
Challenges in Business Process Management:
Verification of business processes using Petri nets

W.M.P. van der Aalst

Department of Technology Management, Eindhoven University of Technology
P.O. Box 513, NL-5600 MB, Eindhoven, The Netherlands.

w.m.p.v.d.aalst@tm.tue.nl

Abstract. Most scientists working on formal methods are mainly focusing on
technical systems such as circuit design, embedded systems, traffic control, etc.
Few are working on the application of formal methods to business processes.
As a result, interesting problems in the domain of Business Process Manage-
ment (BPM) are not addressed. To stimulate the application of formal methods to
BPM, the following two conferences, taking place in June 2003, are co-located:
(1) the International Conference on Applications and Theory of Petri nets (Petri
nets 2003) [8] and (2) the International Conference on Business Process Manage-
ment: On the Application of Formal Methods to Process-Aware Information Sys-
tems (BPM 2003) [13]. Both conferences precede the International Colloquium
on Automata, Languages and Programming (ICALP 2003) also taking place in
Eindhoven (The Netherlands). By co-locating these events we hope to trigger
cooperation between people working on BPM and formal methods.
This survey/tutorial discusses the need for formal methods in BPM. Although
different formal methods could be applied in this domain, we focus on the appli-
cation of Petri nets in this domain. In particular, we focus on the verification of
workflow processes using Petri-net-based results. By this we hope to stimulate
scientists working on Petri nets to address some of the challenges posed by BPM.

1 Introduction

The goal of this paper is to discuss the relation between Petri nets and BPM. This way
we hope to interest researchers working on formal methods in some of the scientific
challenges in this domain. The definition of a BPM system used throughout this paper
is: a generic software system that is driven by explicit process designs to enact and man-
age operational business processes. The system should be process-aware and generic
in the sense that it is possible to modify the processes it supports. The process designs
are often graphical and the focus is on structured processes that need to handle many
cases.

In the remainder of this paper, we will first put BPM and related technology in
its historical context. Then, we will discuss models for process design. Since BPM
systems are driven by explicit models, it is important to use the right techniques. Next,
we will discuss techniques for the analysis of process models. We will argue that it is
vital to have techniques to assert the correctness of workflow designs. Based on this we
introduce the class of workflow nets: A subclass of Petri nets.



2 Business process management from a historical perspective

Only the wisest and stupidest of men never change.
Confucius

To show the relevance of BPM systems, it is interesting to put them in a historical per-
spective. Consider Figure 1, which shows some of the ongoing trends in information
systems. This figure shows that today’s information systems consist of a number of
layers. The center is formed by the operating system, i.e., the software that makes the
hardware work. The second layer consists of generic applications that can be used in a
wide range of enterprises. Moreover, these applications are typically used within multi-
ple departments within the same enterprise. Examples of such generic applications are a
database management system, a text editor, and a spreadsheet program. The third layer
consists of domain specific applications. These applications are only used within spe-
cific types of enterprises and departments. Examples are decision support systems for
vehicle routing, call center software, and human resource management software. The
fourth layer consists of tailor-made applications. These applications are developed for
specific organizations.

operating
system

generic
applications

domain
specific

applications

tailor-made
applications

Trends in
information

systems

1. From programming to
assembling.
2. From data orientation to
process orientation.
3. From design to redesign
and organic growth.

Fig. 1. Trends relevant for BPM.

In the sixties the second and third layer were missing. Information systems were
built on top of a small operating system with limited functionality. Since no generic nor
domain specific software was available, these systems mainly consisted of tailor-made
applications. Since then, the second and third layer have developed and the ongoing
trend is that the four circles are increasing in size, i.e., they are moving to the out-
side while absorbing new functionality. Today’s operating systems offer much more



functionality. Database management systems that reside in the second layer offer func-
tionality which used to be in tailor-made applications. As a result of this trend, the
emphasis shifted from programming to assembling of complex software systems. The
challenge no longer is the coding of individual modules but orchestrating and gluing
together pieces of software from each of the four layers.

Another trend is the shift from data to processes. The seventies and eighties were
dominated by data-driven approaches. The focus of information technology was on
storing and retrieving information and as a result data modeling was the starting point
for building an information system. The modeling of business processes was often ne-
glected and processes had to adapt to information technology. Management trends such
as business process reengineering illustrate the increased emphasis on processes. As a
result, system engineers are resorting to a more process driven approach.

The last trend we would like to mention is the shift from carefully planned designs
to redesign and organic growth. Due to the omnipresence of the Internet and its stan-
dards, information systems change on-the-fly. As a result, fewer systems are built from
scratch. In many cases existing applications are partly used in the new system. Although
component-based software development still has it problems, the goal is clear and it is
easy to see that software development has become more dynamic.

The trends shown in Figure 1 provide a historical context for BPM systems. BPM
systems are either separate applications residing in the second layer or are integrated
components in the domain specific applications, i.e., the third layer. Notable exam-
ples of BPM systems residing in the second layer are workflow management systems
[32, 36] such as Staffware, MQSeries, and COSA, and case handling systems such as
FLOWer. Note that leading enterprise resource planning systems populating the third
layer also offer a workflow management module. The workflow engines of SAP, Baan,
PeopleSoft, Oracle, and JD Edwards can be considered as integrated BPM systems. The
idea to isolate the management of business processes in a separate component is consis-
tent with the three trends identified. BPM systems can be used to avoid hard-coding the
work processes into tailor-made applications and thus support the shift from program-
ming to assembling. Moreover, process orientation, redesign, and organic growth are
supported. For example, today’s workflow management systems can be used to integrate
existing applications and support process change by merely changing the workflow di-
agram. Give these observations, we hope to have demonstrated the practical relevance
of BPM systems. In the remainder of this paper we will focus more on the scientific
importance of these systems. Moreover, for clarity we will often restrict the discussion
to clear cut BPM systems such as workflow management systems.

An interesting starting point from a scientific perspective is the early work on office
information systems. In the seventies, people like Skip Ellis [22], Anatol Holt [31], and
Michael Zisman [44] already worked on so-called office information systems, which
were driven by explicit process models. It is interesting to see that the three pioneers
in this area independently used Petri-net variants to model office procedures. During
the seventies and eighties there was great optimism about the applicability of office
information systems. Unfortunately, few applications succeeded. As a result of these
experiences, both the application of this technology and research almost stopped for a
decade. Consequently, hardly any advances were made in the eighties. In the nineties,



there again was a huge interest in these systems. The number of workflow management
systems developed in the past decade and the many papers on workflow technology
illustrate the revival of office information systems. Today workflow management sys-
tems are readily available [36]. However, their application is still limited to specific
industries such as banking and insurance. As was indicated by Skip Ellis it is important
to learn from these ups and downs [23]. The failures in the eighties can be explained
by both technical and conceptual problems. In the eighties, networks were slow or not
present at all, there were no suitable graphical interfaces, and proper development soft-
ware was missing. However, there were also more fundamental problems: a unified way
of modeling processes was missing and the systems were too rigid to be used by people
in the workplace. Most of the technical problems have been resolved by now. However,
the more conceptual problems remain. Good standards for business process modeling
are still missing and even today’s workflow management systems enforce unnecessary
constrains on the process logic (e.g., processes are made more sequential).

To summarize we state that, although the relevance of BPM systems is undisputed,
many fundamental problems remain to be solved. In the remainder of this paper we will
try to shed light on some of these problems.

