
Business Process Management Demystified:
A Tutorial on Models, Systems and Standards for

Workflow Management

Wil M.P. van der Aalst

Department of Technology Management
Eindhoven University of Technology

P.O.Box 513, NL-5600 MB Eindhoven, The Netherlands
w.m.p.v.d.aalst@tm.tue.nl

Abstract. Over the last decade there has been a shift from “data-aware” informa-
tion systems to “process-aware” information systems. To support business pro-
cesses an enterprise information system needs to be aware of these processes
and their organizational context. Business Process Management (BPM) includes
methods, techniques, and tools to support the design, enactment, management,
and analysis of such operational business processes. BPM can be considered as an
extension of classical Workflow Management (WFM) systems and approaches.
This tutorial introduces models, systems, and standards for the design, analysis,
and enactment of workflow processes. Petri nets are used for the modeling and
analysis of workflows. Using Petri nets as a formal basis, contemporary systems,
languages, and standards for BPM and WFM are discussed. Although it is clear
that Petri nets can serve as a solid foundation for BPM/WFM technology, in re-
ality systems, languages, and standards are developed in an ad-hoc fashion. To
illustrate this XPDL, the “Lingua Franca” proposed by the Workflow Manage-
ment Coalition (WfMC), is analyzed using a set of 20 basic workflow patterns.
This analysis exposes some of the typical semantic problems restricting the ap-
plication of BPM/WFM technology.

Keywords: Business process management, Workflow management, Workflow manage-
ment systems, Workflow patterns, XML Process Definition Language (XPDL), Work-
flow verification.

1 Introduction

This section provides some context for the topics addressed in this tutorial. First, we
identify some trends and put them in a historical perspective. Then, we focus on the
BPM life-cycle and discuss the basic functionality of a WFM system. Finally, we out-
line the remainder of this tutorial.

1.1 Historical perspective

To show the relevance of Business Process Management (BPM) systems, it is interest-
ing to put them in a historical perspective. Consider Figure 1, which shows some of the

ongoing trends in information systems. This figure shows that today’s information sys-
tems consist of a number of layers. The center is formed by the operating system, i.e.,
the software that makes the hardware work. The second layer consists of generic ap-
plications that can be used in a wide range of enterprises. Moreover, these applications
are typically used within multiple departments within the same enterprise. Examples
of such generic applications are a database management system, a text editor, and a
spreadsheet program. The third layer consists of domain specific applications. These
applications are only used within specific types of enterprises and departments. Exam-
ples are decision support systems for vehicle routing, call center software, and human
resource management software. The fourth layer consists of tailor-made applications.
These applications are developed for specific organizations.

operating
system

Trends in information systems:
1. From programming to assembling.
2. From data orientation to process
orientation.
3. From design to redesign
and organic growth.

generic
applications

domain specific
applications

tailor-made
applications

Fig. 1. Trends relevant for business process management.

In the sixties the second and third layer were missing. Information systems were
built on top of a small operating system with limited functionality. Since no generic nor
domain specific software was available, these systems mainly consisted of tailor-made
applications. Since then, the second and third layer have developed and the ongoing
trend is that the four circles are increasing in size, i.e., they are moving to the out-
side while absorbing new functionality. Today’s operating systems offer much more
functionality. Database management systems that reside in the second layer offer func-
tionality which used to be in tailor-made applications. As a result of this trend, the
emphasis shifted from programming to assembling of complex software systems. The
challenge no longer is the coding of individual modules but orchestrating and gluing
together pieces of software from each of the four layers.

Another trend is the shift from data to processes. The seventies and eighties were
dominated by data-driven approaches. The focus of information technology was on
storing and retrieving information and as a result data modeling was the starting point
for building an information system. The modeling of business processes was often ne-
glected and processes had to adapt to information technology. Management trends such

as business process reengineering illustrate the increased emphasis on processes. As a
result, system engineers are resorting to a more process driven approach.

The last trend we would like to mention is the shift from carefully planned designs
to redesign and organic growth. Due to the omnipresence of the Internet and its stan-
dards, information systems change on-the-fly. As a result, fewer systems are built from
scratch. In many cases existing applications are partly used in the new system. Although
component-based software development still has it problems, the goal is clear and it is
easy to see that software development has become more dynamic.

The trends shown in Figure 1 provide a historical context for BPM. BPM systems
are either separate applications residing in the second layer or are integrated compo-
nents in the domain specific applications, i.e., the third layer. Notable examples of BPM
systems residing in the second layer are WorkFlow Management (WFM) systems [12,
38, 48, 55, 57, 58, 61] such as Staffware, MQSeries, and COSA, and case handling sys-
tems such as FLOWer. Note that leading Enterprise Resource Planning (ERP) systems
populating the third layer also offer a WFM module. The workflow engines of SAP,
Baan, PeopleSoft, Oracle, and JD Edwards can be considered as integrated BPM sys-
tems. The idea to isolate the management of business processes in a separate compo-
nent is consistent with the three trends identified. BPM systems can be used to avoid
hard-coding the work processes into tailor-made applications and thus support the shift
from programming to assembling. Moreover, process orientation, redesign, and organic
growth are supported. For example, today’s WFM systems can be used to integrate
existing applications and support process change by merely changing the workflow di-
agram. Given these observations, the practical relevance of BPM is evident. Although
BPM functionality is omnipresent and often hidden in larger enterprise information
systems, for clarity we will often restrict the discussion to clear cut “process-aware”
information systems such as WFM systems (cf. Section 1.3).

To put the topic of this tutorial in a historical perspective it is worthwhile to con-
sider the early work on office information systems. In the seventies, people like Skip
Ellis [32], Anatol Holt [45], and Michael Zisman [78] already worked on so-called
office information systems, which were driven by explicit process models. It is inter-
esting to see that the three pioneers in this area independently used Petri-net variants
to model office procedures. During the seventies and eighties there was great optimism
about the applicability of office information systems. Unfortunately, few applications
succeeded. As a result of these experiences, both the application of this technology and
research almost stopped for a decade. Consequently, hardly any advances were made in
the eighties. In the nineties, there again was a huge interest in these systems. The num-
ber of WFM systems developed in the past decade and the many papers on workflow
technology illustrate the revival of office information systems. Today WFM systems are
readily available [12, 38, 48, 55, 57, 58, 61]. However, their application is still limited to
specific industries such as banking and insurance. As was indicated by Skip Ellis it is
important to learn from these ups and downs [33]. The failures in the eighties can be
explained by both technical and conceptual problems. In the eighties, networks were
slow or not present at all, there were no suitable graphical interfaces, and proper devel-
opment software was missing. However, there were also more fundamental problems:
a unified way of modeling processes was missing and the systems were too rigid to be

used by people in the workplace. Most of the technical problems have been resolved
by now. However, the more conceptual problems remain. Good standards for business
process modeling are still missing and even today’s WFM systems enforce unnecessary
constrains on the process logic (e.g., processes are made more sequential).

1.2 BPM life-cycle

As indicated before, Business Process Management (BPM) includes methods, tech-
niques, and tools to support the design, enactment, management, and analysis of oper-
ational business processes. It can be considered as an extension of classical Workflow
Management (WFM) systems and approaches. Before discussing the differences be-
tween WFM and BPM, let us consider the BPM life-cycle.

The BPM life-cycle has four phases:

– Process design
Any BPM effort requires the modeling of an existing (“as-is”) or desired (“ to-be”)
process, i.e., a process design. During this phase process models including vari-
ous perspectives (control-flow, data-flow, organizational, sociotechnical, and oper-
ational aspects) are constructed. The only way to create a “process-aware” enter-
prise information system is to add knowledge about the operational processes at
hand.

– System configuration
Based on a process design, the process-aware enterprise information system is real-
ized. In the traditional setting the realization would require a time-consuming and
complex software development process. Using software from the second and third
layer shown in Figure 1, the traditional software development process is replaced
by a configuration or assembly process. Therefore, we use the term system config-
uration for the phase in-between process design and enactment.

– Process enactment
The process enactment phase is the phase where the process-aware enterprise in-
formation system realized in the system configuration phase is actually used.

– Diagnosis
Process-aware enterprise information system have to change over time to improve
performance, exploit new technologies, support new processes, and adapt to an
ever changing environment. Therefore, the diagnosis phase is linking the process
enactment phase to the a new design phase.

Like in software life-cycle models, the four phases are overlapping (cf. Waterfall model)
and the whole process is iterative (cf. Spiral model).

As is illustrated in Figure 2, the BPM life-cycle can be used to identify different
levels of maturity when it comes to developing process-aware enterprise information
systems. In the early nineties and before, most information systems only automated in-
dividual activities and where unaware of the underlying process. For the systems that
were process-aware, the process logic was hard-coded in the system and not supported
in a generic manner. Despite the early work on office automation, the first commercial
WFM systems became only practically relevant around 1993 (see Figure 2(a)). The fo-
cus of these systems was on “getting the system to work” and support for enactment and

process
design

system
configuration

process
enactment

diagnosis

(a) 1993

process
design

system
configuration

process
enactment

diagnosis

(b) 1998

process
design

system
configuration

process
enactment

diagnosis

(c) 2003

process
design

system
configuration

process
enactment

diagnosis

(d) 2008

Fig. 2. The BPM life-cycle is used to indicate the maturity of BPM technology over time.

design was limited. In the mid-nineties this situation changed and by 1998 many WFM
systems had become readily available (see Figure 2(b)). In these systems there was ba-
sic support for enactment and design. In the last five years these systems have been
further extended allowing for more support during the design and enactment phases
(see Figure 2(c)). For example, a case-handling system like FLOWer [22] allows for
much more flexibility during the enactment phase than the traditional WFM systems.
Today‘s systems provide hardly any support for the diagnosis phase. Although most
BPM software logs all kinds of events (e.g., WFM systems like Staffware log the com-
pletion of activities and ERP systems like SAP log transactions), this information is not
used to identify problems or opportunities for improvement. In the next five years this
situation will probably change when process mining [17, 19] techniques become readily
available (see Figure 2(d)).

The BPM life-cycle shown in Figure 2 can also be used to define the difference
between WFM and BPM. WFM focusses on the lower half of the BPM life-cycle (i.e.,
“getting the system to work”) while BPM also includes to upper half of the life-cycle.
Therefore, BPM also focusses on diagnosis, flexibility, human-centric processes, goal-
driven process design, etc. Gartner expects that Business Process Analysis (BPA), i.e.,
software to support the diagnosis phase, will become increasingly important [39]. It
is expected that the BPA market will continue to grow. Note that BPA covers aspects
neglected by traditional WFM products (e.g., diagnosis, simulation, etc.). Business Ac-
tivity Monitoring (BAM) is one of the emerging areas in BPA. The goal of BAM tools
is to use data logged by the information system to diagnose the operational processes.
An example is the ARIS Process Performance Manager (PPM) of IDS Scheer [47].

ARIS PPM extracts information from audit trails (i.e., information logged during the
execution of cases) and displays this information in a graphical way (e.g., flow times,
bottlenecks, utilization, etc.). BAM also includes process mining, i.e., extracting pro-
cess models from logs [17]. BAM creates a number of scientific and practical challenges
(e.g., which processes can be discovered and how much data is needed to provide useful
information).

1.3 Workflow management (systems)

The focus of this tutorial will be on WFM rather than BPM. The reason is that WFM
serves as a basis for BPM and in contrast to BPM it is a mature area with well-defined
concepts and widely used software products.

The Workflow Management Coalition (WfMC) defines workflow as: “The automa-
tion of a business process, in whole or part, during which documents, information or
tasks are passed from one participant to another for action, according to a set of proce-
dural rules.” [55]. A Workflow Management System (WFMS) is defined as: “A system
that defines, creates and manages the execution of workflows through the use of soft-
ware, running on one or more workflow engines, which is able to interpret the process
definition, interact with workflow participants and, where required, invoke the use of IT
tools and applications.” [55]. Note that both definitions emphasize the focus on enact-
ment, i.e., the use of software to support the execution of operational processes.

When considering these definitions in more detail it is evident that WFM is highly
relevant for any organization. However, at the same time few organizations use a “ real”
WFM system. To explain this we identify four categories of WFM support:

– Pure WFM systems
At this point in time many WFM systems are available and used in practise. Ex-
amples of systems include Staffware Process Suite, FileNET BPM Suite, i-Flow,
FLOWer, WebSphere MQ Workflow (formerly known as MQSeries Workflow),
TIBCO InConcert, etc.

– WFM components embedded in other systems
Many software packages embed a generic workflow component whose function-
ality is comparable to the pure WFM systems. For example, most ERP systems
provide a workflow component. SAP WebFlow is the workflow component of SAP
offering all the functionality typically present in traditional stand-alone WFM prod-
ucts.

– Custom-made WFM solutions
Many organizations, e.g., banks and insurance companies, have chosen not to use a
commercially available WFM solution but build an organization-specific solution.
These solutions typically only support a subset of the functionality offered by the
first two categories. Nevertheless, these systems support the definition and execu-
tion of different workflows.

– Hard-coded WFM solutions
The last category refers to the situation were the processes are hard-coded in the
applications, i.e., there is no generic workflow support but applications are coupled
in such a way that a specific process is supported. The only way to change a process

is to change the applications themselves, i.e., unlike the first three categories there
is no component that is process-aware. Note that in these hard-coded system an
explicit orchestration layer is missing.

At this point in time the majority of business processes are still supported by solutions
residing in the third and fourth category. However, the percentage of processes sup-
ported by the first two categories is increasing. Moreover, software developers building
solutions for the third and fourth category are using the concepts and insights provided
by the first two categories. In this context it is interesting to refer to recent develop-
ments in the web services domain [68]. The functionality of web service composition
languages (also referred to as “web service orchestration”) like BPEL4WS, BPML,
WSCI, WSWSFL, XLANG, etc. is very similar to traditional workflow languages [6,
77].

1.4 Outline and intended audience

The goal of this tutorial is to introduce the reader to the theoretical foundations of
BPM/WFM using a Petri-net based approach. However, at the same time contemporary
systems and languages are presented to provide a balanced view on the application
domain.

Section 2 shows the application of Petri nets to workflow modeling. For this pur-
pose, the class of WorkFlow nets (WF-nets) is introduced, but also some “syntactical
sugaring” is given to facilitate the design of workflows. Section 3 discusses the analysis
of workflow models expressed in terms of Petri nets. The focus will be on the verifi-
cation of WF-nets using classical analysis techniques. Section 4 discusses the typical
architecture of a WFM system and discusses contemporary systems. The goal of this
section is to show that the step from design to enactment, i.e., the configuration phase
(cf. Figure 2), is far from trivial. In Section 5, 20 workflow patterns are used to evaluate
the XML Process Definition Language (XPDL), the standard proposed by the Work-
flow Management Coalition (WfMC). This evaluation illustrates the typical problems
workflow designers and implementers are faced with when applying contemporary lan-
guages and standards. Section 6 provides an overview of related work. Clearly, only
a small subset of the many books and papers on BPM/WFM can be presented, but
pointers are given to find relevant material. Finally, Section 7 concludes the tutorial by
discussing the role of Petri nets in the BPM/WFM domain.

Note that parts of this tutorial are based on earlier work (cf. [2–6, 12, 15]). For more
material the interested reader is referred to [12] and two WWW-sites: one presenting
course material (slides, animations, etc.) http://www.workflowcourse.com
and one on workflow patterns http://www.workflowpatterns.com.

This tutorial is intended for people having a basic understanding of Petri nets and
interested in the application of Petri nets to problems in the BPM/WFM domain. Sec-
tions 2 and 3 are focusing more on the Petri-net side of things while sections 4 and 5
are focusing more on the application domain.

2 Workflow modeling

In this section, we show how to model workflows in terms of Petri nets. First, we intro-
duce the basic workflow concepts and discuss the various perspectives. Then, we define
some basic Petri net notation followed by an introduction to a subclass of Petri nets
tailored towards workflow modeling. We conclude this section with an exercise.

2.1 Workflow concepts and perspectives

Workflow processes are case-driven, i.e., tasks are executed for specific cases. Approv-
ing loans, processing insurance claims, billing, processing tax declarations, handling
traffic violations and mortgaging, are typical case-driven processes which are often
supported by a WFM system. These case-driven processes, also called workflows, are
marked by three dimensions: (1) the control-flow dimension, (2) the resource dimen-
sion, and (3) the case dimension (see Figure 3). The control-flow dimension is con-
cerned with the partial ordering of tasks, i.e., the workflow process. The tasks which
need to be executed are identified and the routing of cases along these tasks is de-
termined. Conditional, sequential, parallel and iterative routing are typical structures
specified in the control-flow dimension. Tasks are executed by resources. Resources are
human (e.g., employee) and/or non-human (e.g., device, software, hardware). In the re-
source dimension these resources are classified by identifying roles (resource classes
based on functional characteristics) and organizational units (groups, teams or depart-
ments). Both the control-flow dimension and the resource dimension are generic, i.e.,
they are not tailored towards a specific case. The third dimension of a workflow is con-
cerned with individual cases which are executed according to the process definition
(first dimension) by the proper resources (second dimension).

case dimension

control-flow dimension

resource dimension

task

case
work item

activity

resource

Fig. 3. The three dimensions of workflow.

The primary task of a WFM system is to enact case-driven business processes by
joining several perspectives. The following perspectives are relevant for workflow mod-
eling and workflow execution: (1) control flow (or process) perspective, (2) resource (or

organization) perspective, (3) data (or information) perspective, (4) task (or function)
perspective, (5) operation (or application) perspective. These perspectives are similar to
the perspectives given in [48] and the control flow and resource perspectives correspond
to the first two dimensions shown in Figure 3. The third dimension reflects the fact that
workflows are case-driven and does not correspond to one of the five perspectives.

In the control-flow perspective, workflow process definitions (workflow schemas)
are defined to specify which tasks need to be executed and in what order (i.e., the rout-
ing or control flow). A task is an atomic piece of work. Workflow process definitions
are instantiated for specific cases (i.e., workflow instances). Since a case is an instantia-
tion of a process definition, it corresponds to the execution of concrete work according
to the specified routing. In the resource perspective, the organizational structure and
its population are specified. The organizational structure describes relations between
roles (resource classes based on functional aspects) and groups (resource classes based
on organizational aspects). Thus clarifying organizational issues such as responsibil-
ity, availability, and authorization. Resources, ranging from humans to devices, form
the organizational population and are allocated to roles and groups. The data perspec-
tive deals with control and production data. Control data are data introduced solely
for WFM purposes, e.g., variables introduced for routing purposes. Production data are
information objects (e.g., documents, forms, and tables) whose existence does not de-
pend on WFM. The task perspective describes the elementary operations performed by
resources while executing a task for a specific case. In the operational perspective the
elementary actions are described. These actions are often executed using applications
ranging from a text editor to custom build applications to perform complex calculations.
Typically, these applications create, read, or modify control and production data in the
information perspective.

The focus of this tutorial will be on the control-flow perspective. Clearly, this is the
most dominant perspective. Moreover, Petri nets can contribute most to this perspective.

2.2 Petri nets

This section introduces the basic Petri net terminology and notations. Readers familiar
with Petri nets can skip this section.1

The classical Petri net is a directed bipartite graph with two node types called places
and transitions. The nodes are connected via directed arcs. Connections between two
nodes of the same type are not allowed. Places are represented by circles and transitions
by rectangles.

