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Abstract. The new millennium is characterized by speed and distribution in ev-
ery aspect of most business and organization undertaking. Organizations are chal-
lenged to bring ideas and concepts to products and services in an ever-increasing
pace. Companies distributed by space, time and capabilities come together to
deliver products and solutions for which there is any need in the global market-
place. This creates new opportunities but also poses new problems. In this paper
we will address four problems directly related to changing business processes in
the networked economy. Two of the problems addressed surface when existing
workflow specifications are changed: the dynamic change problem and the man-
agement information problem. The third problem refers to coordination problems
in inter-organizational workflows. The fourth problem becomes relevant when
predefined workflow specifications are customized for a particular business sit-
uation. This paper will show that these problems have common characteristics.
Moreover, we will point out that an approach based on inheritance of dynamic
behavior provides a partial solution for each of the problems.

1 Introduction

Inheritance is one of the cornerstones of object-oriented programming and object-orien-
ted design. The basic idea of inheritance is to provide mechanisms which allow for
constructing subclasses that inherit certain properties of a given superclass. This paper
focuses on workflow processes [1, 24, 31, 43]. Therefore, a class corresponds to a work-
flow process definition (i.e., a routing diagram) and objects (i.e., instances of the class)
correspond to cases. In most object-oriented methods a class is characterized by a set of
attributes and a set of methods. Attributes are used to describe properties of an object
(i.e., an instance of the class). Methods symbolize operations on objects (e.g., create,
destroy, and change attribute). The structure of a class is specified by the attributes and
methods of that class. Note that the structure only refers to the static aspects of the in-
terface. The dynamic behavior of a class is either hidden inside the methods or modeled
explicitly (in UML the life-cycle of a class is modeled in terms of statecharts [50]). Al-
though the dynamic behavior is an intrinsic part of the class description (either explicit
or implicit), inheritance of dynamic behavior is not well-understood. (See [13, 14] for
an elaborate discussion on this topic and pointers to related work. Examples of alter-
native approaches are given in [38, 57, 58].) Given the widespread use of inheritance
concepts/mechanisms for the static aspects, this is remarkable. Every object-oriented



programming language supports inheritance with respect to the static structure of a
class (i.e., the interface consisting of attributes and methods). Since workflow man-
agement aims at supporting business processes, these results are not very useful in this
context. However, the work presented in [4, 6, 13, 14] deals with inheritance of dynamic
behavior in a comprehensive manner. This work is based on a particular class of Petri
nets: the so-called sound workflow nets defined in [1]. This class of Petri nets corre-
sponds to workflow processes without deadlocks, livelocks, and other anomalies. Other
inheritance-based approaches abstract from the causal relations between tasks/methods,
i.e., the control or routing structure is not taken into account. Some of the workflow
management systems available claim to be object-oriented and thus provide some sup-
port for inheritance. For example, the workflow management system InConcert [30]
allows for building workflow class hierarchies. Unfortunately, inheritance is restricted
to the attributes and the structure of the process is not taken into account. Many work-
flow management systems have been implemented using object-oriented programming
languages. However, these systems do not offer object-oriented mechanisms such as in-
heritance to the workflow designer or the designer has to program code to benefit from
the object-oriented features provided by the host language. Nevertheless, we think that
inheritance is a very useful concept for workflow management. Therefore, we advocate
the use of the inheritance notions presented in [4, 6, 13, 14] for the four workflow related
problems already mentioned in the abstract:

1. How to deal with the dynamic change problem? (Avoiding consistency problems
when migrating cases from one process to another.)

2. How to deal with the management information problem? (Providing aggregate man-
agement information of work in progress in the presence of many versions/variants
of the same workflow process.)

3. How to handle coordination problems in inter-organizational workflows by enforc-
ing local consistency rules?

4. How measure the difference between two processes? (Delta analysis to estimate the
effort required to customize a process.)

The goal of this paper is to demonstrate that several problems related to workflow design
and analysis can be addressed using the principle of inheritance. This paper does not
provide new scientific results but integrates existing results which have been published
in several papers [3, 5–7, 10, 14]. This way we hope to reveal commonalities and show
the relationships between four practical problems and our work on inheritance.

2 Problems

In this paper, we focus on business processes which can be characterized as workflow
processes. Workflows are case-based, i.e., every piece of work is executed for a specific
case: an order, an insurance claim, a tax declaration, etc. The objective of a workflow
management system is to handle these cases (by executing tasks) as efficiently and
effectively as possible. The workflow process definition specifies which tasks need to
be executed and in what order. When a task is executed for a case, this is usually done
by using one or more resources, e.g., a machine, an employee, etc. In this paper, we use



Petri nets [48] to represent workflow process definitions as indicated in[1]. For more
papers on the application of Petri nets to workflow management we refer to [8, 11, 12,
17, 19, 22, 23, 29, 42, 49].

