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This paper presents a methodology to bridge the gap between business process model-
ing and workflow specification. While the first is concerned with intuitive descriptions
that are mainly used for communication, the second is concerned with configuring a
process-aware information system, thus requiring a more rigorous language less suitable
for communication. Unlike existing approaches the gap is not bridged by providing for-
mal semantics for an informal language. Instead it is assumed that the desired behavior
is just a subset of the full behavior obtained using a liberal interpretation of the informal
business process modeling language. Using a new correctness criterion (relaxed sound-
ness), it is verified whether a selection of suitable behavior is possible. The methodology
consists of five steps and is illustrated using event-driven process chains as a business
process modeling language and Petri nets as the workflow specification language.
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1. Introduction

Over the last decade information systems have increasingly become “process aware”.
Note that ERP systems like SAP R/3 are based on reference models describing typ-
ical business processes within organizations. However, many processes remain non-
standard and require extensive configuration based on process descriptions. This
is the reason SAP R/3, like most ERP systems, offers a workflow module. There
are also dedicated Workflow Management (WFM) systems such as Staffware!. The
idea of configuring information systems on the basis of explicit process descriptions
is not specific for ERP and WFM systems as is illustrated by emerging languages
like BPEL4WS?3 in the domain of web services. In any case, an important task is



the specification of the workflow process, i.e., providing a process description that
can be interpreted by the software to support the corresponding process.

Abstracting from the non-automated parts, many scientific papers neglect the
differences between a business process and its supporting workflow. As a conse-
quence of the limited understanding of their differences, no distinction is made
between a business process description and a workflow specification. However in
practice this difference is highly relevant. Business process descriptions are used for
a different purpose and made by different people than workflow specifications.

A business process description is made by domain experts. The objective of a
business process description is to provide a basis for communication. The descrip-
tions are used for various purposes. In the everyday life of a company they serve as
manuals for process participants or as learning material for newcomers. In business
process re-engineering projects they provide a basis for discussion in order to detect
optimization potential. In preparation for the use of a WFMS they provide a ba-
sis for agreeing on the processes to be supported. The business process description
must be understandable for people from very different backgrounds and “knowledge
cultures”, e.g. heads of departments, department staff, and IT experts. A business
process description should be intuitive and leave room for interpretation: the more
ways there are to interpret a certain construct the more likely it is that agreement
will be reached.

A workflow specification, in contrast, is made by IT-experts. It is used as input
for a WFMS and must therefore be machine readable. A workflow specification
must be unambiguous and should not contain any uncertainties. This is a necessary
requirement in order to analyze and simulate the described processes and to monitor
their execution at run-time. A workflow specification also contains details that
are relevant for implementation. Whereas it is sufficient for a business process
description to cover the set of desired process executions, a workflow specification
also determines how these executions are achieved. Thus, the workflow specification
incorporates a strategy scheduling the executions supported at run-time.

Still, both process descriptions® cover the same matter of interest: the involved
tasks and their order. The close relation between the two descriptions suggests
deriving one from the other by changing the level of abstraction, e.g., enhancing
existing business process descriptions such that they can be used as inputs for a
WFMS.

1.1. Problem Description
So far, there is no methodically well-founded process model that bridges the gap

between business process- and workflow modeling. One reason can be found in a
badly organized communication between domain- and IT-experts. But even if those
involved work closely together, the continuous use of business process descriptions

®The generic term process description will be used for both business process description and
workflow specification.



for the modeling of workflow is hardly possible as there is neither a standard mod-
eling language supporting the different abstraction levels nor an exchange format in
combination with transformation rules to transform business process descriptions
into workflow specifications.

There are languages that have proved to be understandable for the average
user. They provide a set of graphical modeling elements which are combined in a
straightforward manner. Their semantics is “intuitive” but not formally founded.
On the other hand, there is a variety of languages that satisfy the requirements posed
by a workflow specification. They have formal, operational semantics and provide
concepts to specify aspects close to implementation. While examples of the first class
of languages support understandable models they typically lack formal semantics;
examples of the second class of languages provide formal semantics but are often
not accepted by the modelers. There have been many attempts to bridge the gap
between the two concerns: the need for a plain communication basis on the one side
and an unambiguous process description, covering details of the implementation, on
the other side.

Existing WFMSs follow a pragmatic approach. They often use a proprietary
modeling language with an intuitive graphical layout. The underlying semantics
lacks a formal foundation. As a consequence, analysis issues, such as proving cor-
rectness and reliable execution are not supported at design time. Failure detection
is only possible while monitoring the process execution. It is clear that failures
that are only detected at run-time may be very costly and may cause all kinds of
problems.

Many research approaches address this drawback of practical systems. Consider-
able efforts went into the formalization of semi-formal modeling languages, such as
Activity Diagrams*®, Statecharts®”, and Event-driven Process Chains®?:10-11,12,13
Still, these approaches do not provide a solution. The formalization removes am-
biguities and restricts the expressiveness. This moves the derived description more
towards a suitable input for workflow management systems, but does not improve
acceptance from modelers. Various interpretations which supported reaching an
agreement between the different participants were discarded.

Other approaches try to adapt and/or facilitate the use of formal languages such
as Petri nets'*. Here the most common approach is the introduction of intuitive
graphical patterns replacing constructs of the primary language.'® The goal is to
facilitate the understanding of the determined interpretation. Another approach
based on Petri nets is implemented within the WFMS of MILANO.'® Here multi-
ple, interchangeable representations are used as front-end to the modeler. Still the
degree of precision is the same.

Coming from either direction, the main idea is to define a comprehensive model-
ing language which meets all requirements, i.e., to provide concepts that support the
different levels of abstraction. As much as such a general language would simplify
life, so far none of the proposed languages provides concepts to cover the different



levels of abstraction separately, e.g. through a suitable refinement relation. Instead,
aspects of both abstraction levels get mingled.

The goal of this work is not to propose “Yet Another Modeling Language
which could bridge the gap, but to take a different and more pragmatic approach.

It is interesting to note that also in the context of recent developments like
BPEL4WS the gap between business models and workflow specifications remains.
In the context of BPEL4WS? the same language is proposed to provide both an
executable language and an abstract specification. In our view this is far from
realistic; a language like BPELAWS is at a too low level to be considered as an
abstract specification.?
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1.2. Problem Solving Approach

The idea is to propose a cross-language process model which gradually guides the
modeler towards a sound workflow specification. The process model is not based
upon one general modeling language but supports the combination of different,
existing, and accepted techniques. The proposed procedure starts with the modeling
of a business process using an “intuitive”, but semi-formal modeling language. The
procedure finally guides the modeler towards a sound workflow specification, which
is given in terms of a formal language.

As language for the workflow specification we chose Petri nets. Their suitabil-
ity for this application domain has been examined and discussed extensively in
the literature!®!8. They combine a graphical representation with a precise formal
foundation. Their operational semantics allow the use of the derived process de-
scriptions right away as input format of a WFMS. Examples of existing WFMSs
working on the basis of Petri net descriptions are COSA (Software Ley/COSA
Solutions/Transflow!?) and Income (Get Process AG??).

As a modeling language for the business process description we refer to Event-
driven Process Chains (EPCs), which are fairly widespread. Reasons for their accep-
tance can be found in their use for the representation of the SAP reference models?!
and their tool-support through the ARIS tool set?2. But, EPCs are just one of a
rich variety of accepted business process modeling languages. We emphasize that
the proposed process model is not restricted to that choice, but may be adapted for
other semi-formal techniques.

Five steps have to be completed when guiding the modeler from a semi-formal
business process description (expressed in terms of an EPC) towards a sound work-
flow specification based on Petri nets:

1. Business process modeling (EPCs),
2. Transformation into WF-nets,
3. Correctness check and feedback,

4. Strategy determination and



5. Strategy implementation.

The whole process model is illustrated in Figure 1. It has been designed to support
a modeler who is probably a domain expert but does not necessarily have high
modeling expertise.

The first three steps cover the modeling and the revision of the business process.
Only when the resulting process description is correct it is refined until it fits the
requirements of a workflow specification. The intermediate step “Transformation
into WF-nets” was introduced to provide a formal basis for the application of cor-
rectness criteria. Step four and five resolve efficiency aspects. Here, an execution
strategy is determined and implemented.
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Fig. 1. A process model for workflow modeling.