3 Models for process design

A camel is a horse designed by committee.
Sir Alec Issigonis

BPM systems are driven by models of processes and organizations. By changing these
models, the behavior of the system adapts to its environment and changing require-
ments. These models cover different perspectives. Figure 2 shows some of the perspec-
tives relevant for BPM systems [32]. The process perspective describes the control-flow,
i.e., the ordering of tasks. The information perspective describes the data that are used.
The resource perspective describes the structure of the organization and identifies re-
sources, roles, and groups. The task perspective describes the content of individual steps
in the processes. Each perspective is relevant. However, in this paper we restrict our-
selves to the process perspective.

Many techniques have been proposed to model the process perspective. Some of
these techniques are informal in the sense that the diagrams used have no formally de-
fined semantics. These models are typically very intuitive and the interpretation shifts
depending on the modeler, application domain, and characteristics of the business pro-
cesses at hand. Examples of informal techniques are ISAC, DFD, SADT, and IDEF.
These techniques may serve well for discussing work processes. However, they are in-
adequate for directly driving information systems since they are incomplete and subject
to multiple interpretations. Therefore, more precise ways of modeling are required.

Figure 3 shows an example of an order handling process modeled in terms of a
so-called workflow net [2]. Workflow nets are based on the classical Petri-net model
invented by Carl Adam Petri in the early sixties [37]. The squares are the active parts of
the model and correspond to tasks. The circles are the passive parts of the model and are
used to represent states. In the classical Petri net, the squares are named transitions and



process perspective

task
perspective

information
perspective

resource
perspective

Fig. 2. Perspectives of models driving BPM systems.

start register

send_bill

receive_payment

archive

ship_goodscheck_availability

replenish

update

reminder

end

c1

c2

c3

c4

c5

c6

c7

c8

Fig. 3. WF-net.

the circles places. A workflow net models the life-cycle of one case. Examples of cases
are insurance claims, tax declarations, and traffic violations. Cases are represented by
tokens and in this case the token in start corresponds to an order. Task register is a so-
called AND-split and is enabled in the state shown. The arrow indicates that this task
requires human intervention. If a person executes this task, the token is removed from
place start and two tokens are produced: one for c1 and one for c2. Then, in parallel,
two tasks are enabled: check availability and send bill. Depending on the eagerness of
the workers executing these two tasks either check available or send bill is executed
first. Suppose check availability is executed first. If the ordered goods are available,
they can be shipped by executing task ship goods. If they are not available, either a
replenishment order is issued or not. Note that check availability is an OR-split and
produces one token for c3, c4, or c5. Suppose that not all ordered goods are available,
but the appropriate replenishment orders were already issued. A token is produced for



c3 and task update becomes enabled. Suppose that at this point in time task send bill
is executed, resulting in the state with a token in c3 and c6. The token in c6 is input
for two tasks. However, only one of these tasks can be executed and in this state only
receive payment is enabled. Task receive payment can be executed the moment the pay-
ment is received. Task reminder is an AND-join/AND-split and is blocked until the bill
is sent and the goods have been shipped. Note that the reminder is sent after a specified
period as indicated by the clock symbol. However, it is only possible to send a remain-
der if the goods have been actually shipped. Assume that in the state with a token in
c3 and c6 task update is executed. This task does not require human involvement and
is triggered by a message of the warehouse indicating that relevant goods have arrived.
Again check availability is enabled. Suppose that this task is executed and the result
is positive. In the resulting state ship goods can be executed. Now there is a token in
c6 and c7 thus enabling task reminder. Executing task reminder again enables the task
send bill. A new copy of the bill is sent with the appropriate text. It is possible to send
several reminders by alternating reminder and send bill. However, let us assume that
after the first loop the customer pays resulting in a state with a token in c7 and c8. In
this state, the AND-join archive is enabled and executing this task results in the final
state with a token in end.

This very simple workflow net shows some of the routing constructs relevant for
business process modeling. Sequential, parallel, conditional, and iterative routing are
present in this model. There also are more advanced constructs such as the choice be-
tween receive payment and reminder. This is a so-called implicit choice since it is not
resolved by the system but by the environment of the system. The moment the bill is
sent, it is undetermined whether receive payment or reminder will be the next step in
the process. Another advanced construct is the fact that task reminder is blocked until
the goods have been shipped. The latter construct is a so-called milestone. The reason
that we point out both constructs is that many systems have problems supporting these
rather fundamental process patterns [11, 12].

Workflow nets have clear semantics. The fact that we are able to play the so-called
token game using a minimal set of rules shows the fact that these models are executable.
None of the informal informal techniques mentioned before (i.e., ISAC, DFD, SADT,
and IDEF) have formal semantics. Besides workflow nets there are many other formal
techniques. Examples are the many variants of process algebra [14] and statecharts [29].
The reason we prefer to use a variant of Petri nets is threefold [2]:

– Petri nets are graphical and yet precise.
– Petri nets offer an abundance of analysis techniques.
– Petri nets treat states as first-class citizens.

The latter point deserves some more explanation. Many techniques for business process
modeling focus exclusively on the active parts of the process, i.e., the tasks. This is
rather surprising since in many administrative processes the actual processing time is
measured in minutes and the flow time is measured in days. This means that most of
the time cases are in-between two subsequent tasks. Therefore, it is vital to model these
states explicitly.



4 Techniques for process analysis

From the errors of others, a wise man corrects his own.
Syrus

BPM systems allow organizations to change their processes by merely changing the
models. The models are typically graphical and can be changed quite easily. This pro-
vides more flexibility than conventional information systems. However, by reducing
the threshold for change, errors are introduced more easily. Therefore, it is important
to develop suitable analysis techniques. However, it is not sufficient to just develop
these techniques. It is as least as important to look at methods and tools to make them
applicable in a practical context.

Traditionally, most techniques used for the analysis of business processes, originate
from operations research. All students taking courses in operations management will
learn to apply techniques such as simulation, queueing theory, and Markovian analysis.
The focus mainly is on performance analysis and less attention is paid to the correct-
ness of models. Verification and validation are often neglected. As a result, systems fail
by not providing the right support or even break down [3, 40]. Verification is needed
to check whether the resulting system is free of logical errors. Many process designs
suffer from deadlocks and livelocks that could have been detected using verification
techniques. Validation is needed to check whether the system actually behaves as ex-
pected. Note that validation is context dependent while verification is not. A system that
deadlocks is not correct in any situation. Therefore, verifying whether a system exhibits
deadlocks is context independent. Validation is context dependent and can only be done
with knowledge of the intended business process.

start register

send_bill

receive_payment

archive

ship_goodscheck_availability

replenish

update

reminder

end

c1

c2

c3

c4

c5

c6

c7

c8

c9

Fig. 4. An incorrect WF-net.



To illustrate the relevance of validation and verification and to demonstrate some
of the techniques available, we return to the workflow net shown in Figure 3. This
workflow process allows for the situation where a replenishment is issued before any
payment is received. Suppose that we want to change the design such that replenish-
ments are delayed until receiving payment. An obvious way to model this is to connect
task receive payment with replenish using an additional place c9 as shown in Figure 4.
Although this extension seems to be correct at first glance, the resulting workflow net
has several errors. The workflow will deadlock if a second replenishment is needed and
something is left behind in the process if no replenishments are needed. These are logi-
cal errors that can be detected without any knowledge of the order handling process. For
verification, application independent notions of correctness are needed. One of these no-
tions is the so-called soundness property [2]. A workflow net is sound if and only if the
workflow contains no dead parts (i.e., tasks that can never be executed), from any reach-
able state it is always possible to terminate, and the moment the workflow terminates all
places except the sink place (i.e., place end) are empty. Note that soundness rules out
logical errors such as deadlocks and livelocks. The notion of soundness is applicable
to any workflow language. An interesting observation is that soundness corresponds to
liveness and boundedness of the short-circuited net [2]. The latter properties have been
studied extensively [39, 21]. As a result, powerful analysis techniques and tools can be
applied to verify the correctness of a workflow design. Practical experience shows that
many errors can be detected by verifying the soundness property. Moreover, Petri-net
theory can also be applied to guide the designer towards the error.

start register

send_bill

receive_payment

archive

ship_goodscheck_availability

reminder

end

c1

c2

c4

c5

c6

c7

c8

Fig. 5. A sound but incorrect WF-net.

