
Workflow Mining: Current Status and Future
Directions

A.K.A. de Medeiros, W.M.P. van der Aalst, and A.J.M.M. Weijters

Department of Technology Management, Eindhoven University of Technology
P.O. Box 513, NL-5600 MB, Eindhoven, The Netherlands.

{a.k.medeiros, w.m.p.v.d.aalst, a.j.m.m.weijters}@tm.tue.nl

Abstract. Current workflow management systems require the ex-
plicit design of the workflows that express the business process of an
organization. This process design is very time consuming and error
prone. Considerable work has been done to develop heuristics to
mine event-data logs to produce a process model that can support
the workflow design process. However, all the existing heuristic-based
mining algorithms have their limitations. To achieve more insight into
these limitations the starting point in this paper is the α-algorithm [3]
for which it is proved under which conditions and process constructs the
algorithm works. After presentation of the α-algorithm, a classification
is given of the process constructs that are difficult to handle for this
type of algorithms. Then, for some constructs (i.e. short loops) it is
illustrated in which way the α-algorithm can be extended so that it can
correctly discover these constructs.

Keywords: Process mining, workflow mining, Petri nets, workflow Petri
nets.

1 Introduction

Every company wants to produce more in less time. One way to accomplish this
is having a well-defined business process model that reflects the dependencies
among tasks and also tasks that can be processed in parallel. Workflow man-
agement(WFM) systems offer the functionality to design and enact operational
processes.

In an ideal situation, well-defined business processes should be designed be-
fore enactment is possible and, redesigned whenever changes happen. However,
in practice a lot of time is spent on modelling business process while the result-
ing workflow models are typically still error prone, because knowledge about the
whole process is scattered among employees and paper procedures.

To avoid the above mentioned difficulties, instead of starting with a process
design, our process mining starts by gathering information about the processes
as they take place. We assume that it is possible to record events such that
(i) each event refers to a task (i.e., a well-defined step in the process), (ii) each
event refers to a case (i.e., a process instance), and (iii) events are totally ordered.
Any information system using transactional systems such as ERP (Enterprise

R. Meersman et al. (Eds.): CoopIS/DOA/ODBASE 2003, LNCS 2888, pp. 389–406, 2003.
c© Springer-Verlag Berlin Heidelberg 2003

Verwendete Distiller 5.0.x Joboptions
Dieser Report wurde automatisch mit Hilfe der Adobe Acrobat Distiller Erweiterung "Distiller Secrets v1.0.5" der IMPRESSED GmbH erstellt.
Sie koennen diese Startup-Datei für die Distiller Versionen 4.0.5 und 5.0.x kostenlos unter http://www.impressed.de herunterladen.

ALLGEMEIN --
Dateioptionen:
 Kompatibilität: PDF 1.3
 Für schnelle Web-Anzeige optimieren: Nein
 Piktogramme einbetten: Nein
 Seiten automatisch drehen: Nein
 Seiten von: 1
 Seiten bis: Alle Seiten
 Bund: Links
 Auflösung: [2400 2400] dpi
 Papierformat: [595.276 824.882] Punkt

KOMPRIMIERUNG --
Farbbilder:
 Downsampling: Ja
 Berechnungsmethode: Bikubische Neuberechnung
 Downsample-Auflösung: 300 dpi
 Downsampling für Bilder über: 450 dpi
 Komprimieren: Ja
 Automatische Bestimmung der Komprimierungsart: Ja
 JPEG-Qualität: Maximal
 Bitanzahl pro Pixel: Wie Original Bit
Graustufenbilder:
 Downsampling: Ja
 Berechnungsmethode: Bikubische Neuberechnung
 Downsample-Auflösung: 300 dpi
 Downsampling für Bilder über: 450 dpi
 Komprimieren: Ja
 Automatische Bestimmung der Komprimierungsart: Ja
 JPEG-Qualität: Maximal
 Bitanzahl pro Pixel: Wie Original Bit
Schwarzweiß-Bilder:
 Downsampling: Ja
 Berechnungsmethode: Bikubische Neuberechnung
 Downsample-Auflösung: 2400 dpi
 Downsampling für Bilder über: 3600 dpi
 Komprimieren: Ja
 Komprimierungsart: CCITT
 CCITT-Gruppe: 4
 Graustufen glätten: Nein

 Text und Vektorgrafiken komprimieren: Ja

SCHRIFTEN --
 Alle Schriften einbetten: Ja
 Untergruppen aller eingebetteten Schriften: Nein
 Wenn Einbetten fehlschlägt: Warnen und weiter
Einbetten:
 Immer einbetten: [/Courier-BoldOblique /Helvetica-BoldOblique /Courier /Helvetica-Bold /Times-Bold /Courier-Bold /Helvetica /Times-BoldItalic /Times-Roman /ZapfDingbats /Times-Italic /Helvetica-Oblique /Courier-Oblique /Symbol]
 Nie einbetten: []

FARBE(N) --
Farbmanagement:
 Farbumrechnungsmethode: Farbe nicht ändern
 Methode: Standard
Geräteabhängige Daten:
 Einstellungen für Überdrucken beibehalten: Ja
 Unterfarbreduktion und Schwarzaufbau beibehalten: Ja
 Transferfunktionen: Anwenden
 Rastereinstellungen beibehalten: Ja

ERWEITERT --
Optionen:
 Prolog/Epilog verwenden: Ja
 PostScript-Datei darf Einstellungen überschreiben: Ja
 Level 2 copypage-Semantik beibehalten: Ja
 Portable Job Ticket in PDF-Datei speichern: Nein
 Illustrator-Überdruckmodus: Ja
 Farbverläufe zu weichen Nuancen konvertieren: Ja
 ASCII-Format: Nein
Document Structuring Conventions (DSC):
 DSC-Kommentare verarbeiten: Ja
 DSC-Warnungen protokollieren: Nein
 Für EPS-Dateien Seitengröße ändern und Grafiken zentrieren: Ja
 EPS-Info von DSC beibehalten: Ja
 OPI-Kommentare beibehalten: Nein
 Dokumentinfo von DSC beibehalten: Ja

ANDERE --
 Distiller-Kern Version: 5000
 ZIP-Komprimierung verwenden: Ja
 Optimierungen deaktivieren: Nein
 Bildspeicher: 524288 Byte
 Farbbilder glätten: Nein
 Graustufenbilder glätten: Nein
 Bilder (< 257 Farben) in indizierten Farbraum konvertieren: Ja
 sRGB ICC-Profil: sRGB IEC61966-2.1

