
Matching Observed Behavior and Modeled
Behavior: An Approach Based on Petri nets and

Integer Programming

Wil M.P. van der Aalst

Department of Technology Management
Eindhoven University of Technology

P.O.Box 513, NL-5600 MB Eindhoven, The Netherlands
w.m.p.v.d.aalst@tm.tue.nl

Abstract. Inspired by the way SAP R/3 and other transactional infor-
mation systems log events, we focus on the problem to decide whether
a process model and a frequency profile “fit” together. The problem
is formulated in terms of Petri nets and an approach based on integer
programming is proposed to tackle the problem. The integer program
provides necessary conditions and, as shown in this paper, for relevant
subclasses these conditions are sufficient. Unlike traditional approaches,
the approach allows for labelled Petri nets with “hidden transitions”,
noise, etc.

Keywords: Concurrency, Distributed systems, Petri nets, Integer programming,
ERP, Marking equation.

1 Introduction

For many processes in practice there exist models. These model are descriptive
or prescriptive, i.e., they are used to describe a process or they are used to con-
trol or guide the system. A typical example are the so-called reference models in
the context of Enterprise Resource Planning (ERP) systems like SAP [6]. The
SAP reference models are expressed in terms of so-called Event-driven Process
Chains (EPCs) describing how people should/could use the SAP R/3 system.
Similarly models are used in the workflow domain [1], but also in many other
domains ranging from flexible manufacturing and telecommunication to oper-
ating systems and software components [7]. In some domains these models are
referred to as specifications or blueprints. In reality, the real process may deviate
from the modeled process, e.g., the implementation is not consistent with the
specification or people use SAP R/3 in a way not modeled in any of the EPCs.

Clearly, the problem of checking whether the modeled behavior and the ob-
served behavior match is not new. However, when we applied our process mining
techniques [2] to SAP R/3 we where confronted with the following interesting
problem: The logs of SAP do not allow for monitoring individual cases (e.g.,

purchase orders). Instead SAP only logs the fact that a specific transaction has
been executed (without referring to the corresponding case). Hence, tools like
the SAP Reverse Business Engineer (RBE) report on the frequencies of trans-
action types and not on the cases themselves. These transactions can be linked
to functions in the EPCs, but, as indicated, not to individual cases. Moreover,
some functions in the EPC do not correspond to a transaction code, and there-
fore, are not logged at all. This raises the following interesting question: Do the
modeled behavior (i.e., the EPC) and the observed behavior (i.e., the transaction
frequencies) match?

a

b

d

ec

p1

p2

p3

p4

p5

p6

Fig. 1. A Petri net.

In this paper we consider an abstraction of the problem. Consider a Petri
net with some initial marking [8, 9] and a frequency profile which is a partial
function indicating how many times certain transitions fired. Consider for ex-
ample the marked Petri net shown Figure 1. A frequency profile fp could be
fp(a) = 3, fp(b) = 2, fp(c) = 2, fp(d) = 2, and fp(e) = 3, thus indicating the
number of times each transition occurred. However, the modeled behavior (i.e.,
the marked Petri net) and the observed behavior (the frequency profile fp) do
not match. It is easy to see that fp(b) + fp(c) cannot exceed fp(a) since b and
c depend on the tokens produced by a. Now consider another frequency profile
fp: fp(a) = 3, fp(b) = 2, fp(d) = 2, and fp(e) = 3, i.e., the number of times
c occurred is unknown. Now the modeled behavior and the observed behavior
match, i.e., the observed transition frequencies are consistent with the Petri net
model. Moreover, it is clear that in this situation c occurred precisely once.

In the remainder we will focus on this problem and propose an approach based
on Integer Programming (IP) [11, 13]. Using a marked Petri net and a frequency
profile, an IP problem is formulated to check whether the modeled behavior and
the observed behavior match and, if so, the frequency of transitions not recorded
in the profile is determined. First, we introduce some basic Petri net notations.
Then, we formulate the IP problem and demonstrate its applicability using an
example. Finally, we briefly discuss related work and provide some final remarks
on practical relevance of the results.