A Petri net represents a workflow if and only if it has exactly one starting place
(source) and exactly one end place (sink) and the net obtained by adding a transition
with the sink as the only input place and the source as the only output place is strongly
connected. The latter is the case if for every two nodes x and y in the net, there is a
path from x to y. Petri nets with this particular structure are called workflow nets. Each
task is modeled by a transition. Tasks are connected by places (represented by circles)
to specify the ordering of tasks. Places may contain tokens (represented by black dots).
The state, often called marking, is the distribution of tokens over places. A transition,
i.e., a task, is enabled if and only if each of the input places contains a token. Enabled
transitions can fire while removing tokens from the input places and putting tokens on
the output places. A detailed description of the class of workflow nets is beyond the
scope of this paper and not needed for the remainder. However, some basic knowledge
of Petri nets is needed to fully understand the concepts.

2.1 Problem 1: Dynamic change

At the moment, there are more than 200 workflow products commercially available [24]
and many organisations are introducing workflow technology to support their business
processes. It is widely recognised that workflow management systems should provide
flexibility [7–9, 12, 16, 21, 28, 33, 36, 37, 47, 56]. However, today’s workflow manage-
ment systems have problems dealing with changes, e.g., new technology, new laws,
and new market requirements may lead to (structural) modifications of the workflow
process definition at hand. In addition, ad-hoc changes may be necessary, e.g., because
of exceptions. The inability to deal with various changes limits the application of to-
day’s workflow management systems.

In this paper, we restrict ourselves to changes in the process perspective. In the
process perspective there are basically two types of changes:

– Individual (ad-hoc) changes, i.e., ad-hoc adaptation of the workflow process: A sin-
gle case (or a limited set of cases) is affected. A good example is that of a hospital:
If someone enters the hospital with serious hart problems, you are not going to ask
him for his ID, although the workflow process may prescribe this. For these ad-hoc
changes one can distinguish between entry time changes (changes that occur when
a case is not yet in the system) and on-the-fly changes (while in the system, the
process definition for a case changes).

– Structural (evolutionary) changes, i.e., evolution of the workflow process: All new
cases benefit from the adaptation. A structural change is typically the result of a
BPR effort. An example of such a change is the change of a 4-year curriculum at a
university to a 5-year one.

While executing a change there are typically running cases in the system. Figure 1
shows three ways to deal with these active workflow instances: (a) restart: running cases
are rolled back and restarted at the beginning of the new process, (b) proceed: changes
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Fig. 1. How to handle running cases?

do not affect running cases by allowing for multiple versions of the process, and (c)
transfer: a case is transferred to the new process. The term dynamic change [21] is
used to refer to the latter policy. Restarting cases causes no real difficulties except that
it is often difficult to rollback the tasks that have already been executed. The proceed
policy also causes hardly any problems. In fact, it is the only policy truly supported by
today’s commercial workflow management systems. The only policy that causes serious
theoretical and practical problems is the transfer of cases. The term dynamic change
refers to the problem of handling old cases in a new process, e.g., how to transfer cases
to a new, i.e., improved, version of the process.

Figure 2 illustrates the dynamic change problem. If the sequential workflow process
(left) is changed into the workflow process where tasks B and C can be executed in
parallel (right) there are no problems, i.e., it is always possible to transfer a case from
the left to the right. The sequential process has five possible states and each of these
states corresponds to a state in the parallel process. For example, the state with a token
in s3 is mapped onto the state with a token in p3 and p4. In both cases, tasks A and B
have been executed and C and D still need to be executed.

Now consider the situation where the parallel process is changed into the sequential
one, i.e., a case is moved from the right-hand-side process to the left-hand-side process.
For most of the states of the right-hand-side process this is no problem, e.g., a token in
p1 is moved to s1, a token in p3 and a token in p4 are mapped onto a single token in s3,
and a token in p4 and a token in p5 are mapped onto a single token in s4. However, the
state with a token in p2 and p5 (A and C have been executed) causes problems because
there is no corresponding state in the sequential process (it is not possible to execute
C before B). This simple example shows that it is not straightforward to migrate old
cases to the new process after a change. Some authors have proposed a solution for the
dynamic change problem [12, 18, 20]. However, these solutions either require human
intervention or are restricted to workflows with a particular structure.
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Fig. 2. The dynamic change problem.



2.2 Problem 2: Management information

Another problem of change is that it typically leads to multiple variants of the same
process. For evolutionary (i.e., structural) change the number of variants is limited. Ad-
hoc changes may lead to the situation where the number of variants may be of the same
order of magnitude as the number of cases. To manage a workflow process with different
variants it is desirable to have an aggregated view of the work in progress. Note that in
a manufacturing process the manager can get a good impression of the work in progress
by walking through the factory. For a workflow process handling digitized information,
this is not possible. Therefore, it is of the utmost importance to supply the manager
with tools to obtain a condensed but accurate view of the workflow processes. Figure 3
shows a workflow process with two variants: a sequential one (left) and a parallel one
(middle). The numbers in the places indicate the number of cases in a specific state,
e.g., in the sequential process there are 3 cases in-between task B and task C, and in
the parallel process there are 2 cases in-betweenA andB. Since the manager requires an
aggregated view rather than a view for every variant of the workflow process, the cases
need to be mapped onto a generalized version of the different processes. A solution is
to find the Greatest Common Divisor (GCD) or the Least Common Multiple (LCM) for
the two processes shown. Finding the GCD or LCM of a set of processes is difficult
and different definitions can be used (cf. [5]). Since all the states of the sequential
process can be represented in the parallel process, we may choose the parallel process
to present management information. Other choice are possible. However, let us assume
that the GCD of the sequential process and the parallel process is indeed the parallel
one. Figure 3 shows the aggregated view of the two workflow processes (right). For
all places in the right-hand-side process except m3, it is quite straightforward to verify
that the numbers are correct. The number of tokens in place m3 corresponds to the
number of cases in-between A and C. In the sequential process, there are 1+3=4 cases
in-between A and C. In the parallel process, there are also 4 cases in-between A and
C, which brings the total to 8. For this small example, it may seem trivial to obtain
this information. However, in general there are many variants of processes which may
have up to 100 tasks and it is far from trivial to present aggregated information to the
manager. The topic of generating management information was addressed in [5–7, 55,
56]. Despite its relevance for the next generation of workflow management systems
only few researchers seem to be working on this topic.

