
Achieving a General, Formal and Decidable Approach to the
OR-join in Workflow using Reset nets

(Application paper Petri nets 2005)

Moe Thandar Wynn1, David Edmond1, W.M.P. van der Aalst1,2 and A.H.M. ter Hofstede1

1 Center for IT Innovation, Queensland University of Technology
P.O. Box 2434, Brisbane Qld 4001, Australia.

{m.wynn,d.edmond,a.terhofstede }@qut.edu.au
2 Department of Technology Management, Eindhoven University of Technology

P.O. Box 513, NIL-5600 MB, Eindhoven, The Netherlands.
w.m.p.v.d.aalst@tm.tue.nl

Abstract. Workflow languages offer constructs for coordinating tasks. Among these con-
structs are various types of splits and joins. One type of join, which shows up in various
incarnations, is the OR-join. Different approaches assign a different (often only intuitive) se-
mantics to this type of join, though they do share the common theme that synchronisation is
only to be performed for active threads. Depending on context assumptions this behaviour
may be relatively easy to deal with, though in general its semantics is complicated, both
from a definition point of view (in terms of formally capturing a desired intuitive semantics)
and from a computational point of view (how does one determine whether an OR-join is
enabled?). In this paper the concept of OR-join is examined in detail in the context of the
workflow language YAWL a powerful workflow language designed to support a collection
of workflow patterns and inspired by Petri nets. The OR-join’s definition is adapted from
an earlier proposal and an algorithmic approach towards determining OR-join enablement is
examined. This approach exploits a link that is proposed between YAWL and Reset nets, a
variant of Petri nets with a special type of arc that can remove all tokens from a place.

Keywords: OR-join, YAWL, Workflow patterns, synchronizing merge, Petri nets, Reset nets.

1 Introduction

Workflow specifications should capture various aspects of business models such as the flow of
control, the flow of data, the structure of the organisation, and the use of resources (see e.g.[13]).
The control flow perspective captures the execution interdependencies between the tasks of a busi-
ness process. In-depth analysis and comparison of a number of commercially available workflow
management systems has been performed [4]. The findings demonstrate that the interpretation of
even the basic control flow constructs is not uniform and it is often unclear how the more complex
requirements could be supported. The authors propose 20 workflow patterns to address control
flow requirements in a language independent style. YAWL (Yet Another Workflow Language) is
a result of this analysis, it provides direct support for these patterns [3].1 YAWL has a formal se-
mantics specified as a transition system. Although YAWL exploits concepts from Petri nets, it also

1 Note that all but one pattern are supported. Pattern 11 (Implicit Termination) is deliberately not supported
by YAWL because it hampers verification, e.g., checking soundness [1].

provides direct support for those patterns hard to realise in Petri nets. One of these patterns corre-
sponds to the synchronising merge or the OR-join, the focus of this paper. In practice, there is a
need for a construct like the OR-join as is evident from e.g. the fact that some commercial systems
support OR-join like constructs. However, experience with these systems shows that it is difficult
to select a suitable semantics and implement it efficiently. Workflow management systems like
InConcert, eProcess, and WebSphere MQ Workflow have solved problems related to the OR-join
using syntactical restrictions. IBM WebSphere MQ Workflow [17] (formerly known as MQSeries
Workflow and FlowMark and also used as a basis for the new BPEL standard) offers full support
for the OR-join but in order to do this it requires the workflow to be acyclic, i.e., the only way
to introduce loops is by executing the entire (sub)process [2]. Other systems like Eastman and
Domino Workflow seem to use a non-local semantics similar to the one used in YAWL. Such a
non-local semantics may lead to unexpected results. Moreover, a non-local semantics may result
in poor performance as is stated in the manual of Eastman: “Parallel instances can accumulate at a
Join workstep if the instances are routed to the workstep by preprocessing rules. These instances
will eventually be joined by a RouteEngine subprocess (thread) that examines Join worksteps for
such instances. This Join scavenger thread reduces system efficiency, so routing to Join worksteps
using preprocessing rules should be avoided” [9]. These examples illustrate the practical relevance
of the OR-join and serve as a motivation for the work reported in this paper. For a more complete
discussion on workflow systems’ support for OR-join semantics, we refer to [2, 4, 14].

The OR-join is a control flow construct that sometimes behaves like an AND join and some-
times like an XOR join based on the current context. Variants and interpretations of the OR-join
have been proposed in the literature. In [18], several possible interpretations of OR-join seman-
tics in the context of Event-driven Process Chains (EPCs) are discussed. If there is a matching
OR-split, the OR-join semantics is taken to be “wait for the completion of all paths activated by
the matching split”. If there is no matching split, there could be at least three interpretations of an
OR join: wait-for-all, first-come and every-time [18]. In [2], the authors highlight the technical,
conceptual and practical problems with the formal semantics of the OR-join in Event driven Pro-
cess Chains (EPCs). The authors suggest that there is no sound formal semantics for EPCs that is
fully compliant with the informal semantics and that any formal semantics for EPCs will impose
some restrictions or will deviate from the informal semantics to some extent. The authors demon-
strate the problems using vicious circles, which are formed when two or more OR-joins are in a
feedback loop and each OR-join waits for the other OR-join to complete first. On the other hand,
in [15] a semantic framework for formally defining the non-local semantics of EPCs including the
OR-join is proposed. The author states that “a single transition relation cannot precisely capture
the informal semantics of EPCs”. It is proposed that the non-local semantics be defined as a pair
of transition relations and a semantic definition using techniques from fixed point theory is pre-
sented [15]. The current OR-join approach in YAWL [3] is intended to be a generalised approach
and the formal semantics of the OR-join is defined by ignoring all other OR-joins. This approach
is described as “ad hoc in some way” [15].

The contributions of this paper are threefold. Firstly, we re-examine the OR-join semantics
as proposed in [3], because its behaviour is non-intuitive in the context of OR-joins depending
on other OR-joins and composite tasks (they cannot be treated like black boxes). Secondly, for
the purposes of the OR-join definition and analysis, we propose an abstract view on YAWL, one
which is formalised in terms ofReset nets[5–8, 10–12]. Reset nets are considered the most suit-

2

able formalism as reset arcs provide direct support for the cancellation feature in YAWL (another
concept introduced to YAWL as a result of the workflow patterns and the difficulty of realising
this feature in Petri nets). Thirdly, the mapping of YAWL nets to Reset nets is exploited to find an
algorithmic solution to the non-trivial problem of OR-join enablement. Note that the contribution
of this paper is not limited to YAWL. Many systems and languages struggle with the semantics
and implementation of the OR-join. This paper provides suitable semantics and gives a concrete
algorithm to support an efficient implementation.