2 Petri nets

This section introduces the basic Petri net terminology and notations (cf. [9, 4]).
Readers familiar with Petri nets can skip this section.

The classical Petri net is a directed bipartite graph with two node types called
places and transitions. The nodes are connected via directed arcs. Connections
between two nodes of the same type are not allowed. Places are represented by
circles and transitions by rectangles.

Definition 1 (Petri net). A Petri net is a triple (P, T, F):

- P is a finite set of places,
- T is a finite set of transitions (P ∩ T = ∅),
- F ⊆ (P × T) ∪ (T × P) is a set of arcs (flow relation)

A place p is called an input place of a transition t iff there exists a directed
arc from p to t. Place p is called an output place of transition t iff there exists
a directed arc from t to p. We use •t to denote the set of input places for a
transition t. The notations t•, •p and p• have similar meanings, e.g., p• is the
set of transitions sharing p as an input place. In this paper, we do not consider
multiple arcs from one node to another. However, all results can be extended to
Petri nets with arcs weights.

Figure 1 shows a Petri net with 5 transitions (a, b, c, d, and e) and 6 places
(p1, . . . p6).

At any time a place contains zero or more tokens, drawn as black dots. The
state, often referred to as marking, is the distribution of tokens over places, i.e.,
M ∈ P → IN. We will represent a marking as follows: 1′p1+2′p2+1′p3+0′p4 is
the marking with one token in place p1, two tokens in p2, one token in p3 and
no tokens in p4. We can also represent this marking as follows: p1 + 2′p2 + p3.
The marking shown in Figure 1 is p1. (Note the overloading of notation.) To
compare markings we define a partial ordering. For any two markings M1 and
M2, M1 ≤ M2 iff for all p ∈ P : M1(p) ≤ M2(p).

The number of tokens may change during the execution of the net. Transitions
are the active components in a Petri net: they change the marking of the net
according to the following firing rule:

(1) A transition t is said to be enabled iff each input place p of t contains at least
one token.

(2) An enabled transition may fire. If transition t fires, then t consumes one
token from each input place p of t and produces one token for each output
place p of t.

In Figure 1 transition a is enabled. Firing a results in marking 2′p1+p2+p3. In
this marking, three additional transitions (besides a) are enabled (b, c, d). Any
of these transitions may fire. However, firing one of these transition will disable
one or two other transitions, e.g., firing c will disable both b and d.

Given a Petri net (P, T, F) and a marking M1, we have the following nota-
tions:

- M1
t→ M2: transition t is enabled in marking M1 and firing t in M1 results

in marking M2

- M1 → M2: there is a transition t such that M1
t→ M2

- M1
σ→ Mn: the firing sequence σ = t1t2t3 . . . tn−1 leads from marking

M1 to marking Mn via a (possibly empty) set of intermediate markings

M2, ...Mn−1, i.e., M1
t1→ M2

t2→ ...
tn−1→ Mn

A marking Mn is called reachable from M1 (notation M1
∗→ Mn) iff there is a

firing sequence σ such that M1
σ→ Mn. Note that the empty firing sequence is

also allowed, i.e., M1
∗→ M1.

To manipulate firing sequences, we introduce the Parikh vector πσ ∈ T → IN,
where πσ(t) denotes the number of occurrences of transition t in σ.

We use (PN ,M) to denote a Petri net PN with an initial marking M . A
marking M ′ is a reachable marking of (PN ,M) iff M

∗→ M ′. Consider the Petri
net shown in Figure 1 with only one token in p1. For this initial marking there
are 6 reachable markings.