ENDE DES REPORTS --

IMPRESSED GmbH
Bahrenfelder Chaussee 49
22761 Hamburg, Germany
Tel. +49 40 897189-0
Fax +49 40 897189-71
Email: info@impressed.de
Web: www.impressed.de

Adobe Acrobat Distiller 5.0.x Joboption Datei
<<
 /ColorSettingsFile ()
 /AntiAliasMonoImages false
 /CannotEmbedFontPolicy /Warning
 /ParseDSCComments true
 /DoThumbnails false
 /CompressPages true
 /CalRGBProfile (sRGB IEC61966-2.1)
 /MaxSubsetPct 100
 /EncodeColorImages true
 /GrayImageFilter /DCTEncode
 /Optimize false
 /ParseDSCCommentsForDocInfo true
 /EmitDSCWarnings false
 /CalGrayProfile ()
 /NeverEmbed []
 /GrayImageDownsampleThreshold 1.5
 /UsePrologue true
 /GrayImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >>
 /AutoFilterColorImages true
 /sRGBProfile (sRGB IEC61966-2.1)
 /ColorImageDepth -1
 /PreserveOverprintSettings true
 /AutoRotatePages /None
 /UCRandBGInfo /Preserve
 /EmbedAllFonts true
 /CompatibilityLevel 1.3
 /StartPage 1
 /AntiAliasColorImages false
 /CreateJobTicket false
 /ConvertImagesToIndexed true
 /ColorImageDownsampleType /Bicubic
 /ColorImageDownsampleThreshold 1.5
 /MonoImageDownsampleType /Bicubic
 /DetectBlends true
 /GrayImageDownsampleType /Bicubic
 /PreserveEPSInfo true
 /GrayACSImageDict << /VSamples [1 1 1 1] /QFactor 0.15 /Blend 1 /HSamples [1 1 1 1] /ColorTransform 1 >>
 /ColorACSImageDict << /VSamples [1 1 1 1] /QFactor 0.15 /Blend 1 /HSamples [1 1 1 1] /ColorTransform 1 >>
 /PreserveCopyPage true
 /EncodeMonoImages true
 /ColorConversionStrategy /LeaveColorUnchanged
 /PreserveOPIComments false
 /AntiAliasGrayImages false
 /GrayImageDepth -1
 /ColorImageResolution 300
 /EndPage -1
 /AutoPositionEPSFiles true
 /MonoImageDepth -1
 /TransferFunctionInfo /Apply
 /EncodeGrayImages true
 /DownsampleGrayImages true
 /DownsampleMonoImages true
 /DownsampleColorImages true
 /MonoImageDownsampleThreshold 1.5
 /MonoImageDict << /K -1 >>
 /Binding /Left
 /CalCMYKProfile (U.S. Web Coated (SWOP) v2)
 /MonoImageResolution 2400
 /AutoFilterGrayImages true
 /AlwaysEmbed [/Courier-BoldOblique /Helvetica-BoldOblique /Courier /Helvetica-Bold /Times-Bold /Courier-Bold /Helvetica /Times-BoldItalic /Times-Roman /ZapfDingbats /Times-Italic /Helvetica-Oblique /Courier-Oblique /Symbol]
 /ImageMemory 524288
 /SubsetFonts false
 /DefaultRenderingIntent /Default
 /OPM 1
 /MonoImageFilter /CCITTFaxEncode
 /GrayImageResolution 300
 /ColorImageFilter /DCTEncode
 /PreserveHalftoneInfo true
 /ColorImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >>
 /ASCII85EncodePages false
 /LockDistillerParams false
>> setdistillerparams
<<
 /PageSize [595.276 841.890]
 /HWResolution [2400 2400]
>> setpagedevice

390 A.K.A. de Medeiros, W.M.P. van der Aalst, and A.J.M.M. Weijters

Resource Planning), CRM (Customer Relationship Management), B2B (Busi-
ness to Business), SCM (Supply Chain Management) and WFM systems will
offer this information in some form. Note that we do not assume the presence of
a WFM system. The only assumption we make, is that it is possible to collect a
process log that records the order in which the events take place.

Table 1. A process log.

case identifier task identifier
case 1 task A
case 2 task A
case 3 task A
case 3 task B
case 1 task B
case 1 task C
case 2 task C
case 4 task A
case 2 task B
case 2 task D
case 5 task E
case 4 task C
case 1 task D
case 3 task C
case 3 task D
case 4 task B
case 5 task F
case 4 task D

To illustrate the principle of process mining, we consider the process log
shown in Table 1. This log contains information about five cases (i.e., process
instances) and six tasks (A..F). Based on the information shown in Table 1 and
by making some assumptions about the completeness of the log (i.e., assuming
that the cases are representative and a sufficient large subset of possible behaviors
is observed) we can deduce for example the process model shown in Figure 1.
The model is represented in terms of a Petri net [17]. After executing A, tasks B
and C are in parallel. Note that for this example we assume that two tasks are
in parallel if they appear in any other. By distinguishing between start events
and end events for tasks it is possible to explicitly detect parallelism. Instead of
starting with A the process can also start with E. Task E is always followed by
task F. Table 1 contains the minimal information we assume to be present.

For this simple example, it is quite easy to construct a process model that is
able to regenerate the process log. For larger process models this is much more
difficult. For example, if the model exhibits alternative and parallel routing, then
the process log will typically not contain all possible combinations. Moreover,
certain paths through the process model may have a low probability and there-
fore remain undetected. Noisy data (i.e., logs containing exceptions) can further

Workflow Mining: Current Status and Future Directions 391

A
B

C
D

E F

Fig. 1. A process model corresponding to the process log.

complicate matters. These are just some of the problems that we need to face in
process mining research.

The focus of most research in the domain of process mining is on mining
heuristics based on ordering relations of the events in the process log (cf. Sec-
tion 5). Considerable work has been done on heuristics to mine event-data logs
to produce a process model that can support the workflow design process. How-
ever, all the existing heuristic-based mining algorithms have their limitations.
Typically, more advanced process constructs are difficult to handle for existing
mining algorithms. Some of these problematic constructs are common in work-
flows and, therefore, need to be addressed to enable practical application. To
achieve more insight into these limitations, the focus of this paper is a more
analytical approach. The starting point of this paper is the α-algorithm [3]. Also
the α-algorithm is primarily based on the ordening relations between events.
However, the mining algorithm is not based on a heuristic, but on a formal algo-
rithm for which it is proved under which conditions and process constructs the
algorithm works. By discussing the weaknesses and strengths of the α-algorithm,
we show how concepts in workflow mining could be improved in order to allow
the correct mining of common constructs that appear in workflow system (loops,
duplicate tasks, implicit places, non-free-choice constructs, etc.). Our final goal
is to extend the α-algorithm so that the class of constructs for which we can
prove that we can mine them correctly becomes larger. For some constructs (i.e.
short loops) it is illustrated how the α-algorithm can be extended so that it can
correctly handle these constructs.