This rest of the paper is organised as follows. In section 2, we introduce the current OR-join se-
mantics in YAWL, discuss the problems with this semantics and propose alternative treatments for
OR-joins depending on other OR-joins in a YAWL net. In section 3, the definitions of EWF-nets
(Extended Workflow Nets) and Reset nets are presented together with the proposed abstractions
to enable EWF-net to Reset net mappings. In section 4, we propose a new semantics for the OR-
join in YAWL. In section 5, we propose an algorithm for OR-join analysis based on backwards
search techniques known for the area of Well-Structured Transition systems. Section 6 concludes
the paper.

2 Current semantics of the OR-join in YAWL

In this section, we first outline the challenges associated with the non-local semantics of the OR-
join. In particular, we show how ignoring other OR-joins during the analysis can lead to counter-
intuitive results. We then propose some alternative treatments for OR-joins on the path to other
OR-joins.

2.1 The OR-join in YAWL

A YAWL model is made up of tasks, conditions and a flow relation between tasks and conditions.
In YAWL, tasks may be directly connected graphically. The splits, joins, conditions and cancel-
lation symbols for YAWL are shown in figure 1. YAWL uses the terms tasks and conditions to
avoid confusion with Petri net terminology (transitions and places). If there is a cancellation set
associated with a task, the execution of the task removes all the tokens from the conditions and
tasks in the cancellation set. Cancelling a task is achieved by removing tokens from internal con-
ditions of the task. An OR-join task is enabled at a marking, if at least one of its input conditions
is marked and there is no possibility of a token arriving at an input condition of the OR-join which
is not currently marked (without unmarking one of the originally marked input conditions). If it is
possible to place tokens in the unmarked input conditions of an OR-join in the reachable markings
from the current marking, then the OR-join task should not be enabled and wait until either more
input conditions are marked or until it is no longer possible to mark more input conditions.

The example in figure 2 demonstrates an unstructured YAWL net with AND-split task A,
AND-join task E, OR-split task B and OR-join tasks C and D. This example demonstrates the
different behaviours of OR-joins in the context of two different markings. First consider a marking
M = c1 + c2 + c3 where there is a token in input conditionc1 of OR-join task C and in input
condition c3 of OR-join task D. To determine whether tasks C and/or D should be enabled at
M , we need to find out whether tokens could be put intoc4 or c5 in the reachable markings
from M . The reachability graph of figure 3 shows the reachable markings from the initial marking

3

Fig. 1.Splits, joins, conditions and cancellation in YAWL

Fig. 2.A YAWL net with an OR-split task B and two OR-join tasks C and D

M0 = ci to the end markingM = co.2 We can see that by executing task B, we can reach markings
c1 + c3 + c5 or c1 + c3 + c4 + c5 that markc5, an unmarked input condition of task D inM .
Also, markingsc1 + c3 + c4, c1 + c3 + c4 + c5 could be reached by executing task B and they
markc4, an unmarked input condition of task C inM . As we can reach a new marking fromM
which can put a token in an unmarked input condition of the OR-join tasks C and D, neither task
C or D should be enabled atM . If we consider a markingM ′ = c1 + c3 + c4, where all the input
conditions of C (i.e.,c1 andc4) are marked, then C would be enabled atM ′. We will also enable

2 Note the overloading of notation, i.e., hereco is a multiset denoting the marking with one token in condition
co.

Fig. 3.Reachability graph of the YAWL net in figure 2

4

task D atM ′ as it is not possible for another token to arrive at input conditionc5. Note that in the
scenario where we move fromM to M ′, task D was not enabled inM and, although no tokens
were added to the input conditions of this task, it got enabled inM ′.

Fig. 4.Cancellation task C with an infinite loop

Now, let us consider OR-joins in the light of cancellation. In figure 4, we describe a YAWL
net with (i) task C removing tokens from the conditionsc1, c2 and task B when firing, and (ii)
an OR-join task E. At a markingM = c2, we marked one of the input conditions of E and
we need to perform an analysis to decide whether bothc2 andc3 could be marked in a reach-
able marking fromM . We can observe the following sequence of reachable markings fromM :
c2 →C c3 →D c1+c2 →B 2c2 →C c3. This is due to the cancellation feature of C, removing to-
kens fromc2 when firing. We can conclude that it is not possible to reach a bigger markingc2+c3
from M and therefore, E should be enabled atM . Let us consider a different situation where task
C does not have a cancellation set associated with it. From markingM = c2, we can observe the
following sequence of reachable markings:c2 →C c3 →D c1 + c2 →B 2c2 →C c2 + c3. As we
can reachc2+ c3 which marks more input places of the OR-join task E, the analysis will conclude
that task E should not be enabled atM . This example demonstrates the possible effect that the
cancellation feature of a task can have on the OR-join enablement analysis.

From the above examples, it is obvious that the OR-join semantics requires careful analysis and
the decision to enable an OR-join cannot be made locally. Any OR-join algorithm must evaluate
all the reachable markings from a current marking to determine whether there is a possibility of a
token arriving at an input condition of an OR-join which is not currently marked (while all input
conditions which were already marked remain marked though possibly with fewer tokens). This
algorithm potentially needs to be applied every time the marking changes and the OR-join analysis
could place a significant load on any workflow engine required to execute it, cf. the quote from the
manual of Eastman [9] in the introduction.

2.2 Problems with current OR-join semantics in YAWL

Two problems may be identified with the current OR-join semantics of YAWL which are related
to the treatment of OR-joins and composite tasks preceding an OR-join under consideration.

5

The current OR-join semantics ignores other OR-joins when analysing whether a particular
OR-join should be enabled at a given marking [3]. In figure 5, there are two OR-join tasks, E and
F in the YAWL net. Consider a markingM = c1+c3 where the analysis for the OR-join task, F is
performed. After executing task C, it is possible to reach eitherc3+c4, c3+c5 or c3+c4+c5. One
possible occurrence sequence isc1 + c3 →C c3 + c4 + c5 →D c3 + c4 + c6 →E c3 + c7. Hence,
M ′ = c3 + c7 is a reachable marking fromM . However, the current OR-join semantics ignores
other OR-joins on the path to F, so task E and the associated conditions will not be taken into
account, andM ′ is therefore not considered as a reachable marking during the OR-join analysis
of F. As a result, the analysis will conclude that there is no possibility of another token arriving
in c7 and F would be enabled atM . This behaviour is probably not what one would expect from
this specification. It could also result in multiple executions of task F and more than one token
could be produced forco e.g. (c1 + co). A YAWL model which can produce a token for the output
conditionco while still having tokens in the other conditions is considered as not having proper
completion and is therefore not sound [1]. We have seen that as the analysis of a given OR-join
does not consider the possibility of a token arriving from a path which has an OR-join, this could
result in premature enabling and multiple execution of the OR-join task. This is not in accordance
with the informal (desirable) semantics of an OR-join, and it is counter-intuitive.