The key of the process model shown in Figure 1 is the introduction of a pragmatic
correctness notion which is gradually refined. It is clear that the final workflow
specification must be sound.'® This is a necessary requirement in order to guar-
antee reliable process execution at run-time. Still, such a strong correctness crite-
rion restricts the modeling capabilities at the level of business process descriptions.
Therefore, alleviated correctness criteria are introduced, namely relazed soundness
and robustness. These two criteria, which describe a subset of soundness, provide
an adequate correctness understanding within this first abstraction level and make
it possible to provide suitable feedback to the modeler.

Within the described process model, relaxed sound and robust process descrip-
tion are transformed into a sound specification. This is done in step five “Strategy
implementation”.

1.3. Structure



The remainder of this paper mainly follows the order of the five proposed steps
(cf. Figure 1). In the first three sections we focus on the modeling, analysis, and
revision of business processes. We present a new method appraising the quality
of the derived process descriptions, providing suitable feedback for the modeler.
The method incorporates modeling with EPCs (cf. Section 1), mapping EPCs to
Petri nets (cf. Section 1) and checking the correctness of derived WF-nets using the
new correctness criteria, relaxed soundness and robustness (cf. Section 1). Section 1
focuses on the implementation of a strategy. Applying existing results from Petri
net synthesis, allows for the generation of a sound process description on the basis
of a relaxed sound and robust specification. The support for the identification and
determination of a suitable scheduling strategy is done in Section 1. Finally, in
Section 1 the main ideas are summarized. Throughout the paper the proposed
procedure is applied to a running example (an order handling process).

2. Modeling Business Processes

In this section, the basis for the process model shown in Figure 1 is established. In
the first step the business process is modeled from a user perspective. We assume
the person carrying out the modeling to be a domain expert with little modeling
expertise. A graphical but only semi-formal modeling language is used.

As a typical representative of such a language, we use Event-driven Process
Chains (EPCs) of the Architecture of Integrated Information Systems (ARIS).??
The use of EPCs is not essential. Any other semi-formal modeling technique could
be used equally well. EPCs were chosen as they are widely accepted in practice. This
is based on their use to describe the SAP reference models?!' and their comprehensive
tool support through the ARIS tool set. EPCs leave room for interpretation and
hence ambiguities. An informal, i.e. potentially ambiguous, process description may
be desired in the beginning, where the main focus is on communication.

2.1. EPC Syntax

The language of EPCs provides the user with a set of graphical notation elements for
the representation of (business) functions, events and routing constructs to describe
the control-flow. Functions are used to model the dynamic part of the process, and
correspond to steps in the process. Sometimes we will also refer to functions as
tasks or activities.

Another constructive element is the event. An event either triggers a function or
marks the termination of it. Figure 2 shows an EPC containing 9 functions and 11
events. The event new order triggers the function check_credit whereas the event
order finished marks the termination of the function archive. Furthermore,
to describe more complex behavior such as sequential, conditional, parallel, and
iterative routing, connectors are introduced. These fall into two categories: splits
and joins. In both categories we have AND, XOR and OR connectors.

These elements can be combined in a fairly free manner, including cycles. The



composition is only restricted by the following rules:

There is at least one start and one end event.

Events and functions have exactly one incoming and one outgoing arc (except
start and end events).

For every two elements there is a path between the two (ignoring the direction
of arcs).

An event is always followed by a function and vice versa (ignoring connectors).

The result of the modeling with EPCs is a process description. It should be read
as a pattern describing a set of accepted process executions. Deficient executions
are only described implicitly, as the set of executions which do not fit the described
pattern.

Fig. 2 shows an EPC modeling the process ”Handling of incoming order”.
It represents a reduced version of a real life process of a telephone company.
The process models the ordering of a mobile phone which involves two de-
partments: the accounting department handling the payment and the sales

department handling the distribution.

Figure 2: Handling of incoming order.

The process starts with the event new order. After that the execution is
split into two parallel threads (AND split), the right one models accounting



activities, whereas the left one models sales activities. In accounting the
customer’s creditworthiness is checked first (check_credit). The result of
this task is either ok or not_ok. In case the result is positive the payment is
arranged (arrange_payment), in the latter case the instance is canceled and
the customer is notified (notify_cancel).

The left path models the tasks on the sales side. After performing task
record_order, the order is either handled executing tasks pick, wrap and
deliver, or cancel.

The two AND-connectors at the end make sure that only executions are
accepted where both sides, the accountancy and the sales department, either
cancel the instance or proceed the order. The process “Handling of incoming
order” is completed by archiving information on that instance (archive).

2.2. EPC Semantics

EPCs are a semi-formal method of business process modeling. Although they have
been applied quite successfully, their authors defined neither a comprehensive and
consistent syntax nor the corresponding semantics.?? With their widespread use, the
need for a formal foundation increased. Several approaches propose a formalization.
Most of them suggest a mapping on existing techniques, such as Petri nets'®%° or
Statecharts'®. This way it becomes possible to use existing analysis and verification
techniques. Other approaches to formalization have been presented.!:12:24 Here,
semantics are defined by means of a transition system. All the approaches have one
thing in common: they assign operational semantics (execution semantics) to the
EPCs.

This brings us to the main difference between existing approaches and the one
proposed here, where non-operational semantics is assigned with EPCs. Support-
ing non-operational semantics we take the line of reasoning followed in the first
publications about EPCsb.23:22

We are confident that the non-operational interpretation of EPCs fits an in-
tuitive modeling understanding and is one reason why EPCs are said to be easy
to learn and to understand. Modeling business processes, the modeler normally
starts by describing what an execution “should look like”, hence describes a set
of accepted/good executions. This procedure fits the non-operational semantics.
An EPC is interpreted as a pattern that captures accepted executions. Deficient
executions are only described implicitly.

Assuming operational semantics, the process description would also describe
“how” an execution is reached. This means that not only accepted executions are
considered but all possible behavior. Approaches assigning operational semantics
with EPC were forced to restrict the modeling facilities of EPCs. In order to exclude

bIn later publications the syntax of EPCs was enhanced by what is called a process folder. Process
folders resemble tokens in a Petri net indicating the current state.



faulty behavior, the modeler is required to model in a well-structured way® and to
avoid ambiguous concepts, such as the OR-connector.

The EPC given in Figure 2 only describes executions where the two depart-
ments work together correctly: they either both accept the order (AND_accept)
or both reject it (AND_cancel). Any other synchronization, e.g. one where
the task notify_cancel is executed at the accounting side and pick, wrap
and deliver on the sales side is not described by this pattern. As this covers
reasonable behavior, the EPC should be considered correct.

The EPC does not determine “how” the accepted executions are achieved. It does
not stipulate the order of the two possible choices. So, the EPC from Figure 2
accepts executions where the two departments work in parallel as well as execu-
tions where the two departments work sequentially. In an early design phase, this
abstraction is beneficial, as it relieves the designer from thinking about efficiency
aspects of the execution for the time being.

3. Transformation into Petri Nets

To investigate the correctness of the process description, we formalize EPCs by a
mapping onto Petri nets. Petri nets are used as they have a clear and precise defi-
nition and a graphical notation similar to that of EPCs. In addition, they provide
many existing analysis techniques and tools. As we do not restrict the modeling
facilities of EPCs - the ambiguities are deliberately maintained - the resulting Petri
nets will have faulty executions.

Using Petri nets we refer to the class of Place/Transition nets and more in par-
ticular to Workflow nets (WF-nets).1>2> WF-nets were tuned to fit the requirements
within the domain of workflow management. Petri net theory was exploited to as-
semble adequate properties and efficient algorithms for that Petri net class.?6:2% We
briefly introduce some basic Petri net notions used in the paper.

3.1. Classical Petri Net

The classical Petri net is a directed bipartite graph. The two sorts of nodes are
called places and transitions. Places are represented by circles, and transitions by
boxes.

Definition 1 (Petri net). A Petri net is a triple (P,T,F): P is a finite set of
places, T is a finite set of transitions (PNT =), F C (P xT)U (T x P) is a set
of arcs (flow relation)?.

A place p is called an input place of a transition t iff there exists a directed
arc from p to t. Place p is called an output place of transition ¢ iff f there exists a
directed arc from ¢ to p. We use *t to denote the set of input places for a transition
t. The notations t*,*p and p® have similar meanings.

¢In a well-structured EPC every split is complemented by a corresponding join.
dUnless stated otherwise we always refer to ordinary Petri nets with arc weights equal to one.



A place can contain zero or more tokens. Tokens are represented by black dots.
The state of a Petri net, often referred to as marking, is the distribution of tokens
over places, i.e. M : P — IN, assigning to every place the number of tokens M (p)
that reside in p. A place p is marked at a marking M iff M(p) > 0. To compare
markings we define a partial ordering. For any two markings M7 and Ms, M7 < Mo
iff for all p € P : My (p) < Ma(p).