Definition 1 (Petri net). A Petri net is a triple (P, T, F):

- P is a finite set of places,
- T is a finite set of transitions (P ∩ T = ∅),
- F ⊆ (P × T) ∪ (T × P) is a set of arcs (flow relation)

1 Note that states are represented by weighted sums and note the definition of (elementary)
(conflict-free) paths.

A place p is called an input place of a transition t iff there exists a directed arc from
p to t. Place p is called an output place of transition t iff there exists a directed arc
from t to p. We use •t to denote the set of input places for a transition t. The notations
t•, •p and p• have similar meanings, e.g., p• is the set of transitions sharing p as an
input place. Note that we do not consider multiple arcs from one node to another. In
the context of workflow procedures it makes no sense to have other weights, because
places correspond to conditions.

At any time a place contains zero or more tokens, drawn as black dots. The state,
often referred to as marking, is the distribution of tokens over places, i.e., M ∈ P → IN.
We will represent a state as follows: 1p1 +2p2 +1p3 +0p4 is the state with one token in
place p1, two tokens in p2, one token in p3 and no tokens in p4. We can also represent
this state as follows: p1 + 2p2 + p3. To compare states we define a partial ordering. For
any two states M1 and M2, M1 ≤ M2 iff for all p ∈ P : M1(p) ≤ M2(p)

The number of tokens may change during the execution of the net. Transitions are
the active components in a Petri net: they change the state of the net according to the
following firing rule:

(1) A transition t is said to be enabled iff each input place p of t contains at least one
token.

(2) An enabled transition may fire. If transition t fires, then t consumes one token from
each input place p of t and produces one token for each output place p of t.

Given a Petri net (P, T, F) and a state M1, we have the following notations:

- M1
t→ M2: transition t is enabled in state M1 and firing t in M1 results in state M2

- M1 → M2: there is a transition t such that M1
t→ M2

- M1
σ→ Mn: the firing sequence σ = t1t2t3 . . . tn−1 leads from state M1 to state

Mn via a (possibly empty) set of intermediate states M2, ...Mn−1, i.e., M1
t1→

M2
t2→ ...

tn−1→ Mn

A state Mn is called reachable from M1 (notation M1
∗→ Mn) iff there is a firing

sequence σ such that M1
σ→ Mn. Note that the empty firing sequence is also allowed,

i.e., M1
∗→ M1.

We use (PN ,M) to denote a Petri net PN with an initial state M . A state M ′ is a
reachable state of (PN ,M) iff M

∗→ M ′.
Let us define some standard properties for Petri nets. First, we define properties

related to the dynamics of a Petri net, then we give some structural properties.

Definition 2 (Live). A Petri net (PN ,M) is live iff, for every reachable state M ′ and
every transition t there is a state M ′′ reachable from M ′ which enables t.

A Petri net is structurally live if there exists an initial state such that the net is live.

Definition 3 (Bounded, safe). A Petri net (PN ,M) is bounded iff for each place p
there is a natural number n such that for every reachable state the number of tokens in
p is less than n. The net is safe iff for each place the maximum number of tokens does
not exceed 1.

A Petri net is structurally bounded if the net is bounded for any initially state.

Definition 4 (Well-formed). A Petri net PN is well-formed iff there is a state M such
that (PN ,M) is live and bounded.

Paths connect nodes by a sequence of arcs.

Definition 5 (Path, Elementary, Conflict-free). Let PN be a Petri net. A path C from
a node n1 to a node nk is a sequence 〈n1, n2, . . . , nk〉 such that 〈ni, ni+1〉 ∈ F for
1 ≤ i ≤ k − 1. C is elementary iff, for any two nodes ni and nj on C, i
= j ⇒
ni
= nj . C is conflict-free iff, for any place nj on C and any transition ni on C,
j
= i − 1 ⇒ nj
∈ •ni.

For convenience, we introduce the alphabet operator α on paths. If C = 〈n1, n2, . . . , nk〉,
then α(C) = {n1, n2, . . . , nk}.

Definition 6 (Strongly connected). A Petri net is strongly connected iff, for every pair
of nodes (i.e., places and transitions) x and y, there is a path leading from x to y.

Definition 7 (Free-choice). A Petri net is a free-choice Petri net iff, for every two tran-
sitions t1 and t2, •t1 ∩ •t2
= ∅ implies •t1 = •t2.

Definition 8 (State machine). A Petri net is state machine iff each transition has ex-
actly one input and one output place.

Definition 9 (S-component). A subnet PN s = (Ps, Ts, Fs) is called an S-component
of a Petri net PN = (P, T, F) if Ps ⊆ P , Ts ⊆ T , Fs ⊆ F , PN s is strongly connected,
PN s is a state machine, and for every q ∈ Ps and t ∈ T : (q, t) ∈ F ⇒ (q, t) ∈ Fs and
(t, q) ∈ F ⇒ (t, q) ∈ Fs.

Definition 10 (S-coverable). A Petri net is S-coverable iff for any node there exist an
S-component which contains this node.

See [30, 63] for a more elaborate introduction to these standard notions.

2.3 WF-nets

In Figure 3 we indicated that a workflow has (at least) three dimensions. The control-
flow dimension is the most prominent one, because the core of any workflow system
is formed by the processes it supports. In the control-flow dimension building blocks
such as the AND-split, AND-join, OR-split, and OR-join are used to model sequen-
tial, conditional, parallel and iterative routing [55]. Clearly, a Petri net can be used to
specify the routing of cases. Tasks are modeled by transitions and causal dependencies
are modeled by places and arcs. In fact, a place corresponds to a condition which can
be used as pre- and/or post-condition for tasks. An AND-split corresponds to a transi-
tion with two or more output places, and an AND-join corresponds to a transition with
two or more input places. OR-splits/OR-joins correspond to places with multiple out-
going/ingoing arcs. Moreover, in [2] it is shown that the Petri net approach also allows
for useful routing constructs absent in many WFM systems.

A Petri net which models the control-flow dimension of a workflow, is called a
WorkFlow net (WF-net). It should be noted that a WF-net specifies the dynamic behav-
ior of a single case in isolation.

Definition 11 (WF-net). A Petri net PN = (P, T, F) is a WF-net (Workflow net) if
and only if:

(i) There is one source place i ∈ P such that •i = ∅.
(ii) There is one sink place o ∈ P such that o• = ∅.

(iii) Every node x ∈ P ∪ T is on a path from i to o.

A WF-net has one input place (i) and one output place (o) because any case handled
by the procedure represented by the WF-net is created when it enters the WFM system
and is deleted once it is completely handled by the system, i.e., the WF-net specifies
the life-cycle of a case. The third requirement in Definition 11 has been added to avoid
“dangling tasks and/or conditions” , i.e., tasks and conditions which do not contribute to
the processing of cases.

Given the definition of a WF-net it is easy derive the following properties.

Proposition 1 (Properties of WF-nets). Let PN = (P, T, F) be Petri net.

– If PN is WF-net with source place i, then for any place p ∈ P : •p
= ∅ or p = i,
i.e., i is the only source place.

– If PN is WF-net with sink place o, then for any place p ∈ P : p•
= ∅ or p = o, i.e.,
o is the only sink place.

– If PN is a WF-net and we add a transition t∗ to PN which connects sink place o
with source place i (i.e., •t∗ = {o} and t∗• = {i}), then the resulting Petri net is
strongly connected.

– If PN has a source place i and a sink place o and adding a transition t∗ which
connects sink place o with source place i yields a strongly connected net, then
every node x ∈ P ∪ T is on a path from i to o in PN and PN is a WF-net.

Figure 4 shows an example of an order handling process modeled in terms of a WF-
net. As indicated before cases are represented by tokens and in Figure 4 the token in
start corresponds to an order. Task register is represented by a transition bearing the
same name. From a routing point of view it acts as a so-called AND-split (two out-
going arcs) and is enabled in the state shown. If a person executes this task, the token
is removed from place start and two tokens are produced: one for c0 and one for c2.
Then, in parallel, two tasks are enabled: check availability and send bill. Depending
on the eagerness of the workers executing these two tasks either check availability or
send bill is executed first. Suppose check availability is executed first. Based on the
outcome of this task a choice is made. This is reflected by the fact that three arcs are
leaving c1. If the ordered goods are available, they can be shipped, i.e., firing in stock
enables task ship goods. If they are not available, either a replenishment order is issued
or not. Firing out of stock repl enables task replenish. Firing out of stock no repl skips
task replenish. Note that check availability, place c1 and the three transitions in stock,
out of stock repl, and out of stock no repl together form a so-called OR-split: As a re-
sult of this construct one token is produced for either c3, c4, or c5. Suppose that not
all ordered goods are available, but the appropriate replenishment orders were already
issued. A token is produced for c3 and task update becomes enabled. Suppose that at
this point in time task send bill is executed, resulting in the state with a token in c3
and c6. The token in c6 is input for two tasks. However, only one of these tasks can be

start register

send_bill

receive_payment

archive

ship_goods

check_availability

replenish

update

reminder

end

c1

c2

c3

c4

c5

c6

c7

c8

c0

out_of_stock_no_repl

out_of_stock_repl

in_stock

Fig. 4. WF-net.

executed and in this state only receive payment is enabled. Task receive payment can
be executed the moment the payment is received. Task reminder is an AND-join/AND-
split and is blocked until the bill is sent and the goods have been shipped. However, it
is only possible to send a reminder if the goods have been actually shipped. Assume
that in the state with a token in c3 and c6 task update is executed. This task does not
require human involvement and is triggered by a message of the warehouse indicating
that relevant goods have arrived. Again check availability is enabled. Suppose that this
task is executed and the result is positive, i.e., the path via in stock is taken. In the result-
ing state ship goods can be executed. Now there is a token in c6 and c7 thus enabling
task reminder. Executing task reminder enables the task send bill for the second time.
A new copy of the bill is sent with the appropriate text. It is possible to send several
reminders by alternating reminder and send bill. However, let us assume that after the
first loop the customer pays resulting in a state with a token in c7 and c8. In this state,
the AND-join archive is enabled and executing this task results in the final state with a
token in end.

Figure 4 shows some of the limitations of WF-nets. First of all, the construct involv-
ing check availability, place c1 and the three transitions in stock, out of stock repl, and
out of stock no repl is rather complex for a simple concept as a choice out of three
alternatives. Second, the diagram does not show why things are happening. The text
suggests that some of the tasks are executed by people while others are triggered by
external entities or temporal conditions. Unfortunately, this information is missing in
Figure 4. Finally, the WF-net does not show the other perspectives. The first two prob-
lems can be solved using some “syntactical sugaring” (cf. Figure 5). The third problem
will not be addressed in this tutorial. Here we abstract from the other perspectives. The
interested reader is referred to [12] for modeling the resource perspective.

start register

send_bill

receive_payment

archive

ship_goodscheck_availability

replenish

update

reminder

end

c1

c2

c3

c4

c5

c6

c7

c8

Fig. 5. WF-net extended with some “syntactical sugaring” to denote AND/OR-splits/joins and
triggers.

Figure 5 shows the same process as the one depicted in Figure 4. However, every
task can be an AND/OR-join - AND/OR-split. The semantics of a transition is AND-
join - AND-split. Choices can be modeled using places with multiple outgoing arcs.
However, the intuition of a task resulting in a choice is better reflected by the nota-
tion used in Figure 5: the construct involving check availability, place c1 and the three
transitions in stock, out of stock repl, and out of stock no repl is replaced by a single
task check availability using the notation for an OR-split. Note that any WF-net with
OR-splits can be automatically translated into standard WF-net (i.e., a classical Petri
net). Figure 5 also shows three triggers symbols: (1) an arrow denoting a user trigger,
(2) an envelope denoting an external trigger, and (3) a clock denoting a time trigger.
These three triggers symbols denote that the corresponding tasks need a trigger to be
executed, e.g., the tasks bearing an arrow symbol require a user to perform the corre-
sponding activity. Task receive payment can only be executed after the payment trigger
arrives. Task reminder can only be executed after a specified period. Although triggers
are extremely important, we will not formalize the concept. For the reader interested in
the topic we refer to [28, 34] for a discussion on the reactive nature of WFM systems.

The very simple WF-net shown in Figure 5 shows some of the routing constructs
relevant for business process modeling. Sequential, parallel, conditional, and iterative
routing are present in this model. There are also more advanced constructs such as
the choice between receive payment and reminder. This is a so-called deferred choice
(also referred to as implicit choice) since it is not resolved by the system but by the
environment of the system. The moment the bill is sent, it is undetermined whether
receive payment or reminder will be the next step in the process. Another advanced
construct is the fact that task reminder is blocked until the goods have been shipped. The

latter construct is a so-called milestone. The reason that we point out both constructs is
that many systems have problems supporting these rather fundamental process patterns.
In Section 5.1 we will discuss these patterns in more detail.

2.4 Exercise: Modeling a complaints handling process in terms of a WF-net

To conclude this section, we give a small exercise. Model the complaints handling work-
flow of a travel agency in terms of a WF-net, i.e., construct a diagram similar to Figure 5.

Each year the travel agency has to process many customer complaints. There is a
special department for the processing of complaints (department C). There is also an
internal department called logistics (department L) which takes care of the registra-
tion of incoming complaints and the archiving of processed complaints. The following
procedure is used to handle these complaints.

An employee of department L first registers every incoming complaint. After regis-
tration a form is sent to the customer with questions about the nature of the complaint.
This is done by an employee of department C. There are two possibilities: the cus-
tomer returns the form within two weeks or not. If the form is returned, it is processed
automatically resulting in a report which can be used for the actual processing of the
complaint. If the form is not returned on time, a time-out occurs resulting in an empty
report. Note that this does not necessarily mean that the complaint is discarded. Af-
ter registration, i.e., in parallel with the form handling, the preparation for the actual
processing is started.

First, the complaint is evaluated by a complaint manager of department C. Evalua-
tion shows that either further processing is needed or not. Note that this decision does
not depend on the form handling. If no further processing is required and the form is
handled, the complaint is archived. If further processing is required, an employee of
the complaints department executes the task “process complaint” (this is the actual pro-
cessing where certain actions are proposed if needed). For the actual processing of the
complaint, the report resulting from the form handling is used. Note that the report can
be empty. The result of task process complaint is checked by a complaint manager. If
the result is not OK, task process complaint is executed again. This is repeated until the
result is acceptable. If the result is accepted, an employee of the department C executes
the proposed actions. After this the processed complaint is archived by an employee of
department L.

Give the WF-net, i.e., model the workflow by making a process definition in terms
of a Petri net. For the solution to this exercise we refer to [12] or the corresponding
WWW site with course material: http://www.workflowcourse.com.

3 Workflow analysis

One of the advantages of using Petri nets for workflow modeling is the availability of
many Petri-net-based analysis techniques. In this section, we focus on the verification
of WF-nets. The correctness criterion used is the so-called soundness property. We
will show how this property can be checked and discuss a verification tool specifically
designed for workflow analysis.

3.1 Verification, validation, and performance analysis

The correctness, effectiveness, and efficiency of the business processes supported by
the WFM system are vital to the organization. A workflow process definition which
contains errors may lead to angry customers, back-log, damage claims, and loss of
goodwill. Flaws in the design of a workflow definition may also lead to high throughput
times, low service levels, and a need for excess capacity. This is why it is important to
analyze a workflow process definition before it is put into production. Basically, there
are three types of analysis:

– validation, i.e., testing whether the workflow behaves as expected,
– verification, i.e., establishing the correctness of a workflow, and
– performance analysis, i.e., evaluating the ability to meet requirements with respect

to throughput times, service levels, and resource utilization.

Validation can be done by interactive simulation: a number of fictitious cases are fed
to the system to see whether they are handled well. For verification and performance
analysis more advanced analysis techniques are needed. Fortunately, many powerful
analysis techniques have been developed for Petri nets ([30, 63]). Linear algebraic tech-
niques can be used to verify many properties, e.g., place invariants, transition invari-
ants, and (non-)reachability. Coverability graph analysis, model checking, and reduc-
tion techniques can be used to analyze the dynamic behavior of a Petri net. Simulation
and Markov-chain analysis can be used for performance evaluation (cf. [59, 63]). The
abundance of available analysis techniques shows that Petri nets can be seen as a solver
independent medium between the design of the workflow process definition and the
analysis of the resulting workflow.

3.2 Verification of the control-flow perspective

In this tutorial we restrict ourselves to workflow verification, i.e., we will not discuss
techniques for validation and performance analysis. Moreover, we restrict ourselves to
the control flow perspective. Although each of the perspectives mentioned in Section 2.1
is relevant, the general focus of this tutorial is on control flow perspective, i.e., we use
WF-nets as a starting point and demonstrate that Petri-net-based analysis techniques
can be used to verify the correctness of a workflow process.

We abstract from the resource perspective because, given today’s workflow technol-
ogy, at any time there is only one resource working on a task which is being executed
for a specific case. In today’s WFM systems it is not possible to specify that several
resources are collaborating in executing a task. Note that even if multiple persons are
executing one task, e.g., writing a report, only one person is allocated to that task from
the perspective of the WFM system: This is the person that selected the work item from
the in-basket (i.e., the electronic worktray). Since a person is working on one task at a
time and each task is eventually executed by one person (although it may be allocated to
a group a people), it is sufficient to check whether all resource classes have at least one
resource. In contrast to many other application domains such a flexible manufacturing
systems, anomalies such as a deadlock resulting from locking problems are not possi-
ble. Therefore, from the viewpoint of verification, i.e., analyzing the logical correctness

of a workflow, it is reasonable to abstract from resources. However, if in the future col-
laborative features are explicitly supported by the workflow management system (i.e., a
tight integration of groupware and workflow technology), then the resource perspective
should be taken into account.

We partly abstract from the data perspective. The reason we abstract from produc-
tion data is that these are outside the scope of the WFM system. These data can be
changed at any time without notifying the WFM system. In fact their existence does not
even depend upon the workflow application and they may be shared among different
workflows, e.g., the bill-of-material in manufacturing is shared by production, procure-
ment, sales, and quality control processes. The control data used by the WFM system
to route cases are managed by the WFM system. However, some of these data are set or
updated by humans or applications. For example, a decision is made by a manager based
on intuition or a case is classified based on a complex calculation involving production
data. Clearly, the behavior of a human or a complex application cannot be modeled
completely. Therefore, some abstraction is needed to incorporate the data perspective
when verifying a given workflow. The abstraction used in this section is the following.
Since control data (i.e., workflow attributes such as the age of a customer, the depart-
ment responsible, or the registration date) are only used for the routing of a case, we
incorporate the routing decisions but not the actual data. For example, the decision to
accept or to reject an insurance claim is taken into account, but not the actual data where
this decision is based on. Therefore, we consider each choice to be a non-deterministic
one. There are other reasons for abstracting from the workflow attributes. If we are able
to prove soundness (i.e., the correctness criterion used in this section) for the situation
without workflow attributes, it will also hold for the situation with workflow attributes
(assuming certain fairness properties). Last but not least, we abstract from triggers and
workflow attributes because it allows us to use ordinary Petri nets (i.e., P/T nets) rather
than high-level Petri nets. From an analysis point of view, this is preferable because of
the availability of efficient algorithms and powerful analysis tools.