Fig. 5.A YAWL net with two OR-join tasks E and F

The other problem is that the current OR-join semantics does not treat composite tasks as
“black boxes”, i.e., in [3] the semantics is based on the “unfolding” of the YAWL model. This may
be particularly counter-intuitive if a composite task on the path to an OR-join contains another
OR-join in its decomposition. As a result, when evaluating whether an OR-join should be enabled
at a given marking, the analysis will be performed at lower level nets that make up a YAWL
specification. Consider a specification where task B in figure 5 is a composite task containing an
OR-join task. The current semantics will result in the OR-join at a lower level being ignored. This
semantics implies that a YAWL net at a lower level cannot be considered as a black box, thus
impacting the OR-join analysis at a higher level net. This also applies for composite tasks which
can deadlock. Consider markingc2 + c7. If task B contains a deadlock, then F is enabled. If B
has proper completion, then F is not enabled. This also demonstrates that in the current semantics,
composite tasks cannot be treated as black boxes.

6

2.3 Optimistic and pessimistic approaches

Instead of ignoring other OR-join tasks altogether during the analysis, we propose two alternative
treatments for those OR-joins: treat them either as XOR-joins (optimistic) or as AND-joins (pes-
simistic). Both optimistic and pessimistic approaches achieve the desired behaviour for an OR-join
analysis by delaying enablement when there is a possibility of more tokens arriving to unmarked
input conditions of the OR-join. We believe that these two alternatives result in an analysis which
is more closely related to the informal semantics of OR-joins and still allow for sound semantics
(i.e., avoid the fixpoint problems discussed in [2]).

The treatment of an OR-join on the path to another OR-join as an XOR-join is anoptimisticap-
proach. Consider a markingM = c1+c3 in figure 5 where an OR-join analysis for task F would be
performed. Instead of ignoring the other OR-join task E during the analysis, task E will be treated
as an XOR-join task. This will mean that the occurrence sequencec1+c3 →C c3+c4 →E c3+c7
would be considered. As a result, task F is not enabled atM . This interpretation of OR-join task
E as an XOR-join, prevents F from being enabled prematurely and it matches more closely with
the informal semantics of OR-joins.

The treatment of an OR-join on the path to another OR-join as an AND-join is apessimistic
approach, as this now requires tokens in all input conditions of the AND-join before enabling.
Consider againM = c1 + c3 in figure 5 where an OR-join analysis for task F would be per-
formed. This time, instead of ignoring task E, it will be treated as an AND-join task. Due to the
OR-split behaviour of task C, tokens can be present inc4 or c5 or both after firing C. This occur-
rence sequencec1 + c3 →C c3 + c4 + c5 →D c3 + c4 + c6 →E c3 + c7 is possible. As a token
can be put inc7 while c3 remains marked, F is not enabled atM . This preserves the same informal
semantics as an optimistic approach, and both approaches result in delaying the enablement of the
OR-join task F.

In some cases, we observe that treating other OR-joins on the path as XOR-joins using an op-
timistic approach is more appropriate for the analysis. Consider a scenario where task C in figure
5 is an XOR-split task rather than the OR-split task. Let us consider a markingc1+ c3 and that we
treat task E as an AND-join task. As it is not possible for task E to fire due to the XOR-split and
AND-join combination, the OR-join analysis will conclude that F should be enabled. As a result,
task F could be executed more than once and the YAWL net does not have proper completion. The
analysis will reach the same conclusion as the current semantics in YAWL where the semantics
ignores the OR-join dependencies.

We have also found that when OR-joins are in conflict, there might not be a satisfactory treat-
ment for OR-joins. LetN be a YAWL net ando1, o2 be two OR-join tasks. We defineo1 ando2 to
be in conflict iff o1 is on a directed path too2 ando2 is on a directed path too1. We have in figure
6 an unusual situation described as a vicious circle in [15] where the OR-joins are in conflict and
it is unclear what the exact informal semantics of the model should be. In figure 6, there are two
OR-join tasks B and C which are in conflict with each other. Conditionc3 is an output condition
of C and an input condition of B andc4 is an output condition of B and an input condition of C.
Figure 6 is inspired by [15]. Consider a markingc1 + c2 where an OR-join analysis is carried
out for task B and C. Using theoptimisticapproach, we treat task C as an XOR-join task during
the analysis for B. As a result, we can find a reachable markingc1 + c3 + c6, which marks both

7

input conditions of B. Therefore, B should not be enabled atc1 + c2. Similarly, we will treat B
as an XOR-join task for the analysis of task C and there is a reachable markingc2 + c4 + c5.
Therefore, task C should not be enabled atc1 + c2. As a result of thisoptimisticapproach, the
YAWL net will deadlockbecause of the OR-join semantics using theoptimisticapproach. Using
the pessimisticapproach, we treat task C as an AND-join task during the analysis for B. At the
markingc1 + c2, it is not possible to enable C due to the AND-join semantics, and therefore, task
B will be enabled and can be fired. This will enable task C and after firing C, tokens will be placed
in c3 andc6. Therefore, tasks B and C could potentially keep firing indefinitely and will result in
multiple firings of task D. The same is true for the analysis of task C. We can see that thepes-
simisticapproach would also result in improper completion. The original semantics that ignores
other OR-joins would also result in a similar behaviour to thepessimisticapproach. In this case,
all three approaches deviate from the informal semantics of the OR-join and it is not possible to
define the formal semantics accurately.

Fig. 6.OR-join tasks B and C in conflict

From the above discussions, it can be seen that there is no ideal treatment for non-local OR-
join semantics in YAWL. Any formal semantics will impose some restrictions or deviate from
the informal semantics to some extent. In our opinion, the XOR-join treatment of other OR-joins
matches more closely the informal semantics of OR-join and this is what we will use for our
formal semantics.

3 Establishing a formal foundation

The formal semantics of YAWL is expressed in terms of a transition system [3] and while inspired
by Petri nets, YAWL should not be seen as an extension of these. New concepts were introduced
in YAWL to suitably deal with the workflow patterns [4]. YAWL constructs such as OR-join, can-
cellation and multiple instances are not directly supported by Petri nets. To perform an OR-join
analysis, a multiple instances task does not effect the analysis but cancellation plays an important
role (as shown in figure 4). This cancellation feature of YAWL is theoretically closely related to
Reset nets, which are Petri nets with reset arcs. For an OR-join analysis, we propose to map a
YAWL model represented as an EWF-net (Extended Workflow Net) to a Reset net. In this sec-
tion, we first present the definitions of EWF-nets and then discuss the proposed abstractions to the

8

EWF-nets. We then present the definition and firing rules for Reset nets.

3.1 EWF-nets

A YAWL model is formally defined as an EWF-net [3].