The rest of the paper is organized as follows. In Section 2, the α-algorithm
is explained. Problematic constructs that are not adequately tackled by α-
algorithm are explained in Section 3. Possible ways to tackle these constructs
are discussed in Section 4. Section 5 discusses related work on process mining.
The final observations and comments are given in Section 6.

2 Workflow Mining: The α-Algorithm

The α-algorithm receives as input an event log and returns as output a Place/-
Transition net (P/T-net) [17]. This section shows the main concepts required to
understand the α-algorithm. A complete description and its properties is given
in [3].

In the more theoretical approach, we do not focus on issues such as noise.
We assume that there is no noise and that the workflow log contains “sufficient”
information. Under these ideal circumstances we investigate whether the α al-

392 A.K.A. de Medeiros, W.M.P. van der Aalst, and A.J.M.M. Weijters

gorithm is possible to rediscover the workflow process, i.e., for which class of
workflow models is it possible to accurately construct the model by merely look-
ing at their logs. The α algorithm is based on four ordering relations which can
be derived from the log: >W , →W , #W , and ‖W .

Definition 2.1. (Log-based ordering relations) Let W be a workflow log
over T , i.e., W ∈ P(T ∗). Let a, b ∈ T :

– a >W b if and only if there is a trace σ = t1t2t3 . . . tn−1 and i ∈ {1, . . . , n−2}
such that σ ∈ W and ti = a and ti+1 = b,

– a →W b if and only if a >W b and b �>W a,
– a#W b if and only if a �>W b and b �>W a, and
– a‖W b if and only if a >W b and b >W a.

Relation →W suggests causality and relations ‖W and #W are used to differ-
entiate between parallelism and choice. Since all relations can be derived from
>W , we assume the log to be complete with respect to >W (i.e., if one task can
follow another task directly, then the log should have registered this potential
behavior). Structured Workflow Petri nets (SWF-nets) are a subclass of workflow
nets (WF-nets) in which the net structure explicitly shows its behavior. Conse-
quently, in SWF-nets (i) choice and synchronization are not mixed, and (ii) if
there is a synchronization, all of its preceding transitions will have fired. These
constraints are illustrated in Figure 2. Additionally, SWF-nets do not allow for
implicit places in the net structure [3].

(i) (ii)

Fig. 2. Constructs not allowed in SWF-nets.

To formally define the α algorithm we introduce some basic terminology.

Definition 2.2. (∈, first, last) Let T be a set of tasks. Let σ = a1a2 . . . an ∈ T ∗

a sequence over T of length n. ∈, first , and last are defined as follows:

1. a ∈ σ if and only if a ∈ {a1, a2, . . . an},
2. if n ≥ 1, then first(σ) = a1 and last(σ) = an.

Now we can give the formal definition of the α algorithm followed by a more
intuitive explanation.

Definition 2.3. (Mining algorithm α) Let W be a workflow log over T . α(W)
is defined as follows.

1. TW = {t ∈ T | ∃σ∈W t ∈ σ},
2. TI = {t ∈ T | ∃σ∈W t = first(σ)},

Workflow Mining: Current Status and Future Directions 393

3. TO = {t ∈ T | ∃σ∈W t = last(σ)},
4. XW = {(A, B) | A ⊆ TW ∧ B ⊆ TW ∧ ∀a∈A∀b∈Ba →W b ∧

∀a1,a2∈Aa1#W a2 ∧ ∀b1,b2∈Bb1#W b2},
5. YW = {(A, B) ∈ XW | ∀(A′,B′)∈XW

A ⊆ A′ ∧B ⊆ B′ =⇒ (A, B) = (A′, B′)},
6. PW = {p(A,B) | (A, B) ∈ YW } ∪ {iW , oW },
7. FW = {(a, p(A,B)) | (A, B) ∈ YW ∧ a ∈ A} ∪ {(p(A,B), b) | (A, B) ∈

YW ∧ b ∈ B} ∪ {(iW , t) | t ∈ TI} ∪ {(t, oW) | t ∈ TO}, and
8. α(W) = (PW , TW , FW).

The α-algorithm works as follows. First, it examines the log traces and (Step 1)
creates the set of transitions (TW) in the workflow, (Step 2) the set of output
transitions (TI) of the source place , and (Step 3) the set of the input transitions
(TO) of the sink place1. In steps 4 and 5, the α-algorithm creates sets (XW and
YW , respectively) used to define the places of the mined workflow net. In Step
4, it discovers which transitions are causally related. Thus, for each tuple (A, B)
in XW , each transition in set A causally relates to all transitions in set B, and
no transitions within A (or B) follow each other in some firing sequence. These
constraints to the elements in sets A and B allow the correct mining of AND-
split/join and OR-split/join constructs. Note that the OR-split/join requires the
fusion of places. In Step 5, the α-algorithm refines set XW by taking only the
largest elements with respect to set inclusion. In fact, Step 5 establishes the exact
amount of places the mined net has (excluding the source place iW and the sink
place oW . The places are created in Step 6 and connected to their respective
input/output transitions in Step 7. The mined workflow net is returned in Step
8.

Definition 2.4. (Ability to rediscover) Let N = (P, T, F) be a sound WF-
net and let the α be a mining algorithm which maps workflow logs of N onto
sound WF-nets. If for any complete workflow log W of N the mining algorithm
returns N (modulo renaming of places), then the α is able to rediscover N .

An algorithm/heuristic is said to rediscover a workflow net if this algorithm is
able to regenerate the exact net structure of the original net, abstracting from
the place labels (see Definition 2.4). The α-algorithm is proved to (re)discover all
SWF-nets if the SWF-net does not contain short-loops. That means that short
loops are a first limitation of the α-algorithm. However, if the notion of ability to
rediscover is relaxed to behaviorally equivalent (i.e. both generate the same log
traces), then the α-algorithm is able to mine other sound WF-nets, like the one
in Figure 3. This net is not an SWF-net because transition G can be enabled
without the firing of transitions E and F . However, even with this relaxed notion
of ability to rediscover and the restriction on short-loops, the α-algorithm cannot
be proved to correctly mine all sound WF-nets.
The next section classifies the situations to which the α-algorithm fails to mine
sound WF-nets. Understanding the limitations of α-algorithm helps in develop-
ing new algorithms/heuristics to tackle these limitations.
1 In a workflow net, the source place i has no input transitions and the sink place o

has no output transitions.

