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Abstract. Deploying process-driven information systems is a time-con-
suming and error-prone task. Process mining attempts to improve this
by automatically generating a process model from event-based data. Ex-
isting techniques try to generate a complete process model from the data
acquired. However, unless this model is the ultimate goal of mining, such
a model is not always required. Instead, a good visualization of each indi-
vidual process instance can be enough. From these individual instances,
an overall model can then be generated if required. In this paper, we
present an approach which constructs an instance graph for each indi-
vidual process instance, based on information in the entire data set. The
results are represented in terms of Event-driven Process Chains (EPCs).
This representation is used to connect our process mining to a widely
used commercial tool for the visualization and analysis of instance EPCs.

Keywords: Process mining, Event-driven process chains, Workflow management, Busi-

ness Process Management.

1 Introduction

Increasingly, process-driven information systems are used to support operational
business processes. Some of these information systems enforce a particular way
of working. For example, Workflow Management Systems (WFMSs) can be used
to force users to execute tasks in a predefined order. However, in many cases
systems allow for more flexibility. For example transactional systems such as
ERP (Enterprise Resource Planning), CRM (Customer Relationship Manage-
ment) and SCM (Supply Chain Management) are known to allow the users to
deviate from the process specified by the system, e.g., in the context of SAP R/3
the reference models, expressed in terms of Event-driven Process Chains (EPCs,
cf. [13, 14, 19]), are only used to guide users rather than to enforce a particular
way of working. Operational flexibility typically leads to difficulties with respect
to performance measurements. The ability to do these measurements, however,
is what made companies decide to use a transactional system in the first place.

To be able to calculate basic performance characteristics, most systems have
their own built-in module. For the calculation of basic characteristics such as the
average flow time of a case, no model of the process is required. However, for more
complicated characteristics, such as the average time it takes to transfer work
from one person to the other, some notion of causality between tasks is required.
This notion of causality is provided by the original model of the process, but
deviations in execution can interfere with causalities specified there. Therefore, in



this paper, we present a way of defining certain causal relations in a transactional
system. We do so without using the process definition from the system, but
only looking at a so called process log. Such a process log contains information
about the processes as they actually take place in a transactional system. Most
systems can provide this information in some form and the techniques used to
infer relations between tasks in such a log is called process mining.

The problem tackled in this paper has been inspired by the software package
ARIS PPM (Process Performance Monitor) [12] developed by IDS Scheer. ARIS
PPM allows for the visualization, aggregation, and analysis of process instances
expressed in terms of instance EPCs (i-EPCs). An instance EPC describes the
the control-flow of a case, i.e., a single process instance. Unlike a trace (i.e., a se-
quence of events) an instance EPC provides a graphical representation describing
the causal relations. In case of parallelism, there may be different traces having
the same instance EPC. Note that in the presence of parallelism, two subsequent
events do not have to be causally related. ARIS PPM exploits the advantages
of having instance EPCs rather than traces to provide additional management
information, i.e., instances can be visualized and aggregated in various ways. In
order to do this, IDS Scheer has developed a number of adapters, e.g., there is an
adapter to extract instance EPCs from SAP R/3. Unfortunately, these adapters
can only create instance EPCs if the actual process is known. For example,
the workflow management system Staffware can be used to export Staffware
audit trails to ARIS PPM (Staffware SPM, cf. [20]) by taking projections of
the Staffware process model. As a result, it is very time consuming to build
adapters. Moreover, the approaches used only work in environments where there
are explicit process models available.

In this paper, we do not focus on the visualization, aggregation, and analysis
of process instances expressed in terms of instance EPC or some other notation
capturing parallelism and causality. Instead we focus on the construction of
instance graphs. An instance graph can be seen as an abstraction of the instance
EPCs used by ARIS PPM. In fact, we will show a mapping of instance graphs
onto instance EPCs. Instance graphs also correspond to a specific class of Petri
nets known as marked graphs [17], T-systems [9] or partially ordered runs [8, 10].
Tools like VIPTool allow for the construction of partially ordered runs given an
ordinary Petri net and then use these instance graphs for analysis purposes. In
our approach we do not construct instance graphs from a known Petri net but
from an event log. This enhances the applicability of commercial tools such as
ARIS PPM and the theoretical results presented in [8, 10]. The mapping from
instance graphs to these Petri nets is not given here. However, it will become
clear that such a mapping is trivial.

In the remainder of this paper, we will first describe a common format to store
process logs in. Then, in Section 3 we will give an algorithm to infer causality at
an instance level, i.e. a model is built for each individual case. In Section 4 we
will provide a translation of these models to EPCs. Section 5 shows a concrete
example and demonstrates the link to ARIS PPM. Section 6 discusses related
work followed by some concluding remarks.