Definition 1 (EWF-net [3]). An extended workflow net (EWF-net) N is a tuple(C, i,o, T, F, split ,
join, rem,nofi) such that3

– C is a set of conditions andT is a set of tasks,
– i ∈ C is the unique input condition ando ∈ C is the unique output condition,
– F ⊆ (C \ {o} × T) ∪ (T × C \ {i}) ∪ (T × T) is the flow relation,
– every node in the graph (C ∪ T, F) is on a directed path from i to o,
– split: T → {AND,XOR,OR} specifies the split behaviour of each task and

join: T → {AND, XOR,OR} specifies the join behaviour of each task,
– rem:T 9 P(T ∪C \ {i, o}) specifies the additional tokens to be removed by emptying a part

of the workflow;
– nofi: T 9 N × Ninf × Ninf×{dynamic, static} specifies the multiplicity of each task (mini-

mum, maximum, threshold for continuation, and dynamic/static creation of instances).

In an EWF-net, it is possible for two tasks to have a direct connection. We will add an implicit
conditionc(t1,t2) between two taskst1, t2 if there is a direct connection fromt1 to t2. We denote
asCext the set of conditions extended to include implicit conditions, and denote the extended flow
relation asF ext. We now define an explicit extended workflow net (E2WF-net) usingCext and
F ext as follows:

Definition 2 (E2WF-net).LetN = (C, i,o, T, F, split , join, rem,nofi) be an EWF-net, the cor-
responding explicit EWF-net (E2WF-net) is defined as
(Cext, i,o, T, F ext, split , join, rem,nofi) where

Cext = C ∪ {c(t1,t2) | (t1, t2) ∈ F ∩ (T × T)} and
F ext =(F \ (T × T))

∪{(t1, c(t1,t2)) | (t1, t2) ∈ F ∩ (T × T)}
∪{(c(t1,t2), t2) | (t1, t2) ∈ F ∩ (T × T)}.

Let N be an E2WF-net andx ∈ Cext ∪ T , we use•x andx• to denote the set of inputs
and outputs of a node i.e.•x = {y|(y, x) ∈ F ext} andx• = {y|(x, y) ∈ F ext}. A marking is
denoted byM and, just as with ordinary Petri nets, it can be interpreted as a vector, function, and
multiset.M is anm-vector, wherem is the total number of conditions. This vector can also be
seen as a functionM : Cext → N, whereM(c) returns the number of tokens in a conditionc
of a markingM . Functions mapping some domain (in this caseC) onto N can also be seen as
multisets, i.e.,M is a multiset overC. Since a marking is a multiset, we can use notations such
asM ≤ M ′, M + M ′, andM − M ′. M ≤ M ′ iff ∀c∈dom(M)M(c) ≤ M ′(c). M + M ′ and
M − M ′ are a multisets such that for anyc ∈ dom(M): (M + M ′)(c) = M(c) + M ′(c) and
(M −M ′)(c) = M(c)−M ′(c).

3 Note that we using basic mathematical notations such as9 for a partial function,P for powerset,N for
natural numbers, andNinf for N ∪ {inf }.

9

Tasks are the active components of an E2WF-net and when a taskt fires at a markingM , it
changes the state and reaches a new markingM ′, denoted asM →t M ′, when no confusion can
occur, we will writeM →n M ′ wheren is the name of a task.

3.2 Abstractions

We propose to abstract the constructs in YAWL that do not affect an OR-join analysis. They include
multiple instances, composite tasks and internal conditions of a task. We can assume that if a
multiple instances task is enabled and executed, it will complete and put tokens into the appropriate
output conditions of the task. Similarly, with the state transitions and internal conditions within a
task, we can abstract from these transitions and only consider the input and output conditions of
a task. In the mappings to Reset nets, we will introduce one place for each task which indicates
whether a task is currently executing and as a result, abstract from the internal conditions of a task.
We also propose to treat EWF-nets asflat nets, and ignore the hierarchical structure for the purpose
of an OR-join analysis. In other words, when deciding whether an OR-join should be enabled at
a given marking, we will not be considering the effect of deadlock within a composite task. We
assume that a YAWL subnet which is used as a composite task at a given level is sound. Therefore,
if a composite task can be enabled and executed, it will terminate at some time, and tokens will be
placed in the appropriate output condition(s) of the composite task. As a result, even if there is an
OR-join task in the composite task, it will not influence the decision to enable an OR-join task at
a higher level. We recognise that due to the semantics of only considering tasks at the same level,
the OR-join task could wait and result in a deadlock if a composite task is not sound and could
deadlock. Because of these proposed abstractions from an EWF-net, we are now able to map to
a Petri net like formalism. During an OR-join analysis, we are only required to consider the split
and join behaviours of tasks and the cancellation set that is associated with a task. To support the
cancellation feature of an EWF-net, we propose to map an EWF-net into a Reset net.

3.3 Reset nets

A Reset net is a Petri net with special reset arcs, that can clear the tokens in selected places. Reset
arcs do not change the requirements of enabling a transition but when a transition fires, they will
remove tokens from the specified places. The reset arcs are used to underpin theremfunction that
models the cancellation feature of EWF-nets, cf. Definition 1. This approach allows us to leverage
existing literature and techniques in the area of Petri nets and Reset nets in particular [5–8, 10–12].

Definition 3 (Reset net).A Reset net is a tuple (P, T, F, R) where (P, T, F) is a Petri net and
R ∈ T 9 P(P) is the set of reset arcs associated with every transitiont ∈ T .

A reachable markingM ′ is defined by first removing tokens needed for enablingt from its input
places (•t), then removing all tokens from reset places and then finally adding tokens to the output
places oft (t•).

Definition 4 (Enabling and firing Reset nets).Let (P, T, F,R, M) be a marked Reset net. A
transition t ∈ T is enabled iff•t ≤ M . Firing t at markingM reaches markingM ′, denoted by
M →t M ′, iff •t ≤ M andM ′ = (M − •t)[P \R(t)] + t•.

10

Definition 5 (Occurrence sequence).Let(P, T, F, R),M0) be a marked Reset net. LetM1, ...,Mn

be markings of the reset net and lett0, t1, ..., tn−1 be transitions inT . Sequences = M0t0M1...tn−1Mn

is an occurrence sequence iffMi →ti Mi+1 for all i, 0 ≤ i ≤ n− 1. A markingM ′′ is reachable
from a markingM , writtenM →∗ M ′′, iff there is an occurrence sequence with initial marking
M and final/last markingM ′′.