394 A.K.A. de Medeiros, W.M.P. van der Aalst, and A.J.M.M. Weijters

I X

B

O

D

G
F

p2

C
E

p1

OR-join

AND-join

Fig. 3. A WF-net that can be rediscovered by the α-algorithm, although it is not an
SWF-net.

3 Limitations of the α-Algorithm: Loops, Invisible Tasks,
and Duplicate Tasks

As motivated in the previous section the α-algorithm can successfully mine SWF-
nets that do not contain short-length loops. But, the α-algorithm has also serious
limitations. Although it is possible to represent many real workflows using SWF-
nets, these nets do not support other common constructs like invisible tasks and
duplicate tasks. In this section we present a classification of possible common
constructs the α-algorithm cannot mine correctly, and relations between these
constructs. Some of the constructs are within the scope of SWF-nets (like short
loops), but others are beyond the scope of SWF-nets (like duplicate tasks).

To find out the constructs the α-algorithm cannot mine correctly, it is nec-
essary to understand how it works. Basically, the α-algorithm has the following
behavior:

– A task exists in the resulting net if it is in any log trace;
– A task has ingoing arc(s) in the resulting net if (i) this task is the first task

in a log trace, or (ii) this task causally follows another task.
– A task has outgoing arc(s) in the resulting net if (i) this task is the last task

in a log trace, or (ii) this task is causally followed by another task.

If a task is not the first or last task in any trace log, and is not involved
in any causal relation, the α-algorithm does not generate ingoing and outgoing
arcs for this task. For instance, see net N3 in Figure 4. Note that task B is not
connected to any place in the resulting net. However, even if all the transitions
are connected in the resulting net, this does not guarantee that the α-algorithm
correctly mined the net. For instance, see the original and resulting nets in figures
5, 6, 7 and 8.

Places are created based on the causal (→W) and exclusive (#W) relations.
However, in some situations the resulting net does not have the same number of
places the original net has. For instance, consider the net in Figure 3 and net N1
in Figure 5. Both nets are non-SWF-net and have similar net structures. In fact,
these nets are not the same because each task E and F has only one outgoing
arc in net N1. This slight difference in the net structure leads to the inferring
of different causal and exclusive relations to these two nets. Consequently, the
α-algorithm cannot correctly mine N1, but it can mine the net in Figure 3.

Workflow Mining: Current Status and Future Directions 395

N5

BI X A OY

Resulting Net:

N6

N1 I X

A

OY

B

N0 I X

A

OY

B

B

A

I X

A

O

B

Y

N2 I X
A

O
B

Y

Resulting Net:

I X
A

O
B

Y

N3 I X A O

B

Y

Resulting Net:

I X A O

B

Y

N4

I X

A

OY

B

Resulting Net: I X

A

OY

B

Resulting Net:

I X A B OY

I X A O

B

Y

Resulting Net:

I X

A

O

B

Y

Fig. 4. Example of the existing relations between duplicate tasks, invisible tasks and
one/two-length loops.

Resulting Net:

N1

AND-join

I X

B

O

D

G
F

C
E

OR-join

N2 I X

B

O
D

G

F
C

E

AND-join

OR-join

X

BD

G

F

C

E

I

O

Fig. 5. Mined and original nets have different number of places.

396 A.K.A. de Medeiros, W.M.P. van der Aalst, and A.J.M.M. Weijters

I A

B

A

O

B

N3

N1 I X

A

A

B

B

O

N2 I

A

A

B

B

O

Resulting Net:

I A B O

Resulting Net:

I X

A

B

O

Resulting Net:

I
A

B
O

Fig. 6. Nets with duplicate tasks.

There are problems in the resulting net the α-algorithm produces when its in-
put is incomplete and/or has noise (because different relations may be inferred).
But even if the log is noise free and complete, there are a number of workflow
constructs that causes problems for the α-algorithm. Below we will discuss them.
One-length loop. In a one-length loop, the same task can be executed multiple
times in sequence. Thus, all ingoing places of this task are also its outgoing places
in the WF-net. In fact, for SWF-nets, a one-length-loop task can only have one
single place connected to it. As an example, see net N5 in Figure 7, and also net
N1 in Figure 4. Note that in the resulting nets, the one-length-loop transitions
do not have the same place as its ingoing and outgoing place. This happens
because, to generate a place with a common ingoing and outgoing task, the α-
algorithm requires the causal relation task →W task. But it is impossible to
have task >W task and task �>W task at the same time.
Two-length loop. In this case, the α-algorithm infers the two involved tasks
are in parallel and, therefore, no place is created between them. For instance,
see nets N3 and N4 in Figure 4. Note that there are no arcs between tasks A
and B in the resulting net. However, the α-algorithm would correctly mine both
N3 and N4 if the relations A →W B and B →W A were inferred, instead of the
relation A||W B.
Invisible Tasks. Invisible tasks do not appear in any log trace. Consequently,
they do not belong to TW (set of transitions in the mined net) and cannot be
present in the net the α-algorithm generates. Two situations lead to invisible
tasks: (i) a task is not registered in the log, for instance, because it may have
only a routing purpose (e.g., see tasks without label in net N2, Figure 5), or (ii)
there is noise in the log generation and real tasks are missing in the log traces.
Duplicate Tasks. Sometimes a task appear more than once in the same work-
flow. In this case, the same label is given (and thus registered in the log) to
more than one task. This can happen, for instance, when modelling the booking

Workflow Mining: Current Status and Future Directions 397

I X

A

OYN5
N6 I X A OY

N2 I X
A

O
A

Y

N3
I X A O

A

Y

N1 I X A OA Y

N4 I X A OY

Resulting Net: I X A OY

Resulting Net:
I X

A

OY

Fig. 7. Example of the existing relations between duplicate tasks, invisible tasks and
one-length loops.