2 Preliminaries

This section contains most definitions used in the process of mining for instance
graphs. The structure of this section is as follows. Subsection 2.1 defines a process
log in a standard format. Subsection 2.2 defines the model for one instance.

2.1 Process Logs

Information systems typically log all kinds of events. Unfortunately, most sys-
tems use a specific format. Therefore, we propose an XML format for storing
event logs. The basic assumption is that the log contains information about spe-
cific tasks executed for specific cases (i.e., process instances). Note that unlike
ARIS PPM we do not assume any knowledge of the underlying process. Ex-
perience with several software products (e.g., Staffware, InConcert, MQSeries
Workflow, FLOWer, etc.) and organization-specific systems (e.g., Rijkswater-
staat, CJIB, and several hospitals) show that these assumptions are justified.

Fig. 1. XML schema for process logs.

Figure 1 shows the schema definition of the XML format. This format is sup-
ported by our tools, and mappings from several commercial systems are avail-
able. The format allows for logging multiple processes in one XML file (cf. ele-
ment “Process”). Within each process there may be multiple process instances
(cf. element “ProcessInstance”). Each “ProcessInstance” element is composed
of “AuditTrailEntry” elements. Instead of “AuditTrailEntry” we will also use
the terms “log entry” or “event”. An “AuditTrailEntry” element corresponds to
a single event and refers to a “WorkflowModelElement” and an “EventType”.
A “WorkflowModelElement” may refer to a single task or a subprocess. The
“EventType” is used to indicate the type of event. Typical events are: “sched-
ule” (i.e., a task becomes enabled for a specific instance), “assign” (i.e., a task
instance is assigned to a user), “start” (the beginning of a task instance), “ com-
plete” (the completion of a task instance). In total, we identify 12 events. When
building an adapter for a specific system, the system-specific events are mapped
on these 12 generic events.

As Figure 1 shows the “WorkflowModelElement” and “EventType” are manda-
tory for each “AuditTrailEntry”. There are three optional elements “Data”,



“Timestamp”, and “Originator”. The “Data” element can be used to store data
related to the event of the case (e.g., the amount of money involved in the trans-
action). The “Timestamp” element is important for calculating performance
metrics like flow time, service times, service levels, utilization, etc. The “Origi-
nator” refers to the actor (i.e., user or organization) performing the event. The
latter is useful for analyzing organizational and social aspects. Although each
element is vital for the practical applicability of process mining, we focus on
the “WorkflowModelElement” element. In other words, we abstract from the
“EventType”, “Data”, “Timestamp”, and “Originator” elements. However, our
approach can easily be extended to incorporate these aspects. In fact, our tools
deal with these additional elements. However, for the sake of readability, in this
paper events are identified by the task and case (i.e., process instance) involved.

case identifier task identifier

case 1 task S
case 2 task S
case 1 task A
case 1 task B
case 2 task B
case 2 task A

Table 1. A process log.

Table 1 shows an example of a small log after abstracting from all elements
except for the “WorkflowModelElement” element (i.e., task identifier). The log
shows two cases. For each case three tasks are executed. Case 1 can be described
by the sequence SAB and case 2 can be described by the sequence SBA. In the
remainder we will describe process instances as sequences of tasks where each
element in the sequence refers to a “WorkflowModelElement” element. A process
log is represented as a bag (i.e., multiset) of process instances.

Definition 2.1. (Process Instance, Process Log) Let T be a set of log
entries, i.e., references to tasks. Let T+ define the set of sequences of log entries
with length at least 1. We call σ ∈ T+ a process instance (i.e., case) and W ∈
T+ → IN a process log.

If σ = t1t2 . . . tn ∈ T+ is a process instance of length n, then each element
ti corresponds to “AuditTrailEntry” element in Figure 1. However, since we
abstract from timestamps, event types, etc., one can think of ti as a reference to
a task. |σ| = n denotes the length of the process instance and σi the i-th element.
We assume process instances to be of finite length. W ∈ T+ → IN denotes a
bag, i.e., a multiset of process instances. W (σ) is the number of times a process
instance of the form σ appears in the log. The total number of instances in a bag
is finite. Since W is a bag, we use the normal set operators where convenient.
For example, we use σ ∈ W as a shorthand notation for W (σ) > 0.

2.2 Instance Nets

After defining a process log, we now define an instance net. An instance net is
a model of one instance. Since we are dealing with an instance that has been



executed in the past, it makes sense to define an instance net in such a way that
no choices have to be made. As a consequence of this, no loops will appear in an
instance net. For readers familiar with Petri nets it is easy to see that instance
nets correspond to “runs” (also referred to as occurrence nets) [8].

Since events that appear multiple times in a process instance have to be
duplicated in an instance net, we define an instance domain. The instance domain
will be used as a basis for generating instance nets.