A marking M changes by firing a transition ¢. A transition ¢ may fire only if it
is enabled. A transition t is enabled in marking M, written M L iff every input
place of ¢ contains at least one token. If a transition ¢ is enabled in marking M,
it may fire: one token is removed from every input place and one token is added
to every output place. Given a Petri net (P, T, F) and a marking M, we have the
following notations:

e M —5 M’: transition ¢ is enabled in M and firing transition ¢ in M results
in M’
o My = M,: the firing sequence o = titots...t,_1 leads from marking M,
to marking M,,, i.e. there are markings My, M3...M,,_1, such that M; b,
My 220 My 2 M, 22t M,
A marking M, is reachable from M; (notation M; = M,,) iff there is a firing
sequence o = tits...t, such that M; 2 M,,. Note, the empty sequence € is enabled
at any marking M and satisfies M —— M. The set of markings reachable from a
marking M is denoted as Rpy(M): Rpy(M) = {M'|M — M'}.

A pair (PN, M;) of a Petri net PN and an initial marking M; is called a net
system (or just a system).

The behavior of a net system can be described via a labeled transition system.
A labeled transition system is a directed graph with nodes representing states and
edges representing state transitions. The edges of the graph are labeled. The label
denotes what happens when the action represented by the edge is taken. Most
transition systems have a distinguished node, indicating the initial state.
Definition 2 (Transition system). A Transition System (TS) is a quadruple
TS = (V,L,E,v;,), where V is a non-empty set of states, L is a set of labels,
E CV x L xV is a transition relation, and v;, € V is an initial state. A transition
system is finite if V' and L are finite.

The reachability graph of a system S = (PN, M;) is the transition system where
the states are the reachable markings, the labels are the transitions, the distin-
guished initial state is the initial marking and the labeled edges are all triples
(M,t, M’) such that M, M’ are reachable markings satisfying M M.
Definition 3 (Reachability graph). For the system S = (PN, M;) with
PN = (P, T, F), the reachability graph RGgs = (V, L, E,v;;,) is a transitions sys-
tem with: V = Rpn(M;) as set of states, L = T and E = {(M,t, M")|M, M’ €
Rpyn(M))ANt € TAM LN M’} as set of labeled edges, and v, = M; as initial
state.
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As the set of labels and the initial state are implicitly specified by the system
S = (PN, M;) the reachability graph RGg is determined by the set of reachable
markings V together with the set of edges E. We therefore use the shortcut notation:
RGg = (V,E). We will now define some properties for Petri nets.

Definition 4 (Path in PN). In the Petrinet PN = (P, T, F'), a path from a node
Zo to a node z,, is a non-empty sequence (xo, ..., x,) such that (x;,z;41) € F for
0<i<n—1.

Definition 5 (Strongly connected). A Petri net is strongly connected iff for ev-
ery pair of nodes z and y, there is a path leading from z to y.

Definition 6 (Pure). A Petrinet (P, T, F) is pure iff (z,y) € F implies (y,z) ¢ F.
Definition 7 (Free-choice nets). A Petrinet PN = (P, T, F) is a free-choice net
iffvt,t eT:*tN*t' =0V °t="t.

Definition 8 (Bounded, safe). A system (PN, M;) is bounded iff for each place
p there is a natural number n such that, for every reachable marking, the number
of tokens in p is less than n. The system is safe iff for each place the maximum
number of tokens does not exceed 1.

3.2. WF-nets

Workflow nets (WF-nets) have been used to apply Petri net theory to process mod-
eling and analysis.'> A WF-net is a Petri net which has a unique source place (i)
and a unique sink place (0). This corresponds to the fact that any case® handled
by the process description is created if it enters the WFMS and is deleted once it
is completely handled by the WFMS.

In such a net, a task is modeled by a transition and intermediate states are
modeled by places. A token in the source place i corresponds to a “fresh” case
which needs to be handled, a token in the sink place o corresponds to a case that
has been handled. The process state is defined by the marking. In addition, a
WF-net requires all nodes (i.e. transitions and places) to be on some path from i
to o. This ensures that every task (transition) or condition (place) contributes to
the processing of cases.

Definition 9 (WF-net). A Petri net PN = (P, T, F) is a WF-net, if:

(i) PN has two special places, 7 and o. Place 7 is the only source (*i = (}) and place
o is the only sink (0® = 0).

(ii) Let t* ¢ T. The short-circuited net PN = (P, T U {t*}, F U {(o,t*), (t*,1)}) is
strongly connected.

3.83. Transforming EPCs into Workflow Nets

The transformation of EPCs into Petri nets uses three steps. First, the elements of
the EPC are mapped onto Petri-net modules. In the second step, rules are provided
to combine the different modules to form a complex process model. A third step

€An instance of a workflow specification is referred to as a “case”.1®
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becomes necessary if the primary EPC had more than one start and/or end event. In
that case, the derived WF-net must be supplemented by additional in- and output
places to satisfy the WF-net syntax.

3.3.1. Step 1: Mapping EPC elements to Petri-net modules

During the first step every EPC element is mapped onto corresponding elements on
the Petri net-side. The mapping is illustrated in Figure 3.

EPC —» PN EPC ==» PN EPC =—=> PN EPC =—» PN

D el ST el -0 :;A@:
dv>C,>¢> é% - T e 30+ - %

Figure 3: Step 1: Mapping EPC elements onto Petri-net modules.

Events and functions are transformed into places and transitions respectively in-
cluding in- and outgoing arcs. Routing constructs such as AND-split, AND-join,
XOR-split, XOR-join, OR-split and OR-join are mapped onto small Petri-net
modules. The Petri-net modules describe the behavior of the routing constructs
explicitly. This is particularly relevant for the OR, because its semantics has not
been described consistently.

3.3.2. Step 2: Module combination

In the second step, the single Petri-net modules are joined to form a connected
Petri net. Depending on the interface of the adjacent modules, one of the following
combination rules is applied:

Casel: If input and output elements are of the same kind (e.g. both places) then
the elements are unified.

Case2: If input and output elements are different (place and transition) then the
arcs are fused.

Figure 4 illustrates the first and second step of the transformation of EPCs into
Petri nets. The figure shows an EPC with an OR-join on the left and its Petri net-
translation on the right side. The EPC as well as the Petri net have the semantics:
C can be reached if either A or B or both occur?. In the EPC all these different cases
are described through one connector. In the Petri-net module all possibilities are
modeled explicitly via the transitions t4, tap and tg.

FIf A and B occur one after the other C can also be reached twice.
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Figure 4: Transformation of the OR-connector.

3.3.3. Step 3: Adding unique input/output places

Applying Step 1 and Step 2, an EPC is translated into a Petri net but not necessarily
into a WF-net. If the EPC contained more than one start, and/or end event, the
resulting net may have more than one start and/or sink place. There are no EPC
syntax-rules that restrict the number of start and end events. Moreover, if there
are several start events (or end events), it is not clear whether they are mutually
exclusive or parallel. Therefore, a new start place and/or a new sink place is added.
These new places are connected to the Petri net so that the places representing the
primary start events (or end events) of the EPC are initialized (cleaned up). The
connection of the new places to the primary places is not trivial and depends on
the relation of the corresponding events in the EPC.

a)

startl star2
Stepl &
Step2

 —

b) H

Stepl &
Step2 '

c) H H
O b
endl end2 ‘
Stepl & :
Step2
Step3

v
| — >

Figure 5: Step 3: Adding new start and sink places.

One way to determine the relation would be to track the paths, starting from the
different start events (end events), until they join?. The connection of the new place

9The paths finally join. The EPC syntax rules state that: For every two elements there is a path
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with the primary places would than be a Petri net module that corresponds to the
connector complementing the one that was found.

Consider two start events that are connected via an XOR-join. They are treated
as mutually exclusive. The two corresponding start places in the Petri net will
be linked to the new inserted place by a complementing XOR-split. This was
illustrated in part a) of Figure 5. Part b) gives an example connecting a new end
place to existing end places. Here, an AND-join was inserted complementing the
AND-split.

The general case may be more difficult. There could be more than only two
different start events (end events) with paths possibly meeting in various connectors
of different type. To avoid a lengthy procedure we propose to link different start
places by a Petri net module corresponding to an OR-split and different end places
by a Petri net module corresponding to an OR-join (see part c¢) of Figure 5). This
way all possible dependencies are covered. Note that some of them may not reflect
scenarios that are actually possible.