process in a travel agency. Clients can go there to book a flight only, book a hotel
only, or both. Thus, a workflow model describing this booking situation could be
like net N3, in Figure 6 (assume A =“book flight” and B =“book hotel”). Note
that the resulting net for net N3 contains only one task with label A and one
with B. The α-algorithm will never capture task duplication because it cannot
distinguish different task with the same label (see also the other nets in Figure
6). In fact, in an SWF-net it is assumed that tasks are uniquely identifiable.
Thus, a heuristic to capture duplicate tasks will have to generate WF-nets in
which tasks can have identical labels.
Implicit Places. SWF-nets do not have implicit places. Places are implicit if
their presence or absence does not affect the possible log traces of a workflow.
For example, places p3 and p4 are implicit in net N3 (see Figure 8). Note that
the same causal relations are inferred when these implicit places are present or
absent. However, the α-algorithm creates places according to the existing causal
relations. Thus, implicit places cannot be captured because they do not influence
causal relations between tasks. Note also that this same reason prevents the α-
algorithm of generating explicit places between tasks that do not have a causal
relation. As an example, see places p1 and p2 in net N2 (also in Figure 8). Both
places constrain the execution of tasks D and E because the choice between the
execution of these tasks is made after the execution of A or B, respectively, and
not after the execution of C. In fact, if the places p1 and p2 are removed from
N2, net N4 is obtained (see Figure 8). However, in N4, the choice between the
execution of tasks D and E is made after the execution of task C. Consequently,
a log trace like XACEY can be generated by N4, but cannot by N2.
Non-free choice. The non-free choice construct combines synchronization and
choice. Thus, it is not allowed in SWF-nets because it corresponds to construct
(i) in Figure 2. Nets containing non-free choice constructs are not always mined
correctly by the α-algorithm. For instance, consider the non-free-choice net N2,
Figure 8. The α-algorithm does not mine correctly N2 because this net cannot

398 A.K.A. de Medeiros, W.M.P. van der Aalst, and A.J.M.M. Weijters

Non-free
choice

construct

N1

N4

I X
A

O
B

Y
EC

DC

N2 I X
A

O
B

Y
E

C
D

p1

p2

N3 I X
A

O
B

Y
EC

DC

p4

p3

Resulting Net:

I X
A

O
B

Y
E

C
D

Implicit
places

I X
A

O
B

Y
E

C
D

Fig. 8. Example of existing relations between duplicate tasks, non-free choice nets,
implicit places and SWF-nets.

generate any log trace with the substring AD and/or BE. Consequently, there
is no causal relation A →W D and B →W E, and no creation of the respec-
tive places p1 and p2 in the resulting net. However, there are non-free choice
constructs which the α-algorithm can mine correctly. As an example, consider
net N1 in Figure 9. This net is similar to net N2 in Figure 8, but N1 has two
additional tasks F and G. The α-algorithm can correctly mine N1 because there
is a causal relation F →W D (enabling the creation of place p1) and G →W E
(enabling the creation of p2). Thus, the α-algorithm can correctly mine non-free-
choice constructs as far as the causal relations can be inferred.
Synchronization of OR-join places. The synchronization of OR-join places
is a non-SWF-net construct because it correspond to construct (ii) in Figure 2.
However, although this is a non-SWF-net construct, sometimes the α-algorithm
can correctly mine it. For instance, see the WF-net in Figure 3. Places p1 and p2
are OR-join places. p1 is an OR-join place because it contains a token if task B or
E or F is executed. Similarly, p2 if task D or E or F is executed. Besides, both
p1 and p2 are synchronized at task G, since this task can happen only when there
is a token in both p1 and p2. Note that this construct corresponds to a non-SWF-
net because task G can be executed whenever some of the tasks that precede it
have been executed. If the net in Figure 3 were an SWF-net, task G could be
executed only after the execution of tasks B, D, E and F . However, although
the net in Figure 3 is a non-SWF-net, the α-algorithm can correctly mine it
because the necessary and sufficient causal (→W) and exclusive(#W) relations
are inferred. However, for some synchronization of OR-join places constructs,
the inferred causal and exclusive relations are not enough to correctly mine
the net. For instance, consider net N1 in Figure 5. The resulting net the α-
algorithm mines is not equal to N1 because it contains two additional places

Workflow Mining: Current Status and Future Directions 399

among tasks B, D, E, F and task G. This net structure with extra places derives
from the inferred relations. Note that because B ‖W D and E ‖W F in net N1,
but B#W E, B#W F ,D#W E and D#W F , the places p({B,E},{G}), p({B,F},{G}),
p({D,E},{G}) and p({D,F},{G}) are created by the α-algorithm, when only places
p({B,E},{G}) and p({D,F},{G}) would do. Thus, in this case, the inferred relations
do not allow the α-algorithm to correctly mine the net. However, the resulting
net is behaviorally equivalent to the original net, even if their structures are
different because both nets generate exactly the same set of traces.

Non-free choice
construct

N1 I X
A

O
B

Y
E

C
D

p1

p2

F

G

Fig. 9. Example of a non-free choice net which the α-algorithm can mine correctly.

There are relations among the problematic constructs that imply in trade-offs.
The problematic constructs are related because (i) the same set of log traces
can satisfy the current notion of log completeness, and/or (ii) the same set of
ordering relations can be inferred when the original net contains one of the
constructs. Therefore, no mining algorithm can detect which of the constructs
are in the original net. In fact, any mining algorithm must choose which one of
the related constructs is going to be used in the resulting net. Some examples
demonstrating that the problematic constructs are related:
Duplicate Tasks (Sequence vs Parallel vs Choice). Duplicate tasks can
be in sequential, parallel, or choice structures in the WF-net. These duplicate
task structures are related because the same complete log can satisfy different
WF-nets containing them. As an example, see the respective nets N1, N2 and N3
in Figure 7. Note that a log containing only the trace XAAY would be complete
for the three nets N1, N2, and N3. Thus, given this input trace, it is impossible
for a mining algorithm to determine which duplicate task structure really exists
in the original net.
Invisible Tasks vs Duplicate Tasks. WF-nets with the same ordering re-
lations can be created either using invisible tasks or using duplicate tasks. For
instance, consider nets N3 and N4 in Figure 7. Their ordering relations are the
same whatever the workflow log. Additionally, note that a log containing only
the trace XAAY would be complete also for nets N1−3 and N4.
Invisible Tasks vs Loops. Behaviorally equivalent WF-nets can be created
either using invisible tasks or using loops. For instance, consider nets N5 and N6
in Figure 7. These nets generate exactly the same set of log traces.
Invisible Tasks vs Synchronization of OR-join places. See nets N1 and
N2 in Figure 5. The α-algorithm generates the same resulting net for both N1
and N2 because these nets are behaviorally equivalent.
Non-Free Choice vs Duplicate Tasks. Nets N1 and N2 in Figure 8 are
behaviorally equivalent.