Soundness does not guarantee that the workflow net behaves as intended. Consider
for example, the workflow net shown in Figure 5. Compared to the original model,
the shipment of goods is skipped if some of the goods are not available. Again this
may seem to be a good idea at first glance. However, customers are expected to pay
even if the goods are never delivered. In other words, task receive payment needs to



be executed although task ship goods may never be executed. The latter error can only
be detected using knowledge about the context. Based on this context one may decide
whether this is acceptable or not. Few analysis techniques exist to automatically sup-
port this kind of validation. The only means of validation offered by today’s workflow
management systems is gaming and simulation.

An interesting technique to support validation is inheritance of dynamic behavior.
Inheritance can be used as a technique to compare processes. Inheritance relates sub-
classes with superclasses [16]. A workflow net is a subclass of a superclass workflow net
if certain dynamic properties are preserved. A subclass typically contains more tasks. If
by hiding and/or blocking tasks in the subclass one obtains the superclass, the subclass
inherits the dynamics of the superclass.1 The superclass can be used to specify the min-
imal properties the workflow design should satisfy. By merely checking whether the ac-
tual design is a subclass of the superclass, one can validate the essential properties. Con-
sider for example Figure 6. This workflow net describes the minimal requirements the
order handling process should satisfy. The tasks register, ship goods, receive payment,
and archive are mandatory. Tasks ship goods and receive payment may be executed in
parallel but should be preceded by register and followed by archive. The original order
handling process shown in Figure 3 is a subclass of this superclass. Therefore, the min-
imal requirements are satisfied. However, the order handling process shown in Figure 5
is not a subclass. The fact that task ship goods can be skipped demonstrates that not all
properties are preserved.

start register

receive_payment

archive

ship_goods

end

c1

c2

c3

c4

Fig. 6. A superclass WF-net.

Inheritance of dynamic behavior is a very powerful concept that has many appli-
cations. Inheritance-preserving transformation rules and transfer rules offer support at
design-time and at run-time [7]. Subclass-superclass relationships also can be used to
enforce correct processes in an E-commerce setting. If business partners only execute
subclass processes of some common contract process, then the overall workflow will
be executed as agreed. It should be noted that workflows crossing the borders of orga-
nizations are particularly challenging from a verification and validation point of view
[4]. Errors resulting from miscommunication between business partners are highly dis-

1 We have identified four notions of inheritance [7, 16]. In this paper, we only refer to life-cycle
inheritance.



ruptive and costly. Therefore, it is important to develop techniques and tools for the
verification and validation of these processes.

Fig. 7. A screenshot showing the verification and validation capabilities of Woflan.

Few tools aiming at the verification of workflow processes exist. Woflan [42] and
Flowmake [40] are two notable exceptions. We have been working on Woflan since
1997. Figure 7 shows a screenshot of Woflan. Woflan combines state-of-the-art scien-
tific results with practical applications [10, 42, 43]. Woflan can interface with leading
workflow management systems such as Staffware and COSA. It can also interface with
BPR-tools such as Protos. Workflow processes designed using any of these tools can be
verified for correctness. It turns out that the challenge is not to decide whether the de-
sign is sound or not. The real challenge is to provide diagnostic information that guides
the designer to the error. Woflan also supports the inheritance notions mentioned be-
fore. Given two workflow designs, Woflan is able to decide whether one is a subclass of
the other. Tools such as Woflan illustrate the benefits of a more fundamental approach.
Large scale experiments with experienced students show that workflow designers fre-
quently make errors and that these design errors can be detected using Woflan [42].



5 Formalization of sound workflow nets

The most likely way for the world to be destroyed, most experts agree, is by
accident. That’s where we come in; we’re computer professionals. We cause

accidents.
Nathaniel Borenstein

In the first part of this paper, an informal introduction was given into the BPM domain.
In this introduction, we focused on workflow processes. As demonstrated, the process
perspective can be modeled in terms of a WF-net. In this section, we formalize the
notions mentioned in previous sections. First, we introduce some Petri net notation.
Then we define WF-nets and the soundness property.

5.1 Petri Nets

This section introduces the basic Petri net terminology and notations. Readers familiar
with Petri nets can skip this section.2

The classical Petri net is a directed bipartite graph with two node types called places
and transitions. The nodes are connected via directed arcs. Connections between two
nodes of the same type are not allowed. Places are represented by circles and transitions
by rectangles.

Definition 1 (Petri net). A Petri net is a triple (P; T; F ):

- P is a finite set of places,
- T is a finite set of transitions (P ∩ T = ∅),
- F ⊆ (P × T ) ∪ (T × P ) is a set of arcs (flow relation)

A place p is called an input place of a transition t iff there exists a directed arc from
p to t. Place p is called an output place of transition t iff there exists a directed arc
from t to p. We use •t to denote the set of input places for a transition t. The notations
t•, •p and p• have similar meanings, e.g., p• is the set of transitions sharing p as an
input place. Note that we do not consider multiple arcs from one node to another. In
the context of workflow procedures it makes no sense to have other weights, because
places correspond to conditions.

At any time a place contains zero or more tokens, drawn as black dots. The state,
often referred to as marking, is the distribution of tokens over places, i.e.,M ∈ P → IN.
We will represent a state as follows: 1p1+2p2+1p3+0p4 is the state with one token in
place p1, two tokens in p2, one token in p3 and no tokens in p4. We can also represent
this state as follows: p1 +2p2+ p3. To compare states we define a partial ordering. For
any two states M1 and M2, M1 ≤ M2 iff for all p ∈ P : M1(p) ≤ M2(p)

The number of tokens may change during the execution of the net. Transitions are
the active components in a Petri net: they change the state of the net according to the
following firing rule:

2 Note that states are represented by weighted sums and note the definition of (elementary)
(conflict-free) paths.



(1) A transition t is said to be enabled iff each input place p of t contains at least one
token.

(2) An enabled transition may fire. If transition t fires, then t consumes one token from
each input place p of t and produces one token for each output place p of t.

Given a Petri net (P; T; F ) and a state M1, we have the following notations:

- M1

t→ M2: transition t is enabled in state M1 and firing t in M1 results in state M2

- M1 → M2: there is a transition t such that M1

t→ M2

- M1

�→ Mn: the firing sequence � = t1t2t3 : : : tn−1 leads from state M1 to state

Mn via a (possibly empty) set of intermediate states M2; :::Mn−1, i.e., M1

t1→
M2

t2→ :::
tn−1→ Mn

A state Mn is called reachable from M1 (notation M1

∗→ Mn) iff there is a firing
sequence � such that M1

�→ Mn. Note that the empty firing sequence is also allowed,
i.e., M1

∗→ M1.
We use (PN ;M) to denote a Petri net PN with an initial state M . A state M ′ is a

reachable state of (PN ;M) iff M
∗→ M ′.

Let us define some standard properties for Petri nets. First, we define properties
related to the dynamics of a Petri net, then we give some structural properties.