For similar reasons we (partly) abstract from the task and operation perspectives.
We consider tasks to be atomic and abstract from the execution of operations inside
tasks. The WFM system can only launch applications or trigger people and monitor
the results. It cannot control the actual execution of the task. Therefore, from the view-
point of verification, it is reasonable to focus on the control-flow perspective. In fact, it
suffices to consider the life cycle of one case in isolation. The only way cases interact
directly is through the competition for resources and the sharing of production data.
(Note that control data are strictly separated.) Therefore, if we abstract from resources
and data, it suffices to consider one case in isolation. The competition between cases
for resources is only relevant for performance analysis.

3.3 Soundness

In this section we summarize some of the basic results for WF-nets presented in [1, 3,
4].

The three requirements stated in Definition 11 can be verified statically, i.e., they
only relate to the structure of the Petri net. However, there is another requirement which
should be satisfied:

For any case, the procedure will terminate eventually and the moment the pro-
cedure terminates there is a token in place o and all the other places are empty.

Moreover, there should be no dead tasks, i.e., it should be possible to execute an arbi-
trary task by following the appropriate route though the WF-net. These two additional
requirements correspond to the so-called soundness property.

Definition 12 (Sound). A procedure modeled by a WF-net PN = (P, T, F) is sound if
and only if:

(i) For every state M reachable from state i, there exists a firing sequence leading
from state M to state o. Formally:2

∀M (i ∗→ M) ⇒ (M ∗→ o)

(ii) State o is the only state reachable from state i with at least one token in place o.
Formally:

∀M (i ∗→ M ∧ M ≥ o) ⇒ (M = o)

(iii) There are no dead transitions in (PN , i). Formally:

∀t∈T ∃M,M ′ i
∗→ M

t→ M ′

Note that the soundness property relates to the dynamics of a WF-net. The first re-
quirement in Definition 12 states that starting from the initial state (state i), it is always
possible to reach the state with one token in place o (state o). If we assume a strong
notion of fairness, then the first requirement implies that eventually state o is reached.
Strong fairness means in every infinite firing sequence, each transition fires infinitely
often. The fairness assumption is reasonable in the context of WFM: All choices are
made (implicitly or explicitly) by applications, humans or external actors. Clearly, they
should not introduce an infinite loop. Note that the traditional notions of fairness (i.e.,
weaker forms of fairness with just local conditions, e.g., if a transition is enabled in-
finitely often, it will fire eventually) are not sufficient. See [3, 53] for more details. The
second requirement states that the moment a token is put in place o, all the other places
should be empty. The last requirement states that there are no dead transitions (tasks) in
the initial state i.

The WF-net shown in Figure 5 is sound. This can be verified by checking the three
requirements stated in Definition 12. Note that Figure 5 shows triggers and uses syntac-
tic sugaring. For verification we will abstract from this and consider the pure WF-net as
shown in Figure 4.

Figure 6 shows a WF-net which is not sound. There are several deficiencies. If
time out 1 and processing 2 fire or time out 2 and processing 1 fire, the WF-net will
not terminate properly because a token gets stuck in c4 or c5. If time out 1 and time out 2
fire, then the task processing NOK will be executed twice and because of the presence
of two tokens in o the moment of termination is not clear.

2 Note that there is an overloading of notation: the symbol i is used to denote both the place i
and the state with only one token in place i (see Section 2.2).

i register

processing_OK

processing_NOKprocessing_1c1

c2

c3

time_out_1

o

processing_2

time_out_2

c4

c5

Fig. 6. Another WF-net for the processing of complaints.

Given a WF-net PN = (P, T, F), we want to decide whether PN is sound. In
[1] we have shown that soundness corresponds to liveness and boundedness. To link
soundness to liveness and boundedness, we define an extended net PN = (P , T , F).
PN is the Petri net obtained by adding an extra transition t∗ which connects o and i.
The extended Petri net PN = (P , T , F) is defined as follows: P = P , T = T ∪ {t∗},
and F = F ∪ {(o, t∗), (t∗, i)}. In the remainder we will call such an extended net
the short-circuited net of PN . The short-circuited net allows for the formulation of the
following theorem.

Theorem 1. A WF-net PN is sound if and only if (PN , i) is live and bounded.

Proof. See [1]. ��

This theorem shows that standard Petri-net-based analysis techniques can be used to
verify soundness.

In literature there exist many variants of the “classical” notion of soundness used
here. Juliane Dehnert uses the notion of relaxed soundness where proper termination is
possible but not guaranteed [28, 34]. The main idea is that the scheduler of the workflow
system should avoid problems like deadlocks etc. In [54] Ekkart Kindler et al. define
variants of soundness tailored towards interorganizational workflows. Kees van Hee et
al. [44] define a notion of soundness where multiple tokens in the source place are
considered. A WF-net is k-sound if it “behaves well” when there are k tokens in place
i, i.e., no deadlocks and in the end there are k tokens in place o. Robert van der Toorn
uses the same concept in [71]. In [18, 7] stronger notions of soundness are used and
places have to be safe. Another notion of soundness is used in [51, 52] where there is

not a single sink place but potentially multiple sink transitions. See [71] for the relation
between these variants of the same concept. Other references using (variants of) the
soundness property include [41, 60]. For simplicity we restrict ourselves to the classical
notion of soundness defined in Definition 12.

3.4 Structural characterization of soundness

Theorem 1 gives a useful characterization of the quality of a workflow process defini-
tion. However, there are a number of problems:

– For a complex WF-net it may be intractable to decide soundness. (For arbitrary WF-
nets liveness and boundedness are decidable but also EXPSPACE-hard, cf. Cheng,
Esparza and Palsberg [26].)

– Soundness is a minimal requirement. Readability and maintainability issues are not
addressed by Theorem 1.

– Theorem 1 does not show how a non-sound WF-net should be modified, i.e., it does
not identify constructs which invalidate the soundness property.

These problems stem from the fact that the definition of soundness relates to the dy-
namics of a WF-net while the workflow designer is concerned with the static structure
of the WF-net. Therefore, it is interesting to investigate structural characterizations of
sound WF-nets. For this purpose we introduce three interesting subclasses of WF-nets:
free-choice WF-nets, well-structured WF-nets, and S-coverable WF-nets.

Free-Choice WF-Nets Most of the WFM systems available at the moment, abstract
from states between tasks, i.e., states are not represented explicitly. These WFM sys-
tems use building blocks such as the AND-split, AND-join, OR-split and OR-join to
specify workflow procedures. The AND-split and the AND-join are used for parallel
routing. The OR-split and the OR-join are used for conditional routing. Because these
systems abstract from states, every choice is made inside an OR-split building block.
If we model an OR-split in terms of a Petri net, the OR-split corresponds to a num-
ber of transitions sharing the same set of input places. This means that for these WFM
systems, a workflow procedure corresponds to a free-choice Petri net (cf. Definition 7).

It is easy to see that a process definition composed of AND-splits, AND-joins, OR-
splits and OR-joins is free-choice. If two transitions t1 and t2 share an input place
(•t1 ∩ •t2
= ∅), then they are part of an OR-split, i.e., a “ free choice” between a
number of alternatives. Therefore, the sets of input places of t1 and t2 should match
(•t1 = •t2). Figure 6 shows a free-choice WF-net. The WF-net shown in Figure 4 is
not free-choice; archive and reminder share an input place but the two corresponding
input sets differ.

We have evaluated many WFM systems and only some of these systems (e.g.,
COSA [66]) allow for a construct which is comparable to a non-free choice WF-net.
Therefore, it makes sense to consider free-choice Petri nets in more detail. Clearly, par-
allelism, sequential routing, conditional routing and iteration can be modeled without
violating the free-choice property. Another reason for restricting WF-nets to free-choice

Petri nets is the following. If we allow non-free-choice Petri nets, then the choice be-
tween conflicting tasks may be influenced by the order in which the preceding tasks are
executed. The routing of a case should be independent of the order in which tasks are
executed. A situation where the free-choice property is violated is often a mixture of
parallelism and choice. Figure 7 shows such a situation. Firing transition t1 introduces
parallelism. Although there is no real choice between t2 and t5 (t5 is not enabled), the
parallel execution of t2 and t3 results in a situation where t5 is not allowed to occur.
However, if the execution of t2 is delayed until t3 has been executed, then there is a real
choice between t2 and t5. In our opinion parallelism itself should be separated from the
choice between two or more alternatives. Therefore, we consider the non-free-choice
construct shown in Figure 7 to be improper. In literature, the term confusion is often
used to refer to the situation shown in Figure 7.

t2

t3
i

t4

t5

t1

o

c1

c2

c3

c4

Fig. 7. A non-free-choice WF-net containing a mixture of parallelism and choice.

Free-choice Petri nets have been studied extensively [30, 29, 35, 43], because they
seem to be a good compromise between expressive power and analyzability. It is a class
of Petri nets for which strong theoretical results and efficient analysis techniques exist.
For example, the well-known Rank Theorem [30] enables us to formulate the following
corollary.

Corollary 1. The following problem can be solved in polynomial time.
Given a free-choice WF-net, to decide if it is sound.

Proof. Let PN be a free-choice WF-net. The short-circuited net PN is also free-choice.
Therefore, the problem of deciding whether (PN , i) is live and bounded can be solved
in polynomial time (Rank Theorem [30]). By Theorem 1, this corresponds to soundness.

��

Corollary 1 shows that, for free-choice nets, there are efficient algorithms to decide
soundness. Moreover, a sound free-choice WF-net is guaranteed to be safe (given an
initial state with just one token in i).

Lemma 1. A sound free-choice WF-net is safe.

Proof. Let PN be a sound free-choice WF-net. PN is the Petri net PN extended with
a transition connecting o and i. PN is free-choice and well-formed. Hence, PN is S-
coverable [30], i.e., each place is part of an embedded strongly connected state-machine
component. Since initially there is just one token (PN , i) is safe and so is (PN , i). ��

Safeness is a desirable property, because it makes no sense to have multiple tokens in a
place representing a condition. A condition is either true (1 token) or false (no tokens).

Although most WFM systems only allow for free-choice workflows, free-choice
WF-nets are not a completely satisfactory structural characterization of “good” work-
flows. On the one hand, there are non-free-choice WF-nets which correspond to sen-
sible workflows (cf. Figure 4). On the other hand there are sound free-choice WF-nets
which make no sense. Nevertheless, the free-choice property is a desirable property. If
a workflow can be modeled as a free-choice WF-net, one should do so. A workflow
specification based on a free-choice WF-net can be enacted by most workflow systems.
Moreover, a free-choice WF-net allows for efficient analysis techniques and is easier to
understand. Non-free-choice constructs such as the construct shown in Figure 7 are a
potential source of anomalous behavior (e.g., deadlock) which is difficult to trace.

Well-Structured WF-Nets Another approach to obtain a structural characterization
of “good” workflows, is to balance AND/OR-splits and AND/OR-joins. Clearly, two
parallel flows initiated by an AND-split, should not be joined by an OR-join. Two al-
ternative flows created via an OR-split, should not be synchronized by an AND-join.
As shown in Figure 8, an AND-split should be complemented by an AND-join and an
OR-split should be complemented by an OR-join.

AND-split AND-join AND-split

AND-joinOR-split OR-join

OR-join

OR-split

Fig. 8. Good and bad constructions.

One of the deficiencies of the WF-net shown in Figure 6 is the fact that the AND-
split register is complemented by the OR-join c3 or the OR-join o. To formalize the
concept illustrated in Figure 8 we give the following definition.

Definition 13 (Well-handled). A Petri net PN is well-handled iff, for any pair of nodes
x and y such that one of the nodes is a place and the other a transition and for any pair
of elementary paths C1 and C2 leading from x to y, α(C1)∩α(C2) = {x, y} ⇒ C1 =
C2.

Note that the WF-net shown in Figure 6 is not well-handled. Well-handledness can
be decided in polynomial time by applying a modified version of the max-flow min-
cut technique. A Petri net which is well-handled has a number of nice properties, e.g.,
strong connectedness and well-formedness coincide.

Lemma 2. A strongly connected well-handled Petri net is well-formed.

Proof. Let PN be a strongly connected well-handled Petri net. Clearly, there are no
circuits that have PT-handles nor TP-handles [36]. Therefore, the net is structurally
bounded (See Theorem 3.1 in [36]) and structurally live (See Theorem 3.2 in [36]).
Hence, PN is well-formed. ��
Clearly, well-handledness is a desirable property for any WF-net PN . Moreover, we
also require the short-circuited PN to be well-handled. We impose this additional re-
quirement for the following reason. Suppose we want to use PN as a part of a larger
WF-net PN ′. PN ′ is the original WF-net extended with an “undo-task” . See Figure 9.
Transition undo corresponds to the undo-task, transitions t1 and t2 have been added to
make PN ′ a WF-net. It is undesirable that transition undo violates the well-handledness
property of the original net. However, PN ′ is well-handled iff PN is well-handled.
Therefore, we require PN to be well-handled. We use the term well-structured to refer
to WF-nets whose extension is well-handled.

i o

t2t1

undo

PN

PN’ :

Fig. 9. The WF-net PN ′ is well-handled iff PN is well-handled.

Definition 14 (Well-structured). A WF-net PN is well-structured iff PN is well-han-
dled.

Well-structured WF-nets have a number of desirable properties. Soundness can be ver-
ified in polynomial time and a sound well-structured WF-net is safe. To prove these
properties we use some of the results obtained for elementary extended non-self con-
trolling nets.

Definition 15 (Elementary extended non-self controlling). A Petri net PN is ele-
mentary extended non-self controlling (ENSC) iff, for every pair of transitions t1 and t2
such that •t1 ∩ •t2
= ∅, there does not exist an elementary path C leading from t1 to
t2 such that •t1 ∩ α(C) = ∅.

Theorem 2. Let PN be a WF-net. If PN is well-structured, then PN is elementary
extended non-self controlling.

Proof. Assume that PN is not elementary extended non-self controlling. This means
that there is a pair of transitions t1 and tk such that •t1 ∩ •tk
= ∅ and there exist an
elementary path C = 〈t1, p2, t2, . . . , pk, tk〉 leading from t1 to tk and •t1 ∩ α(C) = ∅.

Let p1 ∈ •t1 ∩ •tk. C1 = 〈p1, tk〉 and C2 = 〈p1, t1, p2, t2, . . . , pk, tk〉 are paths
leading from p1 to tk. (Note that C2 is the concatenation of 〈p1〉 and C.) Clearly, C1 is
elementary. We will also show that C2 is elementary. C is elementary, and p1
∈ α(C)
because p1 ∈ •t1. Hence, C2 is also elementary. Since C1 and C2 are both elementary
paths, C1
= C2 and α(C1) ∩ α(C2) = {p1, tk}, we conclude that PN is not well-
handled. ��

t3 t5t1

t2 t4

oi c2

c1

c3

c4

Fig. 10. A well-structured WF-net.

Consider for example the WF-net shown in Figure 10. The WF-net is well-structured
and, therefore, also elementary extended non-self controlling. However, the net is not
free-choice. Nevertheless, it is possible to verify soundness for such a WF-net very
efficiently.

Corollary 2. The following problem can be solved in polynomial time.
Given a well-structured WF-net, to decide if it is sound.

Proof. Let PN be a well-structured WF-net. The short-circuited net PN is elemen-
tary extended non-self controlling (Theorem 2) and structurally bounded (see proof of
Lemma 2). For bounded elementary extended non-self controlling nets the problem of
deciding whether a given marking is live, can be solved in polynomial time (See [23]).
Therefore, the problem of deciding whether (PN , i) is live and bounded can be solved
in polynomial time. By Theorem 1, this corresponds to soundness. ��
Lemma 3. A sound well-structured WF-net is safe.

Proof. Let PN be the net PN extended with a transition connecting o and i. PN is
extended non-self controlling. PN is covered by state-machines (S-components), see
Corollary 5.3 in [23]. Hence, PN is safe and so is PN (see proof of Lemma 1). ��
Well-structured WF-nets and free-choice WF-nets have similar properties. In both cases
soundness can be verified very efficiently and soundness implies safeness. In spite of
these similarities, there are sound well-structured WF-nets which are not free-choice
(Figure 10) and there are sound free-choice WF-nets which are not well-structured.
In fact, it is possible to have a sound WF-net which is neither free-choice nor well-
structured (Figures 4 and 7).

S-Coverable WF-Nets What about the sound WF-nets shown in Figure 4 and Figure 7?
The WF-net shown in Figure 7 can be transformed into a free-choice well-structured
WF-net by separating choice and parallelism. The WF-net shown in Figure 4 cannot be
transformed into a free-choice or well-structured WF-net without yielding a much more
complex WF-net. Place c7 acts as some kind of milestone which is tested by the task
reminder. Traditional WFM systems which do not make the state of the case explicit,
are not able to handle the workflow specified by Figure 4. Only WFM systems such
as COSA [66] have the capability to enact such a state-based workflow. Nevertheless,
it is interesting to consider generalizations of free-choice and well-structured WF-nets:
S-coverable WF-nets can be seen as such a generalization.

Definition 16 (S-coverable). A WF-net PN is S-coverable if the short-circuited net
PN is S-coverable.

The WF-nets shown in Figure 4 and Figure 7 are S-coverable. The WF-net shown in
Figure 6 is not S-coverable. The following two corollaries show that S-coverability is a
generalization of the free-choice property and well-structuredness.

Corollary 3. A sound free-choice WF-net is S-coverable.

Proof. The short-circuited net PN is free-choice and well-formed. Hence, PN is S-
coverable (cf. [30]). ��
Corollary 4. A sound well-structured WF-net is S-coverable.

Proof. PN is extended non-self controlling (Theorem 2). Hence, PN is S-coverable
(cf. Corollary 5.3 in [23]). ��
All the sound WF-nets presented in this tutorial are S-coverable. Every S-coverable
WF-net is safe. The only WF-net which is not sound, i.e., the WF-net shown in Figure 6,
is not S-coverable. These and other examples indicate that there is a high correlation
between S-coverability and soundness. It seems that S-coverability is one of the basic
requirements any workflow process definition should satisfy. From a formal point of
view, it is possible to construct WF-nets which are sound but not S-coverable. Typically,
these nets contain places which do not restrict the firing of a transition, but which are
not in any S-component. (See for example Figure 65 in [62].) From a practical point of
view, these WF-nets are to be avoided. WF-nets which are not S-coverable are difficult
to interpret because the structural and dynamical properties do not match. For example,
these nets can be live and bounded but not structurally bounded. There seems to be no
practical need for using constructs which violate the S-coverability property. Therefore,
we consider S-coverability to be a basic requirement any WF-net should satisfy.

Another way of looking at S-coverability is the following interpretation: S-com-
ponents corresponds to document flows. To handle a workflow several pieces of infor-
mation are created, used, and updated. One can think of these pieces of information
as physical documents, i.e., at any point in time the document is in one place in the
WF-net. Naturally, the information in one document can be copied to another docu-
ment while executing a task (i.e., transition) processing both documents. Initially, all
documents are present but a document can be empty (i.e., corresponds to a blank piece

paper). It is easy to see that the flow of one such document corresponds a state machine
(assuming the existence of a transition t∗). These document flows synchronize via joint
tasks. Therefore, the composition of these flows yields an S-coverable WF-net. One
can think of the document flows as threads. Consider for example the short-circuited
net of the WF-net shown in Figure 4. This net can be composed out of the following
two threads: (1) a thread corresponding to logistic subprocess (places start, c0, c1, c3,
c4, c5, c7, and end) and (2) a thread corresponding to the actual processing of the com-
plaint (places start, c2, c6, c8, and end). Note that the tasks register and archive are
used in both threads.