4 Linking YAWL to Reset nets

In this section, we describe how an EWF-net could be transformed into a Reset net. After the
abstractions from multiple instances, composite tasks and internal places in a YAWL net, we can
consider a YAWL net as having tasks with various split and join behaviours and possible cancella-
tion sets and explicit and implicit conditions. For an EWF-net without OR-join tasks, there is then
a straight-forward mapping into a Reset net. For an EWF-net with OR-join tasks, we propose to
use theoptimistictreatment whereby other OR-joins on the path are replaced with XOR-joins, and
perform the necessary transformations.

4.1 Semantics of an EWF-net without OR-joins

For every taskt in an E2WF-net, we splitt into tstart andtend to support the various split and
join constructs in YAWL. The number oftstart transitions depends on the join behaviour of a task
and the number oftend transitions depends on the split behaviour. Figure 7 illustrates the approach
taken in the transformation.

Fig. 7.Reset net transformations for YAWL split and join behaviours

11

Definition 6 (E2WF-Reset net).LetN = (Cext, i,o, T, F ext, split , join, rem,nofi) be an E2WF-
net without OR-joins. A corresponding E2WF-Reset net is a tuple (P, T ′, F ′, R) such that

P = Cext ∪ {pt|t ∈ T} is a set of places,
T ′ = Tstart ∪ Tend such that
Tstart = {tstart|t ∈ T ∧ join(t) = AND}

∪{tpstart|t ∈ T ∧ join(t) = XOR ∧ p ∈ •t},
Tend ={tend|t ∈ T ∧ split(t) = AND}

∪{tpend|t ∈ T ∧ split(t) = XOR ∧ p ∈ t•}
∪{txend|t ∈ T ∧ split(t) = OR ∧ x ⊆ t • ∧ x 6= ∅},

F ′ ={(p, tstart)|t ∈ T ∧ join(t) = AND ∧ p ∈ •t}
∪{(tstart, pt)|t ∈ T ∧ join(t) = AND}
∪{(pt, tend)|t ∈ T ∧ split(t) = AND}
∪{(tend, p)|t ∈ T ∧ split(t) = AND ∧ p ∈ t•}
∪{(p, tpstart)|t ∈ T ∧ join(t) = XOR ∧ p ∈ •t}
∪{(tpstart, pt)|t ∈ T ∧ join(t) = XOR ∧ p ∈ •t}
∪{(pt, t

p
end)|t ∈ T ∧ split(t) = XOR ∧ p ∈ t•}

∪{(tpend, p)|t ∈ T ∧ split(t) = XOR ∧ p ∈ t•}
∪{(pt, t

x
end)|t ∈ T ∧ split(t) = OR ∧ x ⊆ t • ∧ x 6= ∅}

∪{(txend, p)|t ∈ T ∧ split(t) = OR ∧ p ∈ x ∧ x ⊆ t • ∧ x 6= ∅},
R ∈T ′ 9 P(P) anddom(R) ⊆ Tend such that

t ∈ T ∧ x ⊆ t • ∧ x 6= ∅ ∧ split(t) = OR
⇒ R(txend) = {pt′ |t′ ∈ rem(t) ∩ T} ∪ (rem(t) ∩ Cext),

t ∈ T ∧ split(t) = AND
⇒ R(tend) = {pt′ |t′ ∈ rem(t) ∩ T} ∪ (rem(t) ∩ Cext),

t ∈ T ∧ split(t) = XOR ∧ p ∈ t•
⇒ R(tpend) = {pt′ |t′ ∈ rem(t) ∩ T} ∪ (rem(t) ∩ Cext).

The set of reset places for a given transitiontend has been defined inR to support the cancellation
feature in YAWL. A placept is also introduced to represent an internal place betweentstart and
tend. The flow relationF ′ is also modified so that the newly introduced places inP and transitions
T ′ are properly connected.

The functionmarkedreturns the set of marked conditions in an EWF-net for a given marking
M .

Definition 7 (marked). For a markingM of an E2WF-Reset net:
marked(M)={c ∈ dom(M) | M(c) > 0}.

Thev relation indicates thatM marks fewer or the same places asM ′. This is a looser notion
of smaller markings than≤, where only the marking of places is considered and the number of
tokens in a place is ignored. The notation@ is used to indicate thatM marks strictly less places
thanM ′. The notationM [C] restrictsM to a set of conditionsC, i.e., a projection. For instance,
M [t•] @ M ′[t•], represents a comparison betweenM andM ′ that is restricted to the output
places oft.

Definition 8 (v, projection). Let M,M ′ be two markings of an E2WF-Reset net andC a set of
conditions:M v M ′ iff marked(M) ⊆ marked(M ′), M @ M ′ iff M v M ′ and¬(M ′ v M),
andM [C] = M ′ iff dom(M ′) = dom(M) ∩ C and∀c∈dom(M ′) M ′(c) = M(c).

12

We now define how a given markingM in an E2WF-net can be linked to a markingM∗ in
the corresponding E2WF-Reset net. For all the conditions that exist in an E2WF-net, they will be
marked exactly the same inM∗ and zero tokens for the newly introduced places in the E2WF-
Reset net i.e.M = M∗.

Definition 9 (M∗). Let(N,M) be a marked E2WF-net andN∗ be the corresponding marked
E2WF-Reset net of N, thenM corresponds in a natural way to a marking ofN∗. This marking
marks all the places inN∗ which correspond to conditions inN with the same number of tokens.
We will refer to this as the corresponding marking and denote it asM∗.

We define the enabling and firing rules for tasks in an E2WF-net using the transition firing
rules as defined for Reset nets. Executing a task of an E2WF-net corresponds to executing the
corresponding start and end transitionststart andtend of the E2WF-Reset net.

Definition 10 (Enabling and firing E2WF-net). Let(N,M) be a marked E2WF-net and(N∗,M∗)
be the corresponding marked E2WF-Reset net. A taskt is enabled at(N,M) iff •t ≤ M∗. Firing
t at M reachesM ′, denoted byM →t M ′ iff for the corresponding start transitiontstart and end
transitiontend, we haveM∗ →tstart M ′′ →tend M∗′

.

Note that this definition allows us to transfer typical Petri-net concepts such as reachability to
E2WF-nets.

We are seeking a predicatesuperMto determine whether we can reach a marking that marks
more places thanM for a certain set of places. From a given markingM and a given set of places
P ′, we can determine whether it is possible to reach a marking fromM which marks more places
in P ′. If we defineP ′ = •o-j, a set of input conditions of an OR-join, then we can determine
whether a bigger marking (restricted to places inP ′) exists for a given markingM (in which case
the OR-join is not enabled).

Definition 11 (superM). Let N = (P, T, F, R,M) be a marked E2WF-net andP ′ ⊆ P be a set
of places for consideration, superM(N,P ′) holds iff there is a markingM ′ such thatM →∗ M ′

andM [P ′] @ M ′[P ′].