3 Matching a marked Petri net and a frequency profile

Petri nets may be used to model a wide variety of processes. A Petri net can
model what we think the process is (i.e., descriptive) but it can also model
what the process should be (i.e., prescriptive). In both cases, the real process
may deviate from what is modeled in the Petri net. In this section, we investigate
whether the modeled behavior (i.e., Petri net) and the observed behavior match.
Since in reality we often cannot inspect the state and just observe events, it is
realistic to assume that we can only monitor the firing of transitions. Moreover,
we assume that we cannot link transition occurrences to specific tokens or exploit
their ordering in time, i.e., we only know the frequency profile. For a Petri net
with transitions T the frequency profile refers to a subset of T , i.e., frequency
profile fp ∈ T
→ IN is a partial function. For t ∈ dom(fp), fp(t) is the number
of times t occurred/fired. For t
∈ dom(fp) this is unknown. If dom(fp) = T ,
the frequency profile is complete. Both for complete and incomplete frequency
profiles we define the predicate match(PN ,M, fp).

Definition 2 (Match). Let (PN ,M) be a marked Petri net with PN = (P, T, F)
and fp ∈ T
→ IN a frequency profile. (PN ,M) and fp match if there exists a
firing sequence σ enabled in M (i.e., M

σ→) such that for all t ∈ dom(fp):
fp(t) = πσ(t). (Notation: match(PN ,M, fp).)

In the introduction we mentioned two frequency profiles for the marked Petri net
shown in Figure 1. The first one (i.e., fp(a) = 3, fp(b) = 2, fp(c) = 2, fp(d) = 2,
and fp(e) = 3) does not match while the second one (i.e., fp(a) = 3, fp(b) = 2,
fp(d) = 2, and fp(e) = 3) does. Note that the first profile is complete while the
second is incomplete (c
∈ dom(fp)). For any marked Petri net there is a trivial
matching profile fp with dom(fp) = ∅.

Even for moderate examples, the number of firing sequences may be too
large to check match(PN ,M, fp). Therefore, in the spirit of [3, 7], we can try to
formulate a linear algebraic representation. Given the discrete nature of firing
transitions, we propose an Integer Programming (IP) problem rather than an
Linear Programming (LP) problem [11, 13].

Definition 3 (Integer programming problem). Let (PN ,M) be a marked
Petri net with PN = (P, T, F) and fp ∈ T
→ IN a frequency profile. IP(PN ,M, fp)
is the corresponding Integer Programming (IP) problem:

min
∑

t∈T ft

s.t. ft = fp(t) for all t ∈ dom(fp)
f(t,p) = ft for all (t, p) ∈ F ∩ (T × P)
f(p,t) = ft for all (p, t) ∈ F ∩ (P × T)
M(p) +

∑
t∈•p f(t,p) −

∑
t∈p• f(p,t) ≥ 0 for all p ∈ P

ft ≥ 0 for all t ∈ T
ft integer for all t ∈ T
f(x,y) integer for all (x, y) ∈ F

There are two types of positive integer variables: ft for transition frequencies
and f(x,y) for arc frequencies. The first constraint specifies that the transition
frequencies should match the frequency profile. Note that for some transitions
there may not be a frequency in the frequency profile. The second and third
constraint refer to the fact that transition frequencies and arc frequencies need
to be aligned. The fourth type of constraint is the most interesting one. For each
place, there should be a balance between the inflow of tokens and the outflow of
tokens, i.e., it is not possible to consume more tokens than the initial ones plus
the produced ones. The objective function minimizes the number of firings. Given
the nature of the problem this is of less importance and alternative objective
functions can be defined, e.g., an objective function maximizing or minimizing
the number of tokens in the net.

Before we discuss the relation betweenmatch(PN ,M, fp) and IP(PN ,M, fp),
let us return to the Petri net shown in Figure 1. Assuming some initial marking

M and some frequency profile fp, IP(PN ,M, fp) is formulated as follows.

min fa + fb + fc + fd + fe

s.t. fa = fp(a)
. . .
f(a,p2) = fa

. . .
f(p1,a) = fa

. . .
M(p1)− f(p1,a) ≥ 0
M(p2) + f(a,p2) − f(p2,b) − f(p2,c) ≥ 0
M(p3) + f(a,p3) − f(p3,c) − f(p3,d) ≥ 0
M(p4) + f(b,p4) + f(c,p4) − f(p4,e) ≥ 0
M(p5) + f(c,p5) + f(d,p5) − f(p5,e) ≥ 0
M(p6) + f(e,p6) ≥ 0
fa ≥ 0
. . .
fa integer
. . .
f(p1,a) integer
. . .