Definition 2 (Live). A Petri net (PN ;M) is live iff, for every reachable state M ′ and
every transition t there is a state M ′′ reachable from M ′ which enables t.

A Petri net is structurally live if there exists an initial state such that the net is live.

Definition 3 (Bounded, safe). A Petri net (PN ;M) is bounded iff for each place p

there is a natural number n such that for every reachable state the number of tokens in
p is less than n. The net is safe iff for each place the maximum number of tokens does
not exceed 1.

A Petri net is structurally bounded if the net is bounded for any initially state.

Definition 4 (Well-formed). A Petri net PN is well-formed iff there is a state M such
that (PN ;M) is live and bounded.

Paths connect nodes by a sequence of arcs.

Definition 5 (Path, Elementary, Conflict-free). Let PN be a Petri net. A path C from
a node n1 to a node nk is a sequence 〈n1; n2; : : : ; nk〉 such that 〈ni; ni+1〉 ∈ F for
1 ≤ i ≤ k − 1. C is elementary iff, for any two nodes ni and nj on C, i 
= j ⇒
ni 
= nj . C is conflict-free iff, for any place nj on C and any transition ni on C,
j 
= i− 1 ⇒ nj 
∈ •ni.
For convenience, we introduce the alphabet operator� on paths. IfC = 〈n 1; n2; : : : ; nk〉,
then �(C) = {n1; n2; : : : ; nk}.

Definition 6 (Strongly connected). A Petri net is strongly connected iff, for every pair
of nodes (i.e., places and transitions) x and y, there is a path leading from x to y.



Definition 7 (Free-choice). A Petri net is a free-choice Petri net iff, for every two tran-
sitions t1 and t2, •t1 ∩ •t2 
= ∅ implies •t1 = •t2.

Definition 8 (State machine). A Petri net is state machine iff each transition has ex-
actly one input and one output place.

Definition 9 (S-component). A subnet PN s = (Ps; Ts; Fs) is called an S-component
of a Petri net PN = (P; T; F ) if Ps ⊆ P , Ts ⊆ T , Fs ⊆ F , PN s is strongly connected,
PN s is a state machine, and for every q ∈ Ps and t ∈ T : (q; t) ∈ F ⇒ (q; t) ∈ Fs and
(t; q) ∈ F ⇒ (t; q) ∈ Fs.

Definition 10 (S-coverable). A Petri net is S-coverable iff for any node there exist an
S-component which contains this node.

See [21, 39] for a more elaborate introduction to these standard notions.

5.2 WF-Nets

A Petri net which models the control-flow dimension of a workflow, is called a Work-
Flow net (WF-net). It should be noted that a WF-net specifies the dynamic behavior of
a single case in isolation.

Definition 11 (WF-net). A Petri net PN = (P; T; F ) is a WF-net (Workflow net) if
and only if:

(i) There is one source place i ∈ P such that •i = ∅.
(ii) There is one sink place o ∈ P such that o• = ∅.

(iii) Every node x ∈ P ∪ T is on a path from i to o.

A WF-net has one input place (i) and one output place (o) because any case handled
by the procedure represented by the WF-net is created when it enters the WFMS and
is deleted once it is completely handled by the WFMS, i.e., the WF-net specifies the
life-cycle of a case. The third requirement in Definition 11 has been added to avoid
‘dangling tasks and/or conditions’, i.e., tasks and conditions which do not contribute to
the processing of cases.

Given the definition of a WF-net it is easy derive the following properties.

Proposition 1 (Properties of WF-nets). Let PN = (P; T; F ) be Petri net.

– If PN is WF-net with source place i, then for any place p ∈ P : •p 
= ∅ or p = i,
i.e., i is the only source place.

– If PN is WF-net with sink place o, then for any place p ∈ P : p• 
= ∅ or p = o, i.e.,
o is the only sink place.

– If PN is a WF-net and we add a transition t∗ to PN which connects sink place o

with source place i (i.e., •t∗ = {o} and t∗• = {i}), then the resulting Petri net is
strongly connected.

– If PN has a source place i and a sink place o and adding a transition t ∗ which
connects sink place o with source place i yields a strongly connected net, then
every node x ∈ P ∪ T is on a path from i to o in PN and PN is a WF-net.



Figures 3, 4 and 5 show examples of WF-nets. In each net the source place i is named
start and the sink place o is named end. Note that some syntactic sugaring is used.
There is a one-to-one correspondence between AND-splits/AND-joins and transitions.
However, OR-splits and OR-joins correspond to clusters of transitions: one for each
choice. For example, task check availability corresponds to three transitions. Each of
these three transitions has c1 as input place and one output place. The first one produces
a token for c5, the second for c4, and the third for c3. Using this translation it is easy to
see that each of the nets shown in figures 3, 4 and 5 is indeed a WF-net.

5.3 Soundness

In this section we summarize some of the basic results for WF-nets presented in [1].
The remainder of this paper will build on these results.

The three requirements stated in Definition 11 can be verified statically, i.e., they
only relate to the structure of the Petri net. However, there is another requirement which
should be satisfied:

For any case, the procedure will terminate eventually and the moment the pro-
cedure terminates there is a token in place o and all the other places are empty.

Moreover, there should be no dead tasks, i.e., it should be possible to execute an arbi-
trary task by following the appropriate route though the WF-net. These two additional
requirements correspond to the so-called soundness property.

Definition 12 (Sound). A procedure modeled by a WF-net PN = (P; T; F ) is sound if
and only if:

(i) For every state M reachable from state i, there exists a firing sequence leading
from state M to state o. Formally:3

∀M (i
∗→ M) ⇒ (M

∗→ o)

(ii) State o is the only state reachable from state i with at least one token in place o.
Formally:

∀M (i
∗→ M ∧ M ≥ o) ⇒ (M = o)

(iii) There are no dead transitions in (PN ; i). Formally:

∀t∈T ∃M;M ′ i
∗→ M

t→ M ′

Note that the soundness property relates to the dynamics of a WF-net. The first re-
quirement in Definition 12 states that starting from the initial state (state i), it is always
possible to reach the state with one token in place o (state o). If we assume a strong
notion of fairness, then the first requirement implies that eventually state o is reached.
Strong fairness means in every infinite firing sequence, each transition fires infinitely
often. The fairness assumption is reasonable in the context of workflow management:

3 Note that there is an overloading of notation: the symbol i is used to denote both the place i
and the state with only one token in place i (see Section 5.1).



All choices are made (implicitly or explicitly) by applications, humans or external ac-
tors. Clearly, they should not introduce an infinite loop. Note that the traditional notions
of fairness (i.e., weaker forms of fairness with just local conditions, e.g., if a transition
is enabled infinitely often, it will fire eventually) are not sufficient. See [2, 34] for more
details. The second requirement states that the moment a token is put in place o, all
the other places should be empty. Sometimes the term proper termination is used to
describe the first two requirements [27]. The last requirement states that there are no
dead transitions (tasks) in the initial state i.

Note that the second requirement is implied by the first one. Suppose the second
requirement does not hold. This implies that there is a state M reachable from i such
that M ≥ o and M 
= o, i.e., a state with at least two tokens. There is at least one token
in o which cannot be removed. The other token cannot be consumed without producing
a new one. Therefore, it is not possible to reach state o from M . This contradicts with
the first requirement. This shows that the second requirement can be removed. Never-
theless, Definition 12 lists this requirement since it corresponds to an intuitive notion of
correctness.

i
register

c1

c2

time_out_1

time_out_2

processing_2

processing_1

processing_OK

processing_NOKc3

c4

c5

o

Fig. 8. Another WF-net for the processing of complaints.