Although a WF-net can, in principle, have exponentially many S-components, they
are quite easy to compute for workflows encountered in practice (see also the above
interpretation of S-component as document flows or threads). Note that S-coverability
only depends on the structure and the degree of connectedness is generally low (i.e., the
incidence matrix of a WF-net typically has few non-zero entries). Unfortunately, in gen-
eral, it is not possible to verify soundness of an S-coverable WF-net in polynomial time.
The problem of deciding soundness for an S-coverable WF-net is PSPACE-complete.
For most applications this is not a real problem. Typically, the number of tasks in one
workflow process definition is less than 100 and the number of states is less than half
a million. Tools using standard techniques such as the construction of the coverability
graph have no problems in coping with these workflow process definitions.

Using the three structural characterizations The three structural characterizations
(free-choice, well-structured and S-coverable) turn out to be very useful for the analy-
sis of workflow process definitions. Based on our experience, we have good reasons to
believe that S-coverability is a desirable property any workflow definition should sat-
isfy. Constructs violating S-coverability can be detected easily and tools can be build
to help the designer to construct an S-coverable WF-net. S-coverability is a general-
ization of well-structuredness and the free-choice property (Corollary 3 and 4). Both
well-structuredness and the free-choice property also correspond to desirable proper-
ties of a workflow. A WF-net satisfying at least one one of these two properties can be
analyzed very efficiently. However, we have shown that there are workflows that are not
free-choice and not well-structured. Consider for example Figure 4. The fact that task
register tests whether there is a token in c5, prevents the WF-net from being free-choice
or well-structured. Although this is a very sensible workflow, most WFM systems do not
support such an advanced routing construct. Even if one is able to use state-based work-
flows (e.g., COSA) allowing for constructs which violate well-structuredness and the
free-choice property, then the structural characterizations are still useful. If a WF-net is
not free-choice or not well-structured, one should locate the source which violates one
of these properties and check whether it is really necessary to use a non-free-choice or
a non-well-structured construct. If the non-free-choice or non-well-structured construct
is really necessary, then the correctness of the construct should be double-checked, be-
cause it is a potential source of errors. This way the readability and maintainability of a
workflow process definition can be improved.

3.5 Woflan

Few tools aiming at the verification of workflow processes exist. Woflan [73, 72] and
Flowmake [64] are two notable exceptions. We have been working on Woflan since
1997. Figure 11 shows a screenshot of Woflan. Woflan combines state-of-the-art sci-
entific results with practical applications [73, 72]. Woflan can interface with leading
WFM systems such as Staffware, MQSeries Workflow and COSA but also PNML [24].
It can also interface with BPR-tools such as Protos. Workflow processes designed us-
ing any of these tools can be verified for correctness. It turns out that the challenge
is not to decide whether the design is sound or not. The real challenge is to provide
diagnostic information that guides the designer to the error. Woflan also supports the
inheritance notions mentioned before. Given two workflow designs, Woflan is able to
decide whether one is a subclass of the other. Tools such as Woflan illustrate the benefits
of a more fundamental approach.

Fig. 11. A screenshot showing the verification and validation capabilities of Woflan.

3.6 Exercise

Consider the solution of the exercise given in Section 2.4. Verify whether the WF-net
is sound and make sure that there is an S-cover. A simple verification “web service” is
provided via http://is.tm.tue.nl/research/woflan/. This web service
uses Woflan to verify whether a given process model is sound. Use this web service or
download Woflan to check the correctness of your solution.

4 Workflow management systems

In this section we provide insight into the functionality of existing WFM systems. First
we provide an overview of the workflow market. Then we introduce the typical archi-
tecture of a WFM system, followed by an example of a concrete system. Again, we
conclude the section with an exercise.

4.1 Overview

In Section 1 we put WFM in a historical perspective and using Figure 2 we discussed
the maturity of the BPM market. At this point in time hundreds of WFM/BPM prod-
ucts are available. To illustrate this we use two diagrams of Michael Zur Muehlen [61].
Figure 12 gives a historic overview of office automation and workflow prototypes [61].
Figure 13 provides a historic overview of commercial WFM systems. These two figures
show that: (1) workflow management is not something that started in the nineties but al-
ready in the seventies with the work of Ellis (OfficeTalk, [32]) and Zisman (Scoop,[78])
and (2) the number of commercial systems has considerably grown in recent years. Note
that given the dynamics of the workflow market, it is difficult to keep diagrams like the
one shown in Figure 13 up-to-date. For example, Figure 13 does not show recent sys-
tems like FLOWer [22]. Moreover, systems are often named different for commercial
reasons. For example, IBM’s MQSeries Workflow (formerly known as FlowMark) was
recently renamed into WebSphere MQ Workflow.

Office Automation Prototypes Scientific Workflow Systems

1980 1985 1990 1995 2000

SCOOP

Backtalk

DAISY

Officetalk-Zero

METEOR

MOBILE

WIDE

CrossFlow

WASA WASA2

Officetalk-P

MENTOR

WISE

INCA

TRAMs

Panta Rhei

ADOME

WorCOS

Mariflow

APRICOT

Melmac

WorCRAFT

Poise Polymer D-Polymer Polyflow

OVALObjectLens

WAMO

Domino

Officetalk-D

FreeFlow

ProMInanD
(Esprit)

Fig. 12. Historic overview of early systems and research prototypes (Taken from [61]).

Unfortunately, figures 12 and 13 do not show the increased maturity of WFM/BPM
products. It also does not show that products target at different types of processes. A
well-know classification of WFM systems is given in [40] where the authors distinguish

Commercial Workflow Systems

1980 1985 1990 1995 2000

Exotica I - III

FlowMark MQSeries Workflow

jFlow

Staffware

Pavone

Onestone Domino Workflow

BEA PI

CARNOT

ViewStar

Digital Proc.Flo. AltaVista Proc.Flow

ActionWorkflow

SNI WorkParty

AdminFlow ChangengineWorkManager

OpenPM FlowJet

Verve Versata

Action Coordinator

ActionWorks MetroDaVinci

FileNet WorkFlo Visual WorkFlo

FileNet Ensemble

Panagon WorkFlo

Xerox InConcert TIB/InConcert

Plexus FloWare BancTec FloWare

NCR ProcessIT

Netscape PM

MS2 Accelerate

Teamware Flow

Fujitsu iFlow

Beyond BeyondMail

DST AWD

IABG ProMInanD

DEC LinkWorks

COSA BaaN Ley COSA

Fujitsu Regatta

Pegasus

LEU

Banyan BeyondMail

Olivetti X_Workflow

Oracle WorkflowDigital Objectflow

ImagePlus FMS/FAF

VisualInfo

DST AWD

Continuum

Recognition Int.

WANGSIGMA
Eastman

WANG Workflow
eiStream

Lucent Mosaix

BlueCross
BlueShield

JCALS

iPlanet

Fig. 13. Historic overview of commercial workflow management systems (Taken from [61]).

between ad-hoc, administrative, and production workflows and discuss the continuum
from human-oriented to system-oriented WFM systems. However, we prefer to use the
more recent classification shown in Figure 14 to describe the “workflow spectrum” .

explicitly
structured

implicitly
structured

ad-hoc
structured

unstructured

data-driven process-driven

ad-hoc workflow

groupware

production
workflow

case handling

Fig. 14. Classification of systems to support work processes.

Figure 14 shows four types of systems: groupware, production workflow, ad-hoc
workflow, and case-handling systems. These systems are characterized in terms of their
“ focus” (data-driven, process driven, or both) and their “degree of structuredness” . Tra-
ditional groupware products like Lotos Notes and MS Exchange and production work-
flow systems like Staffware and MQSeries Workflow form two ends of a spectrum. As
Figure 14 shows, traditional groupware products are data-driven (focus on the shar-
ing of information rather than the process) and support only unstructured processes.
Note that Lotus Notes and Exchange are not “process-aware” (unless components like
Domino Workflow are added). Production workflow systems are process-aware and
aim at structured processes. In order to enact a workflow using a production workflow
system one needs to explicitly specify all possible routes. If something is not explic-
itly specified at design time, it is not possible. Ad-hoc WFM systems like InConcert
(TIBCO), Ensemble (Filenet), and TeamWARE Flow (TeamWARE Group) allow for
the creation and modification of workflow processes at execution time. Each case has a
private process model and therefore the traditional problems encountered when chang-
ing a workflow specification can be avoided. Ad-hoc WFM systems allow for a lot of
flexibility. The WFM system InConcert even allows the user to initiate a case having an
empty process model. When the case is handled, the workflow model is extended to re-
flect the work conducted. Another possibility is to start using a template. The moment
a case is initiated, the corresponding process model is instantiated using a template.
After instantiation, the case has a private copy of the template, which can be modified
while the process is running. InConcert also supports “workflow design by discovery” :
The routing of any completed workflow instance can be used to create a new template.
This way actual workflow executions can be used to create workflow process defini-

tions. Figure 14 shows that ad-hoc workflow management systems like InConcert are
process-driven and ad-hoc structured. Case-handling systems like FLOWer and Vectus
can be positioned in-between groupware, production workflow, and ad-hoc workflow.
Unlike in ad-hoc workflow systems the end-users are not expected to change or create
process models. Instead the following paradigms are used for case handling [8]:

– avoid context tunneling by providing all information available (i.e., present the case
as a whole rather than showing just bits and pieces),

– decide which activities are enabled on the basis of the information available rather
than the activities already executed,

– separate work distribution from authorization and allow for additional types of
roles, not just the execute role,

– allow workers to view and add/modify data before or after the corresponding activ-
ities have been executed (e.g., information can be registered the moment it becomes
available).

For more information on case handling we refer to [8, 22]. Clearly the classification
of systems is not as clear-cut as Figure 14 may suggest. Lotus Notes can be extended
with Domino Workflow to join groupware and production workflow functionalities.
Staffware Case Handler and the COSA Activity Manager are extensions of production
workflow systems in the direction of case handling (both are based on the generic solu-
tion of BPi).

In this tutorial we focus on the classical production workflow systems. However, it
is important to understand that they are part of a spectrum and that their application is
limited to a specific type of processes (process-driven and explicitly structured).

4.2 Architecture

As indicated by Figure 14, WFM systems target at different processes. Therefore, it is
not surprising that there is not one architecture that “fi ts all systems” . Therefore, we
present the so-called reference model of the Workflow Management Coalition (WfMC)
[38, 55]. Figure 15 shows an overview of this reference model. The reference model de-
scribes the major components and interfaces within a workflow architecture. The core
of any workflow system is the workflow enactment service. The workflow enactment
service provides the run-time environment which takes care of the control and exe-
cution of the workflow. For technical or managerial reasons the workflow enactment
service may use multiple workflow engines. A workflow engine handles selected parts
of the workflow and manages selected parts of the resources. The process definition
tools are used to specify and analyze workflow process definitions and/or resource clas-
sifications. These tools are used at design time. In most cases, the process definition
tools can also be used as a BPR-toolset. Most WFM systems provide three process
definition tools: (1) a tool with a graphical interface to define workflow processes, (2)
a tool to specify resource classes (organizational model), and (3) a simulation tool to
analyze a specified workflow.3 The end-user communicates with the workflow system

3 In many cases simulation is offered through some export to a standard simulation tool, e.g.,
COSA supports simulation through an export to ExSpect.

via the workflow client applications. An example of a workflow client application is the
well-known in-basket. Via such an in-basket work items are offered to the end user. By
selecting a work item, the user can execute a task for a specific case. If necessary, the
workflow engine invokes applications via Interface 3. The administration and monitor-
ing tools are used to monitor and control the workflow. These tools are used to register
the progress of cases and to detect bottlenecks. Moreover, these tools are also used to
set parameters, allocate people and handle abnormalities. Via Interface 4 the workflow
system can be connected to other workflow systems. To standardize the five interfaces
shown in Figure 15, the WfMC aims at a common Workflow Application Programming
Interface (WAPI). The WAPI is envisaged as a common set of API calls and related in-
terchange formats which may be grouped together to support each of the five interfaces
(cf. [55]). In Section 5.2 we will describe XPDL, the XML-based language suggested
by the WfMC to exchange process definition (i.e., a concrete language for Interface 1).

Fig. 15. Reference model of the Workflow Management Coalition (WfMC).

4.3 Example of a WFM system: Staffware

As indicated in Section 4.1, many WFM systems are available. In this tutorial we only
show one system in more detail. Staffware is one of the most widespread WFM systems
in the world. In 1998, it was estimated by the Gartner Group that Staffware has 25
percent of the global market [25]. Staffware provides the functionality described in the
reference model shown in Figure 15. Figure 16 shows some screenshots of the Staffware
product. The top window shows the design tool of Staffware while defining a simple

workflow process. Work is offered through so-called work queues. One worker can have
multiple work queues and one work queue can be shared among multiple workers. The
window in the middle shows the set of available work queues (left) and the content of
one of these work queues (right). The bottom window shows an audit trail of a case.
The three windows show only some of the capabilities offered by Staffware. It is fairly
straightforward to map these windows onto the architecture shown in Figure 15.

Fig. 16. The Graphical Workflow Definer, Work Queue, and Audit Trail of Staffware.

Let us now consider the modeling language used by Staffware. In Staffware, tasks
are called steps. There are several kinds of steps: automatic steps (offered to an appli-
cation instead of an end-user), normal steps (executed by an end-user), and event steps
(triggered by some external event). The semantics of a step are OR-join/AND-split,
i.e., a step becomes enabled if one of the preceding steps is completed and the comple-
tion of step will trigger all subsequent steps. Since the OR-join/AND-split semantics is
fixed, two additional building blocks are needed: the wait step and the condition. The
wait step can be used to synchronize flows and has AND-join/AND-split semantics.
To model choices, i.e., OR-splits, the condition building block can be used. Staffware
only allows for binary choices, i.e., just two possible outcomes (e.g., YES and NO).
Staffware processes always start with a start step which is denoted by a symbol rep-

resenting a traffic light. Termination in Staffware is implicit, i.e., it is possible to start
multiple parallel threads which end concurrently. Therefore, there is no need to have
one sink node representing the completion of a case. The end of a thread is denoted
by a stop symbol. Conditions are modeled by diamond shaped symbols. Wait steps are
modeled by symbols in the shape of a sand timer. The basic semantics of a step, a
condition, and a wait are shown in Figure 17.4

step a a

c

wait

condition c

Fig. 17. The semantics of some of the Staffware constructs (left) expressed in Petri nets (right).

Using this translation shown in Figure 17, it is straightforward to map the Staffware
model shown in Figure 16 onto a WF-net. The result is shown in Figure 18.

start register

receive_p

archive end

c1 shipgoods

c2

c3

c4

Fig. 18. The Staffware model shown in Figure 16 expressed in terms of a WF-net.

Let us consider now a larger Staffware model also including advanced concepts like
time triggers and multiple ending points. For this purpose, we use the model shown
in Figure 19. It models a simplified workflow in a travel agency. To organize a trip, a
travel agency executes several tasks. First the customer is registered. Then an employee
searches for opportunities which are communicated to the customer. Then the customer
will be contacted to find out whether she or he is still interested in the trip of this

4 Note that the semantics of Staffware steps include a number of particularities not included in
the mapping, cf. [72].

agency and whether more alternatives are desired. There are three possibilities: (1) the
customer is not interested at all, (2) the customer would like to see more alternatives,
and (3) the customer selects an opportunity. If the customer selects a trip, the trip is
booked. In parallel one or two types of insurance are prepared if they are desired. A
customer can take insurance for trip cancellation or/and for baggage loss. Note that
a customer can decide not to take any insurance, just trip cancellation insurance, just
baggage loss insurance, or both types of insurance. Two weeks before the start date
of the trip the documents are sent to the customer. A trip can be cancelled at any time
after completing the booking process (including the insurance) and before the start date.
Note that customers who are not insured for trip cancellation can cancel the trip (but
will get no refund). Most of the model is self-explanatory. The two OR-join symbols
represent “dummy tasks” , i.e., Staffware steps not implementing any real task. For the
cancellation two steps with a time-out are used: CANCEL and CANCEL2. The clock
symbol is used to indicate steps with a time-out. In such as step, the lower branch is
taken if the step is not executed within a given period. For simplicity we did not model
all triggers and simplified the choice for both types of insurances.

Fig. 19. The workflow of a travel agency modeled in terms of the Staffware language.

Let us now translate the model shown in Figure 19 into a WF-net. We do not use
the Staffware names but the names used in the original description (Staffware only
allows names of up-to 8 characters). The WF-net shown in Figure 20, like any WF-net,
has a source place which serves as the start condition (i.e., case creation) and a sink
place which serves as the end condition (i.e., case completion). First, the tasks register,
search, communicate, and contact cust are executed sequentially. Task contact cust is
an OR-split with three possible outcomes: (1) the customer is not interested at all, i.e.,

start register c2 search c3 communicate c4 contact_cust

end

AND_split

c5

c6

c7

book c8

insurance1? insurance1c9 c11

insurance2? insurance2c10 c12

AND_join send_documents c14

cancel
start_trip

c13

Fig. 20. The travel agency’s workflow expressed in terms of a WF-net.

a token is put into end, (2) the customer would like to see more alternatives, i.e., a
token is put into c2, and (3) the customer selects an opportunity, i.e., a token is put
into c15 to initiate the booking. Tasks AND split and AND join have just been added
for routing purposes. These routing tasks enable the parallel execution of the booking
and insurance tasks. The task book corresponds to the actual booking of the trip. Tasks
insurance1 and insurance2 correspond to handling both types of insurance. Since both
types of insurance are optional, there is a bypass for each of these tasks. The OR-split
insurance1? allows for a bypass of task insurance1 by putting a token in c11. After
handling the booking and optional insurances the AND-join puts a token in c13. The
remainder of the process is, from the viewpoint of triggers, very interesting. Note that
all tasks executed before this point are either tasks that require a resource trigger or
automatic tasks added for routing purposes only. The downward facing arrows denote
the resource triggers. If the case is in c13, then the normal flow of execution is to first
execute task send documents and then execute start trip. Note that task send documents
requires both a resource trigger and a time trigger. These two triggers indicate that two
weeks before the beginning of the trip a worker sends the documents to the customer.
Task start trip has been added for routing purposes and requires a time trigger. Without
task start trip, i.e., putting the token in end after sending the documents, it would have
been impossible to cancel the trip after sending the documents. Task cancel is an explicit
OR-join and requires both a resource trigger and an external trigger. This task is only
executed if it is triggered by the customer. Task cancel can only be executed if the case
is in c13 or c14, i.e., after handling the booking and insurance related tasks and before
the trip starts.

It is interesting to compare figures 19 and 20. Although the WF-net has more sym-
bols because of the explicit modeling of states (i.e., places), it seems to be a more direct
and more elegant way to model the process.

4.4 Exercises

To conclude this section, we provide two small exercises.