Applying this to the initial marking shown in Figure 1 and the frequency
profile fp(a) = 3, fp(b) = 2, fp(c) = 2, fp(d) = 2, and fp(e) = 3 indeed results
in an IP problem without a solution. While applying it to the second frequency
profile fp(a) = 3, fp(b) = 2, fp(d) = 2, and fp(e) = 3 yields the solution where
fc = 1. In the latter case the value of the objective function is 11.

In the remainder of this section we investigate the relation betweenmatch(PN ,
M, fp) and IP(PN ,M, fp), i.e., “Can the IP problem be used to determine
whether the modeled and observed behavior match?”. The following theorem
shows that, as expected, the IP problem indeed provides necessary requirements.

Theorem 1. Let (PN ,M) be a marked Petri net with PN = (P, T, F) and
fp ∈ T
→ IN a frequency profile. If match(PN ,M, fp), then IP(PN ,M, fp) has
a solution.

Proof. If match(PN ,M, fp), then there exists a firing sequence σ enabled in M

(i.e., M
σ→) such that for all t ∈ T : fp(t) = πσ(t). Let M ′ be the resulting mark-

ing. Now consider the IP problem. The only constraint that could be violated is
M(p) +

∑
t∈•p f(t,p) −

∑
t∈p• f(p,t) ≥ 0 for some p ∈ P . However, this constraint

follows directly from the firing rule. In fact, M(p)+
∑

t∈•p f(t,p)−
∑

t∈p• f(p,t) =
M ′(p).
�

The result does not hold in the opposite direction, as can be shown by an
example taken from [4]. Figure 2 shows a marked Petri net. Let fp(t) = 1 for all
transitions t except for t = g which occurs twice (i.e., fp(g) = 2). It is easy to
verify that IP(PN ,M, fp) has a solution. However, the marked Petri net and the

b

c

g

a

p1

d

e

f

p2

p3

p4

p5

p6

p7

Fig. 2. Counter example.

frequency profile do not match because there is no firing sequence (starting in
the initial marking shown in Figure 2) that fires g twice and all other transitions
once. (Note that it is impossible to return to the initial marking.) Fortunately, for
certain subclasses the result does hold in the opposite direction as is illustrated
by the following theorem.

Theorem 2. Let (PN ,M) be an acyclic marked Petri net with PN = (P, T, F)
and fp ∈ T
→ IN a frequency profile such that IP(PN ,M, fp) has a solution.
There exists a firing sequence σ enabled in M such that for all t ∈ dom(fp):
fp(t) = πσ(t), i.e., match(PN ,M, fp).

Proof. In the solution of IP(PN ,M, fp) each transition t ∈ T fires ft times. Let
n =

∑
t∈T ft. If n = 0, the empty sequence is enabled and the theorem holds. If

n > 0, remove all transitions t for which ft = 0. Moreover, remove all places and
arcs not connected to a transition t for which ft > 0. Let PN ′ be the resulting
net and M ′ the resulting marking. Clearly, PN ′ is acyclic. At least one transition
is enabled in (PN ′,M ′). (If not, the fact that PN ′ is acyclic would imply that
there is an empty source place p with some output transition t′. However, M(p)+∑

t∈•p f(t,p) −
∑

t∈p• f(p,t) = M ′(p) + 0 − f(p,t′) − . . . = 0 + 0 − ft′ − . . . ≥ 0.
Clearly, this leads to a contradiction.) Fire this enabled transition t∗ and let M∗