Applying steps 1 to 3, an EPC is transformed into a WF-net. The transfor-
mation is unique, in the sense that each EPC refers to only one WF-net. Drawing
conclusions from the construction of the WF-net to its structure, it can mainly be
said that it is pure. Depending on the primary EPC, the WF-net may contain
cycles and choices that do not satisfy the free-choice property.

The proposed transformation approach is slightly more general than the trans-
formations described in literature.®? The rules presented here can also be applied
to transform EPCs where connectors follow each other immediately, e.g., the AND-
and XOR-split in the beginning of Figure 2. Another advantage of this approach is
that the Petri net resulting from Step 2 does not contain any places or transitions
not corresponding to elements of the EPC. The transformation rules described in

literature?-10-8

all contain rules which explicitly introduce new pseudo places and
transitions to meet the Petri net syntax; the resulting Petri net may contain ele-
ments which have no counterpart in the application domain. In contrast to any
other approach, a simple mechanism was provided to aggregate several start and

end events which may be connected over different paths.

The transformation was applied to the example from Figure 2. The derived
WF-net is shown in Figure 6. For convenience, the Petri-net modules which
correspond to the routing constructs of the EPC have been highlighted using
dotted rectangles.

We emphasized that the choice of EPC’s for modeling business processes is not
essential. The approach can be adapted for other semi-formal modeling techniques
as well. A further prominent example are the Activity Diagrams of the UML. Al-
though, the new Release UML 2.027 envisages a Petri net interpretation for Activity
Diagrams, the semantic is not formally founded. Many of the introduced concepts

between the two (ignoring the direction of arcs)
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Figure 6: WF-net: “Handling an incoming order”.

(e.g. Final Flow Node, Interruption Zone, Exceptions) do not allow an unambigu-
ous Petri net interpretation. Another popular concept of Activity Diagrams are
Swimlanes, which are used to distinguish task with respect to their organizational
association. Using swim-lanes it is very unlikely that the process can be arranged
in a well-structured way. This and the contained ambiguities again suggest to ap-
28 proposes rules to
transform Activity Diagrams into WF-nets. According to the proposed method-

ply a weaker correctness property than soundness. Wendland

ology, ambiguities are maintained but made explicit. To support the modeler, an
UML-profile was defined restricting the provided elements to these that have been
considered useful for the domain of business process modeling based on Petri nets.

4. Analysis of the Derived WF-net

In the third step of the proposed procedure the modeled process is checked for
some desired properties a process description should satisfy. The correctness check
is done on the basis of the derived WF-net. Petri nets provide formally founded
semantics and enable the use of existing tools. From the results, conclusions are
drawn for the initial process description based on EPCs.

The most common property applied to WF-nets is soundness. We will argue that
soundness although necessary for workflow specifications is not adequate to appraise
the quality of business process descriptions.

4.1. Soundness

Van der Aalst first introduced soundness as a correctness criterion for WF-nets.®
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It was argued that this criterion covers a minimum set of requirements which a
process description should satisfy. A WF-net is sound if termination is guaranteed
and there are no residual tokens, deadlocks or livelocks. Furthermore, there are no
dead transitions. Residual tokens denote work that remained pending although the
execution of the case had already terminated. Deadlocks indicate situations where
the execution got stuck, and livelocks indicate situations where the process is unable
to make any real progress. Dead transitions indicate tasks that do not contribute
to the processing of workflow instances, as they are never executed. Next, we show
soundness as defined in literature.'® Note that there is an overloading of notation:
the symbols i and o are used both as identifiers for the start and end places as
well as to depict the markings where these places contain one token. The relevant
meaning can be derived from the context.

Definition 10 (Soundness). A WF-system S = (PN, i) is sound iff:

(i) For every state M reachable from state ¢, there is a firing sequence leading
from state M to state o (option to complete). Formally: VM : (i — M) =
(M = o).

(i) State o is the only state reachable from state ¢ with at least one token in place
o (proper termination). Formally: VM : (i — M A M > 0) = (M = o)

(iii) There are no dead transitions in S. Formally: V¢t € TIM, M’ : (i — M L
M)
We consider an EPC to be sound if the corresponding WF-net is sound. The
soundness test was implemented within the Petri net-tool Woflan.?6 Woflan not
only states whether the process description is sound or not, but also provides the
modeler with further information in order to support the location of deficient parts
of the WF-net.

The impact of soundness as the correctness measure for EPCs is substantial.
Soundness imposes operational semantics. As a consequence, the modeler is required
to think about the “how” of the execution, which involves the consideration of
efficiency aspects. In the introduction it was argued that the specification of business
processes should be as abstract as possible. The consideration of efficiency aspects
requires detailed information about the process, e.g. duration and costs of tasks
as well as the availability of resources. This information requires a much deeper
insight and a higher level of detail than is available or desired for the modeling of
business processes. Here, the focus is on communication. The objective is to come
to a common process understanding between all participants clarifying the “what”.
All further information unnecessarily complicates the description.

Soundness can only be achieved through a restriction of the EPC modeling facil-
ities. The requirement for soundness demands the modelers to restrict themselves to
well-structured EPCs and to avoid ambiguous concepts, such as the OR-connector.
These restrictions reduce the expressiveness of EPCs and furthermore impose higher
requirements on the modeling knowledge of the domain experts.
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The WF-net that resulted from the translation of the EPC “Handling an
incoming order” was shown in Figure 6. The WF-system is not sound. An
example for an unsound firing sequence is:

e AND_split, record_order, pick, wrap, check credit, not_ok,
deliver, notify_cancel.

Here, the case deadlocked having tokens in place p9 and p10.

In order to receive a sound WF-net, the EPC specification needs to be
changed in such a way that all executions of the corresponding WF-net ter-
minate properly, i.e. residual tokens are avoided, as well as livelocks and
deadlocks. To change the EPC “Handling an incoming order” accordingly,
the EPC has to be re-arranged in a well-structured way. This change is
not trivial and the feedback generated through the soundness check (e.g. by
Woflan) only provides limited support for the redesign. Figure 7 shows a
revised EPC and the corresponding, now sound, WF-net.

Still the impact of the changes is quite substantial. The revised EPC does not
represent the distributed responsibility assignment between the two depart-
ments anymore. It furthermore fixes a certain scheduling strategy. Parallel
execution of the sales and the accounting tasks has been excluded. In every
possible execution the task check_credit is now performed before the deliv-
ery. Last but not least redundancy was introduced through the duplication
of the function record_order.

To support a non-restricted modeling with EPCs, an adjusted correctness criterion,
namely relazed soundness, was introduced in our earlier work.?? Relaxed soundness
supports non-operational semantics and therefore allows the modeler to postpone
decisions considering the efficiency of the process execution as long as possible,
i.e. close to implementation. Furthermore, it does not restrict the EPC modeling
facilities.

4.2. Relazed Soundness

Relaxed soundness was intended to represent a more pragmatic view of correctness.
It is weaker (in a formal sense) than soundness and therefore easier to accomplish.
Relaxed soundness does not impose the need to avoid situations with residual to-
kens or livelocks/deadlocks. Therefore, it is suitable to check WF-nets which have
been derived through the transformation of (not necessarily well-structured) EPCs
containing OR-connectors. The idea behind relaxed soundness is that for each tran-
sition there is a sound firing sequence, i.e. a sequence that can be carried forward
such that it terminates properly. We will define the term sound firing sequence
to explain the differences between the criteria soundness and relaxed soundness in
formal terms.
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Figure 7: Revised EPC/WF-net “Handling of incoming order”.

Definition 11 (Sound firing sequence). Let S = (PN,i) be a WF-system. A
firing sequence o is sound if i = M and 30/, M-Z> o.

A sound firing sequence can be extended, such that marking o is reached. Corre-
spondingly, an unsound firing sequence is a firing sequence which ends in a marking
from which marking o is not reachable.

Whereas in a sound WF-net all firing sequences are sound, relaxed soundness
only requires that there are so many sound firing sequences that each transition is
contained in one of them. Note, that the classical notion of soundness subsumes
relaxed soundness.

Definition 12 (Relaxed soundness). A workflow system S = (PN, 1) is relaxed
sound iff each transition of PN is an element of some sound firing sequence. Vi €
T 3IM,M': (i =M — M' -5 o).
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Intuitively, relaxed soundness means that there are enough executions which ter-
minate properly (i.e. state o was reached and there are no residual tokens) so that
every transition is covered. A relaxed sound WF-net may have other firing se-
quences which do not terminate properly, but deadlock before termination or leave
tokens in the net. In spite of that, relaxed soundness is still reasonable, because it
requires that all relevant behavior is described correctly.