2.3 Problem 3: Inter-organizational interface agreements

E-commerce refers to the enabling of purchasing and selling of goods and services
through a communications network [32, 59]. The ability to conduct business activities
involved in marketing, finance, manufacturing, selling and negotiation, electronically, is
what E-commerce is all about. One major objective of adopting E-commerce strategies
is to reduce costs and improve the efficiency of business processes, by replacing pa-
per business with electronic alternatives. E-commerce, in its earliest incarnation known
as Electronic Data Interchange (EDI), has been traditionally used by larger corpora-
tions to share and exchange information between business partners and suppliers us-
ing private networks. EDI enables the exchange of business data from one computer
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Fig. 3. Mapping cases in different processes onto one workflow process.



to another computer. It eliminates the need to re-key information from documents or
messages by supporting the creation of electronic versions of documents or messages
using public standard formats, which can then be transmitted, received and interpreted
by other systems. Typical applications were supply-chain management processes like
order placement and processing. However with the explosive growth of the Internet
in the last couple of years, E-commerce is now able to offer solutions for a much
broader range of business processes than EDI previously addressed. Also, the exten-
sive availability of the Internet has enabled smaller companies, hindered previously
by the large financial investment required for these private networks, to conduct busi-
ness electronically. Technologies like bar coding, automatic teller machines, email, fax,
video-conferencing, workflow and the world-wide-web have continued to impact the
success of E-commerce. Although the term E-commerce frequently refers to on-line
retailing involving businesses and consumers, experts predict that as E-commerce con-
tinues to grow, business-to-business E-commerce will continue to enjoy the lion share
of the revenue. Business-to-business E-commerce has seen tremendous growth due to
the globalization of the worldwide economy, which in turn is enabled in large part by
the omnipresence of the Internet. Many corporations are extending their markets by
mergers and strategic alliances with other companies throughout the world. Business
processes of each of the business partners now become coupled in some way, creat-
ing inter-organizational workflow processes. Workflow systems enable the automated
management and coordination of tasks, people, and resources involved in performing
a business process, in a way that streamlines and improves the efficiency of the busi-
ness process. They provide tools for modeling, enactment, administration, and moni-
toring of business processes. They, therefore, could be very useful in managing com-
plex workflow processes such as those that involve multiple organizations, i.e., inter-
organizational workflows. In particular the design of such workflow processes is often
very complex and presents some challenges [15, 25, 26, 35, 39–42, 44, 45].

The third problem we introduce in this paper, is a problem caused by a malfunction-
ing of the coordination of two business partners participating in one common process.
To describe this problem we us the following terms [10]:

– The total workflow is the whole inter-organizational workflow as it is actually exe-
cuted.

– The public workflow, also referred to as contract workflow, is the business process
the partners agreed on. This workflow only comprises tasks which are of interest to
all business partners involved, i.e., it is a abstraction of the real workflow.

– A private workflow is a part of the total workflow executed by a specific business
partner (also called domain).

One of the characteristics of inter-organizational workflow is that the companies in-
volved do not know about the processes enacted inside the other domains. The only
view they have of the others is the abstraction specified in the public workflow. Each
of the business partners involved is responsible for a part of the public workflow. Tasks
which are only of local interest are added without informing the other business partners.
Tasks related to quality control, internal bookkeeping, and storage management are typ-
ical examples of tasks which are only of local interest. Local extensions of the workflow



may cause serious problems at the global level. Reordering tasks and adding or remov-
ing causal relations may cause deadlocks, livelocks, confusion, and other anomalies.
Consider for example the public workflow shown in Figure 4. This workflow is parti-
tioned over two domains: tasks A, B, C, and D are mapped onto domain L (left) and
tasks E, F , G, and H are mapped onto domain R (right). The input place of the private
workflow of domain R is p8 and p11 is the output place of this domain.
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Fig. 4. The public workflow used to illustrate problems resulting from local change.

