all possible efforts to ensure
that the results presented are, to the best of our knowledge, up-to-date
and correct.

References

1. W.M.P. van der Aalst. Don’t go with the flow: Web services composition standards
exposed. IEEE Intelligent Systems, 18(1):72-76, 2003.

2. W.M.P. van der Aalst, J. Desel, and E. Kindler. On the Semantics of EPCs: A
Vicious Circle. In M. Nittgens and F.J. Rump, editors, Proceedings of the EPK
2002: Business Process Management using EPCs, pages 71-80, Trier, Germany,
November 2002. Gesellschaft fiir Informatik, Bonn.

3. W.M.P. van der Aalst, M. Dumas, A.H.M. ter Hofstede, and P. Wohed. Pattern-
Based Analysis of BPML (and WSCI). QUT Technical report, FIT-TR-2002-05,
Queensland University of Technology, Brisbane, 2002.

4. W.M.P. van der Aalst and K.M. van Hee. Workflow Management: Models, Meth-
ods, and Systems. MIT press, Cambridge, MA, 2002.

5. W.M.P. van der Aalst, A.H.M. ter Hofstede, B. Kiepuszewski, and A.P. Barros.
Advanced Workflow Patterns. In O. Etzion and P. Scheuermann, editors, 7th Inter-
national Conference on Cooperative Information Systems (CooplS 2000), volume

Patterns and XPDL 27

10.

11.

12.

13.

14.

15.

16.

17.

18.
19.

20.

21.

22.

23.

24.

25.
26.

1901 of Lecture Notes in Computer Science, pages 18-29. Springer-Verlag, Berlin,
2000.

W.M.P. van der Aalst, A.H.M. ter Hofstede, B. Kiepuszewski, and A.P. Barros.
Workflow Patterns. Distributed and Parallel Databases, 14(1):5-51, 2003.

A. Arkin, S. Askary, S. Fordin, and W. Jekel et al. Web Service Choreography
Interface (WSCI) 1.0. Standards propsal by BEA Systems, Intalio, SAP, and Sun
Microsystems, 2002.

A. Arkin et al. Business Process Modeling Language (BPML), Version 1.0, 2002.
F. Curbera, Y. Goland, J. Klein, F. Leymann, D. Roller, S. Thatte, and S. Weer-
awarana. Business Process Execution Language for Web Services, Version 1.0.
Standards propsal by BEA Systems, International Business Machines Corpora-
tion, and Microsoft Corporation, 2002.

M. Dumas and A.H.M. ter Hofstede. UML activity diagrams as a workflow spec-
ification language. In M. Gogolla and C. Kobryn, editors, Proc. of the 4th Int.
Conference on the Unified Modeling Language (UMLO1), volume 2185 of LNCS,
pages 76-90, Toronto, Canada, October 2001. Springer Verlag.

L. Fischer, editor. Workflow Handbook 2001, Workflow Management Coalition.
Future Strategies, Lighthouse Point, Florida, 2001.

Object Management Group. OMG Unified Modeling Language 2.0 Proposal, Re-
vised submission to OMG RFPs ad/00-09-01 and ad/00-09-02, Version 0.671.
OMG, http://www.omg.com/uml/, 2002.

IBM. IBM MQ@Series Workflow - Getting Started With Buildtime. IBM Deutsch-
land Entwicklung GmbH, Boeblingen, Germany, 1999.

S. Jablonski and C. Bussler. Workflow Management: Modeling Concepts, Architec-
ture, and Implementation. International Thomson Computer Press, London, UK,
1996.

B. Kiepuszewski. Ezpressiveness and Suitability of Languages for Control Flow
Modelling in Workflows. PhD thesis, Queensland University of Technology, Bris-
bane, Australia, 2002. Available via http://www.tm.tue.nl/it/research/patterns.

B. Kiepuszewski, A.H.M. ter Hofstede, and W.M.P. van der Aalst. Fundamentals
of Control Flow in Workflows. Acta Informatica, 39(3):143-209, 2003.

P. Lawrence, editor. Workflow Handbook 1997, Workflow Management Coalition.
John Wiley and Sons, New York, 1997.

F. Leymann. Web Services Flow Language, Version 1.0, 2001.

F. Leymann and D. Roller. Production Workflow: Concepts and Techniques.
Prentice-Hall PTR, Upper Saddle River, New Jersey, USA, 1999.

D.C. Marinescu. Internet-Based Workflow Management: Towads a Semantic
Web, volume 40 of Wiley Series on Parallel and Distributed Computing. Wiley-
Interscience, New York, 2002.

W. Reisig and G. Rozenberg, editors. Lectures on Petri Nets I: Basic Models,
volume 1491 of Lecture Notes in Computer Science. Springer-Verlag, Berlin, 1998.
R. Shapiro. A Comparison of XPDL, BPML and BPEL4WS (Version 1.4).
http://xml.coverpages.org/Shapiro-XPDL.pdf, 2002.

Software-Ley. COSA 8.0 User Manual. Software-Ley GmbH, Pullheim, Germany,
1999.

Staffware. Staffware 2000 / GWD User Manual. Staffware plc, Berkshire, United
Kingdom, 2000.

S. Thatte. XLANG Web Services for Business Process Design, 2001.

WFMC. Workflow Management Coalition Terminology and Glossary (WFMC-
TC-1011). Technical report, Workflow Management Coalition, Brussels, 1996.

Patterns and XPDL 28

27.

28.

29.

30.