Figure 8 shows a WF-net which is not sound. There are several deficiencies. If
time out 1 and processing 2 fire or time out 2 and processing 1 fire, the WF-net will
not terminate properly because a token gets stuck in c4 or c5. If time out 1 and time out 2
fire, then the task processing NOK will be executed twice and because of the presence
of two tokens in o the moment of termination is not clear.

Figures 3, 4 and 5 also show examples of WF-nets. In each net the source place i is
named start and the sink place o is named end and task check availability corresponds
to multiple transitions as described before. The WF-net shown in Figure 3 is sound. The
WF-net shown in Figure 4 is not sound: The process may deadlock before reaching the
sink place or the process may leave a superfluous token in place c9. The WF-net shown
in Figure 5 is sound (although it is not a subclass of Figure 3).

Given a WF-net PN = (P; T; F ), we want to decide whether PN is sound. In
[1] we have shown that soundness corresponds to liveness and boundedness. To link
soundness to liveness and boundedness, we define an extended net PN = (P ; T ; F ).



PN is the Petri net obtained by adding an extra transition t∗ which connects o and i.
The extended Petri net PN = (P ; T ; F ) is defined as follows: P = P , T = T ∪ {t∗},
and F = F ∪ {〈o; t∗〉; 〈t∗; i〉}. In the remainder we will call such an extended net
the short-circuited net of PN . The short-circuited net allows for the formulation of the
following theorem.

Theorem 1. A WF-net PN is sound if and only if (PN ; i) is live and bounded.

Proof. See [1]. ��
This theorem shows that standard Petri-net-based analysis techniques can be used to
verify soundness.

Several authors have proposed other (typically weaker) notions of soundness. In [19,
24] the notion of relaxed soundness is used. This notion is weaker since it focuses on the
possibility to have sound executions. In [30] the notion of k-soundness is introduced.
This notion takes k tokens in place i as a starting point. In [35] soundness is also defined
for multiple connected WF-nets.

6 Structural Characterization of Soundness

A classic is classic not because it conforms to certain structural rules, or fits
certain definitions (of which its author had quite probably never heard). It is

classic because of a certain eternal and irrepressible freshness.
Edith Wharton

Theorem 1 gives a useful characterization of the quality of a workflow process def-
inition. However, there are a number of problems:

– For a complex WF-net it may be intractable to decide soundness. (For arbitrary WF-
nets liveness and boundedness are decidable but also EXPSPACE-hard, cf. Cheng,
Esparza and Palsberg [18].)

– Soundness is a minimal requirement. Readability and maintainability issues are not
addressed by Theorem 1.

– Theorem 1 does not show how a non-sound WF-net should be modified, i.e., it does
not identify constructs which invalidate the soundness property.

These problems stem from the fact that the definition of soundness relates to the dy-
namics of a WF-net while the workflow designer is concerned with the static structure
of the WF-net. Therefore, it is interesting to investigate structural characterizations of
sound WF-nets. For this purpose we introduce three interesting subclasses of WF-nets:
free-choice WF-nets, well-structured WF-nets, and S-coverable WF-nets.

6.1 Free-Choice WF-Nets

Most of the WFMS’s available at the moment, abstract from states between tasks,
i.e., states are not represented explicitly. These WFMS’s use building blocks such as
the AND-split, AND-join, OR-split and OR-join to specify workflow procedures. The



AND-split and the AND-join are used for parallel routing. The OR-split and the OR-
join are used for conditional routing. Because these systems abstract from states, every
choice is made inside an OR-split building block. If we model an OR-split in terms of
a Petri net, the OR-split corresponds to a number of transitions sharing the same set of
input places. This means that for these WFMS’s, a workflow procedure corresponds to
a free-choice Petri net (cf. Definition 7).

It is easy to see that a process definition composed of AND-splits, AND-joins, OR-
splits and OR-joins is free-choice. If two transitions t1 and t2 share an input place
(•t1∩•t2 
= ∅), then they are part of an OR-split, i.e., a ‘free choice’ between a number
of alternatives. Therefore, the sets of input places of t1 and t2 should match (•t1 = •t2).
Figure 8 shows a free-choice WF-net. The WF-net shown in Figure 3 is not free-choice;
archive and reminder share an input place but the two corresponding input sets differ.

We have evaluated many WFMS’s and just one of these systems (COSA [41]) allows
for a construct which is comparable to a non-free choice WF-net [12, 33]. Therefore, it
makes sense to consider free-choice Petri nets in more detail. Clearly, parallelism, se-
quential routing, conditional routing and iteration can be modeled without violating the
free-choice property. Another reason for restricting WF-nets to free-choice Petri nets
is the following. If we allow non-free-choice Petri nets, then the choice between con-
flicting tasks may be influenced by the order in which the preceding tasks are executed.
The routing of a case should be independent of the order in which tasks are executed.
A situation where the free-choice property is violated is often a mixture of parallelism
and choice. Figure 9 shows such a situation. Firing transition t1 introduces parallelism.
Although there is no real choice between t2 and t5 (t5 is not enabled), the parallel exe-
cution of t2 and t3 results in a situation where t5 is not allowed to occur. However, if the
execution of t2 is delayed until t3 has been executed, then there is a real choice between
t2 and t5. In our opinion parallelism itself should be separated from the choice between
two or more alternatives. Therefore, we consider the non-free-choice construct shown
in Figure 9 to be improper. In literature, the term confusion is often used to refer to the
situation shown in Figure 9.

t2

t3
i

t4

t5

t1

o

c1

c2

c3

c4

Fig. 9. A non-free-choice WF-net containing a mixture of parallelism and choice.

Free-choice Petri nets have been studied extensively (cf. Best [17], Desel and Es-
parza [21, 20, 25], Hack [28]) because they seem to be a good compromise between
expressive power and analyzability. It is a class of Petri nets for which strong theoret-
ical results and efficient analysis techniques exist. For example, the well-known Rank
Theorem (Desel and Esparza [21]) enables us to formulate the following corollary.



Corollary 1. The following problem can be solved in polynomial time.
Given a free-choice WF-net, to decide if it is sound.

Proof. Let PN be a free-choice WF-net. The short-circuited netPN is also free-choice.
Therefore, the problem of deciding whether (PN ; i) is live and bounded can be solved
in polynomial time (Rank Theorem [21]). By Theorem 1, this corresponds to soundness.

��
Corollary 1 shows that, for free-choice nets, there are efficient algorithms to decide
soundness. Moreover, a sound free-choice WF-net is guaranteed to be safe (given an
initial state with just one token in i).

Lemma 1. A sound free-choice WF-net is safe.

Proof. Let PN be a sound free-choice WF-net. PN is the Petri net PN extended with
a transition connecting o and i. PN is free-choice and well-formed. Hence, PN is S-
coverable [21], i.e., each place is part of an embedded strongly connected state-machine
component. Since initially there is just one token (PN ; i) is safe and so is (PN ; i). ��
Safeness is a desirable property, because it makes no sense to have multiple tokens in a
place representing a condition. A condition is either true (1 token) or false (no tokens).

Although most WFMS’s only allow for free-choice workflows, free-choice WF-nets
are not a completely satisfactory structural characterization of ‘good’ workflows. On the
one hand, there are non-free-choice WF-nets which correspond to sensible workflows
(cf. Figure 3). On the other hand there are sound free-choice WF-nets which make no
sense. Nevertheless, the free-choice property is a desirable property. If a workflow can
be modeled as a free-choice WF-net, one should do so. A workflow specification based
on a free-choice WF-net can be enacted by most workflow systems. Moreover, a free-
choice WF-net allows for efficient analysis techniques and is easier to understand. Non-
free-choice constructs such as the construct shown in Figure 9 are a potential source of
anomalous behavior (e.g., deadlock) which is difficult to trace.