Both private workflows are modified to accommodate local needs. In domain L a
causal relation is added between task C and task B to make sure that C is executed
before B. In domain R the order in which F and G are executed is reversed. Figure 5
shows the two modified private workflows. Place p12 has been added to force the execu-
tion ofC beforeB. From a local point of view, this change does not cause any problems.
For domain L it is perfectly acceptable to reduce the degree of parallelism. However,
this change leads to a global deadlock. On the one hand C should be executed before
B (place p12) and on the other hand B should be executed before C (causal relation



via p9, p6, and p10). The circular dependency involving tasks C, B, F , and G causes
the overall workflow process to deadlock in the state marking places p1, p2, and p5.
Figure 5 also shows the modification of the private workflow of domain R: task F and
task G are reversed. This change alleviates the problem caused by the addition of place
p12. If both private workflows are modified as indicated in Figure 5 there would be no
deadlock. However, the modification of the private workflow of domain R is also not
acceptable. Based to the public workflow both partners agreed upon, the execution of
task C may depend on the results of task F . By reversing the order of task F and task G
there can be problems (e.g., missing data) because task C may be executed before task
F . These examples show that local changes may cause global errors, i.e., modifications
which are harmless from a local perspective may cause deadlocks, livelocks, missing
data, etc. Note that even if both business partners know about each others fragment of
the public workflow and take this knowledge into account, the anomalies such as de-
scribed can occur (both make conflicting changes, e.g., serializing tasks differently).
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2.4 Problem 4: Customizing business processes

Today’s information systems support a variety of business processes. These information
systems are based on general purpose software packages (e.g., workflow management
systems), domain specific support systems (e.g., ERP - Enterprise Resource Planning -
systems), software for a specific type of businesses (e.g., call centers, or hospitals), and
company specific solutions. To avoid ‘re-inventing the wheel’ companies are ‘sharing’
software by using standard solutions. As a result, the business process that is supported
may differ from the business process actually desired. Consider for example today’s
generation of ERP systems, e.g., SAP R/3 and BaanERP. These systems are based on
industry’s ‘best practices’. However, the ‘best practices solution’ may not apply to a
specific company. Such a company, assuming that it already made the choice to use
a particular ERP, has two choices: Either the best practices solution is used despite it
shortcomings or the software is customized by reconfiguring or reprogramming parts of
the functionality. To make this choice the costs of customization need to be assessed.
Moreover, if the company is in the process of selecting a standard system (e.g., an
ERP system), then the costs of customization amongst different systems need to be
compared.

Suppose a company interested in evaluating the costs of customization has both a
concise specification of the desired business processes (e.g., the current process) and
a model of the business processes supported by the standard system. In this case, the
challenge is to determine (automatically) the difference between both models. We use
the term delta analysis for such an investigation [27]. However, delta analysis is not
as simple as it may seem. Consider for example the two workflow processes shown
in Figure 2. What is the difference between both processes? Just considering the tasks
used/supported is not sufficient. If the routing differs, then the processes also differ. A
sequential processes consisting of 50 tasks has little in common with a process where
the same 50 tasks are executed in parallel or where only one of these tasks is selected.
For delta analysis it is necessary to determine the commonalty of both processes. Only
if it is clear where both processes “agree on”, it is possible to point out differences.
Consider the two workflow processes shown in Figure 6. What do they have in com-
mon? In a way we are again looking for the Greatest Common Divisor (GCD) of the
two workflows (cf. Section 2.2).

The GCD of two workflow process is the part where both processes agree on [5].
Therefore, only tasks which are used in both processes can appear in the GCD. How-
ever, it is not clear whether all tasks which are used in both processes should appear in
the GCD. The two workflow processes shown in Figure 6 agree on the role of task A
and task D. Therefore, the GCD should at least comprise these two tasks. For the other
two tasks this is less clear. Figure 7 shows four possibilities. If bothB andC are present
in the GCD, then it is reasonable to put them in parallel: All execution sequences pos-
sible in the sequential process are also possible in the parallel process (alternative (A)
in Figure 7). However, one might argue that alternative (A) is not the GCD since both
processes do not agree on the ordering of B and C. Since both workflow processes
agree on the role of task B relative to task A and task D, we may just add task B to the
GCD (alternative (B) in Figure 7). The same holds for task C (alternative (C) in Fig-
ure 7). Since the choice between alternative (B) and alternative (C) is rather arbitrary
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one might argue that none of these tasks should be present (alternative (D) in Figure 7).
This small example shows that the selection of a GCD is far from trivial. Note that the
deliberations used when selecting a GCD are the same as when establishing the differ-
ences between two workflow processes. Therefore, a good definition of GCD is crucial
for a structured delta analysis.
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Note that in order to do a delta analysis there have to be descriptions of both the de-
sired (or current) process and the process as supported by the standard software. Given
this observation it is interesting to point out the role of reference models in today’s ERP
systems. A good example of such a reference model is the ARIS (IDS Prof. Scheer)
reference model of the SAP R/3 functionality [51, 34]. This reference model describes
the business processes as they are (or could be) supported by SAP R/3. This model can
be used to clarify and configure the SAP R/3 system. The Event-driven Process Chains
(EPC’s) used for specifying the business processes in ARIS and SAP R/3 are similar to
Petri nets [2]. If a tool such as ARIS is also used to model the desired (or current) work-
flow process, then all the ingredients are there to do a delta analysis. Note that apart
from issues such as determining the GCD, there are other problems such as the naming
of tasks. Therefore, a good ontology is a prerequisite for any form of delta analysis.



3 Inheritance of dynamic behavior

To tackle the four problems identified in the previous section, we propose a solution
based on inheritance. First we define four inheritance notions for workflow processes
(i.e., workflows specified by workflow nets). Consider two workflow processes x and y.
When is x a subclass of y? x is a subclass of superclass y if x inherits certain features of
y. Intuitively, one could say that x is a subclass of y if and only if x can do what y can
do. Clearly, all tasks present in y should also be present in x. Moreover, x will typically
add new tasks. Therefore, it is reasonable to demand that x can do what y can do with
respect to the tasks present in y. In fact, the behavior with respect to the existing tasks
should be identical.