400 A.K.A. de Medeiros, W.M.P. van der Aalst, and A.J.M.M. Weijters

Loops vs Invisible Tasks together with Duplicate Tasks. Nets with equal
sets of ordering relations can be created if loops or invisible tasks in combination
with duplicate tasks are used. For instance, see nets N0 and N1 in Figure 4. Net
N0 has duplicate tasks and invisible tasks in its structure. Net N1 has two one-
length loops, involving tasks A and B. These two nets lead to the same set of
ordering relations because, whatever the complete log, the inferred causal and
parallel ordering relations will always be X →W A, X →W B, X →W Y ,
B →W Y , A →W Y , and A||W B.
In fact, these relations raise questions like: Is it possible to develop heuristics
that detect both loops and invisible tasks? Duplicate tasks and invisible tasks?
If it is not, what problematic constructs should have priority in the mining? In
what situations? These are the kind of questions our current research is trying
to answer. In the following section we explain possible approaches to tackle the
classes of structural constructs the α-algorithm cannot mine correctly. Addition-
ally, we give examples on how to apply these approaches.

4 Approaches to Tackle Structural Problematic
Constructs

Process mining can be viewed as a three-phase process: pre-processing, process-
ing and post-processing. In the pre-processing phase, based on the assumption
that the input log satisfies the required notion of log completeness, the order-
ing relations are inferred. The processing phase corresponds to the execution
of the mining algorithm, given the log and the ordering relations as input. In
our case, the mining algorithm is the α-algorithm. During post-processing, the
mined Petri-net can be fine-tuned and a graphical representation can be build.
Possible approaches to tackle structural problematic constructs focus on one or
more of these phases.

In this section, we use the problematic constructs one- and two-length loops in
SWF-nets to exemplify how approaches can be developed to tackle problematic
constructs. We chose to tackle them first because in this way we can extend the α-
algorithm to mine all SWF-nets (including short loops). Subsection 4.1 contains
an approach to tackle one-length loops. This is a mixed approach that focusses
both on the pre- and post-processing phases. Subsection 4.2 presents an approach
to tackle two-length loops. This approach focusses on the pre-processing phase.

4.1 Example of a Mixed Approach Focusing on the Pre- and
Post-processing Phases

To develop an approach to tackle one-length loops in SWF-nets, we first deter-
mine (i) how one-length loops can be identified in the input log and (ii) what
kind of patterns can be used to build them in SWF-nets.
Identification. One-length loops can be identified by checking if there are log
traces containing the substring t1t1. For instance, any complete log for N5 in
Figure 7 contains the trace XAAY .

Workflow Mining: Current Status and Future Directions 401

WF-structure. For SWF-nets, it can be proven that one-length-loop tasks are
connected to a single place. The WF-structure is illustrated in Figure 10.

X Yp1

A

Fig. 10. Structure of one-length loops in SWF-nets.

The reasoning used to identify this single structure is as follows. Let task A be
in a one-length loop. First, A can never be connected to source/sink places in an
SWF-net because the source place i has no ingoing task and the sink place o has
no outgoing task. Second, task A cannot have more than one ingoing place (see
N1 in Figure 11) because SWF-nets do not allow for synchronization and choice
to mixed (recall construct (i) in Figure 2). Third, task A cannot be connected
to places that are only its outgoing places (see N2 in Figure 11) because these
places can contain more than one token. All places in SWF-nets contain at most
one token. Finally, at least two other tasks (X and Y) are necessary. The X task
puts a token in the place connected to A (all tasks are live in SWF-nets). The
Y removes a token from this place (in SWF-nets, no tasks can execute after the
process termination).

N1 N2i X Y o

A

i X Y o

A

Fig. 11. Illustration of the reasoning used to determine the single structure of one-
length loops in SWF-nets.

The unique structure in which one-length loops appears in SWF-nets is repre-
sented in Figure 10. Three distinct tasks can be distinguished: the one-length-
loop task (A), one ingoing task (X) and one outgoing task (Y). Consequently, for
every one-length-loop pattern, there are at least the causal relations: X →W Y ,
X →W A and A →W Y . Besides, every one-length-loop task A is connected to
a single place (p1 in Figure 10) because we are working with SWF-nets. Thus,
if we remove A from this pattern, it is still possible to mine p1 in this pattern
because the causal relation X →W Y still exists. In order words, it is possible to
mine the basic SWF-net structure of the workflow process without considering
the one-length-loop tasks when inferring the ordering relations. This reasoning
is the base for the following mixed approach.

First, in a pre-processing phase the one-length-loop tasks and their respective
neighbors are identified and recorded. Then, the one-length-loop tasks are elimi-
nated from the log. Secondly, the α-algorithm is applied to the pre-processed log.

402 A.K.A. de Medeiros, W.M.P. van der Aalst, and A.J.M.M. Weijters

The result is a WF-net with the X →W Y causal relation and the p1 place. In
the post-processing phase, based on the recorded data, the one-length loop tasks
are connected to the right places in the WF-net generated by α-algorithm. Note
that this approach does not modify the processing phase (i.e. the α algorithm)
itself.

4.2 Example of an Approach Focusing on the Pre-processing Phase

To build an approach to tackle two-length loops in SWF-nets, we first need to
set (i) how two-length loops can be identified and (ii) what kind of patterns can
be used to build them in SWF-nets.
Identification. The current notion of log completeness does not allow the differ-
entiation between tasks in parallel and tasks in a two-length loop. This happens
because a log can be complete without having one trace in which the two-length-
loop tasks follow one another in a row. In other words, if t1 and t2 belong to
a two-length loop in an SWF-net, a log can be complete without having the
pattern t1t2t1. For instance, see net N1 in Figure 12. The log containing the
traces XAY , XABW , XW , ZBW , ZBAY and ZY is complete. However, this
log does not contain the pattern ABA. Thus, any approach to tackle two-length
loops in SWF-nets requires a new notion of log completeness.

N1 I X OY

Z

W

A

B

Fig. 12. Example of an SWF-net for which the new notion of log completeness is
required to correctly capture 2-length loops.

WF-structure. Recall that the current definition of ordering relations infers
that tasks in two-length loops are in parallel. In contrast to one-length-loops the
possible structure for two-length loops is not completely clear. Our discoveries
so far shows that two-length loops can be mined correctly if the causal relations
of tasks involved in the two-length loop are correctly mined.