4.2 Semantics of an EWF-net with OR-joins

The transformation from an EWF-net with OR-join tasks into an E2WF-OJ is identical to E2WF-
Reset net transformation for all tasks that are not OR-join tasks. The additional steps to incorporate
OR-join tasks are include creating a setOJ for the tstart transition of each OR-join task in the
E2WF-net and addingtstart transitions inOJ into Tstart.

Definition 12 (E2WF-OJ).LetN be an EWF-net with OR-joins andN ext be E2WF-net of N, the
corresponding E2WF-OJ is a tuple ((P, T ′′, F ′′, R),OJ) such thatP , T ′, Tstart, Tend, F ′, andR
are as defined in def 6 andT ′′, F ′′, OJ are defined as follows:

T ′′ = T ′
start ∪ Tend,

T ′
start = Tstart ∪ {tstart|t ∈ T ∧ join(t) = OR)},

F ′′ = F ′ ∪ {(p, tstart)|t ∈ T ∧ join(t) = OR ∧ p ∈ •t}∪
{(tstart, pt)|t ∈ T ∧ join(t) = AND}, and

OJ = {tstart|t ∈ T ∧ join(t) = OR}.

13

The function OJ-Remove is used to transform E2WF-OJ by replacing the join behaviour of all
the OR-join tasks in an E2WF-net to XOR-join and removing the OR-join task in question. This
effectively converts an E2WF-OJ into an E2WF-Reset net so that we can use the transition firing
rules and superM predicate defined for Reset nets.

Definition 13 (OJ-Remove function).LetN ′ = (P, T, F, R,OJ) be an E2WF-OJ for an EWF-
net N andj ∈ OJ be an OR-join task under consideration. The function OJ-Remove(N ′, j)
returns (P ′, T ′, F ′, R′) such that

P ′ = P ,
T ′ = T \OJ ∪ {tpstart|t ∈ OJ \ {j} ∧ p ∈ •N t},
F ′ =F ∩ ((P ′ × T ′) ∪ (T ′ × P ′))

∪{(p, tpstart)|p ∈ •N t ∧ t ∈ OJ \ {j}}
∪{(tpstart, pt)|p ∈ •N t ∧ t ∈ OJ \ {j}}

R′ = R.

The firing rules for an E2WF-OJ are defined as follows. The firing rule for a transitiont which
is not an OR-join is the same as for Reset nets. For transitionso-j that are OR-joins in E2WF-net,
(i.e. o-j ∈ OJ), the firing rule is defined in two steps. We first use the OJ-Remove function to
transform other OR-joins (excepto-j) into XOR-joins and produce an equivalent E2WF-Reset net.
We then check whethersuperMholds. IfsuperMholds then the OR-join,o-j should not be enabled
atM . Otherwise,o-j is enabled atM .

Definition 14 (Enabling rule). Let (P, T, F, R,OJ ,M) be a marked E2WF-OJ. A transitiont ∈
T \ OJ is enabled atM iff •t ≤ M . A transition o-j∈ OJ is enabled at markingM iff at least
one of its input places is marked and superM(OJ-Remove(P, T, F, R,OJ , o-j),M, •o-j) does not
hold.

When a transitiont of an E2WF-OJ is enabled at a markingM , it can fire and a new marking
M ′ is reached.

Definition 15 (Reachable markings).Let(N,M) be a marked E2WF-OJ ,we denoteM �t M ′

iff t is enabled atM andM ′ = (M−̇ • t)[P \R(t)] + t•. We denoteM � M ′ iff there is at ∈ T
such thatM �t M ′. We denoteM �∗ M ′′ if there is an occurrence sequence fromM to M ′′.

Fig. 8.An E2WF-net N with OR-join tasks C and D

We will now describe how the transformations will be performed for an EWF-net with two OR-
join tasks C and D as shown in figure 8. The shaded place indicates the explicit conditioncBD

14

Fig. 9.An E2WF-Reset net for OR-join analysis of task D in figure 8

which has been added for the implicit condition between tasks B and D. Figure 9 shows an equiv-
alent Reset-net for the E2WF-net in figure 8 for OR-join analysis of task D. The OR-join task C is
on the path to task D and the OJ-Remove function is applied to treat task C as an XOR-join task.
Also note that OR-join task D has been removed from the net by the OJ-Remove function.

Consider a markingM = c1 + cBD of N where OR-join analysis for task D would be per-
formed. The input places of task D arec4 andcBD. We need to investigate whether it is possible
to reach a marking that marks bothc4 andcBD. We can observe the sequencec1 + cBD →Cc1

start

pC + cBD →Cend c4 + cBD exists and that we can reachM ′ = c4 + cBD from M . Therefore,
superMpredicate holds asM →∗ M ′ andM [{c4, cBD}] @ M ′[{c4, cBD}]. The OR-join analy-
sis for task D will conclude that D should not be enabled at markingM as it is possible to reach a
marking fromM that marks more input places of the OR-join thanM does.

5 OR-join algorithm proposal

The main objective of the OR-join algorithm is to determine, for a given OR-join, whether or not
a markingM ′ reachable from a given markingM that marks more input places of that OR-join
exists. We perform this analysis by first transforming an EWF-net (with OR-joins) into an E2WF-
Reset net for a given OR-join task and then by calling the OR-join algorithm. Our algorithm is
based on backward search techniques for Well-Structured Transition Systems [5, 7, 10–12]. The
algorithm works backwards by computing the predecessor markings for a given marking, as op-
posed to the forward approach used in coverability tree algorithms. A Reset net can be represented
as a WSTS and the backwards algorithm has been successfully applied to solve the coverability
problems for Reset nets [7, 16].

5.1 Backward algorithm for OR-join analysis

Well-Structured Transition Systems (WSTS) are “a general class of infinite state systems for which
decidability results rely on the existence of a well-quasi-ordering between states that is compatible
with the transitions.” [12]. The existence of a well-quasi-ordering over an infinite set of states
ensures the decidability of termination and coverability properties [7, 12].

15

Definition 16 (Well-Structured Transition System [7]). A well-structured transition system (a
WSTS) is a structureS = 〈Q,→,≤〉 such thatQ = {m, ...} is a set of states,→⊆ Q×Q is a set
of transitions,≤⊆ Q×Q is a well-quasi-ordering (wqo) on the set of states, satisfying the simple
monotonicity property,m → m′ andm1 ≥ m implym1 → m′

1 for somem′
1 ≥ m′.

Reset nets can be seen as a WSTS〈Q,→,≤〉 with Q the set of markings,M → M ′ if for somet,
we haveM →t M ′ and≤ the corresponding≤ order on markings (which is a wqo) [16].