In [4, 14] we have identified four different notions of inheritance: protocol inher-
itance, projection inheritance, protocol/projection inheritance, and life-cycle inheri-
tance. Protocol/projection inheritance is the most restrictive form of inheritance. If x
is a subclass of y with respect to protocol/projection inheritance, then x is a subclass
of y with respect to protocol inheritance and projection inheritance. Life-cycle inheri-
tance is the most liberal form of inheritance, i.e., protocol and/or projection inheritance
implies life-cycle inheritance.

The notion of projection inheritance is based on abstraction: If it is not possible to
distinguish x and y when arbitrary tasks of x are executed, but when only the effects of
tasks that are also present in y are considered, then x is a subclass of y with respect to
projection inheritance.

For distinguishing x and y under projection inheritance we only consider the tasks
present in both nets (i.e., in y). All other tasks in x are renamed to � . One can think
of these tasks as silent, internal, or not observable. Since branching bisimulation [13]
is used as an equivalence notion, we abstract from transitions with a � label, i.e., for
deciding whether x is a subclass of y only the tasks with a label different from � are
considered. The behavior with respect to these tasks is called the observable behavior.
Added tasks (i.e., tasks present in x but not in y) can be executed but are not observable
by the outside world, i.e., projection inheritance conforms to hiding or abstracting from
tasks new in x.

The notion of protocol inheritance is based on encapsulation (i.e., blocking of new
tasks): If it is not possible to distinguish x and y when only tasks of x that are also
present in y are executed, then x is a subclass of y.

For distinguishing x and y under protocol inheritance all tasks present in x but not
in y are blocked. The new tasks are simply disallowed to be executed.

A formal definition of the four forms of inheritance is beyond the scope of this
paper. (The definition builds on branching bisimulation equivalence and an abstraction
operator which renames a given set of tasks to � .) The interested reader is referred to
[4, 6, 13, 14].

Figure 8 shows five workflow processes modeled in terms of workflow nets. Spe-
cial symbols are used to indicate the source place (i) and the sink place (o). Workflow
process (A) consists of three sequential tasks: register, handle, and archive. Each of the
other workflow processes extends this process with one additional task: check. In work-
flow process (B) task check can be executed arbitrarily many times between register
and handle. Workflow process (B) is a subclass of workflow process (A) with respect to
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Fig. 8. Five routing diagrams describing variants of a simple workflow process.



projection inheritance: If task check is abstracted from, then the two processes behave
equivalently (i.e., are branching bisimilar). Workflow process (B) is also a subclass of
workflow process (A) with respect to protocol inheritance: Blocking task check yields
two equivalent processes. Workflow process (C) is not a subclass with respect to pro-
jection inheritance: Hiding task check introduces the possibility to skip task handle and
thus change the actual behavior. However, (C) is a subclass of (A) with respect to pro-
tocol inheritance. Workflow process (D) is a subclass of workflow process (A) with
respect to projection inheritance: Hiding this task results in two equivalent processes.
However, (D) is not a subclass of (A) with respect to protocol inheritance: Blocking task
check results in a deadlock. Workflow process (E) is a subclass of workflow process (A)
with respect to projection inheritance: The detour via task check can be hidden thus
yielding an observable behavior identical to (A). Workflow process (E) is not a subclass
of workflow process (A) with respect to protocol inheritance. All workflow processes
are a subclass of (A) with respect to life-cycle inheritance. For life-cycle inheritance
some of the new tasks are blocked and others are hidden to obtain two equivalent pro-
cesses. Only workflow process (B) is a subclass with respect to protocol/projection
inheritance.

In [4, 6, 13, 14] we proposed a number inheritance-preserving transformation rules.
These rules correspond to frequently used design constructs and preserve one or more
of the four inheritance notions. A detailed description of these rules is beyond the scope
of this paper. Therefore, we give an informal description of four inheritance rules: PP,
PT, PJ, and PJ3. Protocol/projection inheritance-preserving transformation rule PP is
illustrated by Figure 9. New transitions (i.e., tasks) and places (i.e., conditions) are
added to the original workflow net such that tokens are only temporarily removed from
a place in the original net. The added subnet may have any structure as long as it is
guaranteed that any token taken from place p will be returned eventually and no tokens
are left in the subnet. Since the subnet only postpones behavior, the extended workflow
net (right) is a subclass of the original workflow net (left) under both projection and
protocol inheritance. If one abstracts from the newly added tasks or blocks the newly
added tasks, one cannot find any differences between both nets.
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Fig. 9. Inheritance-preserving transformation rule PP.



Figure 10 illustrates transformation rule PT. PT preserves protocol inheritance and
adds alternative behavior. The added subnet removes tokens from the original net to
execute tasks not present in the original net. The added subnet may have any structure
as long as any token taken from place p i (input place) will be returned in place po
(output place) eventually and no tokens are left in the subnet. Other requirements are
that new tasks consuming tokens from pi should not appear in the original net and that
the routes via the subnet do not create new states in the original net. It is easy to see that
PT preserves protocol inheritance: The added subnet is never activated if all new tasks
are blocked. Note that PT does not preserve projection inheritance since the subnet can
be used to bypass parts of the original net.
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Fig. 10. Inheritance-preserving transformation rule PT.