– Consider the Staffware process shown in Figure 21. Translate this Staffware model
into a WF-net.

– Consider the WF-net shown in Figure 5. Translate this WF-net into a Staffware
model, i.e., provide a diagram like the one shown in Figure 21 for the order pro-
cessing process given in Section 2.3.

Fig. 21. Exercise: translate this Staffware process into a WF-net.

A solution of the first exercise is given in [12]. A solution for the second exercise is
not given and is also far from trivial given the fact that Staffware does not support the
Milestone and Deferred choice patterns (cf. Section 5.1 and [15]).

5 Workflow standards: An evaluation of XPDL based on its
support for workflow patterns

There are many languages and standards in the WFM/BPM domain. It is impossible
to discuss all of these in any detail. Instead we focus on a single standard. XPDL is
not the most important standard but it is typical for many other standards and propri-
ety languages of workflow vendors. For a critical evaluation of XPDL, we use the set
of workflow patterns described in [15]. The remainder of this section is structured as
follows. First, we introduce the 20 workflow patterns used to evaluate XPDL. Then,
in Section 5.2, we provide an overview of the XPDL language. In Section 5.3 the lan-
guage is analyzed using the 20 workflow patterns. Section 5.4 discusses one of the core
semantical problems: The join construct. Finally, Section 5.5 concludes the section by
comparing XPDL with WFM systems and other standards such as UML Activity Dia-
grams, BPEL4WS, BPML, WSFL, XLANG, and WSCI.

Basic Control Flow Patterns

• Pattern 1 (Sequence)

• Pattern 2 (Parallel Split)

• Pattern 3 (Synchronization)
• Pattern 4 (Exclusive Choice)

• Pattern 5 (Simple Merge)

Advanced Branching and
Synchronization Patterns

• Pattern 6 (Multi - choice)
• Pattern 7 (Synchronizing Merge)

• Pattern 8 (Multi - merge)

• Pattern 9 (Discriminator)

Structural Patterns
• Pattern 10 (Arbitrary Cycles)

• Pattern 11 (Implicit Termination)

State-based Patterns
• Pattern 16 (Deferred

Choice)

• Pattern 17 (Interleaved
Parallel Routing)

• Pattern 18 (Milestone)

Patterns involving Multiple Instances

• Pattern 12 (Multiple Instances Without
Synchronization)

• Pattern 13 (Multiple Instances With a Priori
Design Time Knowledge)

• Pattern 14 (Multiple Instances With a Priori
Runtime Knowledge)

• Pattern 15 (Multiple Instances Without a Priori
Runtime Knowledge)

Cancellation Patterns
• Pattern 19 (Cancel Activity)

• Pattern 20 (Cancel Case)

Fig. 22. Overview of the 20 workflow patterns described in [15].

5.1 Workflow patterns

Since 1999 we have been working on collecting a comprehensive set of workflow pat-
terns [15]. The results have been made available through the “Workflow patterns WWW
site” http://www.workflowpatterns.com. The patterns range from very sim-
ple patterns such as sequential routing (Pattern 1) to complex patterns involving com-
plex synchronizations such as the discriminator pattern (Pattern 9). In this tutorial, we
restrict ourselves to the 20 most relevant patterns. These patterns can be classified into
six categories:

1. Basic control-flow patterns. These are the basic constructs present in most work-
flow languages to model sequential, parallel and conditional routing.

2. Advanced branching and synchronization patterns. These patterns transcend the
basic patterns to allow for more advanced types of splitting and joining behavior.
An example is the Synchronizing merge (Pattern 7) which behaves like an AND-
join or XOR-join depending on the context.

3. Structural patterns. In programming languages a block structure which clearly
identifies entry and exit points is quite natural. In graphical languages allowing for
parallelism such a requirement is often considered to be too restrictive. Therefore,
we have identified patterns that allow for a less rigid structure.

4. Patterns involving multiple instances. Within the context of a single case (i.e., work-
flow instance) sometimes parts of the process need to be instantiated multiple times,
e.g., within the context of an insurance claim, multiple witness statements need to
be processed.

5. State-based patterns. Typical workflow systems focus only on activities and events
and not on states. This limits the expressiveness of the workflow language because
it is not possible to have state dependent patterns such as the Milestone pattern
(Pattern 18).

6. Cancellation patterns. The occurrence of an event (e.g., a customer canceling an
order) may lead to the cancellation of activities. In some scenarios such events can
even cause the withdrawal of the whole case.

Figure 22 shows an overview of the 20 patterns grouped into the six categories. A
detailed discussion of these patterns is outside the scope of this tutorial. The interested
reader is referred to [15] and http://www.workflowpatterns.com.

We have used these patterns to compare the functionality of numerous WFM sys-
tems. The result of this evaluation reveals that (1) the expressive power of contemporary
systems leaves much to be desired and (2) the systems support different patterns. Note
that we do not use the term “expressiveness” in the traditional or formal sense. If one ab-
stracts from capacity constraints, any workflow language is Turing complete. Therefore,
it makes no sense to compare these languages using formal notions of expressiveness.
Instead we use a more intuitive notion of expressiveness which takes the modeling ef-
fort into account. This more intuitive notion is often referred to as suitability. See [51,
52] for a discussion on the distinction between formal expressiveness and suitability.

The observation that the expressive power of the available WFM systems leaves
much to be desired, triggered the question: How about XPDL as a workflow language?

5.2 XPDL: XML Process Definition Language

The Workflow Management Coalition (WfMC) was founded in August 1993 as a in-
ternational non-profit organization. Today there are about 300 members ranging from
workflow vendors and users to analysts and university/research groups. The mission of
the WfMC is to promote and develop the use of workflow through the establishment of
standards for workflow terminology, interoperability and connectivity between work-
flow products. The WfMC’s reference model identifies five interfaces, as shown in Sec-
tion 4.2. One of the main activities since 1993 has been the development of standards
for these interfaces. Interface 1 is the link between the so-called “Process Definition
Tools” and the “Enactment Service” (cf. Figure 15). The Process Definition Tools are
used to design workflows while the Enactment Service can execute workflows. The
primary goal of Interface 1 is the import and export of process definitions. The WfMC
defines a process definition as “The representation of a business process in a form which
supports automated manipulation, such as modeling, or enactment by a WFM system.
The process definition consists of a network of activities and their relationships, criteria
to indicate the start and termination of the process, and information about the individual
activities, such as participants, associated IT applications and data, etc.” [55]. Clearly,
there is a need for process definition interchange. First of all, within the context of a
single workflow management system there has to be a connection between the design
tool and the execution/run-time environment. Second, there may be the desire to use
another design tool, e.g., a modeling tool like ARIS or Protos. Third, for analysis pur-
poses it may be desirable to link the design tool to analysis software such as simulation

and verification tools. Fourth, the use of repositories with workflow processes requires a
standardized language. Fifth, there may be the need to transfer a definition interchange
from one engine to another.

To support the interchange of workflow process definitions, there has to be a stan-
dardized language [12, 38, 48, 55, 57, 58]. The WfMC started working on such a lan-
guage soon after it was founded. This resulted in the Workflow Process Definition Lan-
guage (WPDL) [74] presented in 1999. Although many vendors claimed to be WfMC
compliant, few made a serious effort to support this language. At the same time, XML
emerged as a standard for data interchange. Since WPDL was not XML-based, the
WfMC started working a new language named XML Process Definition Language
(XPDL). The starting point for XPDL was WPDL. However, XPDL should not be con-
sidered the XML version of WPDL. Several concepts have been added/changed and
the WfMC remains fuzzy about the exact relationship between XPDL and WPDL. In
October 2002, the WfMC released a “Final Draft” of XPDL [75].

In [75], the authors state “More complex transitions, which cannot be expressed
using the simple elementary transition and the split and join functions associated with
the from- and to- activities, are formed using dummy activities, which can be specified
as intermediate steps between real activities allowing additional combinations of split
and/or join operations. Using the basic transition entity plus dummy activities, routing
structures of arbitrary complexity can be specified. Since several different approaches
to transition control exist within the industry, several conformance classes are specified
within XPDL. These are described later in the document.” The sentence “Using the
basic transition entity plus dummy activities, routing structures of arbitrary complexity
can be specified.” triggered us to look into the expressive power of XPDL.

XPDL [75] uses an XML-based syntax, specified by an XML schema. The main el-
ements of the language are: Package, Application, WorkflowProcess, Activity, Tran-
sition, Participant, DataField, and DataType. The Package element is the container
holding the other elements. The Application element is used to specify the applica-
tions/tools invoked by the workflow processes defined in a package. The element Work-
flowProcess is used to define workflow processes or parts of workflow processes. A
WorkflowProcess is composed of elements of type Activity and Transition. The Ac-
tivity element is the basic building block of a workflow process definition. Elements of
type Activity are connected through elements of type Transition. There are three types
of activities: Route, Implementation, and BlockActivity. Activities of type Route are
dummy activities just used for routing purposes. Activities of type BlockActivity are
used to execute sets of smaller activities. Element ActivitySet refers to a self contained
set of activities and transitions. A BlockActivity executes such an ActivitySet. Activi-
ties of type Implementation are steps in the process which are implemented by manual
procedures (No), implemented by one of more applications (Tool), or implemented by
another workflow process (Subflow). The Participant element is used to specify the
participants in the workflow, i.e., the entities that can execute work. There are 6 types
of participants: ResourceSet, Resource, Role, OrganizationalUnit, Human, and
System. Elements of type DataField and DataType are used to specify workflow rel-
evant data. Data is used to make decisions or to refer to data outside of the workflow,
and is passed between activities and subflows.

In this section, we focus on the control-flow perspective. Therefore, we will not
consider functionality related to the Package, Application, and Participant elements.
Moreover, we will only consider workflow relevant data from the perspective of rout-
ing. Appendix A shows selected parts of the XPDL Schema [75] relevant for this tu-
torial. The listing shows the elements Activity, TransitionRestriction, TransitionRe-
strictions, Join, Split, Transition and Condition. An activity may have one of more
“ transition restrictions” to specify the split/join behavior. If there is a transition restric-
tion of type Join, the restriction is either set to AND or to XOR. The WfMC defines
the semantics of such a restriction as follows: “AND: Join of (all) concurrent threads
within the process instance with incoming transitions to the activity: Synchronization
is required. The number of threads to be synchronized might be dependent on the result
of the conditions of previous AND split(s).” and “XOR: Join for alternative threads:
No synchronization is required.” [75]. Similarly, there are transition restrictions of type
Split that are set to either AND or XOR with the following semantics: “AND: Defines
a number of possible concurrent threads represented by the outgoing Transitions of
this Activity. If the Transitions have conditions the actual number of executed parallel
threads is dependent on the conditions associated with each transition, which are eval-
uated concurrently.” and “XOR: List of Identifiers of outgoing Transitions of this Ac-
tivity, representing. Alternatively executed transitions. The decision as to which single
transition route is selected is dependent on the conditions of each individual transition
as they are evaluated in the sequence specified in the list. If an unconditional Transition
is evaluated or transition with condition OTHERWISE this ends the list evaluation.”
[75]. Appendix A also shows the definition of element Transition. A transition con-
nects two activities as indicated by the From and To field and may contain a Condition
element.

The WfMC acknowledges the fact that workflow languages use different styles and
paradigms. To accommodate this, XPDL allows for vendor specific extensions of the
language. In addition, XPDL distinguishes three conformance classes: non-blocked,
loop-blocked, and full-blocked. These conformance classes refer to the network struc-
ture of a process definition, i.e., the graph of activities (nodes) and transitions (arcs). For
conformance class non-blocked there are no restrictions. For conformance class loop-
blocked the network structure has to be acyclic and for conformance class full-blocked
there has to be a one-to-one correspondence between splits and joins of the same type.
These conformance classes correspond to different styles of modeling. Graph based
workflow languages like COSA and Staffware correspond to conformance class non-
blocked. Languages such as MQSeries, WSFL, and BPEL4WS correspond to confor-
mance class loop-blocked and block-structured languages such as XLANG are full-
blocked.

A detailed introduction to XPDL is beyond the scope of this tutorial. For more
details we refer to [75].

5.3 The Workflow Patterns in XPDL

In this section, we consider the 20 workflow patterns discussed in Section 5.1, and we
show how and to what extent these patterns can be captured in XPDL. In particular, we
indicate whether the pattern is directly supported by a XPDL construct. If this is not the

case, we sketch a workaround solution. Most of the solutions are presented in a simpli-
fied XPDL notation which is intended to capture the key ideas of the solutions while
avoiding coding details. In other words, the fragments of XPDL definitions provided
here are not “ ready to be run” .

WP1 Sequence An activity in a workflow process is enabled after the completion of
another activity in the same process. Example: After the activity order registration the
activity customer notification is executed.

Solution, WP1 This pattern is directly supported by the XPDL as illustrated in in List-
ing 1. Within the process Sequence two activities A and B are linked through transition
AB.

Listing 1 (Sequence)

1 <WorkflowProcess Id="Sequence">
2 <ProcessHeader DurationUnit="Y"/>
3 <Activities>
4 <Activity Id="A">
5 ...
6 </Activity>
7 <Activity Id="B">
8 ...
9 </Activity>

10 </Activities>
11 <Transitions>
12 <Transition Id="AB" From="A" To="B"/>
13 </Transitions>
14 </WorkflowProcess>

WP2 Parallel Split A point in the process where a single thread of control splits into
multiple threads of control which can be executed in parallel, thus allowing activities to
be executed simultaneously or in any order [55, 37]. Example: After activity new cell
phone subscription order the activity insert new subscription in Home Location Reg-
istry application and insert new subscription in Mobile answer application are executed
in parallel.

WP3 Synchronization A point in the process where multiple parallel branches con-
verge into one single thread of control, thus synchronizing multiple threads [55]. It
is an assumption of this pattern that after an incoming branch has been completed, it
cannot be completed again while the merge is still waiting for other branches to be com-
pleted. Also, it is assumed that the threads to be synchronized belong to the same global
process instance (i.e., to the same “case” in workflow terminology). Example: Activity
archive is executed after the completion of both activity send tickets and activity receive
payment. Obviously, the synchronization occurs within a single global process instance:
the send tickets and receive payment must relate to the same client request.

Listing 2 (Parallel Split/Synchronization)

1 <WorkflowProcess Id="Parallel">
2 <ProcessHeader DurationUnit="Y"/>
3 <Activities>
4 <Activity Id="A">
5 ...
6 <TransitionRestrictions>
7 <TransitionRestriction>
8 <Split Type="AND">
9 <TransitionRefs>

10 <TransitionRef Id="B"/>
11 <TransitionRef Id="C"/>
12 </TransitionRefs>
13 </Split>
14 </TransitionRestriction>
15 </TransitionRestrictions>
16 </Activity>
17 <Activity Id="B">
18 ...
19 </Activity>
20 <Activity Id="C">
21
22 </Activity>
23 <Activity Id="D">
24 ...
25 <TransitionRestrictions>
26 <TransitionRestriction>
27 <Join Type="AND"/>
28 </TransitionRestriction>
29 </TransitionRestrictions>
30 </Activity>
31 </Activities>
32 <Transitions>
33 <Transition Id="AB" From="A" To="B"/>
34 <Transition Id="AC" From="A" To="C"/>
35 <Transition Id="BD" From="B" To="D"/>
36 <Transition Id="CD" From="C" To="D"/>
37 </Transitions>
38 </WorkflowProcess>

Solutions, WP2 & WP3 This pattern directly supported by the XPDL. This is illus-
trated by the example shown in Listing 2. Within the process Parallel four activities are
linked trough four transitions. Transitions AB and AC link the initial activity A to the
two parallel activities B and C. Note that the split in activity A is of type AND and no
transition conditions are specified. Transitions BD and CD link the two parallel activi-
ties B and C to the final activity D. Note that the join in activity D is of type AND and
again no transition conditions are specified.

WP4 Exclusive Choice A point in the process where, based on a decision or workflow
control data, one of several branches is chosen. Example: The manager is informed if
an order exceeds $600, otherwise not.

WP5 Simple Merge A point in the workflow process where two or more alternative
branches come together without synchronization. It is an assumption of this pattern that
none of the alternative branches is ever executed in parallel with another one (if it is
not the case, then see the patterns Multi Merge and Discriminator). Example: After the
payment is received or the credit is granted the car is delivered to the customer.

Solutions, WP4 & WP5 XPDL can address the Exclusive choice pattern (WP4) in
two ways. In both cases, an activity has a split and multiple outgoing transitions. One
way is to use a split of type XOR, i.e., the first transition which as no condition or a
condition which evaluates to true is taken. Another way is to use split of type AND
and define mutual exclusive transition conditions. Listing 3 shows a solution using the
first alternative. Listing 4 shows a solution using the second alternative. In the second
solution transitions AB and AC have a condition. In the first solution transitions AB and
AC do not have a condition which effectively implies that always the first one (AB) is
taken. Besides normal conditions based on workflow relevant data, it is also possible
to use conditions of type OTHERWISE (for the default branch to be taken if all other
conditions evaluate to false) and of type EXCEPTION (for specifying the branch to be
taken after an exception was raised). Listings 3 and 4 also show the direct support for
the Simple merge (WP5).

WP6 Multi-Choice A point in the process, where, based on a decision or control data,
a number of branches are chosen and executed as parallel threads. Example: After ex-
ecuting the activity evaluate damage the activity contact fire department or the activity
contact insurance company is executed. At least one of these activities is executed.
However, it is also possible that both need to be executed.

Solution, WP6 XPDL provides direct support for the Multi-Choice pattern as shown in
Listing 5. Depending on the value of amount activity B and/or C is/are executed, e.g.,
if the value of amount is 8 both activities are executed, otherwise just B (amount> 5)
or C (amount< 10).