We argue that this criterion is closer to the intuition of the modeler. It does not
force the modeler to think about all possible executions and then to care for proper
termination.

4.2.1. Checking relaxed soundness

Using relaxed soundness as a correctness measure for EPCs, non-operational se-
mantics are supported. The corresponding WF-net is checked only to allow for
reasonable behavior. Interpreting relaxed soundness of a WF-net within the terms
of the initial EPC, every function can be executed reaching a desired set of end
events.

The relaxed soundness test was implemented within Petri net tools such as LoLA
(Low Level Petri Net Analyzer)®? and Woflan?S. Parsing the reachability graph,
they decide whether a given WF-system is relaxed sound or not. Both algorithms
are based on a finite reachability graph. Therefore, the WF-system must have
been checked for boundedness before. Cyclic paths within the resulting WF-net are
allowed as far as they do not introduce unbounded behavior.

The results from the correctness check of the WF-net can be transferred directly
to the initial EPC model. If the result of the relaxed soundness check is positive,
we can conclude that the EPC represents reasonable behavior. If the result is
negative, the modeler gets a list of transitions which are not contained in any
sound firing sequence. According to the proposed transformation, every deficient
transition either corresponds to a task or to a connector within the EPC. This
means that either the task or one of the possible choices described by a connector is
not included in an execution that terminates properly. It can be concluded that the
corresponding part in the EPC needs improvement. In other words, as a general
rule we have to consider transitions that are not contained in some sound firing
sequence when we are looking for parts of the process that need revision.

This way, precise feedback is provided which will help the modeler to improve
the primary process description until the corresponding WF-net fits the property.

Note, the feedback may become less precise if a transition at the beginning
of the WF-net is not contained in any sound firing sequence. Then, all following
transitions would be denoted as deficient as well. In such a case the modeler should
start to check the failure prone EPC-elements in the order of occurrence within the
failure message.

The process specification shown in Figure 6 is relaxed sound. The following
two sound firing sequences contain all transitions:
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e AND_split, record_order, pick, wrap, check credit, ok, deliver,
arrange payment, AND_ accept, archive and

e AND_split, check_credit, not_ok, notify_cancel, record_order,
cancel, AND_cancel, archive.

Relaxed soundness states that all desired behavior has been covered. Still, it does
not exclude faulty executions. Using the resulting process description as workflow
specification, i.e. as basis for the process execution support at run-time, the faulty
executions must be inhibited, i.e. the relaxed sound WF-net must be made sound.

Consequently, the question arises whether relaxed soundness provides a suffi-
cient prerequisite for the generation of a sound specification. Regarding a workflow
system as a stand-alone application the answer is positive!, but workflow systems
are reactive systems. They run in parallel with their environment, respond to in-
puts from the environment and produce output events which take effect back in the
environment.

Starting from these assumptions, it turned out that relaxed soundness does not
suffice as basis to generate a sound specification. A further correctness criterion is
needed, indicating that the process can act robustly to (all) possible events coming
from the environment. In earlier publications®' it was shown that if the derived
WPF-net is relaxed sound and non-controllable choice robust a sound WF-net can be
generated.

4.8. Nomn-controllable Choice Robustness

Regarding a workflow system as a reactive system, we require the resulting WF-
system furthermore to be non-controllable choice robust (short: robust). This cri-
terion, which was initially introduced by the first author®?, provides a means to
describe robustness of a system against all possible requests from the environment.

4.3.1. Reflecting the interaction with the environment

The process description will be used to support the execution of a case at run-time.
Then a workflow engine, also referred to as workflow controller, is used to schedule
the case according to the rules specified in the process description. Operating on
the process description, the workflow controller decides which enabled transition
is executed and when. Still, the workflow controller may not enforce the firing
of any type of transitions. Transitions that are beyond the control of a workflow
engine are transitions that depict behavior of the environment. The interaction
with the environment takes place via incoming external events or via the evaluation
of external information. The reactive system has to respond to external events
and needs to incorporate all possible outcomes of the information evaluation. An
external event could be an incoming query, an acknowledgment from a customer,
a message from another company, information from a business partner or just a
timeout. Examples for the evaluation of external information are the question
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about available capacities, the check for credit-worthiness of a customer and the
identity check of a co-operating partner.

Possible results of an information evaluation as well as the occurrence of external
events should be reflected within the process specification. This is essential as
the further execution differs with respect to various results or different external
events. The influence of the environment was represented through a differentiation
between transitions.?? The set of transitions 7' of a WF-net PN = (P, T, F) was
split into disjoint sets of controllable and non-controllable transitions: T = Tyc U
Teon and Tne NTecon = 0. Controllable transitions (Tcon) model transitions
whose executions are covered by the local workflow control. The firing of non-
controllable transitions (T ¢ ), cannot be forced by the local workflow control but
depend either on the evaluation of external data or on the kind of incoming event.
Controllable transitions are denoted by white boxes, and non-controllable transitions
are represented by gray boxes.

We assume non-controllable transitions to be free-choice and to not conflict
with controllable transitions. This restricted modeling reflects the fact that the
behavior of the environment cannot become disabled through the local control. In
the reminder we will consider only WF-nets which satisfy these restrictions.

To define the criterion “non-controllable choice robust”, we will look at our
problem as a game between the workflow controller and the environment as an
opponent who is trying to interfere with the process execution, so that an unsound
firing sequence is generated. The question is whether the workflow controller can
always win the game, i.e. react to the moves of the adversary and thus terminate
properly.

A game is defined as a tuple (G, ¢) consisting of a game graph G and a temporal
formula ¢ expressing the winning condition.?® Adapted to the WF context it is
natural to define the game graph on the basis of the reachability graph RG =
(Vra, Erc) of a system S = (PN, ). As the definition of a game graph requires a
finite set of states, we only consider bounded systems, i.e. systems having a finite
reachability graph. The moves of the different players are reflected through the
labels at the state transitions. If the label ¢ of a state transition is a controllable
transition ¢ € Tcon then a controller move is represented. If the state transition
is labeled with a non-controllable transition ¢ € Tx¢, it corresponds to a move by
the environment. With regard to the labels, the state transitions are referred to as
controllable or non-controllable state transitions.

A play on the game graph RG corresponds to a path p in RG starting in 4 (i.e.
a firing sequence of the WF-net). The winner of a play is fixed by the winning
condition ¢. The first player wins a play p if p satisfies ¢, while the opponent
wins the game if the play satisfies —¢. A strategy for a given game is a rule that
tells a player how to choose between several possible actions in any game position.
A strategy for the WF-controller is determined by a fragment of the game graph,
having only controllable state transitions leaving the fragment.
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Definition 13 (Strategy). Let (G, ¢) be a game. Let G = RG = (V, &) be the
reachability graph of a WF-system S = (PN,i). SG C RG, with SG = (Vsg, Esq),
Vsg CV, and Egg C E, is a strategy if:

1. i € Vgg
2. For each M € Vgq there is a directed path from i to M.

3. SG is self-contained with respect to the possible moves of the adversary:
for all M € Vgg,t € Tne, M € V i if (M,t,M’) € E then (M,t,M') € Es¢.

A strategy is a winning strategy®? if the player” always wins no matter what the
environment does. As wining condition we are interested in a basic condition®
on determining reachability, namely “proper termination”: ¢ = O<Co - in LTL

parlance.3®

Definition 14 (Winning strategy). Let (Grg, ¢) be a game defined on the reach-
ability graph RG of a system S = (PN, i) with ¢ = O<o. Let SG be a strategy for
the WF-controller. SG is a winning strategy if it only contains paths that satisfy
¢. Therefore, SG additionally meets the following requirements:

1. 0 € Vg
2. For each M € Vgq there is a directed path from M to o in SG.

This definition of the term strategy, which is usual in controller synthesis? is not
very strong. It means that certain choices may never be presented to the environ-
ment. For our setting, a stronger understanding is necessary. A strategy should
incorporate the requirement that all possible moves by the environment have to
be covered at least once. This corresponds to the requirement that it should be
possible to react to all possible moves of the environment.

Definition 15 (Complete strategy). Let (Grg,®) be a game defined on the
reachability graph RG of a WF-system S = (PN,i). Let SG be a strategy for
the WF-controller. The strategy SG is called complete if all possible moves of the
adversary are covered. Formally: V¢ € T : IM, M’ € Vsg, (M,t,M') € Es¢.
Based on these notions, it is now possible to express non-controllable choice robust-
ness of a WF-system.