Figure 11 shows inheritance-preserving transformation rule PJ. Rule PJ inserts new
tasks in-between a task tp and a place p in the original workflow net. In fact, rule PJ
can be used to insert an arbitrary subflow in-between tp and p. The added subnet may
have any structure as long as it is guaranteed that once the subnet is activated by firing
tp eventually a token is put in place p and no tokens are left behind. It is easy to see
that the extended workflow net (right) is a subclass of the original workflow net (left)
under projection inheritance: by abstracting from the newly added tasks the observable
behaviors coincide.

Projection inheritance-preserving transformation rule PJ3 can be used to add par-
allel behavior. (The rule is named PJ3 for historical reasons.) Figure 12 illustrates this
rule. The execution of task ti activates the subnet containing new tasks to be executed
in parallel. Task to synchronizes the original workflow net and the added subnet. The
added subnet may use arbitrary routing constructs as long as (1) the execution of t i is
always followed by the execution of to in the original net and to is always preceded by
ti, (2) activation of the subnet via firing t i is always followed by a state which marks
the input places of to in the subnet, and (3) no tokens are left behind in the subnet after
firing to. If these three requirements are guaranteed, then the extended workflow net
(right) is a subclass of the original workflow net (left) under projection inheritance.
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Fig. 11. Inheritance-preserving transformation rule PJ.
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Fig. 12. Inheritance-preserving transformation rule PJ3.



For a formal definition of these rules we refer to [4, 6, 13, 14]. Details and subtle
requirements are omitted to simplify the presentation of the main ideas. The workflow
nets shown in Figure 8 illustrate the four rules. Rule PP introduces new tasks which
only postpone behavior. Workflow process (B) shown in Figure 8 can be constructed
from (A) by applying this rule; task check only postpones the execution of handle. Rule
PT introduces alternative behavior. Workflow process (C) shown in Figure 8 can be
constructed from (A) by applying PT. Rule PJ inserts new tasks in-between existing
tasks. Workflow process (A) shown in Figure 8 can be extended to workflow process
(E) using this rule. The extension can be a single task but also a complex subflow con-
taining many tasks and all kinds of causality relations. Rule PJ3 adds parallel behavior.
Workflow process (A) shown in Figure 8 can be extended to workflow process (D) us-
ing this rule. The four rules (PP, PT, PJ, and PJ3) correspond to design constructs that
are often used in practice, namely iteration, choice, sequential composition, and parallel
composition. If the designer sticks to these rules, inheritance is guaranteed!

4 Solution?

In the remainder we sketch in what way inheritance can assist in tackling the problems
identified Section 2. We will not provide detailed solutions: For some of the problems
we refer to other publications and for others we are exploring alternative solutions.

4.1 Problem 1: Dynamic change

The inheritance-preserving rules can be used to avoid the first problem indicated in this
paper. Moreover, the four rules enable the designer to establish syntactic and seman-
tic correctness in a compositional manner. For example, soundness can be verified by
analyzing the original part and the extension separately. To tackle the dynamic change
problem we use the transfer rules presented in [6]. Suppose that x is a subclass of y
constructed using the rules PP, PT, PJ, and PJ3. For any state in workflow process y it is
possible to transfer a case to x such that the transfer is instantaneous (i.e., no postpone-
ments needed) and does not introduce syntactic errors (e.g., deadlocks, livelocks, and
improper termination) nor semantic errors (e.g., the double execution of tasks or unnec-
essary skipping of tasks). Moreover, it is also possible to transfer cases from subclass x
to superclass y without any problems. Note that the transfer rules are derived from the
transformation rules introduced earlier. The transfer rules to move a case to a subclass
are: rPT , rPP , rPJ , rPJ3;C and rPJ3;P (see [6]). Transfer rules rPT , rPP , and rPJ
are rather trivial because additional behavior (i.e., alternative branches or parts inserted
in-between existing parts) is introduced without eliminating existing states. The trans-
fer rule corresponding to transformation rule PJ3 is more complex because PJ3 adds
parallel behavior rather than additional behavior. When adding parallel behavior, it may
be necessary to mark places in the newly added parts. If this is the case, there is a choice
to put the tokens in the beginning of the parallel part (conservative approach r PJ3;C)
or to put the tokens at the end of the parallel part (progressive approach r PJ3;P ). This
choice depends of the desired policy. The transfer rules to move a case to a superclass



are: r−1

PT;C , r−1

PT;P , r−1

PP , r−1

PJ , and r−1

PJ3. The transfer rule corresponding to transforma-

tion rule PJ3 is simple: Simply remove the parallel parts. Transfer rules r−1

PP
and r−1

PJ

move tokens from the extended part to the superclass part. For the transfer of cases to
the superclass under transformation rule PT there are again two choices: a conservative
approach (r−1

PT;C
) and a progressive approach (r−1

PT;P
). Again the choice depends of

the desired transfer policy. Note that as long as the designer sticks to the inheritance
preserving transformation rules, the transfer rules can be generated automatically. This
means that there is no need to design complicated migration schemes.