WP7 Synchronizing Merge A point in the process where multiple paths converge into
one single thread. Some of these paths are “active” (i.e. they are being executed) and
some are not. If only one path is active, the activity after the merge is triggered as soon

Listing 3 (Exclusive Choice/Simple Merge)

1 <WorkflowProcess Id="Choice1">
2 <ProcessHeader DurationUnit="Y"/>
3 <Activities>
4 <Activity Id="A">
5 ...
6 <TransitionRestrictions>
7 <TransitionRestriction>
8 <Split Type="XOR">
9 <TransitionRefs>

10 <TransitionRef Id="AB"/>
11 <TransitionRef Id="AC"/>
12 </TransitionRefs>
13 </Split>
14 </TransitionRestriction>
15 </TransitionRestrictions>
16 </Activity>
17 <Activity Id="B">
18 ...
19 </Activity>
20 <Activity Id="C">
21 ...
22 </Activity>
23 <Activity Id="D">
24 ...
25 <TransitionRestrictions>
26 <TransitionRestriction>
27 <Join Type="XOR"/>
28 </TransitionRestriction>
29 </TransitionRestrictions>
30 </Activity>
31 </Activities>
32 <Transitions>
33 <Transition Id="AB" From="A" To="B"/>
34 <Transition Id="AC" From="A" To="C"/>
35 <Transition Id="BD" From="B" To="D"/>
36 <Transition Id="CD" From="C" To="D"/>
37 </Transitions>
38 </WorkflowProcess>

Listing 4 (Exclusive Choice/Simple Merge)

1 <WorkflowProcess Id="Choice2">
2 <ProcessHeader DurationUnit="Y"/>
3 <Activities>
4 <Activity Id="A">
5 ...
6 <TransitionRestrictions>
7 <TransitionRestriction>
8 <Split Type="AND">
9 <TransitionRefs>

10 <TransitionRef Id="AB"/>
11 <TransitionRef Id="AC"/>
12 </TransitionRefs>
13 </Split>
14 </TransitionRestriction>
15 </TransitionRestrictions>
16 </Activity>
17 <Activity Id="B">
18 ...
19 </Activity>
20 <Activity Id="C">
21 ...
22 </Activity>
23 <Activity Id="D">
24 ...
25 <TransitionRestrictions>
26 <TransitionRestriction>
27 <Join Type="XOR"/>
28 </TransitionRestriction>
29 </TransitionRestrictions>
30 </Activity>
31 </Activities>
32 <Transitions>
33 <Transition Id="AB" From="A" To="B">
34 <Condition Type="CONDITION">
35 choice == "B" </Condition>
36 </Transition>
37 <Transition Id="AC" From="A" To="C">
38 <Condition Type="CONDITION">
39 choice == "C" </Condition>
40 </Transition>
41 <Transition Id="BD" From="B" To="D"/>
42 <Transition Id="CD" From="C" To="D"/>
43 </Transitions>
44 </WorkflowProcess>

Listing 5 (Multi Choice/Synchronizing merge)

1 <WorkflowProcess Id="Multi-choice">
2 <ProcessHeader DurationUnit="Y"/>
3 <Activities>
4 <Activity Id="A">
5 ...
6 <TransitionRestrictions>
7 <TransitionRestriction>
8 <Split Type="AND">
9 <TransitionRefs>

10 <TransitionRef Id="AB"/>
11 <TransitionRef Id="AC"/>
12 </TransitionRefs>
13 </Split>
14 </TransitionRestriction>
15 </TransitionRestrictions>
16 </Activity>
17 <Activity Id="B">
18 ...
19 </Activity>
20 <Activity Id="C">
21 ...
22 </Activity>
23 <Activity Id="D">
24 ...
25 <TransitionRestrictions>
26 <TransitionRestriction>
27 <Join Type="AND"/>
28 </TransitionRestriction>
29 </TransitionRestrictions>
30 </Activity>
31 </Activities>
32 <Transitions>
33 <Transition Id="AB" From="A" To="B">
34 <Condition Type="CONDITION">
35 amount > 5 </Condition>
36 </Transition>
37 <Transition Id="AC" From="A" To="C">
38 <Condition Type="CONDITION">
39 amount < 10 </Condition>
40 </Transition>
41 <Transition Id="BD" From="B" To="D"/>
42 <Transition Id="CD" From="C" To="D"/>
43 </Transitions>
44 </WorkflowProcess>

as this path completes. If more than one path is active, synchronization of all active
paths needs to take place before the next activity is triggered. It is an assumption of this
pattern that a branch that has already been activated, cannot be activated again while
the merge is still waiting for other branches to complete. Example: After either or
both of the activities contact fire department and contact insurance company have been
completed (depending on whether they were executed at all), the activity submit report
needs to be performed (exactly once).

Solutions, WP7 According to [75] XPDL provides direct support for the Synchroniz-
ing merge pattern. Recall the definition of the AND restriction: “AND: Join of (all)
concurrent threads within the process instance with incoming transitions to the activity:
Synchronization is required. The number of threads to be synchronized might be de-
pendent on the result of the conditions of previous AND split(s).” [75] which suggests
direct support for the Synchronizing merge pattern. If this is indeed the case, then List-
ing 5 indeed shows an example where activity D either merges or synchronizes the two
ingoing transitions depending on the number of threads activated by activity A. Unfor-
tunately, few workflow systems that claim to support XPDL have indeed this behavior.
Moreover, XPDL allows for multiple interpretations as discussed in Section 5.4.

WP8 Multi-Merge A point in a process where two or more branches reconverge with-
out synchronization. If more than one branch gets activated, possibly concurrently, the
activity following the merge is started for every action of every incoming branch. Ex-
ample: Sometimes two or more branches share the same ending. Two activities audit
application and process applications are running in parallel which should both be fol-
lowed by an activity close case, which should be executed twice if the activities audit
application and process applications are both executed.

Solution, WP8 XPDL only allows for two types of joins: AND and XOR. The seman-
tics of these two joins is not completely clear. A join of type XOR will offer the Simple
merge pattern. Recall that the simple merge assumes that precisely one of the incoming
transitions will occur. However, XPDL allows for situations where the more incoming
transitions will or may occur. Consider Listing 6. Both B and C are executed. Since
activity D has a join of type XOR it can already occur when one of these two have been
executed. However, it is not clear how many times activity D will occur (and when).
In [75] is is stated that “The XOR join initiates the Activity when the transition condi-
tions of any (one) of the incoming transitions evaluates true.” . Since it is not specified
what should happen if multiple incoming transitions evaluate to true at the same time,
we conclude that XPDL does not support the Multi-Merge (WP8). See [15] for typical
work-arounds.

WP9 Discriminator A point in the workflow process that waits for one of the incoming
branches to complete before activating the subsequent activity. From that moment on
it waits for all remaining branches to complete and “ ignores” them. Once all incoming
branches have been triggered, it resets itself so that it can be triggered again (which is
important otherwise it could not really be used in the context of a loop). Example: To
improve query response time a complex search is sent to two different databases over

Listing 6 (Multi-merge?)

1 <WorkflowProcess Id="Parallel">
2 <ProcessHeader DurationUnit="Y"/>
3 <Activities>
4 <Activity Id="A">
5 ...
6 <TransitionRestrictions>
7 <TransitionRestriction>
8 <Split Type="AND">
9 <TransitionRefs>

10 <TransitionRef Id="B"/>
11 <TransitionRef Id="C"/>
12 </TransitionRefs>
13 </Split>
14 </TransitionRestriction>
15 </TransitionRestrictions>
16 </Activity>
17 <Activity Id="B">
18 ...
19 </Activity>
20 <Activity Id="C">
21
22 </Activity>
23 <Activity Id="D">
24 ...
25 <TransitionRestrictions>
26 <TransitionRestriction>
27 <Join Type="XOR"/>
28 </TransitionRestriction>
29 </TransitionRestrictions>
30 </Activity>
31 </Activities>
32 <Transitions>
33 <Transition Id="AB" From="A" To="B"/>
34 <Transition Id="AC" From="A" To="C"/>
35 <Transition Id="BD" From="B" To="D"/>
36 <Transition Id="CD" From="C" To="D"/>
37 </Transitions>
38 </WorkflowProcess>

the Internet. The first one that comes up with the result should proceed the flow. The
second result is ignored.

Solution, WP9 XPDL allows for situations where multiple incoming transitions will or
may occur. However, the precise semantics of a join of type XOR is not specified and,
similar to WP8, we conclude that the Discriminator (WP9) is not supported.

WP10 Arbitrary Cycles A point where a portion of the process (including one or more
activities and connectors) needs to be “visited” repeatedly without imposing restrictions
on the number, location, and nesting of these points. Note that block-oriented languages
and languages providing constructs such as “while do” , “ repeat until” typically impose
such restrictions, e.g., it is not possible to jump from one loop into another loop.

Solution, WP10 XPDL distinguishes three conformance classes: non-blocked, loop-
blocked, and full-blocked. Conformance class “non-blocked” directly supports this pat-
tern. Note that the transitions basically define a relation and allow for any graph includ-
ing cyclic ones. For the other conformance classes this is not allowed. For conformance
class loop-blocked the network structure has to be acyclic and for conformance class
full-blocked there has to be a one-to-one correspondence between splits and joins of the
same type.

WP11 Implicit Termination A given subprocess is terminated when there is nothing
left to do, i.e., termination does not require an explicit termination activity. The goal of
this pattern is to avoid having to join divergent branches into a single point of termina-
tion.

Solution, WP11 XPDL, assuming conformance class “non-blocked” , allows for arbi-
trary graph-like structures. As a result it is possible to have multiple activities without
input transitions (i.e., source activities) and multiple activities without output transitions
(sink activities). The latter suggests direct support for WP11. Unfortunately, [75] does
not clarify the semantics of XPDL in the presence of multiple source and sink activities,
e.g., Do all source activities need to be executed or just one? Although XPDL does not
specify the expected behavior in such cases, we give it the benefit of the doubt. Note
that this illustrates that conformance is still ill-defined in [75] since it refers to syntax
rather than semantics.

WP12 MI without Synchronization Within the context of a single case, multiple in-
stances of an activity may be created, i.e. there is a facility for spawning off new threads
of control, all of them independent of each other. The instances might be created con-
secutively, but they will be able to run in parallel, which distinguishes this pattern from
the pattern for Arbitrary Cycles. Example: When booking a trip, the activity book flight
is executed multiple times if the trip involves multiple flights.

Solution, WP12 An activity may be refined into a subflow. The subflow may be exe-
cuted synchronously or asynchronously. In case of asynchronous execution, the activity

is continued after an instance of the subflow is initiated. This way it is possible to
“spawn-off” subflows and thus realizing WP12.

WP13-WP15 MI with Synchronization A point in a workflow where a number of
instances of a given activity are initiated, and these instances are later synchronized,
before proceeding with the rest of the process. In WP13 the number of instances to be
started/synchronized is known at design time. In WP14 the number is known at some
stage during run time, but before the initiation of the instances has started. In WP15 the
number of instances to be created is not known in advance: new instances are created on
demand, until no more instances are required. Example of WP15: When booking a trip,
the activity book flight is executed multiple times if the trip involves multiple flights.
Once all bookings are made, an invoice is sent to the client. How many bookings are
made is only known at runtime through interaction with the user (or with an external
process).

Solutions, WP13-WP15 If the number of instances to be synchronized is known at
design time (WP13), a simple solution is to replicate the activity as many times as it
needs to be instantiated, and run the replicas in parallel. Therefore, WP13 is supported.
However, it is clear that there is no direct support for WP14 and WP15 because any
solution will involve explicit bookkeeping of the number of active instances. In fact in
[75] is is stated that “Synchronization with the initiated subflow, if required, has to be
done by other means such as events, not described in this document.” when describing
the functionality of asynchronous subflows. Therefore, we conclude that there is no
support for WP14 and WP15. Again we refer to [15] for typical workarounds.

WP16 Deferred Choice A point in a process where one among several alternative
branches is chosen based on information which is not necessarily available when this
point is reached. This differs from the normal exclusive choice, in that the choice is
not made immediately when the point is reached, but instead several alternatives are
offered, and the choice between them is delayed until the occurrence of some event.
Example: When a contract is finalized, it has to be reviewed and signed either by the
director or by the operations manager, whoever is available first. Both the director and
the operations manager would be notified that the contract is to be reviewed: the first
one who is available will proceed with the review.

Solution, WP16 XPDL only allows for choices resulting from conditions on transitions.
Hence each choice is directly-based on workflow relevant data and it is not possible
offer the choice to the environment. XPDL does not allow for the definition of states
(like places in a Petri net) nor constructs like the choice construct in BPML and WSCI
and the pick construct in XLANG and BPEL4WS. There is no simple work-around for
this omission since it is not possible to shift the moment of decision from the end of an
activity to the start of an activity. Moreover, XPDL does not allow for the specification
of triggers and/or external events.

WP17 Interleaved Parallel Routing A set of activities is executed in an arbitrary order.
Each activity in the set is executed exactly once. The order between the activities is

decided at run-time: it is not until one activity is completed that the decision on what to
do next is taken. In any case, no two activities in the set can be active at the same time.
Example: At the end of each year, a bank executes two activities for each account:
add interest and charge credit card costs. These activities can be executed in any order.
However, since they both update the account, they cannot be executed at the same time.

Solution, WP17 Since XPDL does not allow for the definition of states, it is not pos-
sible to enforce some kind of mutual exclusion. Hence there is no support for WP17.
Even the work-arounds described in [15] are difficult, if not impossible, to apply.

WP18 Milestone A given activity can only be enabled if a certain milestone has been
reached which has not yet expired. A milestone is defined as a point in the process
where a given activity has finished and another activity following it has not yet started.
Example: After having placed a purchase order, a customer can withdraw it at any time
before the shipping takes place. To withdraw an order, the customer must complete
a withdrawal request form, and this request must be approved by a customer service
representative. The execution of the activity approve order withdrawal must therefore
follow the activity request withdrawal, and can only be done if: (i) the activity place
order is completed, and (ii) the activity ship order has not yet started.

Solution, WP18 XPDL does not provide a direct support for capturing this pattern.
Therefore, a work-around solution has to be used. Again it is difficult to construct so-
lutions inspired by the ideas in [15]. Since other patterns like WP16 and WP19 are not
supported, potential solutions lead to complex process definitions for simply checking
the state in a parallel branch.

WP19 Cancel Activity & WP20 Cancel Case A cancel activity terminates a running
instance of an activity, while canceling a case leads to the removal of an entire workflow
instance. Example of WP19: A customer cancels a request for information. Example
of WP20: A customer withdraws his/her order.

Solutions, WP19 & WP20 XPDL does not provide explicit constructs for WP19 and
WP20. The concept of exceptions seems to be related, but like many other concepts
ill-defined. The only construct in XPDL that can raise an exception is the deadline el-
ement. Deadlines are used to raise an exception upon the expiration of a specific period
of time. A deadline can be raised synchronously or asynchronously: “ If the deadline
is synchronous, then the activity is terminated before flow continues on the exception
path.” and “ If the deadline is asynchronous, then an implicit AND-SPLIT is performed,
and a new thread of processing is started on the appropriate exception transition.” [75].
An exception may trigger a transition but cannot be used to cancel activities or cases.
Hence, XPDL does not support WP19 and WP20.

5.4 Many ways to join

In this section, we evaluated XPDL with respect to the patterns. A more detailed analy-
sis reveals that, not only does XPDL have problems with respect to several patterns, the

semantics of many constructs is unclear. To illustrate this we focus on transition restric-
tions of type Join. The restriction is either set to AND or to XOR and the WfMC defines
these settings as follows: “AND: Join of (all) concurrent threads within the process in-
stance with incoming transitions to the activity: Synchronization is required. The num-
ber of threads to be synchronized might be dependent on the result of the conditions of
previous AND split(s).” and “XOR: Join for alternative threads: No synchronization is
required.” [75]. To demonstrate that these descriptions do not fully specify the intended
behavior, Figure 23 shows seven possible interpretations each expressed in terms of a
Petri net (some extended with inhibitor arcs, cf. [63]). Note that Petri nets have formal
semantics, and thus, Figure 23 fully specifies the behavior of each construct. Also note
that we restrict ourselves to local constructs, i.e., the there are no dependencies other
than on the activities directly connected to the join.

The first two constructs correspond to the most straightforward interpretations of
the AND-join (Figure 23(a)) and XOR-join (Figure 23(b)). In Figure 23(a), activity
C always synchronizes A and B, i.e., if A is never executed, C is never executed.5 In
Figure 23(b), activity C is executed once for each occurrence of A and B. Although Fig-
ure 23(a) and Figure 23(b) seem to correspond to straightforward interpretations of the
AND-join and XOR-join, few WFM systems actually exhibit this behavior. The other
constructs in Figure 23 show other interpretations for both the AND-join and/or XOR-
join encountered in contemporary systems. Figure 23(c) shows the situation where ac-
tivity A is blocked if C was not executed since the last occurrence of A. Similarly,
activity B is blocked if C was not executed since the last occurrence of B. Note that this
construct uses two inhibitor arcs (i.e., the two connections involving a small circle).
Unlike a normal directed arc in Petri net, an inhibitor arc models the requirement that
a place has to be empty, i.e., A is only enabled if the input place (not shown) contains
a token and the output place is empty. Figure 23(d) shows a similar construct but now
for the XOR-join, i.e., both activity A and activity B are blocked if C was not executed
since the last occurrence of A or B. The WFM system COSA [67] uses this interpreta-
tion for the AND-join and XOR-join. Figures 23 (c) and (d) use inhibitor arcs to make
sure that activity C is only enabled once. This is realized by blocking the preceding
activities if needed. An alternative approach is to simply remove additional tokens. Fig-
ure 23(e) shows an approach where C synchronizes both flows if both A and B have
been executed. If only one of them has been executed, there is no synchronization. Note
that there are three instances of C: one for the situation where only A was executed,
one for situation where both A and B have been executed, and one where only B was
executed. The two inhibitor arcs make sure that the two flows are synchronized if pos-
sible. Figure 23(f) shows a similar, but slightly different, approach where simply every
attempt to enable C for the second time is ignored. If C is already enabled, then the right
transition will occur, otherwise the left one. Consider the scenario where A occurs twice
before execution C. In Figure 23(e), C will be executed twice, while in Figure 23(f) C
will be executed only once. Many systems have a behavior similar to Figure 23(e)/(f),
e.g., a normal step in Staffware [69] behaves as indicated by Figure 23(f). (See [72]
for a more detailed analysis of Staffware steps.) Although widely supported, the inter-
pretation given in Figure 23(e)/(f) is not very desirable from a modeling point of view

5 Note that this is not the case in XPDL.

A B

C

A B

C

A B

C

A B

C

A B

CC C

A B

C

A B

C

(a) (b) (c) (d)

(f)(e) (g)

Fig. 23. Seven frequently used ways to join two flows (expressed in terms of Petri nets with
inhibitor arcs [63]).

since it introduces “ race conditions” , e.g., the number of times C is executed depends
on the interleaving of A, B, and C activities. Figure 23(g) gives yet another interpreta-
tion of the AND/XOR-join. C is enabled immediately after the first occurrence of A or
B, but after it occurs it is blocked until the other activity has also been executed, i.e., the
construct is reset once each of A, B, and C has occurred. Note that this interpretation
corresponds to WP9 (Discriminator pattern).

Figure 23 shows that there are many ways to join two flows. In fact, there are many
more interpretations. An example is the so-called “wait step” in Staffware [69] which
only synchronizes the first time if it is put in a loop (see [72] for more details). An-
other example is the join in IBM’s MQSeries Workflow [46], BPEL4WS [27], and
WSFL (Web Services Flow Language, [56]) which decides whether it has to synchro-
nize or not based on the so-called “Dead-Path-Elimination (DPE)” [57]. Given the quote
“AND: Join of (all) concurrent threads within the process instance with incoming tran-
sitions to the activity: Synchronization is required. The number of threads to be syn-
chronized might be dependent on the result of the conditions of previous AND split(s).”
in [75], the latter interpretation seems to be closest to XPDL. Unfortunately, other than
IBM-influenced products and standards, no other vendors are using nor supporting this
interpretation since it does not allow for Arbitrary cycles (WP10) [9].

The dilemma of joining mixtures of alternative or parallel flows has been discussed
in scientific literature. See [9] for pointers to related papers and an elaborate discussion
in the context of Event-driven Process Chains (EPC’s).

The fact that there are many ways to join and that in [75] the WfMC leaves room for
multiple interpretations, brings us to the issue of conformance. In [75] it is stated that
“A product that claims conformance must generate valid, syntactically correct XPDL,
and must be able to read all valid XPDL.” . Unfortunately, this quote, but also the rest
of [75], does not address the issue of semantics. Note that it is rather easy to generate
and read valid XPDL files. The difficult part is to be able to interpret XPDL generated
by another tool and execute the workflow as intended.