6.2 Well-Structured WF-Nets

Another approach to obtain a structural characterization of ‘good’ workflows, is to bal-
ance AND/OR-splits and AND/OR-joins. Clearly, two parallel flows initiated by an
AND-split, should not be joined by an OR-join. Two alternative flows created via an
OR-split, should not be synchronized by an AND-join. As shown in Figure 10, an
AND-split should be complemented by an AND-join and an OR-split should be com-
plemented by an OR-join.

One of the deficiencies of the WF-net shown in Figure 8 is the fact that the AND-
split register is complemented by the OR-join c3 or the OR-join o. To formalize the
concept illustrated in Figure 10 we give the following definition.

Definition 13 (Well-handled). A Petri netPN is well-handled iff, for any pair of nodes
x and y such that one of the nodes is a place and the other a transition and for any pair
of elementary paths C1 and C2 leading from x to y, �(C1)∩�(C2) = {x; y} ⇒ C1 =
C2.



AND-split AND-join AND-split

AND-joinOR-split OR-join

OR-join

OR-split

Fig. 10. Good and bad constructions.

Note that the WF-net shown in Figure 8 is not well-handled. Well-handledness can be
decided in polynomial time by applying a modified version of the max-flow min-cut
technique described in [9]. A Petri net which is well-handled has a number of nice
properties, e.g., strong connectedness and well-formedness coincide.

Lemma 2. A strongly connected well-handled Petri net is well-formed.

Proof. Let PN be a strongly connected well-handled Petri net. Clearly, there are no
circuits that have PT-handles nor TP-handles [26]. Therefore, the net is structurally
bounded (See Theorem 3.1 in [26]) and structurally live (See Theorem 3.2 in [26]).
Hence, PN is well-formed. ��

Clearly, well-handledness is a desirable property for any WF-net PN . Moreover, we
also require the short-circuited PN to be well-handled. We impose this additional re-
quirement for the following reason. Suppose we want to use PN as a part of a larger
WF-net PN ′. PN ′ is the original WF-net extended with an ‘undo-task’. See Figure 11.
Transition undo corresponds to the undo-task, transitions t1 and t2 have been added to
makePN ′ a WF-net. It is undesirable that transition undo violates the well-handledness
property of the original net. However, PN ′ is well-handled iff PN is well-handled.
Therefore, we require PN to be well-handled. We use the term well-structured to refer
to WF-nets whose extension is well-handled.

i o

t2t1

undo

PN

PN’:

Fig. 11. The WF-net PN ′ is well-handled iff PN is well-handled.



Definition 14 (Well-structured). A WF-net PN is well-structured iff PN is well-han-
dled.

Well-structured WF-nets have a number of desirable properties. Soundness can be ver-
ified in polynomial time and a sound well-structured WF-net is safe. To prove these
properties we use some of the results obtained for elementary extended non-self con-
trolling nets.

Definition 15 (Elementary extended non-self controlling). A Petri net PN is ele-
mentary extended non-self controlling (ENSC) iff, for every pair of transitions t1 and t2
such that •t1 ∩ •t2 
= ∅, there does not exist an elementary path C leading from t1 to
t2 such that •t1 ∩ �(C) = ∅.

Theorem 2. Let PN be a WF-net. If PN is well-structured, then PN is elementary
extended non-self controlling.

Proof. Assume that PN is not elementary extended non-self controlling. This means
that there is a pair of transitions t1 and tk such that •t1 ∩ •tk 
= ∅ and there exist an
elementary path C = 〈t1; p2; t2; : : : ; pk; tk〉 leading from t1 to tk and •t1 ∩ �(C) = ∅.
Let p1 ∈ •t1 ∩ •tk. C1 = 〈p1; tk〉 and C2 = 〈p1; t1; p2; t2; : : : ; pk; tk〉 are paths
leading from p1 to tk. (Note that C2 is the concatenation of 〈p1〉 and C.) Clearly, C1 is
elementary. We will also show that C2 is elementary. C is elementary, and p1 
∈ �(C)
because p1 ∈ •t1. Hence, C2 is also elementary. Since C1 and C2 are both elementary
paths, C1 
= C2 and �(C1) ∩ �(C2) = {p1; tk}, we conclude that PN is not well-
handled. ��

t3 t5t1

t2 t4

oi c2

c1

c3

c4

Fig. 12. A well-structured WF-net.

Consider for example the WF-net shown in Figure 12. The WF-net is well-structured
and, therefore, also elementary extended non-self controlling. However, the net is not
free-choice. Nevertheless, it is possible to verify soundness for such a WF-net very
efficiently.

Corollary 2. The following problem can be solved in polynomial time.
Given a well-structured WF-net, to decide if it is sound.



Proof. Let PN be a well-structured WF-net. The short-circuited net PN is elemen-
tary extended non-self controlling (Theorem 2) and structurally bounded (see proof of
Lemma 2). For bounded elementary extended non-self controlling nets the problem of
deciding whether a given marking is live, can be solved in polynomial time (See [15]).
Therefore, the problem of deciding whether (PN ; i) is live and bounded can be solved
in polynomial time. By Theorem 1, this corresponds to soundness. ��
Lemma 3. A sound well-structured WF-net is safe.

Proof. Let PN be the net PN extended with a transition connecting o and i. PN is
extended non-self controlling. PN is covered by state-machines (S-components), see
Corollary 5.3 in [15]. Hence, PN is safe and so is PN (see proof of Lemma 1). ��
Well-structured WF-nets and free-choice WF-nets have similar properties. In both cases
soundness can be verified very efficiently and soundness implies safeness. In spite of
these similarities, there are sound well-structured WF-nets which are not free-choice
(Figure 12) and there are sound free-choice WF-nets which are not well-structured.
In fact, it is possible to have a sound WF-net which is neither free-choice nor well-
structured (Figures 3 and 9).

6.3 S-Coverable WF-Nets

What about the sound WF-nets shown in Figure 3 and Figure 9? The WF-net shown
in Figure 9 can be transformed into a free-choice well-structured WF-net by separating
choice and parallelism. The WF-net shown in Figure 3 cannot be transformed into a
free-choice or well-structured WF-net without yielding a much more complex WF-
net. Place c7 acts as some kind of milestone which is tested by the task reminder.
Traditional workflow management systems which do not make the state of the case
explicit, are not able to handle the workflow specified by Figure 3. Only workflow
management systems such as COSA [41] have the capability to enact such a state-based
workflow. Nevertheless, it is interesting to consider generalizations of free-choice and
well-structured WF-nets: S-coverable WF-nets can be seen as such a generalization.

Definition 16 (S-coverable). A WF-net PN is S-coverable if the short-circuited net
PN is S-coverable.

The WF-nets shown in Figure 3 and Figure 9 are S-coverable. The WF-net shown in
Figure 8 is not S-coverable. The following two corollaries show that S-coverability is a
generalization of the free-choice property and well-structuredness.

Corollary 3. A sound free-choice WF-net is S-coverable.

Proof. The short-circuited net PN is free-choice and well-formed. Hence, PN is S-
coverable (cf. [21]). ��
Corollary 4. A sound well-structured WF-net is S-coverable.