be the resulting marking and fp∗ such that fp∗(t∗) = fp(t∗)− 1 and for all other
t ∈ dom(fp): fp∗(t) = fp(t). Clearly, IP(PN ,M∗, fp∗) has a solution. Repeat the
above process until n = 0. In each step, a transition t∗ is fired thus forming a
sequence σ enabled in M .
�
Note that the proof of this theorem is similar to Theorem 16 in [7]. Consider
Figure 2 with the arc from g to p1 removed and a new place p8 added as an
output place of g. Now for any marking M and any frequency profile fp such
that IP(PN ,M, fp) has a solution, there exists a corresponding firing sequence,
i.e., match(PN ,M, fp). For example, given the marking shown in Figure 2 and
the acyclic variant of the net, the IP problem has a solution for the following

frequency profile fp: fp(a) = fp(b) = fp(d) = fp(e) = 0, fp(c) = fp(f) = fp(g) =
1. Indeed, as suggested by Theorem 2, there is a firing sequence firing c, f and
g (e.g., cfg).

The counter example shown in Figure 2 is free-choice [4]. Therefore, one could
consider to proving Theorem 2 for subclasses of free-choice nets (i.e., replace the
requirement that the net is acyclic with some other structural requirement).
Two well-known subclasses are the class of marked graphs and the class of state
machines [4, 7, 9].

A marked graph is a Petri net with for each place p ∈ P : |•p| = |p•| = 1 (i.e.,
places cannot have multiple input or output transitions). A circuit is a circular
path in the Petri net such that no element (i.e., place or transition) occurs more
than once. It is easy to see that in a marked graph the number of tokens in a
circuit is constant. Therefore, a circuit remains (un)marked if it is (un)marked
in the initial marking. Using existing results it is easy to prove that Theorem 2
applies to (cyclic) marked graphs where each circuit is marked.

Theorem 3. Let (PN ,M) be an marked graph with PN = (P, T, F) and fp ∈
T
→ IN a frequency profile. If each circuit is initially marked, then IP(PN ,M, fp)
has a solution if and only if match(PN ,M, fp).

Proof. As shown in Theorem 1, match(PN ,M, fp) implies that IP(PN ,M, fp)
has a solution. Remains to prove that IP(PN ,M, fp) has a solution also implies
match(PN ,M, fp). Consider a solution assigning values to each ft and f(x,y). Let
M ′ be a marking defined as follows: M(p) +

∑
t∈•p f(t,p) −

∑
t∈p• f(p,t) = M ′(p)

for all p ∈ P . Note that M ′ is indeed a marking, i.e., for each p ∈ P , M ′(p) is
a non-negative integer. This implies that the marking equation M +N.X = M ′

has a solution. (N is the incidence matrix and X is a vector.) This solution is
given by the values assigned to ft. Because there is a solution, M and M ′ agree
on all place invariants. For live marked graphs a marking M ′ is reachable from
M if and only if both agree on all place invariants (cf. Theorem 3.21 in [4]). A
marked graph where each circuit is initially marked is live (cf. Theorem 3.15 in
[4]). Therefore, M ′ is reachable from M and match(PN ,M, fp).
�
Figure 3 shows a marked graph. For any initial marking M , the IP problem has
a solution if and only if match(PN ,M, fp) (provided that every circuit is initially
marked).

A Petri net is a state machine iff transitions cannot have more than one input
or output place, i.e., for each transition t ∈ T : |• t| = |t•| = 1. It is easy to prove
that Theorem 3 also holds for state machines as long as the the net is strongly
connected (i.e., there is a directed path from any node to any other node in the
net) and initially there is at least one token.

Theorem 4. Let (PN ,M) be a strongly-connected state machine with PN =
(P, T, F) and a non-empty initial marking M and fp ∈ T
→ IN a frequency
profile. IP(PN ,M, fp) has a solution if and only if match(PN ,M, fp).