Definition 16 (Non-controllable choice robustness). Let (Grg, ¢) be a game
defined on the reachability graph RG of a WF-system S = (PN, i) with ¢ = O%o.
The system S is non-controllable choice robust (short: robust) iff there exists a
complete winning strategy SG for the workflow controller.

A WF-gystem is robust if there is a fragment of the reachability graph which starts in
i, ends in o, contains at least one ¢-labeled state transition for any non-controllable
transitions ¢ € Tn¢, and has only controllable state transition leading out of the

RAll terms are defined from the perspective of player “workflow controller”.

i For a survey of possible winning conditions the reader is referred to the work of Thomas.33
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fragment’. Assuming progress for non-controllable transitions, the existence of
such a fragment guarantees that it is possible to reach state o (terminate prop-
erly) independent from the influence of the environment. While all non-controllable
transitions (all possible moves of the adversary) are covered by the fragment, there
is always a way to react and to terminate properly. Hence, if a WF-system is
robust, the workflow controller can guarantee proper termination independently
from all possible moves by the adversary. In earlier work®' an algorithm checking
robustness was provided. It decides whether a given WF-system S = (PN,1) is
robust and in the positive case returns the maximum and complete winning strat-
egy SG = (Vsg, Esg). If the algorithm aborts with the result “not robust”, then
there are non-controllable transitions which may inhibit proper termination. The
deficient transitions are notified to the modeler who has to revise the corresponding
elements within the initial specification. The algorithm mainly works as follows. It
initially marks all states that potentially belong to the desired fragment and then
progressively removes mistaken candidates. Potential states are all lying on a path
from state i to state o. Illegal states are states from where non-controllable state
transitions leave the fragment. The algorithm stops if the iteration of this procedure
does not identify any illegal states any more.

For illustrating examples of non-robust and robust process descriptions as well as

the precise algorithm the reader is referred to earlier work of the first author.32:3!

4.3.2. Checking Robustness

A necessary prerequisite for the robustness check is the indication of non-controllable
transitions in the WF-net. As EPCs do not provide equivalent concepts, this step
needs the intervention of the modeler. Remember that moves of the environment
either reflect incoming events or the outcome of decisions. We will investigate the
EPC-syntax again to find pointers indicating the occurrence of either of the two.

Incoming events: EPCs have an imprecise event concept. Recall that an event
either triggers a function or marks the termination of it. Therefore there is a
distinction between the trigger-event and the supply-event.?? Within the modeling,
this distinction is blurred by the use of a simplifying event node (recall that events
and functions are depicted as alternating nodes).

This simplification suggests that both events coincide. If this is not the case,
the modeler often emphasizes the need for an extra input (e.g. to indicate the time
distance between two functions), by introducing an extra event. This input event
has one outgoing and no incoming arc, and therefore looks like a start event of
the EPC. When trying to identify non-controllable transitions in the WF-net, these
extra events can be used as pointer, as they indicate non-controllable transitions,
i.e. moves of the environment triggered by an external event. This kind of pointer
was illustrated in Figure 8 .

JSometimes, we will refer to this fragment as “robust fragment”
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Figure 8: Pointer that can be used to discover non-controllable transitions

Outcome of decisions: Further non-controllable transitions are introduced in
the WF-net if a decision based on external information was modeled in the EPC.
Within EPCs, decisions are modeled with the help of an XOR-connector. A fur-
ther hint to detect decisions based on external information is given through the
inscriptions of the function preceding and the events following the XOR connector.
Whereas the function is denoted with notions such as “test” or “check”, the suc-
ceeding events often refer to the decision criteria (e.g. > amount). For a pointer of
this kind we refer to the inscriptions on the accounting side in the EPC “Handling
an incoming order” (Figure 2). Note, that the XOR-connector on the sales side
is not transformed into a non-controllable choice. The XOR-connector models the
decision between the functions pick and cancel, which do not refer to any external
event nor to the evaluation of external information.

A beneficial side of the identification of non-controllable transitions is the possi-
ble simplification of the EPC-PN transformation. The order of the transformation
was the following: 1. Mapping EPC elements to Petri-net modules, 2. Module
combination, and 3. Adding unique input/output places. The described step, iden-
tifying the non-controllable transitions, is inserted between steps two and three. As
a consequence the places that must be merged in the last step may be reduced.

There are only two non-controllable transitions in the WF-net “Handling an
incoming order” (Figure 2), namely ok and not_ok. These two reflect the
outcome of a decision (task check_credit) and may hence not be controlled
by the local workflow control. Applying the robustness algorithm to the
reachability graph RGpy a robust fragment was found. The reachability
graph of the WF-system is depicted in Figure 9. The non-controllable state
transitions are marked with a bow. The robust fragment SG C RG was
highlighted by showing the associated states and state transitions in bold.

The existence of the robust fragment SG states that, although the WF-system
is not sound, it is possible to control the execution such that, only sound
executions are chosen. Robustness states that this is possible independent of
the moves of the environment (modeled by the non-controllable transitions).
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del  : deliver

Figure 9: Reachability graph and robust fragment.

Once the process description satisfies relaxed soundness and robustness the busi-
ness process modeling is completed. The derived process description reflects a set
of accepted executions which can be enforced independent from the moves of the
environment. As interface to the modeler an informal modeling technique was used.
During the first phase this was appreciated as it promotes a common understanding
between various participants. During the next phase the process descriptions shall
be enhanced such that it can be used as workflow specification, i.e. as input for a
WEFMS supporting the execution of the business process at run-time. For this issue
a formally founded modeling language is needed supporting operational semantics.
Therefore, we focus on the Petri-net representation and enhance the corresponding
WPF-net description, which was so far only a byproduct.

5. Strategy Implementation

The modeler has so far been guided towards a relaxed sound and robust process
specification. Relaxed soundness indicates the existence of enough sound firing
sequences. Robustness indicates the existence of a strategy which guarantees sound
execution independently from the moves of the environment. Still, the modeled
process needs not be sound. There may be firing sequences that do not terminate
properly.

Within the next steps (4 and 5 of the proposed procedure) a relaxed sound
and robust specification is transformed into a sound specification. Therefore, it
is necessary to restrict the set of all possible firing sequences to only sound ones.
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The restricted set of firing sequences must not only be sound but must also belong
to a winning strategy that can be enforced against possible interactions from the
environment. This is guaranteed if the WF-system is robust. Therefore the goal is
reached as soon as we find a Petri net with a reachability graph isomorphic to the

robust fragment.

Applying methods from the area of Petri net synthesis 36:37:38:39,40,41 there are

two possible approaches. The first simply applies the methods from Petri net syn-
thesis generating a Petri net on the basis of the robust fragment. The result is a
WF-net with a behavior isomorphic or bisimilar to the fragment. This approach is
always applicable but has the disadvantage that the derived WF-net and the initial
WF-net may differ considerably. For the second approach methods from Petri net
synthesis were adapted for Petri net controller synthesis. Rather than constructing
a new net, it is proposed to compute changes of the initial net so as to restrict its
behavior to the one described by the robust fragment. This solution increases the
possibility of recognizing the initial process description within the resulting one.
Drawback here is that it can be applied only if the underlying transition system
satisfies some further constraints. We will outline the two approaches in the next
two subsections. The interested reader is referred to earlier work for a more detailed

description.3!

5.1. Petri Net Synthesis

The synthesis problem for Petri nets is tackled by deciding whether a given graph
is isomorphic to the reachability graph of some Petri net. The synthesis problem
was raised in 1990 by Ehrenfeucht and Rozenberg.?¢ Subsequently, it was shown
that an elementary net system can be synthesized on the basis of regions from a
(sequential) transition system satisfying some separation conditions, namely from an
elementary transition system.?” Thereafter, the synthesis problem has been solved
for other classes of Petri nets.42:49:43:44 The solutions all use regions.*> Regions are
subsets of states, which may be interpreted as atomic nets, i.e. nets consisting of
a single place together with its input and output transitions. A Petri net can be
composed using atomic nets and joining them at common transitions.

Every transition system can be broken down into a finite number of subsets of
regions. Fitting together the atomic nets which correspond to the regions, however,
does not necessarily result in a Petri net that is isomorphic (in terms of behavior)
to the initial transition system. The challenge was to decide constructively the
existence of a Petri net with a reachability graph isomorphic to a given transition
System.