Our proposed solution for the two-length-loop problem is an adaptation of
the original definition of log completeness and an adaptation of the definition of
some the basic relations.

In the original definition of log completeness (Section 2), we assume the log
to be complete with respect to >W (i.e., if one task can follow another task
directly, then the log should have registered this potential behavior). In the
adapted version not only the binary >W relation, but also triples are involved.
If the pattern t1t2t1 is possible, a complete log must contain this triple.

Using this insight, we redefine Definition 2.1, i.e., we provide new definitions
for the four basic ordering relations >W , →W , #W , and ‖W .

Workflow Mining: Current Status and Future Directions 403

Definition 4.1. (Ordering relations capturing two-length loops) Let W
be a loop-complete workflow log over T , i.e., W ∈ P(T ∗). Let a, b ∈ T :

– a >′′
W b if and only if there is a trace σ = t1t2t3 . . . tn−1 and i ∈ {1, . . . , n−2}

such that σ ∈ W and ti = a and ti+1 = b,
– a →′′

W b if and only if (a >W b and (b �>W a or ∃σ∈W [σ = t1t2t3 . . . tn and
i ∈ {1, . . . , n − 2} and ti = ti+2 = a and ti+1 = b])) ,

– a#′′
W b if and only if a �>W b and b �>W a, and

– a‖′′
W b if and only if a >W b and b >W a and ¬∃σ∈W [σ = t1t2t3 . . . tn and

i ∈ {1, . . . , n − 2} and ti = ti+2 = a and ti+1 = b])).

Note that Definition 4.1 considers the new notion of log completeness. The
main idea is that two tasks t1 and t2 (with t1 �= t2), will be in parallel if, and
only if, there is no log trace containing the substring t1t2t1. If the α-algorithm
is applied using the new Definition 4.1, an SWF-net containing two-length loops
can be mined. Examples are the nets N3 and N4 in Figure 4, and net N1 in
Figure 12. Note that this approach enables the mining of SWF-nets with two-
length-loops by modifying only the pre-processing phase (establishing the basic
relations →W , #W , and ‖W).

5 Literature on Process Mining

The idea of process mining is not new [4,6,7,8,10,11,12,14,15,18,19,2,20,3]. Cook
and Wolf have investigated similar issues in the context of software engineering
processes. In [6] they describe three methods for process discovery: one using
neural networks, one using a purely algorithmic approach, and one Markovian
approach. The authors consider the latter two the most promising approaches.
The purely algorithmic approach builds a finite state machine where states are
fused if their futures (in terms of possible behavior in the next k steps) are
identical. The Markovian approach uses a mixture of algorithmic and statistical
methods and is able to deal with noise. Note that the results presented in [6] are
limited to sequential behavior. Cook and Wolf extend their work to concurrent
processes in [7]. They propose specific metrics (entropy, event type counts, pe-
riodicity, and causality) and use these metrics to discover models out of event
streams. However, they do not provide an approach to generate explicit process
models. Recall that the final goal of the approach presented in this paper is to
find explicit representations for a broad range of process models, i.e., we want
to be able to generate a concrete Petri net rather than a set of dependency
relations between events. In [8] Cook and Wolf provide a measure to quantify
discrepancies between a process model and the actual behavior as registered
using event-based data. The idea of applying process mining in the context of
workflow management was first introduced in [4]. This work is based on workflow
graphs, which are inspired by workflow products such as IBM MQSeries work-
flow (formerly known as Flowmark) and InConcert. In this paper, two problems
are defined. The first problem is to find a workflow graph generating events ap-
pearing in a given workflow log. The second problem is to find the definitions

404 A.K.A. de Medeiros, W.M.P. van der Aalst, and A.J.M.M. Weijters

of edge conditions. A concrete algorithm is given for tackling the first problem.
The approach is quite different from other approaches: Because the nature of
workflow graphs there is no need to identify the nature (AND or OR) of joins
and splits. As shown in [13], workflow graphs use true and false tokens which
do not allow for cyclic graphs. Nevertheless, [4] partially deals with iteration by
enumerating all occurrences of a given task and then folding the graph. However,
the resulting conformal graph is not a complete model. In [15], a tool based on
these algorithms is presented. Schimm [18,19] has developed a mining tool suit-
able for discovering hierarchically structured workflow processes. This requires
all splits and joins to be balanced. Herbst and Karagiannis also address the is-
sue of process mining in the context of workflow management [11,10,12] using an
inductive approach. The work presented in [12] is limited to sequential models.
The approach described in [11,10] also allows for concurrency. It uses stochastic
task graphs as an intermediate representation and it generates a workflow model
described in the ADONIS modeling language. In the induction step task nodes
are merged and split in order to discover the underlying process. A notable dif-
ference with other approaches is that the same task can appear multiple times
in the workflow model, i.e., the approach allows for duplicate tasks. The graph
generation technique is similar to the approach of [4,15]. The nature of splits
and joins (i.e., AND or OR) is discovered in the transformation step, where
the stochastic task graph is transformed into an ADONIS workflow model with
block-structured splits and joins. In contrast to the previous papers, our work
[14,20] is characterized by the focus on workflow processes with concurrent be-
havior (rather than adding ad-hoc mechanisms to capture parallelism). In [20]
a heuristic approach using rather simple metrics is used to construct so-called
“dependency/frequency tables” and “dependency/frequency graphs”. The pre-
liminary results presented in [20] only provide heuristics and focus on issues such
as noise. In [1] the EMiT tool is presented which uses an extended version of
α-algorithm to incorporate timing information. For a detailed description of the
α-algorithm and a proof of its correctness we refer to [3].

More from a theoretical point of view, the rediscovery problem discussed in
this paper is related to the work discussed in [5,9,16]. In these papers the lim-
its of inductive inference are explored. For example, in [9] it is shown that the
computational problem of finding a minimum finite-state acceptor compatible
with given data is NP-hard. Several of the more generic concepts discussed in
these papers could be translated to the domain of process mining. It is possi-
ble to interpret the problem described in this paper as an inductive inference
problem specified in terms of rules, a hypothesis space, examples, and criteria
for successful inference. The comparison with literature in this domain raises in-
teresting questions for process mining, e.g., how to deal with negative examples
(i.e., suppose that besides log W there is a log V of traces that are not possible,
e.g., added by a domain expert). However, despite the many relations with the
work described in [5,9,16] there are also many differences, e.g., we are mining at
the net level rather than sequential or lower level representations (e.g., Markov
chains, finite state machines, or regular expressions). For a survey of existing
research, we also refer to [2].