Proof. As shown in Theorem 1, match(PN ,M, fp) implies that IP(PN ,M, fp)
has a solution. Remains to prove that the reverse also holds. Consider a solution

b

ea

p1

c

d

p2

p3

p4

p5

p6

p7

Fig. 3. Marked graph.

assigning values to each ft and f(x,y). Let M ′ be a marking defined as follows:
M(p)+

∑
t∈•p f(t,p)−

∑
t∈p• f(p,t) = M ′(p) for all p ∈ P . Note that M ′ is indeed

a marking, i.e., for each p ∈ P , M ′(p) is a non-negative integer. The number
of tokens in M equals the number of tokens in M ′, in fact M and M ′ agree on
all place invariants. Moreover, the marked state machine is live because PN is a
strongly-connected state machine and M is non-empty (cf. Theorem 3.3 in [4]).
Using the second reachability theorem (cf. Theorem 3.8 in [4]), it follows that
M ′ is reachable from M and match(PN ,M, fp).
�

Figure 4 shows a strongly connected state machine. For any non-empty initial
marking M IP(PN ,M, fp) has a solution if and only if match(PN ,M, fp).

b

ea

p1

c

d

p2 p3

Fig. 4. State machine.

In this section, we explored the relation between match(PN ,M, fp) (i.e., the
predicate indicating that a process model and observed transition frequencies
fit together) and IP(PN ,M, fp) (i.e., an integer programming problem). In the
remainder, we consider a larger example, possible extensions, and related work.

4 Example

After showing a number of abstract examples, we now use the more realistic
example shown in Figure 5. It describes the workflow [1] of handling orders.
The upper half models the logistical subprocess while the lower half models the
financial subprocess. Most of the workflow should be self explanatory except
perhaps for the construct involving c7 and t10 (reminder): A reminder can only
be sent if the goods have been shipped.

t1t1

t5

t6

t7

t9

t11

t8

t10

t12

start register

send_bill

receive_payment

archive

ship_goods

check_availability

replenish

update

reminder

end

c1

c2

c3

c4

c5

c6

c7

c8

t4

t3

t2

c0

out_of_stock_no_repl

out_of_stock_repl

in_stock

t13

destroy

t0

create

 fp1 fp2 fp3 fp4
t1 80 80 80 80
t6 0 10 10 10
t8 80 80 80 70
t9 80 85 70 85
t11 80 80 80 80
t12 80 80 80 80

Fig. 5. A Petri net modeling the processing of customer orders and four frequency
profiles.

Unlike the other two Petri nets, the initial marking is empty. Instead a source
and a sink transition have been added. Transition t0 (create) creates the order
while t13 (destroy) marks the end of the order. This pattern is often used to
model an unknown number of cases.

Suppose that only the steps t1 (register), t6 (replenish), t8 (ship goods), t9
(send bill), t11 (receive payment), and t12 (archive) are recorded. Figure 5 shows
four frequency profiles (fp1, fp2, fp3, and fp4). The IP problems corresponding
to the first two profiles (fp1 and fp2), both have a solution. It is also easy to see
that fp1 and fp2 both indeed match with the Petri net. Note that in the first
profile there are no replenishment orders and no reminders, i.e., t4, t6 and t10
do not fire. It is also interesting to note that the number of times t3 and t7 fire is
not constrained by fp1, however, by the objective function their frequencies are
set to 0. In the second profile there are 10 replenishment orders and 5 reminders.
The IP problems corresponding to the last two profiles (fp3 and fp4), both do
not have a solution and, indeed, fp3 and fp4 do not match with the Petri net.

In fp3 there are not enough bills (70) to justify the number of payments (80). In
fp4 there are not enough shipments.