To illustrate the transfer rules, we use the five workflow processes shown in Figure 8.
Suppose a case is in variant (A) in the state corresponding to p1. If the case is migrated
to variant (B), (C), or (E), then there is no need to modify the state (i.e., the state in the
new process is just a token in p1). If the case is migrated to variant (D), the new state
is either p1 + p3 (conservative mapping, rPJ3;C ) or p1 + p4 (progressive mapping,
rPJ3;P ). A case in variant (E) in the state corresponding to p3, is mapped onto state p2
if it is transferred to (A). A case in variant (D) in the state corresponding to p2 + p4, is
mapped onto state p2 if it is transferred to (A). These examples show that, as long as the
designer sticks to the inheritance-preserving transformation rules, it is indeed possible
to migrate cases from a superclass to a subclass and vice versa, i.e., the inheritance-
preserving transformation rules can be used to avoid the dynamic change bug illustrated
by Figure 2.

4.2 Problem 2: Management information

The transfer rules rPT , rPP , rPJ , rPJ3;C , rPJ3;P , r−1

PT;C , r−1

PT;P , r−1

PP , r−1

PJ , and r−1

PJ3

can also be used to construct management information. Construct or select an appro-
priate workflow process such that each of the variants is a subclass or superclass of
this processes via one or more inheritance-preserving transformation rules (applied in
either direction). This workflow process is called the management information net. Any
case residing in any of the variants can be mapped onto the management information
net using the transfer rules. Therefore, the aggregate management information can be
obtained automatically. Consider for example the following situation: There is one pro-
cess template and every ad-hoc variant is a subclass of this variant constructed using
the rules PP, PT, PJ, and PJ3. The template can also be used as a management infor-
mation net and all cases can be projected onto this net using r−1

PT;C , r−1

PT;P , r−1

PP , r−1

PJ ,

and r−1

PJ3. See [6] for technical details and more scenarios showing that the inheritance
concepts can really help to provide aggregate management information.

4.3 Problem 3: Inter-organizational interface agreements

In general, modeling workflow processes that span multiple organizations can be com-
plex. Many workflow-modeling tools require that the complete details of the entire pro-
cess be fixed at the design stage. This approach is often the bottleneck in workflow
design, because it requires each participating business partner to understand the na-
ture of their partners’ local processes which makes things even more complicated. This
is neither necessary nor desirable. Partners should be able to agree on their business



process at a level that abstracts from irrelevant and confusing details. Furthermore, or-
ganizations should be able to participate towards the completion of a business process,
while at the same time be at liberty to construct their private processes in any way that
places them at best advantage.

The approach we propose here for designing interorganizational workflows, is a
four-step process that involves creation of a public process, partitioning the public pro-
cess amongst the partners and allowing for modification by the individual partners of
their parts of the process to create private processes. This approach is based on the
inheritance-preserving transformation rules and is described in more detail in [3, 10].
The steps are:

1. Design public workflow process.
In the first step, the partners agree on the overall structure of the common busi-
ness process. The key tasks are identified as well as the interfaces between them.
The interfaces are specified as control and data dependencies. Process repositories
may also be used at this stage to aid the design process. The workflow process
model resulting from this stage will not contain organization specific information
like role assignment, resources assignment, etc. We refer to the workflow process
represented by this model as the public process.

2. Partition the public workflow process definition amongst business partners.
In this step, the partners are assigned to be responsible for completing parts of
the process. The workflow net is then partitioned along organizational lines. The
partitioning creates a set of workflow net fragments for each business partner. Each
set contains fragments of the public workflow net that the partner is responsible for.

3. Create a private workflow for each business partner.
The partitioning stage creates sets that are not necessarily workflow nets, but rather
fragments of a workflow net. A fragment may have multiple input or output places,
or no input or output places at all. Moreover, a fragment may contain disjunct sub-
sets (i.e. is unconnected). In other words, the fragment may not be a workflow
net (i.e., the requirements mentioned earlier are violated). This step automatically
creates a workflow net from each fragment set for each of the partners to manage lo-
cally in their organization. Note that in this step we abstract from places solely ded-
icated to message exchange between fragments, i.e., we remove all source places
except the initial one and remove all sink places except the last one in the fragment.
If after this abstraction we do not obtain a workflow net, additional modifications
by connecting the fragments by introducing arcs and implicit places are needed.
The result is a sound workflow net whose behavior preserves the interface of the
original public process. We will refer to each of the local workflows as private
processes

4. Modify private processes using inheritance preserving transformation rules.
Here, each business partner will modify their private process created in the previous
step to accurately reflect their own business process and incorporate details of how
the tasks will be implemented at their organization. Some of the details that will be
added at this stage are task implementation, assignment of roles to the tasks, data
objects to be used and any mapping of global data objects to these local data objects,
business rules, deadline specification etc. These extensions or modifications to the



minimal workflow must also preserve the behavior of the global business process.
To guarantee that local extensions and modifications do not disturb the behavior
of the public process, we use a notion of inheritance of dynamic behavior. For this
purpose, we bring projection inheritance into play. Private workflow processes are
modified while preserving projection inheritance, i.e., one is allowed to transform
the local workflow into an arbitrary subclass under projection inheritance. For this
purpose three of the four transformation rules can be used: PP, PJ, and PJ3.