5.5 Comparing XPDL with other languages and standards

Thus far, we provided a critical evaluation of XPDL based on a set of 20 basic work-
flow patterns. To conclude this section, we compare XPDL with other standards and 15
workflow products.

Table 1 shows an evaluation of XPDL and six other standards. If a standard directly
supports the pattern through one of its constructs, it is rated +. If the pattern is not
directly supported, it is rated +/-. Any solution which results in spaghetti diagrams or

6 Although the description of the AND-join suggests support for WP7, XPDL does not specify
its precise behavior. In fact, for conformance class “non-blocked” , it is unclear how WP7 could
be supported

7 For conformance class “non-blocked” , arbitrary graph-like structures are allowed, including
arbitrary cycles. For the other conformance classes this is explicitly excluded.

8 For all conformance classes there may be multiple source and/or sink activities. Hence, from
a syntactical point of view WP11 is supported. Unfortunately, no semantics are given for this
construct.

pattern standard
XPDL UML BPEL4WS BPML XLANG WSFL WSCI

1 (seq) + + + + + + +
2 (par-spl) + + + + + + +
3 (synch) + + + + + + +
4 (ex-ch) + + + + + + +

5 (simple-m) + + + + + + +
6 (m-choice) + - + - - + -
7 (sync-m) +6 - + - - + -
8 (multi-m) - - - +/- - - +/-

9 (disc) - - - - - - -
10 (arb-c) +7 - - - - - -
11 (impl-t) +8 - + + - + +

12 (mi-no-s) + - + + + + +
13 (mi-dt) + + + + + + +
14 (mi-rt) - + - - - - -
15 (mi-no) - - - - - - -
16 (def-c) - + + + + - +

17 (int-par) - - +/- - - - -
18 (milest) - - - - - - -
19 (can-a) - + + + + + +
20 (can-c) - + + + + + +

Table 1. A comparison of XPDL with other standards such as UML Activity Diagrams,
BPEL4WS, BPML, XLANG, WSFL, and WSCI.

coding, is considered as giving no direct support and is rated -. The rating of XPDL is
as explained in this section.

UML activity diagrams [42] are intended to model both computational and orga-
nizational processes. Increasingly, UML activity diagrams are also used for workflow
modeling. Therefore, it is interesting to analyze their expressiveness using the set of
basic workflow patterns as shown in the table. for more information see [31].

The recently released BPEL4WS (Business Process Execution Language for Web
Services, [27]) specification builds on IBM’s WSFL (Web Services Flow Language,
[56]) and Microsoft’s XLANG [70]. XLANG is a block-structured language with basic
control flow structures such as sequence, switch (for conditional routing), while (for
looping), all (for parallel routing), and pick (for race conditions based on timing or
external triggers). In contrast to XLANG, WSFL is not limited to block structures and
allows for directed graphs. The graphs can be nested but need to be acyclic. Iteration is
only supported through exit conditions, i.e., an activity/subprocess is iterated until its
exit condition is met. The control flow part of WSFL is almost identical to the workflow
language used by IBM’s MQ Series Workflow. See [76, 77] for more information about
the evaluation of BPEL4WS, XLANG, and WSFL using the patterns.

BPML (Business Process Modeling language, [21]) is a standard developed and
promoted by BPMI.org (the Business Process Management Initiative). BPMI.org is
supported by several organizations, including Intalio, SAP, Sun, and Versata. The Web
Service Choreography Interface (WSCI, [20]) submitted in June 2002 to the W3C by

BEA Systems, BPMI.org, Commerce One, Fujitsu Limited, Intalio, IONA, Oracle Cor-
poration, SAP AG, SeeBeyond Technology Corporation, and Sun Microsystems. There
is a substantial overlap between BPML and WSCI. See [11] for more information about
the evaluation of BPML and WSCI using the patterns.

In addition to comparing XPDL to other standards, it is interesting to compare
XPDL with contemporary WFM systems. Tables 2 and 3 summarize the results of
the comparison of 15 WFM systems in terms of the selected patterns. These tables
are taken from [15] and have been added to compare contemporary workflow products
with XPDL.

pattern product
Staffware COSA InConcert Eastman FLOWer Domino Meteor Mobile

1 (seq) + + + + + + + +
2 (par-spl) + + + + + + + +
3 (synch) + + + + + + + +
4 (ex-ch) + + +/- + + + + +

5 (simple-m) + + +/- + + + + +
6 (m-choice) - + +/- +/- - + + +
7 (sync-m) - +/- + + - + - -
8 (multi-m) - - - + +/- +/- + -

9 (disc) - - - + +/- - +/- +
10 (arb-c) + + - + - + + -
11 (impl-t) + - + + - + - -

12 (mi-no-s) - +/- - + + +/- + -
13 (mi-dt) + + + + + + + +
14 (mi-rt) - - - - + - - -
15 (mi-no) - - - - + - - -
16 (def-c) - + - - +/- - - -

17 (int-par) - + - - +/- - - +
18 (milest) - + - - +/- - - -
19 (can-a) + + - - +/- - - -
20 (can-c) - - - - +/- + - -

Table 2. The main results for Staffware, COSA, InConcert, Eastman, FLOWer, Lotus Domino
Workflow, Meteor, and Mobile.

From the comparison it is clear that no tool supports all of the selected patterns. In
fact, many of these tools only support a relatively small subset of the more advanced
patterns (i.e., patterns 6 to 20). Specifically the limited support for the discriminator,
the state-based patterns (only COSA), the synchronization of multiple instances (only
FLOWer) and cancellation (esp. of activities), is worth noting.

Please apply the results summarized in tables 1, 2 and 3 with care. First of all, the
organization selecting a WFM system/standard should focus on the patterns most rele-
vant for the workflow processes at hand. Since support for the more advanced patterns
is limited, one should focus on the patterns most needed. Second, the fact that a pattern
is not directly supported by a product does not imply that it is not possible to support

pattern product
MQSeries Forté Verve Vis. WF Changeng. I-Flow SAP/R3

1 (seq) + + + + + + +
2 (par-spl) + + + + + + +
3 (synch) + + + + + + +
4 (ex-ch) + + + + + + +

5 (simple-m) + + + + + + +
6 (m-choice) + + + + + + +
7 (sync-m) + - - - - - -
8 (multi-m) - + + - - - -

9 (disc) - + + - + - +
10 (arb-c) - + + +/- + + -
11 (impl-t) + - - - - - -

12 (mi-no-s) - + + + - + -
13 (mi-dt) + + + + + + +
14 (mi-rt) - - - - - - +/-
15 (mi-no) - - - - - - -
16 (def-c) - - - - - - -

17 (int-par) - - - - - - -
18 (milest) - - - - - - -
19 (can-a) - - - - - - +
20 (can-c) - + + - + - +

Table 3. The main results for MQSeries, Forté Conductor, Verve, Visual WorkFlo, Changengine,
I-Flow, and SAP/R3 Workflow.

the construct at all. As indicated in [15], many patterns can be supported indirectly
through mixtures of more basic patterns and coding. Third, the patterns reported in this
tutorial only focus on the process perspective (i.e., control flow or routing). The other
perspectives (e.g., organizational modeling) should also be taken into account.

Tables 1, 2 and 3 allow for an objective comparison of the 7 standards and 15 WFM
systems. When comparing XPDL to the 6 other standards, it is remarkable to see that
XPDL seems to be less expressive than web service composition languages such as
BPEL4WS and BPML. An important pattern like the Deferred choice (WP16) is sup-
ported by most standards and is vital for practical application of WFM. Nevertheless,
it is not even mentioned in [75]. Compared to the 15 WFM systems, XPDL is not as
expressive as one would expect. Many systems offer functionality (e.g., the Deferred
choice and the Cancel activity patterns), not supported by XPDL. It almost seems that
XPDL offers the intersection rather than the union of the functionality offered by con-
temporary systems. This may have been the initial goal of XPDL. However, if this is
the case, two important questions need to be answered.

1. If XPDL offers the intersection rather than the union of the functionality of existing
systems, then how to use XPDL in practice? Should workflow designers that want
to be able to export only use a subset of the functionality offered by the system?
If so, users would not be able to use powerful concepts like the Deferred choice
(WP16) and the Cancel activity (WP19) patterns.

2. Why does XPDL support the Synchronizing merge (WP7) while it is only sup-
ported by a few systems. Widely-used systems like Staffware do not support this
pattern, and therefore, will be unable to interpret the AND-join as indicated in [75].

Note that the issues raised cannot be solved satisfactorily. If XPDL offers the inter-
section of the functionality of existing systems, it is less expressive than many of the
existing tools and standards. If XPDL offers the union of available functionality, it may
become impossible to import a process definition into a concrete system and interpret
it correctly. (Recall that no system supports all patterns.) Unfortunately, this dilemma
is not really addressed by the WfMC [75]. The introduction of extended attributes (i.e.,
extensions of XPDL for a specific product) and conformance classes (i.e., restrictions
to allow the use of specific products) are no solution and only complicate matters.

There have been several comparisons of some of the languages mentioned in this
tutorial. These comparisons typically do not use a framework and provide an opinion
rather than a structured analysis. A positive example is [65] where XPDL, BPML and
BPEL4WS are compared by relating the concepts used in the three languages. Unfor-
tunately, the paper raises more questions than it answers.

Besides the dilemma that XPDL is either not expressive enough or too expressive,
there is the problem of semantics. In [75] the WfMC does not give unambiguous spec-
ification of all the elements in the language. As a result, many vendors can claim to be
compliant while interpreting constructs in a different way. In Section 5.4, we demon-
strated that there are many interpretations of seemingly basic constructs like the AND-
join and XOR-join. The lack of semantics restricts the application of XPDL and does
not allow for a meaningful realization of the topic of conformance. As indicated be-
fore, [75] defines conformance as follows: “A product that claims conformance must
generate valid, syntactically correct XPDL, and must be able to read all valid XPDL.” .
Clearly, this inadequate and will not stimulate further standardization in the workflow
domain. As a result, web service composition languages like BPML and BPEL4WS
may take over the role of XPDL [6].

6 Related work

There is a lot of literature on WFM and WFM systems. Only some of the books
on WFM are referred to in this tutorial [12, 37, 38, 48, 55, 57, 58, 61]. There are also
many publications reporting on the application of Petri nets to WFM. In this tuto-
rial we mainly referred to papers using WF-nets and soundness (or variants thereof)
[1, 3, 4, 28, 44, 52, 54]. For the evaluation of XPDL we relied heavily on the work on
workflow patterns. See [15, 77] or http://www.workflowpatterns.com for
more information. The two Springer Lecture Notes in Computing science volumes
on BPM can serve as a starting point for finding the state-of-the-art results in this
domain [10, 16]. Clearly, it is impossible to be complete. Please use the references
given in this tutorial for finding more material. Finally, we would like to point out
http://www.workflowcourse.com as a resource for all kinds of learning ma-
terial ranging from slides to interactive animations.

7 Conclusion

The goal of this tutorial is to introduce the WFM/BPM domain from a Petri-net point-
of-view. The focus of the first part of the tutorial was on the application of Petri nets in
this domain. Sections 2 and 3 showed how WF-nets can be used to model and analyze
workflow processes. The focus of the second part was more on the application domain
itself. Sections 4 and 5 provided information on systems, languages, and standards.
To illustrate things we presented a detailed analysis of XPDL using a set of workflow
patterns.

To conclude this tutorial we reflect on the role of Petri nets in the WFM/BPM do-
main. There are at least three good reasons for using Petri nets for workflow modeling
and analysis ([2]):

1. Formal semantics despite the graphical nature
On the one hand, Petri nets are a graphical language which allows for the mod-
eling of the workflow primitives identified by the WfMC. On the other hand, the
semantics of Petri nets (including most of the extensions) have been defined for-
mally. Many of today’s available WFM systems provide ad-hoc constructs to model
workflow procedures. Moreover, there are WFM systems that impose restrictions
on many of the workflow patterns discussed. Some WFM systems also provide ex-
otic constructs whose semantics are not 100% clear, cf. the join construct in XPDL
and many other languages. Because of these problems it is better to use a well-
established design language with formal semantics as a solid basis.

2. State-based instead of event-based
In contrast to many other process modeling techniques, the state of case can be
modeled explicitly in a Petri net. Process modeling techniques ranging from in-
formal techniques such as dataflow diagrams to formal techniques such as process
algebra’s are event-based, i.e., transitions are modeled explicitly and the states be-
tween subsequent transitions are only modeled implicitly. Today’s WFM systems
are typically event-based, i.e., tasks are modeled explicitly and states between sub-
sequent tasks are suppressed. The distinction between an event-based and a state-
based description may appear to be subtle, but patterns like the Deferred choice
(WP16) and the Milestone (WP18) show that this is of the utmost importance for
workflow modeling.

3. Abundance of analysis techniques
Petri nets are marked by the availability of many analysis techniques. Clearly, this
is a great asset in favor of a Petri nets. In this tutorial, we focused on the verification
of WF-nets. We have seen that Petri-net-based analysis techniques can be used to
determine the correctness of a workflow process definition. The availability of these
techniques illustrates that Petri-net theory can be used to add powerful analysis
capabilities to the next generation of WFM systems.

However, as indicated in [13] there are also problems when modeling workflows in
terms of a Petri nets. For the more advanced routing constructs it is necessary to resort
to high-level nets [49, 50]. Moreover, a straightforward application of high-level Petri
nets does not always yield the desired result. There seem to be three problems relevant
for modeling workflow processes:

1. High-level Petri nets support colored tokens, i.e., a token can have a value. Al-
though it is possible to use this to identify multiple instances of a subprocess, there
is no specific support for patterns involving multiple instances and the burden of
keeping track, splitting, and joining of instances is carried by the designer.

2. Sometimes two flows need to be joined while it is not clear whether synchronization
is needed, i.e., if both flows are active an AND-join is needed otherwise an XOR-
join. Such advanced synchronization patterns are difficult to model in terms of a
high-level Petri net because the firing rule only supports two types of joins: the
AND-join (transition) or the XOR-join (place).

3. The firing of a transition is always local, i.e., enabling is only based on the tokens
in the input places and firing is only affecting the input and output places. However,
some events in the workflow may have an effect which is not local, e.g., because
of an error tokens need to be removed from various places without knowing where
the tokens reside. Everyone who has modeled such a cancellation pattern (e.g., a
global timeout mechanism) in terms of Petri nets knows that it is cumbersome to
model a so-called “vacuum cleaner” removing tokens from selected parts of the net.

Compared to existing WFM languages high-level Petri nets are quite expressive when it
comes to supporting the workflow patterns. Recall that we use the term “expressiveness”
not in the formal sense. High-level Petri nets are Turing complete, and therefore, can do
anything we can define in terms of an algorithm. However, this does not imply that the
modeling effort is acceptable. High-level nets, in contrast to many workflow languages,
have no problems dealing with state-based patterns. This is a direct consequence of
the fact that Petri nets use places to represent states explicitly. Although high-level
Petri nets outperform most of the existing languages when it comes to modeling the
control flow, the result is not completely satisfactory since the three problems indicated
hamper the application in the WFM/BPM domain. This triggered the development of
YAWL (Yet Another Workflow Language). YAWL is based on Petri nets but extended
with additional features to facilitate the modeling of complex workflows [13, 14]. See
http://www.citi.qut.edu.au/yawl/ for more information or to download
the YAWL system.

Acknowledgments. The author would like to thank Lachlan Aldred, Alistair Barros,
Twan Basten, Marlon Dumas, Bartek Kiepuszewski, Kees van Hee, Akhil Kumar, Arthur
ter Hofstede, Hajo Reijers, Eric Verbeek, Ton Weijters, and Petia Wohed for their col-
laborative work on the topics discussed in this tutorial.

Disclaimer. The author and the associated institutions assume no legal liability or re-
sponsibility for the accuracy and completeness of any information about XPDL or any
of the other standards/products mentioned in this tutorial. However, all possible efforts
have been made to ensure that the results presented are, to the best of our knowledge,
up-to-date and correct.

References

1. W.M.P. van der Aalst. Verification of Workflow Nets. In P. Azéma and G. Balbo, editors,
Application and Theory of Petri Nets 1997, volume 1248 of Lecture Notes in Computer
Science, pages 407–426. Springer-Verlag, Berlin, 1997.

2. W.M.P. van der Aalst. Chapter 10: Three Good reasons for Using a Petri-net-based Workflow
Management System. In T. Wakayama, S. Kannapan, C.M. Khoong, S. Navathe, and J. Yates,
editors, Information and Process Integration in Enterprises: Rethinking Documents, volume
428 of The Kluwer International Series in Engineering and Computer Science, pages 161–
182. Kluwer Academic Publishers, Boston, Massachusetts, 1998.

3. W.M.P. van der Aalst. The Application of Petri Nets to Workflow Management. The Journal
of Circuits, Systems and Computers, 8(1):21–66, 1998.

4. W.M.P. van der Aalst. Workflow Verification: Finding Control-Flow Errors using Petri-net-
based Techniques. In W.M.P. van der Aalst, J. Desel, and A. Oberweis, editors, Business
Process Management: Models, Techniques, and Empirical Studies, volume 1806 of Lecture
Notes in Computer Science, pages 161–183. Springer-Verlag, Berlin, 2000.

5. W.M.P. van der Aalst. Making Work Flow: On the Application of Petri nets to Business
Process Management. In J. Esparza and C. Lakos, editors, Application and Theory of Petri
Nets 2002, volume 2360 of Lecture Notes in Computer Science, pages 1–22. Springer-Verlag,
Berlin, 2002.

6. W.M.P. van der Aalst. Don’t go with the flow: Web services composition standards exposed.
IEEE Intelligent Systems, 18(1):72–76, 2003.

7. W.M.P. van der Aalst and T. Basten. Inheritance of Workflows: An Approach to Tackling
Problems Related to Change. Theoretical Computer Science, 270(1-2):125–203, 2002.

8. W.M.P. van der Aalst and P.J.S. Berens. Beyond Workflow Management: Product-Driven
Case Handling. In S. Ellis, T. Rodden, and I. Zigurs, editors, International ACM SIGGROUP
Conference on Supporting Group Work (GROUP 2001), pages 42–51. ACM Press, New
York, 2001.

9. W.M.P. van der Aalst, J. Desel, and E. Kindler. On the Semantics of EPCs: A Vicious Circle.
In M. Nüttgens and F.J. Rump, editors, Proceedings of the EPK 2002: Business Process
Management using EPCs, pages 71–80, Trier, Germany, November 2002. Gesellschaft für
Informatik, Bonn.

10. W.M.P. van der Aalst, J. Desel, and A. Oberweis, editors. Business Process Management:
Models, Techniques, and Empirical Studies, volume 1806 of Lecture Notes in Computer
Science. Springer-Verlag, Berlin, 2000.

11. W.M.P. van der Aalst, M. Dumas, A.H.M. ter Hofstede, and P. Wohed. Pattern-Based Anal-
ysis of BPML (and WSCI). QUT Technical report, FIT-TR-2002-05, Queensland University
of Technology, Brisbane, 2002.

12. W.M.P. van der Aalst and K.M. van Hee. Workflow Management: Models, Methods, and
Systems. MIT press, Cambridge, MA, 2002.