Applying Petri net synthesis for the generation of sound WF-nets we start with
the transition system defined through the robust fragment. Although the reacha-
bility graph satisfies the properties of an elementary transitions system, the robust
fragment may not. In any case the fragment does satisty the standard axioms of a
transitions system: 1) no self loops, 2) every event has an occurrence, and 3) every
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state is reachable from the initial state. This can be concluded by construction
of the WF-net and the definition of SG. If the fragment additionally satisfies the
axioms of an elementary transition system, the basic algorithm introduced in can
be applied.3” The result is a WF-net with isomorphic behavior.

A more general synthesis algorithm was introduced in later publications.?? Its
application is not limited to elementary transition systems but covers the full class
of transition system by means of transition splitting. The behavior of the resulting
Petri net is not necessarily isomorphic to the initial transition system but bisimilar.
The algorithm was implemented within the tool Petrify.*6 Applying this enhanced
algorithm to any robust fragment a sound and safe WF-net with bisimilar behavior
is generated.3!

Although the derived WF-net is sound it may not always be adequate for our
purpose. The behavior of the initial WF-system became restricted to sound fir-
ing sequences only. The changed behavior should be confirmed by domain experts
before the corresponding workflow-specification is put to use. Therefore, the fi-
nal process description should be discussed again between domain experts. This
may cause difficulties as the derived WF-net probably bears little resemblance with
the initial WF-net. This is due to a number of issues. First of all, generating a
Petri net just on the basis of a transition system neglects all graphical information
as well as place labels. Second, the algorithm generates a minimal saturated net,
which means that implicit places in the initial net (perhaps introduced for a better
structuring) are omitted. Third, synthesized nets are always safe. Therefore the
derived WF-net may become quite large. This is because for a k-bounded place
in the initial WF-net, k places would be synthesized in the resulting WF-net. Fi-
nally, in the resulting WF-net even the graphical ordering of transitions may have
changed. Transitions that were primarily ordered with respect to their appropri-
ate organizational unit are reordered with respect to their actual occurrence. The
only guaranteed correspondence between initial and resulting WF-net is through
transition labels.

The altered appearance of the resulting process description complicates the
recognition of the initial modeled process. The domain experts have to understand
a new process description in order to discuss and agree on the final behavior.

To remedy this problem an alternative procedure is proposed. It is based on the
application of results of the synthesis of Petri nets controllers. This research field
applies results from Petri net synthesis generating only these parts of a net which
guarantee some constraints specified in advance. Rather than constructing a new
net, it is proposed to compute changes of the initial net so as to restrict its behavior
to the one described by the robust fragment. This solution has the advantage that
domain experts can recognize the WF-net more easily, as only some changes have
to be considered.

5.2. Petri Net Controller Synthesis
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The objective of Petri net controller synthesis is to compute a set of new places for
a given Petri net which supervise or control the behavior of the Petri net, avoiding
entering a set of “forbidden states””. The introduced places are called controller
places*” or monitors*®.

Contrary to Petri net synthesis, where a whole net is synthesized, in this appli-
cation domain only some designated places, namely the controller places, have to
be synthesized. Adding these places to the initial net, the behavior is restricted. As
these places are not contained in the initial net there are no corresponding regions so
far. The information needed for their computation can be gained in various ways,
e.g. from place invariants®”, general mutual exclusion conditions (GMECs)*®, or
sets of forbidden markings*'. We will here look more closely at the approach based
on sets of forbidden markings.*!

Here, the information needed for the computation of the missing regions is de-
rived from the state transitions transgressing the legal behavior. The legal behavior
corresponds to the partial reachability graph from where all desired states remain
reachable. In our case the legal behavior corresponds to the robust fragment SG
containing only sound firing sequences. It is clear that state transitions leaving the
legal behavior have to be prevented.

The algorithm, which is based on the reachability graph of a pure! and bounded
WF-system works as follows. First, the set of forbidden state transitions is deter-
mined. It consists of all state transitions which leave the robust fragment. For
every of these instances an equation system is established which is used to compute
a controller place inhibiting this forbidden state transition. The equation system
consists of three equations: the event separation condition - an equation which in
terms of the incidence matrix describes the interdiction of the corresponding state
transition, the Marking equation lemma, and the general property of T-invariants.
The latter two should still hold as the introduction of new places need not change
the legal behavior.

Note, the equation systems are solvable only if the underlying transition system
fulfills the axioms of a general transition system. This is the major drawback of this
approach as, so far, there is no result showing that the fragment always satisfies
further axioms, and hence coincides with a special transition system. However,
all relaxed sound and robust WF-systems investigated by the authors produced
fragments even satisfying the axioms of elementary transition systems.

The equation systems of different instances may have common solutions. As a
result, the number of controller places needed is generally much smaller than the
number of forbidden state transitions. The set of controller places together with the
associated flow-relations determine the synchronization pattern. The computation
of the pattern was implemented within the tool Synet.*® For a precise description

kAn additional place can only restrict the behavior because the place can block transitions but it
cannot enable transitions which are not enabled in the net without the place.

!Remember that the Petri nets derived through the EPC-PN transformation are pure by
construction.
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of the algorithm, its theoretical background and prerequisites for its application the
reader is referred to the PhD thesis of the first author.!

The synchronization pattern is finally incorporated into the initial WF-system.
As effect the forbidden state transitions become disabled, while the rest of the

behavior stays the same. If all controllable transitions of the initial WF-net are

i WF-system: (PN,i) WF-system: (PN,i)
®— g —=C

®—

(a) Relaxed sound and robust
process specification

(d) Computed (e) Sound
- synchronization process specification
A pattern

(c) Fragment SG C RG(PN,i)
and set of forbidden
state transitions

(b) Reachability
graph RGP,y

Figure 10: Applying controller synthesis for workflow modeling.

part of the robust fragment™ - the derived workflow specification will satisfy the
conditions that characterize a sound process description: (1)option to complete,
(2) proper termination, and (3)no dead transitions (cf. Def. 10). Figure 10 illus-
trates the application of controller synthesis for workflow modeling.

The resulting Petri net again fulfills the properties of a WF-net. It is a strongly
connected net-system having one source and one sink place. Note that in rare cases,
arc inscriptions (i.e., weights) belonging to the newly inserted places are greater than
1.

We will apply the algorithm to our running example “Handling an incoming
order”. For the computation of the synchronization pattern we refer to the
robust fragment as highlighted in Figure 9.

Figure 11 shows the computed synchronization pattern as well as its integra-
tion into the process description from Figure 6. The resulting specification
is sound. There are no firing sequences that deadlock or do not terminate
properly. Using this process specification as basis for the workflow-controller
a reliable process execution at run-time can be guaranteed.

Note, that the only further approach applying methods from Petri net Synthesis
in process modeling was proposed by Agostini and De Michelis.?® The authors pro-
pose to use both the Petri net and the corresponding reachability graph as interface
to the modeler and use the basic algorithm®” to transfer between both descriptions.
"Although very unlikely, there is a chance that the robust fragment does not contain all controllable
transitions.3! Synthesizing controller places, these transitions would become disabled. In the

consequence the resulting WF-net has dead transitions and will therefore only satisfy the soundness
conditions (1) and (2).
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Figure 11: WF-net “Handling an Incoming order” with integrated synchronization
pattern.

Adequate for their modeling approach is the Petri net class of Elementary Net Sys-
tems. In contrast to our approach all process models are assumed to be acyclic,
free-choice and sound. Interaction with the environment is not represented.

6. Strategy Determination

Transforming a relaxed sound WF-system into a sound WF-system, the behavior
is restricted to a subset of the sound firing sequences. The choice for a certain
subset determines a strategy, which in turn determines the efficiency of the pro-
cess execution. In general, strategies can be optimistic or pessimistic. The frag-
ment computed through the robustness algorithm so far only determined pessimistic
strategies. Pessimistic strategies wait for decisions to be taken in advance in order
to avoid faulty situations. Following a pessimistic strategy, the process execution
is made sequential. In contrast, optimistic strategies support parallel execution of
depending threads but accept additional costs in some cases through the need for
recovery.

In this section we will discuss alternative strategies and their implementation.

The decision for a certain strategy is based on expert knowledge or long term
statistical evaluations. The selection and realization of a strategy should preferably
be one of the last steps in the modeling of workflows, as corresponding information
(the occurrence probability of a certain failure, costs of failure compensation, du-
ration and cost of tasks, or priorities) will often only become available then, and
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may even change at run-time. Their late incorporation allows flexibility if priorities
change. It will not be necessary to revise the whole procedure starting from new
requirements, but modeling results from earlier phases may be reused.