Definition 2.2. (Instance domain) Let σ be a process instance such that
σ = t1t2 . . . tn ∈ T+, i.e., |σ| = n. We define Dσ = {1 . . . n} as the domain of σ.

Using the domain of an instance, we can link each log entry in the process
instance to a specific task, i.e., i ∈ Dσ can be used to represent the i-th element
in σ. In an instance net, the instance σ is extended with some ordering relation
�σ to reflect some causal relation.

Definition 2.3. (Instance net) Let N = (σ,�σ) such that σ is a process
instance. Let Dσ be the domain of σ and let �σ be an ordering on Dσ such that:
– �σ is irreflexive, asymmetric and acyclic,
– ∀i,j∈Dσ

(i < j ⇒ j ��σ i),
– ∀i, j ∈ Dσ(i �σ j ⇒� ∃k∈Dσ

(i �σ k∧k �+
σ j), where �+

σ is the smallest relation
satisfying: i �+

σ j if and only if i �σ j or ∃k(i �σ k ∧ k �+
σ j)

– ∀i, j ∈ Dσ(ti = tj ⇒ (i �+
σ j) ∨ (j �+

σ i))
We call N an instance net.

The definition of an instance net given here is rather flexible, since it is defined
only as a set of entries from the log and an ordering on that set. An important
feature of this ordering is that if i � j then there is no set {k1, k2, . . . , kn} such
that i � k1, k1 � k2, . . . , kn � j. Since the set of entries is given as a log, and an
instance mapping can be inferred for each instance based on textual properties,
we only need to define the ordering relation based on the given log. In Section 3.1
it is shown how this can be done. In Section 4 we show how to translate an
instance net to a model in a particular language (i.e., instance EPCs).

3 Mining Instance Graphs

As seen in Definition 2.3, an instance net consists of two parts. First, it requires
a sequence of events σ ∈ T+ as they appear in a specific instance. Second, an or-
dering � on the domain of σ is required. In this section, we will provide a method
that infers such an ordering relation on T using the whole log. Furthermore, we
will present an algorithm to generate instance graphs from these instance nets.

3.1 Creating Instance Nets

Definition 3.1. (Causal ordering) Let W be a process log over a set of log
entries T , i.e., W ∈ T+ → IN. Let b ∈ T and c ∈ T be two log entries. We define
a causal ordering →W on W in the following way:



– b >W c if and only if there is an instance σ and i ∈ Dσ \ {|σ|} such that
σ ∈ W and σi = b and σi+1 = c,

– b
W c if and only if there is an instance σ and i ∈ Dσ \ {|σ| − 1, |σ|} such
that σ ∈ W and σi = σi+2 = b and σi+1 = c and b �= c and not b >W b,

– b →W c if and only if b >W c and (c �>W b or b
W c or c
W b), or b = c.

The basis of the causal ordering defined here, is that two tasks A and B have
a causal relation A → B if in some process instance, A is directly followed by
B and B is never directly followed by A. However, this can lead to problems
if the two tasks are in a loop of length two. Therefore, A → B also holds if
there is a process instance containing ABA or BAB and A nor B can directly
succeed themselves. If A directly succeeds itself, then A → A. For the example
log presented in Table 1, T = {S,A,B} and causal ordering inferred on T is
composed of the following two elements S →W A and S →W B.

By defining the →W relation, we defined an ordering relation on T . This
relation is not necessarily irreflexive, asymmetric, nor acyclic. This →W relation
however can be used to induce an ordering on the domain of any instance σ that
has these properties. This is done in two steps. First, an asymmetric order is
defined on the domain of some σ. Then, we prove that this relation is irreflexive
and acyclic.

Definition 3.2. (Instance ordering) Let W be a process log over T and let
σ ∈ W be a process instance. Furthermore, let →W be a causal ordering on
T . We define an ordering �σ on the domain of σ, Dσ in the following way. For
all i, j ∈ Dσ such that i < j we define i �σ j if and only if σi →W σj and
� ∃i<k<j(σi →W σk) or � ∃i<k<j(σk →W σj).

The essence of the relation defined here is in the final part. For each entry
within an instance, we find the closest causal predecessor and the closest causal
successor. If there is no causal predecessor or successor then the entry is in
parallel with all its predecessors or successors respectively. It is trivial to see that
this can always be done for any process instance and with any causal relation.

In the example log presented in Table 1 there are two process instances, case
1 and case 2. From here on, we will refer to case 1 as σ1 and to case 2 as σ2. We
know that σ1 = SAB and that Dσ1 = {1, 2, 3}. Using the causal relation → the
relation �σ1 is inferred such that 1 �σ1 2 and 1 �σ1 3. For σ2 this also applies.