Definition 17 (Upward-closed set [12]).Given a quasi-ordering≤ on X, an upward-closed set
is any setI ⊆ X such thaty ≥ x and x ∈ I entail y ∈ I. To anyx ∈ X we associate
↑x =def {y|y ≥ x}. A basis of an upward-closedI is a setIb such thatI =

⋃
x∈Ib ↑x.

Given a WSTS〈Q,→,≤〉 and a set of statesI ⊆ Q, Pred(I), pb(I) andPred∗(I) can be
defined [16]. The immediate predecessors ofI: Pred(I) = {y|y → x ∧ x ∈ I}, all prede-
cessor states of I,Pred∗(I) = {y|y →∗ x ∧ x ∈ I} andpb(I) =

⋃
x∈I pb(x) wherepb(x)

is a finite basis of↑Pred(↑{x}) (i.e.,pb(x) is a finite set such that↑pb(x) =↑Pred(↑{x})) [16].
The coverability problem for a Reset net is as follows: given two markingss andt can we reach
t′ ≥ t starting froms [16]. Provided that≤ is decidable andpb(t) exists and can be effectively
computed [12], the backwards reachability analysis can be performed to decide the coverability [7,
10, 16].{t} is a basis of upward closed set↑{t} and we can determine thatt is coverable froms if
there exists as′ ∈ Pred∗(↑{t}) such thats′ ≤ s (because≤ is a wqo). As↑{t} is upward-closed,
Pred∗(↑{t}) is upward-closed [12]. We can compute a finite basis ofPred∗(↑{t}) as the limit of
the sequenceI0 ⊆ I1 ⊆ ... whereI0 =def {t} andIn+1 =def In ∪ pb(In) [16]. The sequence
eventually stabilises at someIn when↑In+1 =↑In and we have reached a stabilisation point that
has the property↑In = Pred∗(↑{t}) [16]. The coverability question now becomes: is there an
s′ ∈↑In such thats′ ≤ s. In is a finite basis forPred∗(↑{t}) and the coverability question can
now be answered by testing whether there exists as′ ∈ In such thats′ ≤ s.

We now present the procedures that operationalise the coverability question for Reset nets. The
procedureCoverable returns a Boolean value to indicate whether a markingt is coverable from
a markings of a Reset net [16].

PROCEDURE Coverable (Markings, t): Boolean
Markings′;
BEGIN

for s′ ≤ s do
if s′ ∈ FiniteBasisPred∗({t}) then return TRUE;end if;

end for;
return FALSE;

END

The procedureFiniteBasisPred∗ returns a set of markings which represents a finite basis of all
predecessors and is based on the method described in [16].

PROCEDURE FiniteBasisPred∗ (SET MarkingI): SET Marking
SET MarkingK, Knext;
BEGIN

K := I; Knext := K ∪ pb(K);

16

while not IsUpwardEqual(K, Knext) do
K := Knext; Knext := K ∪ pb(K);

end while;
return K;

END

The procedure callIsUpwardEqual(K, Knext) is used to detect whether the stabilisation point
has been reached i.e.↑Knext =↑K, cf. [11]. The procedurepb(I) returnspb(I) such thatpb(I) =⋃

x∈I pb(x) [16].

PROCEDURE pb (SET MarkingI): SET Marking
Set MarkingZ = ∅; MarkingM ;
BEGIN

for M ∈ I do Z := Z ∪ pb(M); end for;
return Z;

END

pb(M) is effectively computed for Reset nets by “executing the transitions backwards and setting
a place to the minimum number of tokens required to fire the transition if it caused a reset on this
place” [16]4. For each transitiont ∈ T of a Reset net, we determine whether anM ′ exists such that
M ′ →t M . The transitiont could have been fired inM ′ resulting inM iff one or more tokens are
present in each of the output places oft which are not reset places(•t\R(t)), no tokens are found
in the reset places oft which are not also output places(R(t)\t•) and there is exactly one token in
each of the output places which are also reset places(t • ∩R(t)). The immediate predecessorM ′

is then constructed by removing a token from each output place oft which is not an input place
of t (t • \ • t), adding a token to each input place oft which is not an output place oft (•t \ t•)
and keeping the same number of tokens as inM for each place that is both an input place and an
output place oft and also for each place inP which is neither an input place nor an output place
of t (P \ (•t ∪ t•)).

PROCEDURE pb (MarkingM): SET Marking
SET MarkingZ = ∅;
BEGIN

for t ∈ T do
if ∀p∈t•\R(t) M(p) ≥ 1 ∧ ∀p∈R(t)\t•M(p) = 0 ∧ ∀p∈t•∩R(t)M(p) = 1 then

Z := Z ∪ {(M − t•)[t • \ • t] + (M + •t)[•t \ t•] + M [(•t ∩ t•) ∪ P \ (•t ∪ t•)]};
end if;

end for;
return Z;

END

We can then apply the coverability findings of a Reset net to the OR-join analysis. Let(N,M) be a
marked E2WF-net,o-j be the OR-join task under consideration,X be• o-j, N ′ be the correspond-
ing E2WF-Reset net andY be a set of Markings such that each marking inY has only one token
in each of the marked input places ofo-j in M and one token in exactly one of the unmarked input
places of theo-j in M . To determine whethero-j should be enabled atM , we need to determine

4 In our case, this minimum is one as we do not have weighted arcs.

17

whether there exists aM ′ ∈ Pred∗(Mw) such thatM ′ ≤ M for each of the markingsMw ∈ Y
(coverability question). Each markingMw in Y satisfies the conditionM [X] @ Mw[X], i.e.Mw

has tokens in more input places of the OR-joino-j and ifMw can be reached fromM , the OR-join
is not enabled. The procedureOrJoinEnabled is called with parametersM andX and it returns
a Boolean value to indicate whether the OR-join should be enabled atM .

PROCEDURE OrJoinEnabled (MarkingM , SET PlaceX): Boolean
SET MarkingY ; MarkingMw;
BEGIN

Y = {q +
∑

p∈X:M(p)>0 p | q ∈ X ∧ M(q) = 0};
for Mw ∈ Y do

if Coverable(M,Mw) then return FALSE;end if;
end for;
return TRUE;

END

5.2 A worked example

Throughout the paper we have shown several examples where it is a non-trivial task to decide if an
OR-join is enabled or not. Clearly, the algorithm can be applied successfully to these situations.
To illustrate its inner working in some detail we use one last example.