The result of this approach is a set of private workflows which together form the ac-
tual total workflow. This total workflow is a sound workflow net, i.e., anomalies such
as deadlocks and dangling references cannot occur. Moreover, the total workflow is
a subclass of the private workflow under projection inheritance. This means that the
workflow actually executed is consistent with the abstract workflow the business part-
ners agreed on in the first place. These strong results show that the notion of inheritance
can be used to tackle Problem 3. See [3, 10] for more details.

4.4 Problem 4: Customizing business processes

The fourth problem to be tackled by the inheritance notions defined earlier is the prob-
lem of delta analysis, i.e., given two workflow processes: What is the difference between
those processes and how much does it cost to customize a process such that it coincides
with the other? One of the core problems is to decide where both processes agree on,
i.e., to determine the GCD (Greatest Common Divisor). In Figure 7, we showed four
possible candidates for the GCD of the two workflow processes shown in Figure 6.
Based on the inheritance relations we can experiment with various definitions of the
GCD. The most straightforward definition of the GCD of two workflow processes x
and y is the “smallest” superclass of both x and y under life-cycle inheritance, i.e., the
x is a subclass of the GCD, y is a subclass of the GCD, and there is no workflow pro-
cess z such that z is a real subclass of the GCD and a superclass of both x and y. Based
on this definition it can be shown that for any set of workflow processes there exists a
GCD. However, in some cases there may be multiple GCD’s. Consider for example the
two workflow processes shown in Figure 6. Workflow process (B) is a GCD of these
two processes: Process (B) is a superclass of both processes shown in Figure 6 and there
is no “smaller” workflow process satisfying the same conditions. However, for similar
reasons, process (C) is also a GCD. If we closely observe the two processes shown in
Figure 6, it may seem reasonable to have two GCD’s. Both processes agree on the fact
that tasks B and C are executed in-between tasks A and D. However, they do not agree
on the ordering of B and C. Therefore, either B or C is added to the GCD.

The concept of GCD was introduced in [6] and a detailed analysis of this concept
is given in [5]. Since none of the inheritance relations is a lattice, there is a trade-off
between “uniqueness” and “existence”. By using a weak notion of GCD existence is
guaranteed but there may be multiple GCD’s. By using a stronger notion, existence is
no longer guaranteed but if the GCD exists, it is unique. Given this tradeoff, we define
the notion of Maximal Common Divisor (MCD). An MCD is a “smallest” superclass
of both x and y under life-cycle inheritance. Both (B) and (C) (Figure 7) are MCD’s of
the two workflow processes shown in Figure 6. Given any set there is at least one MCD.



In [5] we reserve the term GCD for a stronger notion: z is the GCD of x and y if and
only if x is a subclass of z, y is a subclass of z, and for any v such that x is a subclass
of v and y is a subclass of v: z is a subclass of v. If there is a GCD using this stronger
notion, it is unique.

In [5, 6] conditions are given such that the MCD of a set of workflow processes is
a GCD, and therefore, unique. Further research is needed to evaluate the usefulness of
this particular notion of GCD for delta analysis. Given the fact that inheritance defines
a relation on processes, it is useful for comparing workflows. Note that each of the
four inheritance relations defines a partial order, i.e., each relation is reflexive, anti-
symmetric, and transitive [14]. Therefore, inheritance is a sound basis for defining a
notion of GCD. If a set of workflow processes is related under inheritance via subclass-
superclass relationships, it is generally quite easy to find the GCD. If this is not the case
(such as in Figure 6), the computation of a GCD is more involved and there are typically
multiple candidates (i.e., MCD’s). As pointed out when defining the problem of delta
analysis, computing the GCD is just one of the ingredients needed to calculate the costs
of customization. For example, the naming of tasks is important (i.e., a good ontology
is a necessity) and it may be difficult to establish a suitable cost structure (What is the
cost of adding/deleting a causal relation compared to adding/deleting/changing a task?).
See [27] for a more elaborate discussion on these other aspects.

5 Conclusion and tool support

In this paper we visited four notorious problems related to the design and analysis of
workflow processes:

– The problem of dynamic change: How to migrate workflow instances from the old
to the new process?

– The problem of management information: How to provide aggregate information
in the context of multiple versions/variants of a given process?

– The problem of inter-organizational interface agreements: How to align workflow
processes of different organizations while keeping local autonomy?

– The problem of customizing: How to measure the differences and commonalities
of different processes (i.e., delta analysis)?

The goal of this journey has been the integration of previous work in this area and
to demonstrate that a diverse set of problems can be addressed using the principle of
inheritance.

Our tool Woflan [54] supports the four notions of inheritance used in this paper.
Given two workflow processes, Woflan can decide whether one process is a subclass
of another process. These processes may be created using the BPR tool Protos [46] or
workflow mangement systems such as Staffware [53] and COSA [52]. Clearly, this does
not provide a complete solution for the four problems presented in this paper. However,
the fact that Woflan supports our inheritance notions demonstrates that tool support is
possible. In the future, we hope to integrate our ideas into commercial run-time sys-
tems (i.e., workflow management systems, enterprise resource planning systems, and
e-business systems).
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