13. W.M.P. van der Aalst and A.H.M. ter Hofstede. Workflow Patterns: On the Expressive Power
of (Petri-net-based) Workflow Languages. In K. Jensen, editor, Proceedings of the Fourth
Workshop on the Practical Use of Coloured Petri Nets and CPN Tools (CPN 2002), volume
560 of DAIMI, pages 1–20, Aarhus, Denmark, August 2002. University of Aarhus.

14. W.M.P. van der Aalst and A.H.M. ter Hofstede. YAWL: Yet Another Workflow Language.
QUT Technical report, FIT-TR-2002-06, Queensland University of Technology, Brisbane,
2002.

15. W.M.P. van der Aalst, A.H.M. ter Hofstede, B. Kiepuszewski, and A.P. Barros. Workflow
Patterns. Distributed and Parallel Databases, 14(1):5–51, 2003.

16. W.M.P. van der Aalst, A.H.M. ter Hofstede, and M. Weske, editors. Busines Process Man-
agement, volume 2678 of Lecture Notes in Computer Science. Springer-Verlag, Berlin, 2003.

17. W.M.P. van der Aalst, B.F. van Dongen, J. Herbst, L. Maruster, G. Schimm, and A.J.M.M.
Weijters. Workflow Mining: A Survey of Issues and Approaches. Data and Knowledge
Engineering, 47(2):237–267, 2003.

18. W.M.P. van der Aalst, K.M. van Hee, and R.A. van der Toorn. Component-Based Soft-
ware Architectures: A Framework Based on Inheritance of Behavior. Science of Computer
Programming, 42(2-3):129–171, 2002.

19. W.M.P. van der Aalst and A.J.M.M. Weijters, editors. Process Mining, Special Issue of Com-
puters in Industry, Volume 53, Number 3. Elsevier Science Publishers, Amsterdam, 2004.

20. A. Arkin, S. Askary, S. Fordin, and W. Jekel et al. Web Service Choreography Interface
(WSCI) 1.0. Standards propsal by BEA Systems, Intalio, SAP, and Sun Microsystems, 2002.

21. A. Arkin et al. Business Process Modeling Language (BPML), Version 1.0, 2002.
22. Pallas Athena. Case Handling with FLOWer: Beyond workflow. Pallas Athena BV, Apel-

doorn, The Netherlands, 2002.
23. K. Barkaoui, J.M. Couvreur, and C. Dutheillet. On liveness in Extended Non Self-

Controlling Nets. In G. De Michelis and M. Diaz, editors, Application and Theory of Petri
Nets 1995, volume 935 of Lecture Notes in Computer Science, pages 25–44. Springer-Verlag,
Berlin, 1995.

24. J. Billington and et. al. The Petri Net Markup Language: Concepts, Technology, and Tools. In
W.M.P. van der Aalst and E. Best, editors, Application and Theory of Petri Nets 2003, volume
2679 of Lecture Notes in Computer Science, pages 483–506. Springer-Verlag, Berlin, 2003.

25. R. Casonato. Gartner Group Research Note 00057684, Production-Class Workflow: A View
of the Market. http://www.gartner.com, 1998.

26. A. Cheng, J. Esparza, and J. Palsberg. Complexity results for 1-safe nets. In R.K. Shyama-
sundar, editor, Foundations of software technology and theoretical computer science, volume
761 of Lecture Notes in Computer Science, pages 326–337. Springer-Verlag, Berlin, 1993.

27. F. Curbera, Y. Goland, J. Klein, F. Leymann, D. Roller, S. Thatte, and S. Weerawarana.
Business Process Execution Language for Web Services, Version 1.0. Standards propsal
by BEA Systems, International Business Machines Corporation, and Microsoft Corporation,
2002.

28. J. Dehnert. A Methodology for Workflow Modeling: From Business Process Modeling To-
wards Sound Workflow Specification. PhD thesis, TU Berlin, Berlin, Germany, 2003.

29. J. Desel. A proof of the Rank theorem for extended free-choice nets. In K. Jensen, edi-
tor, Application and Theory of Petri Nets 1992, volume 616 of Lecture Notes in Computer
Science, pages 134–153. Springer-Verlag, Berlin, 1992.

30. J. Desel and J. Esparza. Free Choice Petri Nets, volume 40 of Cambridge Tracts in Theoret-
ical Computer Science. Cambridge University Press, Cambridge, UK, 1995.

31. M. Dumas and A.H.M. ter Hofstede. UML activity diagrams as a workflow specification
language. In M. Gogolla and C. Kobryn, editors, Proc. of the 4th Int. Conference on the Uni-
fied Modeling Language (UML01), volume 2185 of LNCS, pages 76–90, Toronto, Canada,
October 2001. Springer Verlag.

32. C.A. Ellis. Information Control Nets: A Mathematical Model of Office Information Flow.
In Proceedings of the Conference on Simulation, Measurement and Modeling of Computer
Systems, pages 225–240, Boulder, Colorado, 1979. ACM Press.

33. C.A. Ellis and G. Nutt. Workflow: The Process Spectrum. In A. Sheth, editor, Proceedings
of the NSF Workshop on Workflow and Process Automation in Information Systems, pages
140–145, Athens, Georgia, May 1996.

34. R. Eshuis and J. Dehnert. Reactive Petri nets for Workflow Modeling. In W.M.P. van der
Aalst and E. Best, editors, Application and Theory of Petri Nets 2003, volume 2679 of Lec-
ture Notes in Computer Science, pages 295–314. Springer-Verlag, Berlin, 2003.

35. J. Esparza. Synthesis rules for Petri nets, and how they can lead to new results. In J.C.M.
Baeten and J.W. Klop, editors, Proceedings of CONCUR 1990, volume 458 of Lecture Notes
in Computer Science, pages 182–198. Springer-Verlag, Berlin, 1990.

36. J. Esparza and M. Silva. Circuits, Handles, Bridges and Nets. In G. Rozenberg, editor,
Advances in Petri Nets 1990, volume 483 of Lecture Notes in Computer Science, pages 210–
242. Springer-Verlag, Berlin, 1990.

37. L. Fischer, editor. Workflow Handbook 2001, Workflow Management Coalition. Future
Strategies, Lighthouse Point, Florida, 2001.

38. L. Fischer, editor. Workflow Handbook 2003, Workflow Management Coalition. Future
Strategies, Lighthouse Point, Florida, 2003.

39. Gartner. Gartner’s Application Development and Maintenance Research Note M-16-8153,
The BPA Market Cathes another Major Updraft. http://www.gartner.com, 2002.

40. D. Georgakopoulos, M. Hornick, and A. Sheth. An Overview of Workflow Management:
From Process Modeling to Workflow Automation Infrastructure. Distributed and Parallel
Databases, 3:119–153, 1995.

41. R.J. van Glabbeek and D.G. Stork. Query Nets: Interacting Workflow Modules that Ensure
Global Termination. In W.M.P. van der Aalst, A.H.M. ter Hofstede, and M. Weske, editors,
International Conference on Business Process Management (BPM 2003), volume 2678 of
Lecture Notes in Computer Science, pages 184–199. Springer-Verlag, Berlin, 2003.

42. Object Management Group. OMG Unified Modeling Language 2.0 Proposal, Re-
vised submission to OMG RFPs ad/00-09-01 and ad/00-09-02, Version 0.671. OMG,
http://www.omg.com/uml/, 2002.

43. M.H.T. Hack. Analysis production schemata by Petri nets. Master’s thesis, Massachusetts
Institute of Technology, Cambridge, Mass., 1972.

44. K. van Hee, N. Sidorova, and M. Voorhoeve. Soundness and Separability of Workflow Nets
in the Stepwise Refinement Approach. In W.M.P. van der Aalst and E. Best, editors, Appli-
cation and Theory of Petri Nets 2003, volume 2679 of Lecture Notes in Computer Science,
pages 335–354. Springer-Verlag, Berlin, 2003.

45. A. W. Holt. Coordination Technology and Petri Nets. In G. Rozenberg, editor, Advances
in Petri Nets 1985, volume 222 of Lecture Notes in Computer Science, pages 278–296.
Springer-Verlag, Berlin, 1985.

46. IBM. IBM MQSeries Workflow - Getting Started With Buildtime. IBM Deutschland En-
twicklung GmbH, Boeblingen, Germany, 1999.

47. IDS Scheer. ARIS Process Performance Manager (ARIS PPM). http://www.ids-scheer.com,
2002.

48. S. Jablonski and C. Bussler. Workflow Management: Modeling Concepts, Architecture, and
Implementation. International Thomson Computer Press, London, UK, 1996.

49. K. Jensen. Coloured Petri Nets: A High Level Language for System Design and Analysis. In
G. Rozenberg, editor, Advances in Petri Nets 1990, volume 483 of Lecture Notes in Computer
Science, pages 342–416. Springer-Verlag, Berlin, 1990.

50. K. Jensen. Coloured Petri Nets. Basic Concepts, Analysis Methods and Practical Use. Vol-
ume 1. EATCS monographs on Theoretical Computer Science. Springer-Verlag, Berlin,
1997.

51. B. Kiepuszewski. Expressiveness and Suitability of Languages for Control Flow Modelling
in Workflows. PhD thesis, Queensland University of Technology, Brisbane, Australia, 2003.
Available via http://www.tm.tue.nl/it/research/patterns.

52. B. Kiepuszewski, A.H.M. ter Hofstede, and W.M.P. van der Aalst. Fundamentals of Control
Flow in Workflows. Acta Informatica, 39(3):143–209, 2003.

53. E. Kindler and W.M.P. van der Aalst. Liveness, Fairness, and Recurrence. Information
Processing Letters, 70(6):269–274, June 1999.

54. E. Kindler, A. Martens, and W. Reisig. Inter-Operability of Workflow Applications: Local
Criteria for Global Soundness. In W.M.P. van der Aalst, J. Desel, and A. Oberweis, editors,
Business Process Management: Models, Techniques, and Empirical Studies, volume 1806 of
Lecture Notes in Computer Science, pages 235–253. Springer-Verlag, Berlin, 2000.

55. P. Lawrence, editor. Workflow Handbook 1997, Workflow Management Coalition. John
Wiley and Sons, New York, 1997.

56. F. Leymann. Web Services Flow Language, Version 1.0, 2001.
57. F. Leymann and D. Roller. Production Workflow: Concepts and Techniques. Prentice-Hall

PTR, Upper Saddle River, New Jersey, USA, 1999.
58. D.C. Marinescu. Internet-Based Workflow Management: Towards a Semantic Web, vol-

ume 40 of Wiley Series on Parallel and Distributed Computing. Wiley-Interscience, New
York, 2002.

59. M. Ajmone Marsan, G. Balbo, and G. Conte et al. Modelling with Generalized Stochastic
Petri Nets. Wiley series in parallel computing. Wiley, New York, 1995.

60. A. Martens. On Compatibility of Web Services. Petri Net Newsletter, 65:12–20, 2003.
61. M. Zur Muehlen. Workflow-based Process Controlling: Foundation, Design and Application

of workflow-driven Process Information Systems. Logos, Berlin, 2004.
62. W. Reisig. Petri Nets: An Introduction, volume 4 of EATCS Monographs in Theoretical

Computer Science. Springer-Verlag, Berlin, 1985.
63. W. Reisig and G. Rozenberg, editors. Lectures on Petri Nets I: Basic Models, volume 1491

of Lecture Notes in Computer Science. Springer-Verlag, Berlin, 1998.
64. W. Sadiq and M.E. Orlowska. Analyzing Process Models using Graph Reduction Tech-

niques. Information Systems, 25(2):117–134, 2000.
65. R. Shapiro. A Comparison of XPDL, BPML and BPEL4WS (Version 1.4).

http://xml.coverpages.org/Shapiro-XPDL.pdf, 2002.
66. Software-Ley. COSA User Manual. Software-Ley GmbH, Pullheim, Germany, 1998.
67. Software-Ley. COSA 3.0 User Manual. Software-Ley GmbH, Pullheim, Germany, 1999.
68. S. Staab, W. van der Aalst, V.R. Benjamins, A. Sheth, J. Miller, C. Bussler, A. Maedche,

D. Fensel, and D. Gannon. Web Services: Been There, Done That? (Trends and Controver-
sies). IEEE Intelligent Systems, 18(1):72–85, 2003.

69. Staffware. Staffware 2000 / GWD User Manual. Staffware plc, Berkshire, United Kingdom,
2000.

70. S. Thatte. XLANG Web Services for Business Process Design, 2001.
71. R. van der Toorn. Component-Based Software Design with Petri nets: An Approach Based

on Inheritance of Behavior. PhD thesis, Eindhoven University of Technology, Eindhoven,
The Netherlands, 2004.

72. H.M.W. Verbeek. Verification and Enactment of Workflow Management Systems (submitted).
PhD thesis, Eindhoven University of Technology, Eindhoven, The Netherlands, 2004.

73. H.M.W. Verbeek, T. Basten, and W.M.P. van der Aalst. Diagnosing Workflow Processes
using Woflan. The Computer Journal, 44(4):246–279, 2001.

74. WFMC. Workflow Management Coalition Workflow Standard: Interface 1 – Process Defi-
nition Interchange Process Model (WFMC-TC-1016). Technical report, Workflow Manage-
ment Coalition, Lighthouse Point, Florida, USA, 1999.

75. WFMC. Workflow Management Coalition Workflow Standard: Workflow Process Defini-
tion Interface – XML Process Definition Language (XPDL) (WFMC-TC-1025). Technical
report, Workflow Management Coalition, Lighthouse Point, Florida, USA, 2002.

76. P. Wohed, W.M.P. van der Aalst, M. Dumas, and A.H.M. ter Hofstede. Pattern-Based Analy-
sis of BPEL4WS. QUT Technical report, FIT-TR-2002-04, Queensland University of Tech-
nology, Brisbane, 2002.

77. P. Wohed, W.M.P. van der Aalst, M. Dumas, and A.H.M. ter Hofstede. Analysis of Web
Services Composition Languages: The Case of BPEL4WS. In I.Y. Song, S.W. Liddle, T.W.
Ling, and P. Scheuermann, editors, 22nd International Conference on Conceptual Modeling
(ER 2003), volume 2813 of Lecture Notes in Computer Science, pages 200–215. Springer-
Verlag, Berlin, 2003.

78. M.D. Zisman. Representation, Specification and Automation of Office Procedures. PhD
thesis, University of Pennsylvania, Warton School of Business, 1977.

A XPDL Schema

The listing below shows selected parts of the XPDL Schema given in [75] relevant for
this tutorial.

1 <xsd:element name="Activity">
2 <xsd:complexType>
3 <xsd:sequence>
4 <xsd:element ref="xpdl:Description" minOccurs="0"/>
5 <xsd:element ref="xpdl:Limit" minOccurs="0"/>
6 <xsd:choice>
7 <xsd:element ref="xpdl:Route"/>
8 <xsd:element ref="xpdl:Implementation"/>
9 <xsd:element ref="xpdl:BlockActivity"/>

10 </xsd:choice>
11 <xsd:element ref="xpdl:Performer" minOccurs="0"/>
12 <xsd:element ref="xpdl:StartMode" minOccurs="0"/>
13 <xsd:element ref="xpdl:FinishMode" minOccurs="0"/>
14 <xsd:element ref="xpdl:Priority" minOccurs="0"/>
15 <xsd:element ref="xpdl:Deadline" minOccurs="0"
16 maxOccurs="unbounded"/>
17 <xsd:element ref="xpdl:SimulationInformation" minOccurs="0"/>
18 <xsd:element ref="xpdl:Icon" minOccurs="0"/>
19 <xsd:element ref="xpdl:Documentation" minOccurs="0"/>
20 <xsd:element ref="xpdl:TransitionRestrictions" minOccurs="0"/>
21 <xsd:element ref="xpdl:ExtendedAttributes" minOccurs="0"/>
22 </xsd:sequence>
23 <xsd:attribute name="Id" type="xsd:NMTOKEN" use="required"/>
24 <xsd:attribute name="Name" type="xsd:string"/>
25 </xsd:complexType>
26 </xsd:element>
27 ...
28 <xsd:element name="TransitionRestriction">
29 <xsd:complexType>
30 <xsd:sequence>
31 <xsd:element ref="xpdl:Join" minOccurs="0"/>
32 <xsd:element ref="xpdl:Split" minOccurs="0"/>
33 </xsd:sequence>
34 </xsd:complexType>
35 </xsd:element> <xsd:element name="TransitionRestrictions">
36 <xsd:complexType>
37 <xsd:sequence>

38 <xsd:element ref="xpdl:TransitionRestriction" minOccurs="0"
39 maxOccurs="unbounded"/>
40 </xsd:sequence>
41 </xsd:complexType>
42 </xsd:element>
43 ...
44 <xsd:element name="Join">
45 <xsd:complexType>
46 <xsd:attribute name="Type">
47 <xsd:simpleType>
48 <xsd:restriction base="xsd:NMTOKEN">
49 <xsd:enumeration value="AND"/>
50 <xsd:enumeration value="XOR"/>
51 </xsd:restriction>
52 </xsd:simpleType>
53 </xsd:attribute>
54 </xsd:complexType>
55 </xsd:element>
56 ...
57 <xsd:element name="Split">
58 <xsd:complexType>
59 <xsd:sequence>
60 <xsd:element ref="xpdl:TransitionRefs" minOccurs="0"/>
61 </xsd:sequence>
62 <xsd:attribute name="Type">
63 <xsd:simpleType>
64 <xsd:restriction base="xsd:NMTOKEN">
65 <xsd:enumeration value="AND"/>
66 <xsd:enumeration value="XOR"/>
67 </xsd:restriction>
68 </xsd:simpleType>
69 </xsd:attribute>
70 </xsd:complexType>
71 </xsd:element>
72 ...
73 <xsd:element name="Transition">
74 <xsd:complexType>
75 <xsd:sequence>
76 <xsd:element ref="xpdl:Condition" minOccurs="0"/>
77 <xsd:element ref="xpdl:Description" minOccurs="0"/>
78 <xsd:element ref="xpdl:ExtendedAttributes" minOccurs="0"/>
79 </xsd:sequence>
80 <xsd:attribute name="Id" type="xsd:NMTOKEN" use="required"/>
81 <xsd:attribute name="From" type="xsd:NMTOKEN" use="required"/>
82 <xsd:attribute name="To" type="xsd:NMTOKEN" use="required"/>

83 <xsd:attribute name="Name" type="xsd:string"/>
84 </xsd:complexType>
85 </xsd:element>
86 ...
87 <xsd:element name="Condition">
88 <xsd:complexType mixed="true">
89 <xsd:choice minOccurs="0" maxOccurs="unbounded">
90 <xsd:element ref="xpdl:Xpression"/>
91 </xsd:choice>
92 <xsd:attribute name="Type">
93 <xsd:simpleType>
94 <xsd:restriction base="xsd:NMTOKEN">
95 <xsd:enumeration value="CONDITION"/>
96 <xsd:enumeration value="OTHERWISE"/>
97 <xsd:enumeration value="EXCEPTION"/>
98 <xsd:enumeration value="DEFAULTEXCEPTION"/>
99 </xsd:restriction>

100 </xsd:simpleType>
101 </xsd:attribute>
102 </xsd:complexType>
103 </xsd:element>