Fig. 10.A YAWL net with an OR-join task G and cancellation

Consider a markingM = c1+ c7 in figure 10 where the OR-join analysis for task G is carried
out. It is possible to have an occurrence sequence,c1 + c7 →B cBB + c3 + c7 →E cBB + c5 +
c7 →B cBB + c3 + c5 + c7 →D c4 + c5 + c7 →F c6 + c7. As a result,c6 + c7 is a reachable
marking fromc1 + c7 and the OR-join should not be enabled at markingM . The evaluation will
start with a call to the procedureOrJoinEnabled(c1 + c7, {c6, c7}). Y := {c6 + c7} and for
Mw = c6+ c7, we will obtain a finite basis of all the predecessors ofc6+ c7. Figure 12 illustrates
of backwards reachability analysis [11], with the basis of the predecessor markings forc6 + c7. It
can be seen thatc1 + c7 is a predecessor ofc6 + c7. M ′ ≤ M includes the following markings
{c1, c7, c1 + c7}. As M ′ = c1 + c7 is in the predecessors forc6 + c7, the procedure will return
FALSE, concluding that the OR-join should not be enabled atM .

18

Fig. 11.A corresponding Reset net for figure 10

Fig. 12.Illustration of backwards reachablility analysis

6 Conclusion

This paper focuses on the OR-join construct in YAWL and proposes a new semantics. The decision
to enable an OR-join task cannot be made locally: an OR-join task should only be enabled when
there is at least one token in one of the input conditions and there is no possibility of a token
arriving at one of the yet unmarked input conditions of the OR-join. Otherwise, the OR-join task
should wait for synchronisation. Instead of ignoring other OR-joins on the path, we propose two
alternative approaches (optimistic or pessimistic) for OR-joins which are on the path of other OR-
joins. Reset nets are used as formal basis for OR-join analysis to support cancellation features.
This is made possible by the fact that we can abstract from the concepts of YAWL such as multiple
instances, composite task and internal state transitions of a task. We present transformation rules
from a YAWL model with OR-joins to a Reset net for a specific OR-join analysis. We then propose
an OR-join evaluation algorithm which is based on the backward search techniques for Well-
Structured Transition Systems (WSTS). The algorithm does not yet exploit potential optimisation
techniques as e.g. presented in [10].

To conclude the paper, we would like to emphasise that the results reported in this paper are
not limited to YAWL. As is indicated in the introduction, many workflow management systems,
but also other process-aware information systems (e.g., ERP, CRM, and PDM systems), have
problems dealing with the OR-join. This paper demonstrates how the OR-join can be realized in
an acceptable manner.

Acknowledgements.We would like to especially thank Philippe Schnoebelen and Jerome Leroux
for their valuable input on the issue of decidability of OR-join algorithm and for many useful
references provided in the area of Reset nets.

19

References

1. W.M.P. van der Aalst. The Application of Petri Nets to Workflow Management.The Journal of Circuits,
Systems and Computers, 8(1):21–66, 1998.

2. W.M.P van der Aalst, J. Desel, and E. Kindler. On the Semantics of EPCs: A Vicious Circle. In M. Rump
and F.J. Ňuttgens, editors,Proceedings of the EPK 2002: Business Process Management using EPCs,
pages 71–80, Trier, Germany, 2002. Gesellschaft fǔr Informatik,Bonn.

3. W.M.P. van der Aalst and A.H.M ter Hofstede. YAWL: Yet Another Work-
flow Language. FIT Technical Report, Queensland University of Technology, 2002.
http://www.citi.qut.edu.au/pubs/technical/yawlrevtech.pdf (to in appearInformation Systems).

4. W.M.P van der Aalst, A.H.M ter Hofstede, B.Kiepuszewski, and A.P.Barros. Workflow Patterns.Dis-
tributed and Parallel Databases, 14:5–51, 2003.

5. P.A. Abdulla, K. Cerans, B. Jonsson, and Y.-K. Tsay. General decidability theorems for infinite-state
systems. InProceedings of the 11th Annual IEEE Symposium on Logic in Computer Science, pages
313–321, New Brunswick, NJ, July 1996. IEEE Computer Society.

6. P. Darondeau. Unbounded Petri net Synthesis. In J. Desel, W. Reisig, and G. Rozenberg, editors,Lectures
on Concurrency and Petri Nets, Advances in Petri Nets, volume 3098 ofLecture Notes in Computer
Science, pages 413–428. Springer-Verlag, 2004.

7. C. Dufourd, A. Finkel, and Ph. Schnoebelen. Reset Nets Between Decidability and Undecidability. In
Proceedings of the 25th International Colloquium on Automata, Languages and Programming, pages
103–115. Springer-Verlag, 1998.

8. C. Dufourd, P. Jaňcar, and Ph. Schnoebelen. Boundedness of Reset P/T Nets. InLectures on Concurrency
and Petri Nets, volume 1644 ofLecture Notes in Computer Science, pages 301–310. Springer-Verlag,
1999.

9. Eastman Software.RouteBuilder Tool User’s Guide. Eastman Software, Inc, Billerica, MA, USA, 1998.
10. A. Finkel, J.-F. Raskin, M. Samuelides, and L. van Begin. Monotonic extensions of petri nets: Forward

and backward search revisited. In A. Kucera and R. Mayr, editors,Electronic Notes in Theoretical
Computer Science, volume 68, pages 1–22. Elsevier, 2003.

11. A. Finkel and Ph. Schnoebelen. Fundamental Structures in Well-Structured Infinite Transition Systems.
In C.L. Lucchesi and A.V. Moura, editors,Theoretical Informatics: Third Latin American Symposium,
Campinas, LATIN’98, volume 1380, pages 102–118, Brazil, 1998. Springer-Verlag.

12. A. Finkel and Ph. Schnoebelen. Well-structured Transition Systems everywhere!Theoretical Computer
Science, 256(1–2):63–92, 2001.

13. S. Jablonski and C. Bussler.Workflow Management: Modeling Concepts, Architecture, and Implemen-
tation. International Thomson Computer Press, London, UK, 1996.

14. B. Kiepuszewski.Expressiveness and Suitability of Languages for Control Flow Modelling in Workflows.
Phd thesis, Queensland University of Technology, Brisbane, Australia, 2003.

15. E. Kindler. On the Semantics of EPCs: A Framework for Resolving the Vicious Circle. In J. Desel,
B. Pernici, and M. Weske, editors,Proceedings of 2nd International Conference on Business Process
Management, volume 3080 ofLecture Notes in Computer Science, pages 82–97, Potsdam, Germany,
2004. Springer-Verlag.

16. M. Leuschel and H. Lehmann. Coverability of Reset Petri Nets and other Well-Structured Transition
Systems by Partial Deduction. In J. Lloyd et al., editors,Proceedings of Computational Logic 2000,
volume 1861 ofLecture Notes in Artificial Intelligence, pages 101–115, London, UK, 2000. Springer-
Verlag.

17. F. Leymann and D. Roller.Production Workflow: Concepts and Techniques. Prentice-Hall PTR, Upper
Saddle River, New Jersey, USA, 1999.

18. P. Rittgen. Modified EPCs and their Formal Semantics. Technical Report 19, Institute of Information
Systems, University Koblenz-Landau, 1999.

20