5 Extensions

A Linear Programming (LP) problem can be solved in polynomial time while an
IP problem is NP complete [11, 13]. Therefore, it may be interesting to consider
the LP relaxation of IP(PN ,M, fp). We expect that in some cases this will
provide good results. Note that often the rounded LP relaxation provides a
feasible but non-optimal solution (but not always, cf. the example net shown
on page 269 in [3]). Since the objective function is of less interest, this is not a
problem. Also note that if the IP problem has a solution the LP problem will
also have a solution. Therefore, Theorem 1 also holds for the LP relaxation. As
a result the LP problem can be used to quickly point out discrepancies between
the process model and the frequency profile.

The LP relaxation is also interesting if the frequency profile is not exact
or if we want to abstract from exceptions, i.e., if we consider noise we are not
interested in the exact number of firings but in an approximate number. Suppose
we want to allow a margin of 10 percent. To specify this we replace the first
constraint in Definition 3 (ft = fp(t)) by two weaker constraints: ft ≥ 0.9fp(t)
and ft ≤ 1.1fp(t). Such approximations are also needed if we collect data for a
limited period with an unknown number of tokens in the initial marking.

Definition 4. Let (PN ,M) be a marked Petri net with PN = (P, T, F), fp ∈
T
→ IN a frequency profile, and α the noise level (0 ≤ α ≤ 1) . The corresponding
LP (IP) problem allowing for α noise:

min
∑

t∈T ft

s.t. ft ≥ (1− α)fp(t) for all t ∈ dom(fp)
ft ≤ (1 + α)fp(t) for all t ∈ dom(fp)
f(t,p) = ft for all (t, p) ∈ F ∩ (T × P)
f(p,t) = ft for all (p, t) ∈ F ∩ (P × T)
M(p) +

∑
t∈•p f(t,p) −

∑
t∈p• f(p,t) ≥ 0 for all p ∈ P

ft ≥ 0 for all t ∈ T
ft (integer) for all t ∈ T
f(x,y) (integer) for all (x, y) ∈ F

Note that Definition 4 defines both an LP and and IP problem. The only differ-
ence is that for the LP problem the variables do not need to be integers.

Another extension is the situation where multiple transitions refer to the
same event, e.g., in SAP multiple functions in the EPC may generate the same
transaction. This corresponds to a labeled Petri net with multiple transitions
having the same label. Again this is easy to incorporate in the IP problem.
The frequency profile is no longer a mapping from transitions to frequencies but
from transition labels to frequencies and the first constraint should be replaced
as indicated below.

Definition 5. Let (PN ,M) be a marked Petri net with PN = (P, T, F), L a set
of labels, lab ∈ T
→ L a labeling function, and fp ∈ L
→ IN a frequency profile.
The corresponding IP problem is:

min
∑

t∈T ft

s.t.
∑

t∈dom(lab) | lab(t)=l ft = fp(l) for all l ∈ L

f(t,p) = ft for all (t, p) ∈ F ∩ (T × P)
f(p,t) = ft for all (p, t) ∈ F ∩ (P × T)
M(p) +

∑
t∈•p f(t,p) −

∑
t∈p• f(p,t) ≥ 0 for all p ∈ P

ft ≥ 0 for all t ∈ T
ft integer for all t ∈ T
f(x,y) integer for all (x, y) ∈ F

All results given in Section 3 can be extended to labeled Petri nets.
Note that definitions 4 and 5 can be combined. These extensions show that

the formulation in terms of an LP/IP problem is easy to refine or extend.

6 Related work

The work presented is most related to the “Marking Equation” known from Petri
net theory [7, 3, 12] and this paper builds on some of these results. However, the
approach presented differs in at least two ways. First of all, the marking equation
considers the initial and resulting marking while we only consider the initial
marking. Second, we allow for transition frequencies that are unknown, i.e.,
the frequency profile may be incomplete. Moreover, the approach allows for the
extensions described in Section 5 while the marking equation does not. Clearly
there are also relations with the classical results on place and transition invariants
[4, 12, 8]. However, these are less direct. As indicated in the introduction, the
problem addressed resulted from the application of process mining techniques
[2] to SAP. This was done in the context of configurable process models, cf. [10]
for more details.