We will consider again the example “Handling an incoming order”. The WF-
net in Figure 6 does not yet suggest a certain scheduling strategy. The two
departments can work in parallel or sequentially. In Figure 11 a pessimistic
strategy was implemented. In favor of avoiding deadlocks only sequentialized
executions are supported. The customer check is always executed before the
sales department may start the delivery process. In case both, the customer
check and the delivery process take a long time, this would be very inefficient.
This is especially undesirable if it is very rare that a customer check results in
a not_ok. Therefore, this way of pessimistic scheduling would be annoying. It
would be more efficient to just start the delivery of the order to the customer
hoping the customer check will be ok, i.e. following an optimistic approach.
Only in the rare case that the decision not_ok was taken, the order should be
returned to stock and should be canceled after all.

Starting from a relaxed sound process description, we will now investigate how
different scheduling strategies can be supported. Beside the implementation of a
fixed strategy, the proposed procedure also facilitates the identification of useful
strategies.

A relaxed sound process description determines a set of desired executions. Still,
it does not describe “how” the desired executions are achieved. This decision is made
by selecting a strategy. We have seen that a strategy corresponds to a special frag-
ment of the reachability graph (cf. Def. 13). In the last section it was shown how a
strategy was implemented, restricting the behavior of the relaxed sound WF-system
to the corresponding fragment. If the implemented strategy was complete and win-
ning, the WF-controller could, by following the prescribed rules, guarantee a sound
process execution at run-time independent from the moves of the environment. If
the initial relaxed sound WF-system is robust, there is a complete winning strategy,
i.e. a fragment of the reachability graph which satisfies the corresponding require-
ments. Still, there may be sound firing sequences in the initial WF-system which are
not supported by any robust fragment. These executions, although sound, would
not be supported if the corresponding strategy becomes implemented. The problem
with these executions is that proper termination cannot be guaranteed because if
the environment interferes the system may end in a deadlock.

Looking again at our running example, the firing sequence

e AND_split, record_order, pick, wrap, check credit, ok, deliver,
arrange_payment, archive.

is sound but not contained in the robust fragment and hence not supported
by the sound WF-net shown in Figure 11.
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If the domain experts consider these executions to be considerably more efficient
than the ones covered, another strategy must be found. The new strategy should
cover these sound executions. It does not suffice to merely combine the desired
executions. The corresponding fragment will not satisfy the properties of a strategy.
It is not self-contained with respect to non-controllable transitions, cf. Def 13. There
are non-controllable transitions that lead from the fragment to states that indicate
a deadlock.

In order to support the desired set of sound executions, the fragment must be
enhanced. New behavior must be incorporated that makes it possible to recover
from deadlocks. This is achieved by adding tasks to the process description which
compensate the results of previous tasks. For their specification further information
must be compiled, regarding:

e the states from which compensation is possible,
e compensating tasks, and

e states to which the process is rolled back after compensation.

The specification of the compensating tasks cannot be automated but must be
done by domain experts. The knowledge for the recovery behavior is based on the
application context in combination with efficiency considerations and cannot be
determined by a predefined set of rules.

Adding transitions to recover from bad markings (such as deadlocks, livelock or

markings with residual tokens) the resulting WF-net should be again relaxed sound
and robust. Support for this process revision can be gained again through steps 1
to 3 of the proposed process model.
Once the recovery behavior has been added successfully, the robust fragment is
computed on the basis of the enhanced WF-system. It now contains the desired
firing sequences. It also contains some new sound firing sequences which enable
recovery if a (former) deadlock is reached.

In the next step the strategy that corresponds to the derived robust fragment, is
implemented. Again, this is done applying either of the synthesis methods described
in Section 1. The result is a sound WF-system. We will illustrate the implemen-
tation of an optimistic strategy by means of our running example “Handling an
incoming order”. The process description is adapted such that, the desired parallel
executions are supported as well.

For the example, we assume that all tasks within the sales department that
occur before the delivery can be reset without extraordinary charges. This
affects tasks pick and wrap. Corresponding compensation tasks are return
and unwrap. After the item has been returned to stock, the instance should
be canceled. Task deliver is considered to be non-reversible. The enhanced
EPC, incorporating the recovery behavior, as well as the corresponding WF-
net are shown in Figure 12. Notice that the integrated tasks only show one
possible way of modeling the recovery behavior.
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The resulting WF-system is again relaxed sound and robust. The robust frag-
ment SG C RG, is shown in Figure 13(a). All sound firing sequences of the
initial, relaxed sound WF-system (cf. Figure 6) are maintained. Furthermore,
some additional, less efficient executions are accepted too. Implementing the
derived synchronization pattern, cf. Figure 13(b), results in the sound WF-
system shown in Figure 13(c).

process_orde

. deliver

archive

cancel recover unwrap  deliver

Figure 13: (a) Fragment SG C RG with leaving state transitions, (b) synchroniza-
tion pattern, and (c) sound WF-system.
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7. Summary and Conclusion

In this paper we proposed a rigorous approach for modeling functional workflow
requirements. The process model shown in Figure 1 supports and guides the mod-
eler from a semi-formal description of business processes towards sound workflow
specifications, thus helping to bridge the gap between business process modeling
and workflow specification.

The proposed process model is based on a combination of different modeling
languages. A semi-formal modeling language is used as interface to the domain
expert. As a prominent example, widely accepted in practice, we used Event-driven
Process Chains (EPCs).

For workflow specification we have used Petri nets, in particular WF-nets. The
strength of Petri-nets lies in their formal foundation which has resulted in theoretical
results, analysis techniques, and tools.

The proposed approach acknowledges the need to describe business processes
at different levels of abstraction and combines the advantages of different modeling
languages that proved to fit the respective requirements.

It is clear that such a cross-language process model must direct particular atten-
tion to a smooth transformation between the techniques used. This was achieved
by providing a set of rules transforming the semi-formal process descriptions based
on EPCs into WF-nets. The proposed transformation does not restrict the mode-
ling facilities of the primary technique and maintains the various interpretations,
making them explicit.

The key concept for the proposed process model is the use of pragmatic correct-
ness criteria, namely relazed soundness and robustness. These two criteria fit the
correctness requirements within this first abstraction level and make it possible to
provide precise feedback to the modeler.

Relaxed soundness guarantees that some reasonable behavior is covered. It does
not exclude the existence of deficient executions. Robustness focuses on the interac-
tion between a WF-system and its environment, i.e., unlike most other approaches
the WF-system is considered to be a reactive system. It assures that proper termi-
nation of the process is always possible despite of the moves of the environment.

The resulting process description cannot yet be used as a basis for the execution
support. It may still contain undesired executions. These undesired executions are
eliminated in the last steps of the proposed procedure. Here the relaxed sound and
robust process description is refined towards a sound WF-net. Applying methods
from Petri net synthesis, this refinement step can be done more or less automatically.

A strategy is implemented by restricting the behavior of the described process to
only sound executions. The choice for a strategy (either optimistic or pessimistic)
determines the efficiency of the process execution. Selecting a strategy as late as
possible has several advantages: It facilitates an intuitive modeling by relieving
the modeler from thinking about efficiency aspects already at design time. This
is especially desirable as corresponding information (the occurrence probability of
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a certain failure, costs of failure compensation, or priorities) will often become
available (and may even change) only at run-time. Their late incorporation therefore
extends the possibility to reuse modeling results under changing priorities.

The resulting process description defines the tasks involved and determines their
order. The specification is sound. Using the process description as a basis for the
execution support during run-time reliable processing can be guaranteed.

In this paper, we did not discuss complexity results for the approach shown in
Figure 1. From a computational complexity point of view, the first two steps are
easy. The third step, however, requires the calculation of relaxed soundness and
robustness. In our current approach this requires the construction of the coverability
graph. The theoretical worst-case complexity of generating the coverability graph is
non-primitive recursive space.?! Similarly, the fourth step and the required feedback
loops (e.g., adding compensation) may be intractable for large process models.

Future work will aim at improving the current algorithms (e.g., improving ef-
ficiency) and fine-tuning the overall approach. Even more important will be the
application of the results presented in this paper. Thus far, we only applied the
approach to relatively small examples. To apply the approach in practice we need
to map the resulting workflow specification in terms of WF-nets onto a concrete
workflow management system. For some systems this may be trivial (apart from
adding information on the organizational, data, and application perspectives), for
others this may be much more complicated.>?
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