A

WFMC. Workflow Management Coalition Workflow Standard: Interface 1 — Pro-
cess Definition Interchange Process Model (WFMC-TC-1016). Technical report,
Workflow Management Coalition, Lighthouse Point, Florida, USA, 1999.
WFMC. Workflow Management Coalition Workflow Standard: Workflow Pro-
cess Definition Interface — XML Process Definition Language (XPDL) (WFMC-
TC-1025). Technical report, Workflow Management Coalition, Lighthouse Point,
Florida, USA, 2002.

P. Wohed, W.M.P. van der Aalst, M. Dumas, and A.H.M. ter Hofstede. Pattern-
Based Analysis of BPEL4AWS. QUT Technical report, FIT-TR-2002-04, Queens-
land University of Technology, Brisbane, 2002.

Workflow Patterns Home Page. http://www.tm.tue.nl/it/research/patterns.

XPDL Schema

The listing below shows selected parts of the XPDL Schema given in [28]
relevant for this paper.

1 <xsd:element name="Activity">

2

3

4

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

<xsd:complexType>
<xsd:sequence>
<xsd:element ref="xpdl:Description" minOccurs="0"/>
<xsd:element ref="xpdl:Limit" minOccurs="0"/>
<xsd:choice>
<xsd:element ref="xpdl:Route"/>
<xsd:element ref="xpdl:Implementation"/>
<xsd:element ref="xpdl:BlockActivity"/>
</xsd:choice>
<xsd:element ref="xpdl:Performer" minOccurs="0"/>
<xsd:element ref="xpdl:StartMode" minOccurs="0"/>
<xsd:element ref="xpdl:FinishMode" minOccurs="0"/>
<xsd:element ref="xpdl:Priority" minOccurs="0"/>
<xsd:element ref="xpdl:Deadline" minOccurs="0"
maxOccurs="unbounded" />

<xsd:element ref="xpdl:SimulationInformation" minOccurs="0"/>

<xsd:element ref="xpdl:Icon" minOccurs="0"/>
<xsd:element ref="xpdl:Documentation" minOccurs="0"/>

<xsd:element ref="xpdl:TransitionRestrictions" minOccurs="0"/>
<xsd:element ref="xpdl:ExtendedAttributes" minOccurs="0"/>

</xsd:sequence>

<xsd:attribute name="Id" type="xsd:NMTOKEN" use="required"/>

<xsd:attribute name="Name" type="xsd:string"/>
</xsd:complexType>

Patterns and XPDL 29

26 </xsd:element>

27 <.

28 <xsd:element name="TransitionRestriction">
29 <xsd:complexType>

30 <xsd:sequence>
31 <xsd:element ref="xpdl:Join" minOccurs="0"/>
32 <xsd:element ref="xpdl:Split" minOccurs="0"/>
33 </xsd:sequence>

34 </xsd:complexType>
35 </xsd:element> <xsd:element name="TransitionRestrictions">
36 <xsd:complexType>

37 <xsd:sequence>

38 <xsd:element ref="xpdl:TransitionRestriction" minOccurs="0"
39 max0Occurs="unbounded" />

40 </xsd:sequence>

a1 </xsd:complexType>

42 </xsd:element>

43 . ..

44 <xsd:element name="Join">
45 <xsd:complexType>

46 <xsd:attribute name="Type">

a7 <xsd:simpleType>

48 <xsd:restriction base="xsd:NMTOKEN">
49 <xsd:enumeration value="AND"/>

50 <xsd:enumeration value="X0R"/>

51 </xsd:restriction>

52 </xsd:simpleType>

53 </xsd:attribute>

54 </xsd:complexType>

55 </xsd:element>

56 . ..

57 <xsd:element name="Split">
58 <xsd:complexType>

59 <xsd:sequence>

60 <xsd:element ref="xpdl:TransitionRefs" minOccurs="0"/>
61 </xsd:sequence>

62 <xsd:attribute name="Type">

63 <xsd:simpleType>

64 <xsd:restriction base="xsd:NMTOKEN">

65 <xsd:enumeration value="AND"/>

66

67

68

69

70

71

72

74

75

76

77

78

79

80

81

82

83

84

85

Patterns and XPDL

<xsd:enumeration
</xsd:restriction>
</xsd:simpleType>
</xsd:attribute>
</xsd:complexType>
</xsd:element>

<xsd:element name="Transition">
<xsd:complexType>
<xsd:sequence>

<xsd:element ref="xpdl:
<xsd:element ref="xpdl:
<xsd:element ref="xpdl:

</xsd:sequence>

30

value="X0R"/>

Condition" minOccurs="0"/>
Description" minOccurs="0"/>
ExtendedAttributes" minOccurs="0"/>

<xsd:attribute name="Id" type="xsd:NMTOKEN" use="required"/>
<xsd:attribute name="From" type="xsd:NMTOKEN" use="required"/>
<xsd:attribute name="To" type="xsd:NMTOKEN" use="required"/>
<xsd:attribute name="Name" type="xsd:string"/>

</xsd:complexType>
</xsd:element>

86 ..

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

<xsd:element name="Condition">

<xsd:complexType mixed="true">

<xsd:choice minOccurs="0"

<xsd:element ref="xpdl:

</xsd:choice>

max0ccurs="unbounded">
Xpression"/>

<xsd:attribute name="Type">

<xsd:simpleType>

<xsd:restriction base="xsd:NMTOKEN">

<xsd:enumeration
<xsd:enumeration
<xsd:enumeration
<xsd:enumeration
</xsd:restriction>
</xsd:simpleType>
</xsd:attribute>
</xsd:complexType>
</xsd:element>

value="CONDITION"/>
value="0THERWISE" />
value="EXCEPTION"/>
value="DEFAULTEXCEPTION"/>