Proof. PN is extended non-self controlling (Theorem 2). Hence, PN is S-coverable
(cf. Corollary 5.3 in [15]). ��



All the sound WF-nets presented in this paper are S-coverable. Every S-coverable WF-
net is safe. The only WF-net which is not sound, i.e., the WF-net shown in Figure 8,
is not S-coverable. These and other examples indicate that there is a high correlation
between S-coverability and soundness. It seems that S-coverability is one of the basic
requirements any workflow process definition should satisfy. From a formal point of
view, it is possible to construct WF-nets which are sound but not S-coverable. Typically,
these nets contain places which do not restrict the firing of a transition, but which are
not in any S-component. (See for example Figure 65 in [38].) From a practical point of
view, these WF-nets are to be avoided. WF-nets which are not S-coverable are difficult
to interpret because the structural and dynamical properties do not match. For example,
these nets can be live and bounded but not structurally bounded. There seems to be no
practical need for using constructs which violate the S-coverability property. Therefore,
we consider S-coverability to be a basic requirement any WF-net should satisfy.

Another way of looking at S-coverability is the following interpretation: S-com-
ponents corresponds to document flows. To handle a workflow several pieces of infor-
mation are created, used, and updated. One can think of these pieces of information
as physical documents, i.e., at any point in time the document is in one place in the
WF-net. Naturally, the information in one document can be copied to another docu-
ment while executing a task (i.e., transition) processing both documents. Initially, all
documents are present but a document can be empty (i.e., corresponds to a blank piece
paper). It is easy to see that the flow of one such document corresponds a state machine
(assuming the existence of a transition t∗). These document flows synchronize via joint
tasks. Therefore, the composition of these flows yields an S-coverable WF-net. One
can think of the document flows as threads. Consider for example the short-circuited
net of the WF-net shown in Figure 3. This net can be composed out of the following
two threads: (1) a thread corresponding to the physical process (places start, c1, c3, c4,
c5, c7 and end) and (2) a thread corresponding to the financial process (places start,
c2, c6, c8, and end). Note that the tasks register, reminder and archive are used in both
threads.

Although a WF-net can, in principle, have exponentially many S-components, they
are quite easy to compute for workflows encountered in practice (see also the above
interpretation of S-component as document flows or threads). Note that S-coverability
only depends on the structure and the degree of connectedness is generally low (i.e.,
the incidence matrix of a WF-net typically has few non-zero entries [9]). Unfortunately,
in general, it is not possible to verify soundness of an S-coverable WF-net in polyno-
mial time. The problem of deciding soundness for an S-coverable WF-net is PSPACE-
complete. For most applications this is not a real problem. In most cases the number
of tasks in one workflow process definition is less than 100 and the number of states
is less than 200,000. Tools using standard techniques such as the construction of the
coverability graph have no problems in coping with these workflow process definitions.

6.4 Summary

The three structural characterizations (free-choice, well-structured and S-coverable)
turn out to be very useful for the analysis of workflow process definitions. Based on



our experience, we have good reasons to believe that S-coverability is a desirable prop-
erty any workflow definition should satisfy. Constructs violating S-coverability can be
detected easily and tools can be build to help the designer to construct an S-coverable
WF-net. S-coverability is a generalization of well-structuredness and the free-choice
property (Corollary 3 and 4). Both well-structuredness and the free-choice property
also correspond to desirable properties of a workflow. A WF-net satisfying at least one
one of these two properties can be analyzed very efficiently. However, we have shown
that there are workflows that are not free-choice and not well-structured. Consider for
example Figure 3. The fact that task reminder tests whether there is a token in c7, pre-
vents the WF-net from being free-choice or well-structured. Although this is a very
sensible workflow, most workflow management systems do not support such an ad-
vanced routing construct. Even if one is able to use state-based workflows (e.g., COSA)
allowing for constructs which violate well-structuredness and the free-choice property,
then the structural characterizations are still useful. If a WF-net is not free-choice or not
well-structured, one should locate the source which violates one of these properties and
check whether it is really necessary to use a non-free-choice or a non-well-structured
construct. If the non-free-choice or non-well-structured construct is really necessary,
then the correctness of the construct should be double-checked, because it is a potential
source of errors. This way the readability and maintainability of a workflow process
definition can be improved.

7 Conclusion

In this paper, the application of Petri nets to BPM was discussed.4 First, BPM was
put in its historical perspective. Then, the topics of process design and process analysis
were discussed. These topics have been illustrated using Petri nets. In the second part of
the paper, we investigated a basic property that any workflow process definition should
satisfy: the soundness property. For WF-nets, this property coincides with liveness and
boundedness. In our quest for a structural characterization of WF-nets satisfying the
soundness property, we have identified three important subclasses: free-choice, well-
structured, and S-coverable WF-nets. The identification of these subclasses is useful
for the detection of design errors. We hope that these results demonstrate the relevance
of formal methods for BPM in general and workflow management in particular.

References

1. W.M.P. van der Aalst. Verification of Workflow Nets. In P. Azéma and G. Balbo, editors,
Application and Theory of Petri Nets 1997, volume 1248 of Lecture Notes in Computer
Science, pages 407–426. Springer-Verlag, Berlin, 1997.

2. W.M.P. van der Aalst. The Application of Petri Nets to Workflow Management. The Journal
of Circuits, Systems and Computers, 8(1):21–66, 1998.

3. W.M.P. van der Aalst. Formalization and Verification of Event-driven Process Chains. Infor-
mation and Software Technology, 41(10):639–650, 1999.

4 Note that parts of the paper are taken from [5, 6].



4. W.M.P. van der Aalst. Loosely Coupled Interorganizational Workflows: Modeling and An-
alyzing Workflows Crossing Organizational Boundaries. Information and Management,
37(2):67–75, March 2000.

5. W.M.P. van der Aalst. Workflow Verification: Finding Control-Flow Errors using Petri-net-
based Techniques. In W.M.P. van der Aalst, J. Desel, and A. Oberweis, editors, Business
Process Management: Models, Techniques, and Empirical Studies, volume 1806 of Lecture
Notes in Computer Science, pages 161–183. Springer-Verlag, Berlin, 2000.

6. W.M.P. van der Aalst. Making Work Flow: On the Application of Petri nets to Business
Process Management. In J. Esparza and C. Lakos, editors, Application and Theory of Petri
Nets 2002, volume 2360 of Lecture Notes in Computer Science, pages 1–22. Springer-Verlag,
Berlin, 2002.

7. W.M.P. van der Aalst and T. Basten. Inheritance of Workflows: An Approach to Tackling
Problems Related to Change. Theoretical Computer Science, 270(1-2):125–203, 2002.

8. W.M.P. van der Aalst and E. Best, editors. Application and Theory of Petri nets, volume
2679 of Lecture Notes in Computer Science. Springer-Verlag, Berlin, 2003.

9. W.M.P. van der Aalst, D. Hauschildt, and H.M.W. Verbeek. A Petri-net-based Tool to An-
alyze Workflows. In B. Farwer, D. Moldt, and M.O. Stehr, editors, Proceedings of Petri
Nets in System Engineering (PNSE’97), pages 78–90, Hamburg, Germany, September 1997.
University of Hamburg (FBI-HH-B-205/97).

10. W.M.P. van der Aalst and A.H.M. ter Hofstede. Verification of Workflow Task Structures: A
Petri-net-based Approach. Information Systems, 25(1):43–69, 2000.

11. W.M.P. van der Aalst, A.H.M. ter Hofstede, B. Kiepuszewski, and A.P. Barros. Advanced
Workflow Patterns. In O. Etzion and P. Scheuermann, editors, 7th International Confer-
ence on Cooperative Information Systems (CoopIS 2000), volume 1901 of Lecture Notes in
Computer Science, pages 18–29. Springer-Verlag, Berlin, 2000.