7 Conclusion

Inspired by a problem encountered when applying process mining techniques to
SAP transaction logs, the paper tackled the problem of checking whether a Petri
net and a frequency profile match. An IP problem was proposed to efficiently
implement a necessary but not sufficient condition. The approach allows for
extensions not possible in the traditional linear algebraic approaches [7, 3, 12].
Clearly, the application is not limited to SAP transaction logs but is applicable
in any situation where processes are only monitored at an aggregate level, i.e.,
frequency profiles rather than event traces.

Future research is aiming at a better characterization of the class of nets
for which IP(PN ,M, fp) has a solution if and only if match(PN ,M, fp). In this
paper, it was shown that for acyclic nets, marked graphs, and state machines

this is the case. It seems that the characterizations given in [5] and the class of
ST-nets (nets obtained by composing marked graphs and state machines) are a
good starting point for a beter understanding when solutions of the IP problem
are actually realizable.

Acknowledgments. The author would like to thank Eric Verbeek of proof-
reading the paper and Monique Jansen-Vullers and Michael Rosemann for their
joint work on mining SAP and configurable process models which uncovered the
problem addressed in this paper.

References

1. W.M.P. van der Aalst. The Application of Petri Nets to Workflow Management.
The Journal of Circuits, Systems and Computers, 8(1):21–66, 1998.

2. W.M.P. van der Aalst, B.F. van Dongen, J. Herbst, L. Maruster, G. Schimm, and
A.J.M.M. Weijters. Workflow Mining: A Survey of Issues and Approaches. Data
and Knowledge Engineering, 47(2):237–267, 2003.

3. J. Desel. Basic Linear Algebraic Techniques of Place/Transition Nets. In W. Reisig
and G. Rozenberg, editors, Lectures on Petri Nets I: Basic Models, volume 1491 of
Lecture Notes in Computer Science, pages 257–308. Springer-Verlag, Berlin, 1998.

4. J. Desel and J. Esparza. Free Choice Petri Nets, volume 40 of Cambridge Tracts
in Theoretical Computer Science. Cambridge University Press, Cambridge, UK,
1995.

5. K. van Hee, N. Sidorova, and M. Voorhoeve. Soundness and Separability of Work-
flow Nets in the Stepwise Refinement Approach. In W.M.P. van der Aalst and
E. Best, editors, Application and Theory of Petri Nets 2003, volume 2679 of Lec-
ture Notes in Computer Science, pages 335–354. Springer-Verlag, Berlin, 2003.

6. G. Keller and T. Teufel. SAP R/3 Process Oriented Implementation. Addison-
Wesley, Reading MA, 1998.

7. T. Murata. Petri Nets: Properties, Analysis and Applications. Proceedings of the
IEEE, 77(4):541–580, April 1989.

8. W. Reisig. Petri Nets: An Introduction, volume 4 of EATCS Monographs in The-
oretical Computer Science. Springer-Verlag, Berlin, 1985.

9. W. Reisig and G. Rozenberg, editors. Lectures on Petri Nets I: Basic Models,
volume 1491 of Lecture Notes in Computer Science. Springer-Verlag, Berlin, 1998.

10. M. Rosemann and W.M.P. van der Aalst. A Configurable Reference Modelling Lan-
guage. QUT Technical report, FIT-TR-2003-05, Queensland University of Tech-
nology, Brisbane, 2003.

11. A. Schrijver. Theory of Linear and Integer Programming. John Wiley & Sons, New
York, 1998.

12. M. Silva, E. Teruel, and J.M. Colom. Linear Algebraic and Linear Programming
Techniques for the Analysis of Place/Transition Net Systems. In W. Reisig and
G. Rozenberg, editors, Lectures on Petri Nets I: Basic Models, volume 1491 of
Lecture Notes in Computer Science, pages 309–373. Springer-Verlag, Berlin, 1998.

13. L.A. Wolsey. Integer Programming. John Wiley & Sons, New York, 1998.