Workflow Mining: Current Status and Future Directions 405

6 Discussion and Future Work

The focus of this paper has been on process mining algorithms and heuristics
primarily based on binary ordering relations of the events in a process log. As an
representative example of this type of algorithms we introduced the α-algorithm
and we explained why it cannot correctly mine short loops, invisible tasks, du-
plicate tasks, implicit places, non-free choice and synchronization of OR-join
places, which are all common constructs in workflows. It is important to note
that these limitations are not specific for the α-algorithm but apply to most of
the approaches described in literature.

Additionally, we have showed how two problematic constructs (i.e., loops of
length one and length two) can be handled by adapting one or more process
mining phases: pre-processing, processing or post-processing.

Our future research will be driven by the problems identified in this paper.
First, we want to extend the class of WF-nets the α-algorithm can correctly
mine. Secondly, we want to extend our mining algorithm in such a way that it
can handle workflows beyond the scope of WF-nets (for instance workflows with
duplicate or invisible tasks). Finally, we try to combine formal results with more
practical approaches in which we try to develop mining heuristics so that we can
handle more workflow logs (i.e., logs with noise and logs that are incomplete).

References

1. W.M.P. van der Aalst and B.F. van Dongen. Discovering Workflow Performance
Models from Timed Logs. In Y. Han, S. Tai, and D. Wikarski, editors, International
Conference on Engineering and Deployment of Cooperative Information Systems
(EDCIS 2002), volume 2480 of Lecture Notes in Computer Science, pages 45–63.
Springer-Verlag, Berlin, 2002.

2. W.M.P. van der Aalst, B.F. van Dongen, J. Herbst, L. Maruster, G. Schimm, and
A.J.M.M. Weijters. Workflow Mining: A Survey of Issues and Approaches. Data
and Knowledge Engineering, Accepted for publication, 2003.

3. W.M.P. van der Aalst, A.J.M.M. Weijters, and L. Maruster. Workflow Mining:
Discovering Process Models from Event Logs. IEEE Transactions on Knowledge
and Data Engineering (TKDE), Accepted for publication, 2003.

4. R. Agrawal, D. Gunopulos, and F. Leymann. Mining Process Models from Work-
flow Logs. In Sixth International Conference on Extending Database Technology,
pages 469–483, 1998.

5. D. Angluin and C.H. Smith. Inductive Inference: Theory and Methods. Computing
Surveys, 15(3):237–269, 1983.

6. J.E. Cook and A.L. Wolf. Discovering Models of Software Processes from Event-
Based Data. ACM Transactions on Software Engineering and Methodology,
7(3):215–249, 1998.

7. J.E. Cook and A.L. Wolf. Event-Based Detection of Concurrency. In Proceedings
of the Sixth International Symposium on the Foundations of Software Engineering
(FSE-6), pages 35–45, 1998.

8. J.E. Cook and A.L. Wolf. Software Process Validation: Quantitatively Measuring
the Correspondence of a Process to a Model. ACM Transactions on Software
Engineering and Methodology, 8(2):147–176, 1999.

406 A.K.A. de Medeiros, W.M.P. van der Aalst, and A.J.M.M. Weijters

9. E.M. Gold. Complexity of Automaton Identification from Given Data. Information
and Control, 37(3):302–320, 1978.

10. J. Herbst. Dealing with Concurrency in Workflow Induction. In U. Baake, R. Zo-
bel, and M. Al-Akaidi, editors, European Concurrent Engineering Conference. SCS
Europe, 2000.

11. J. Herbst. Ein induktiver Ansatz zur Akquisition und Adaption von Workflow-
Modellen. PhD thesis, Universität Ulm, November 2001.

12. J. Herbst and D. Karagiannis. Integrating Machine Learning and Workflow Man-
agement to Support Acquisition and Adaptation of Workflow Models. International
Journal of Intelligent Systems in Accounting, Finance and Management, 9:67–92,
2000.

13. B. Kiepuszewski. Expressiveness and Suitability of Languages for Control Flow
Modelling in Workflows (submitted). PhD thesis, Queensland University of Tech-
nology, Brisbane, Australia, 2002. Available via
http://www.tm.tue.nl/it/research/patterns.

14. L. Maruster, A.J.M.M. Weijters, W.M.P. van der Aalst, and A. van den Bosch.
Process Mining: Discovering Direct Successors in Process Logs. In Proceedings of
the 5th International Conference on Discovery Science (Discovery Science 2002),
volume 2534 of Lecture Notes in Artificial Intelligence, pages 364–373. Springer-
Verlag, Berlin, 2002.

15. M.K. Maxeiner, K. Küspert, and F. Leymann. Data Mining von Workflow-
Protokollen zur teilautomatisierten Konstruktion von Prozeßmodellen. In Pro-
ceedings of Datenbanksysteme in Büro, Technik und Wissenschaft, pages 75–84.
Informatik Aktuell Springer, Berlin, Germany, 2001.

16. L. Pitt. Inductive Inference, DFAs, and Computational Complexity. In K.P. Jan-
tke, editor, Proceedings of International Workshop on Analogical and Inductive
Inference (AII), volume 397 of Lecture Notes in Computer Science, pages 18–44.
Springer-Verlag, Berlin, 1889.

17. W. Reisig and G. Rozenberg, editors. Lectures on Petri Nets I: Basic Models,
volume 1491 of Lecture Notes in Computer Science. Springer-Verlag, Berlin, 1998.

18. G. Schimm. Process Mining. http://www.processmining.de/.
19. G. Schimm. Process Miner – A Tool for Mining Process Schemes from Event-

based Data. In S. Flesca and G. Ianni, editors, Proceedings of the 8th European
Conference on Artificial Intelligence (JELIA), volume 2424 of Lecture Notes in
Computer Science, pages 525–528. Springer-Verlag, Berlin, 2002.

20. A.J.M.M. Weijters and W.M.P. van der Aalst. Rediscovering Workflow Models
from Event-Based Data using Little Thumb. Integrated Computer-Aided Engi-
neering, 10(2):151–162, 2003.

	Introduction
	Workflow Mining: The $alpha $-Algorithm
	Limitations of the $alpha $-Algorithm: Loops, Invisible Tasks, and Duplicate Tasks
	Approaches to Tackle Structural Problematic Constructs
	Example of a Mixed Approach Focusing on the Pre- and Post-processing Phases
	Example of an Approach Focusing on the Pre-processing Phase

	Literature on Process Mining
	Discussion and Future Work