12. W.M.P. van der Aalst, A.H.M. ter Hofstede, B. Kiepuszewski, and A.P. Barros. Workflow
Patterns. Distributed and Parallel Databases, 14(1):5–51, 2003.

13. W.M.P. van der Aalst, A.H.M. ter Hofstede, and M. Weske, editors. Busines Process Man-
agement, volume 2678 of Lecture Notes in Computer Science. Springer-Verlag, Berlin, 2003.

14. J.C.M. Baeten and W.P. Weijland. Process Algebra, volume 18 of Cambridge tracts in theo-
retical computer science. Cambridge University Press, Cambridge, 1990.

15. K. Barkaoui, J.M. Couvreur, and C. Dutheillet. On liveness in Extended Non Self-
Controlling Nets. In G. De Michelis and M. Diaz, editors, Application and Theory of Petri
Nets 1995, volume 935 of Lecture Notes in Computer Science, pages 25–44. Springer-Verlag,
Berlin, 1995.

16. T. Basten and W.M.P. van der Aalst. Inheritance of Behavior. Journal of Logic and Algebraic
Programming, 47(2):47–145, 2001.

17. E. Best. Structure Theory of Petri Nets: the Free Choice Hiatus. In W. Brauer, W. Reisig,
and G. Rozenberg, editors, Advances in Petri Nets 1986 Part I: Petri Nets, central models
and their properties, volume 254 of Lecture Notes in Computer Science, pages 168–206.
Springer-Verlag, Berlin, 1987.

18. A. Cheng, J. Esparza, and J. Palsberg. Complexity results for 1-safe nets. In R.K. Shyama-
sundar, editor, Foundations of software technology and theoretical computer science, volume
761 of Lecture Notes in Computer Science, pages 326–337. Springer-Verlag, Berlin, 1993.

19. J. Dehnert and P. Rittgen. Relaxed Soundness of Business Processes. In K.R. Dittrich,
A. Geppert, and M.C. Norrie, editors, Proceedings of the 13th International Conference on
Advanced Information Systems Engineering (CAiSE’01), volume 2068 of Lecture Notes in
Computer Science, pages 157–170. Springer-Verlag, Berlin, 2001.

20. J. Desel. A proof of the Rank theorem for extended free-choice nets. In K. Jensen, edi-
tor, Application and Theory of Petri Nets 1992, volume 616 of Lecture Notes in Computer
Science, pages 134–153. Springer-Verlag, Berlin, 1992.



21. J. Desel and J. Esparza. Free Choice Petri Nets, volume 40 of Cambridge Tracts in Theoret-
ical Computer Science. Cambridge University Press, Cambridge, UK, 1995.

22. C.A. Ellis. Information Control Nets: A Mathematical Model of Office Information Flow.
In Proceedings of the Conference on Simulation, Measurement and Modeling of Computer
Systems, pages 225–240, Boulder, Colorado, 1979. ACM Press.

23. C.A. Ellis and G. Nutt. Workflow: The Process Spectrum. In A. Sheth, editor, Proceedings
of the NSF Workshop on Workflow and Process Automation in Information Systems, pages
140–145, Athens, Georgia, May 1996.

24. R. Eshuis and J. Dehnert. Reactive Petri nets for Workflow Modeling. In W.M.P. van der
Aalst and E. Best, editors, Application and Theory of Petri Nets 2003, volume 2679 of Lec-
ture Notes in Computer Science, pages 295–314. Springer-Verlag, Berlin, 2003.

25. J. Esparza. Synthesis rules for Petri nets, and how they can lead to new results. In J.C.M.
Baeten and J.W. Klop, editors, Proceedings of CONCUR 1990, volume 458 of Lecture Notes
in Computer Science, pages 182–198. Springer-Verlag, Berlin, 1990.

26. J. Esparza and M. Silva. Circuits, Handles, Bridges and Nets. In G. Rozenberg, editor,
Advances in Petri Nets 1990, volume 483 of Lecture Notes in Computer Science, pages 210–
242. Springer-Verlag, Berlin, 1990.

27. K. Gostellow, V. Cerf, G. Estrin, and S. Volansky. Proper Termination of Flow-of-control in
Programs Involving Concurrent Processes. ACM Sigplan, 7(11):15–27, 1972.

28. M.H.T. Hack. Analysis production schemata by Petri nets. Master’s thesis, Massachusetts
Institute of Technology, Cambridge, Mass., 1972.

29. D. Harel. Statecharts: A Visual Formalism for Complex Systems. Science of Computer
Programming, 8:231–274, 1987.

30. K. van Hee, N. Sidorova, and M. Voorhoeve. Soundness and Separability of Workflow Nets
in the Stepwise Refinement Approach. In W.M.P. van der Aalst and E. Best, editors, Appli-
cation and Theory of Petri Nets 2003, volume 2679 of Lecture Notes in Computer Science,
pages 335–354. Springer-Verlag, Berlin, 2003.

31. A. W. Holt. Coordination Technology and Petri Nets. In G. Rozenberg, editor, Advances
in Petri Nets 1985, volume 222 of Lecture Notes in Computer Science, pages 278–296.
Springer-Verlag, Berlin, 1985.

32. S. Jablonski and C. Bussler. Workflow Management: Modeling Concepts, Architecture, and
Implementation. International Thomson Computer Press, London, UK, 1996.

33. B. Kiepuszewski, A.H.M. ter Hofstede, and W.M.P. van der Aalst. Fundamentals of Control
Flow in Workflows. Acta Informatica, 39(3):143–209, 2003.

34. E. Kindler and W.M.P. van der Aalst. Liveness, Fairness, and Recurrence. Information
Processing Letters, 70(6):269–274, June 1999.

35. E. Kindler, A. Martens, and W. Reisig. Inter-Operability of Workflow Applications: Local
Criteria for Global Soundness. In W.M.P. van der Aalst, J. Desel, and A. Oberweis, editors,
Business Process Management: Models, Techniques, and Empirical Studies, volume 1806 of
Lecture Notes in Computer Science, pages 235–253. Springer-Verlag, Berlin, 2000.

36. P. Lawrence, editor. Workflow Handbook 1997, Workflow Management Coalition. John
Wiley and Sons, New York, 1997.

37. C.A. Petri. Kommunikation mit Automaten. PhD thesis, Institut für instrumentelle Mathe-
matik, Bonn, 1962.

38. W. Reisig. Petri Nets: An Introduction, volume 4 of EATCS Monographs in Theoretical
Computer Science. Springer-Verlag, Berlin, 1985.

39. W. Reisig and G. Rozenberg, editors. Lectures on Petri Nets I: Basic Models, volume 1491
of Lecture Notes in Computer Science. Springer-Verlag, Berlin, 1998.

40. W. Sadiq and M.E. Orlowska. Analyzing Process Models using Graph Reduction Tech-
niques. Information Systems, 25(2):117–134, 2000.



41. Software-Ley. COSA User Manual. Software-Ley GmbH, Pullheim, Germany, 1998.
42. H.M.W. Verbeek, T. Basten, and W.M.P. van der Aalst. Diagnosing Workflow Processes

using Woflan. The Computer Journal, 44(4):246–279, 2001.
43. Woflan Home Page. http://www.tm.tue.nl/it/woflan.
44. M.D. Zisman. Representation, Specification and Automation of Office Procedures. PhD

thesis, University of Pennsylvania, Warton School of Business, 1977.