It is easily seen that the ordering relation �σ is indeed irreflexive and asym-
metric, since it is only defined on i and j for which i < j. Therefore, it can easily
be concluded that it is irreflexive and acyclic. Furthermore, the third property
holds as well. Therefore we can now define an instance net as (σ,�σ).

3.2 Creating Instance Graphs

In this section, we present an algorithm to generate an instance graph from an
instance net. An instance graph is a graph where each node represents one log
entry of a specific instance. These instance graphs can be used as a basis to
generate models in a particular language.



Definition 3.3. (Instance graph) Consider a set of nodes N and a set of
edges E ⊆ N × N . We call G = (N,E)σ an instance graph of an instance net
(σ,�σ) if and only if the following conditions hold.

1. N = Dσ ∪ {0, |Dσ| + 1} is the set of nodes.
2. The set of edges E is defined as E = Erel ∪ Einitial ∪ Efinal, where

Erel = {(n1, n2) ∈ N × N |(n1 �σ n2)} and
Einitial = {(0, n) ∈ N × N | � ∃n1(n1 �σ n)} and
Efinal = {(n, |N | − 1) ∈ N × N | � ∃n1(n �σ n1)}
An instance graph as described in Definition 3.3 is a graph that typically

describes an execution path of some process model. This property is what makes
an instance graph a good description of an instance. It not only shows causal
relations between tasks but also parallelism if parallel branches are taken by
the instance. However, choices are not represented in an instance graph. The
reason for that is obvious, since choices are made at the execution level and do
not appear in an instance. With respect to these choices, we can also say that
if the same choices are made at execution, the resulting instance graph is the
same. Note, that the fact that the same choices are made does not imply that
the process instance is the same. Tasks that can be done in parallel within one
instance can appear in any order in an instance without changing the resulting
instance graph.

0 1

2

3

4

S

A

B

Fig. 2. Instance graph for σ1.

For case 1 of the example log of Table 1 the instance graph is drawn in
Figure 2. Note that in this graph, the nodes 1,2 and 3 are actually in the domain
of σ1 and therefore, they refer to entries in Table 1. It is easily seen that for
case 2 this graph looks exactly the same, although the nodes refer to different
entries.

In order to make use of instance graphs, we will show that an instance graph
indeed describes an instance such that an entry in the log can only appear if all
predecessors of that entry in the graph have already appeared in the instance.

Definition 3.4. (Pre- and postset) Let G = (N,E)σ be an instance graph and
let n ∈ N . We define •Gn to be the preset of n such that •Gn = {n′ ∈ N |(n′, n) ∈
E}. We define n•G to be the postset of n such that n•G = {n′ ∈ N |(n, n′) ∈ E}.
Property 3.5. (Instance graphs describe an instance) Every instance
graph G = (N,E)σ of some process instance σ describes that instance in such
a way that for all i, j ∈ N holds that for all j ∈ •Gi implies that j < i. This
ensures that every entry in process entry σ occurs only after all predecessors in
the instance graph have occurred in σ.



Proof. To prove that this is indeed the case for instance graph G = (N,E)σ,
we consider Definition 3.3 which implies that for “internal nodes” we know that
(n1, n2) ∈ E if and only if n1 �σ n2. Furthermore, from the definition of �σ we
know that n1 �σ n2 implies that n1 < n2. For the source and sink nodes, it is
also easy to show that n1 ∈ •Gn2 implies that n1 < n2 because 0 is the smallest
element of N while |N | − 1 is the largest. �

Property 3.6. (Strongly connectedness) For every instance graph
G = (N,E)σ of some process instance σ holds that the short circuited graph
G′ = (N,E ∪ {(|N | − 1, 0)}) is strongly connected.1

Proof. From Definition 3.3 we know that for all i ∈ Dσ such that there does
not exist a j ∈ Dσ such that j �σ i holds that (0, i) ∈ E. Furthermore, we know
that for all i ∈ Dσ such that there does not exist a j ∈ Dσ such that i �σ j
holds that (i, |σ|+1) ∈ E. Therefore, the graph is strongly connected if the edge
(|N | − 1, 0) is added to E. �

In the remainder of this paper, we will focus on an application of instance
graphs. In Section 4 a translation from these instance graphs to a specific model
are given.

4 Instance EPCs

In Section 3 instance graphs were introduced. In this section, we will present an
algorithm to generate instance EPCs from these graphs. An instance EPC is a
special case of an EPC (Event-driven Process Chain, [13]). For more information
on EPCs we refer to [13, 14, 19]. These instance EPCs (or i-EPCs) can only
contain AND-split and AND-join connectors, and therefore do not allow for
loops to be present. These i-EPCs serve as a basis for the tool ARIS PPM
(Process Performance Monitor) described in the introduction.

In this section, we first provide a formal definition of an instance EPC. An
instance EPC does not contain any connectors other than AND-split and AND-
joins connectors. Furthermore, there is exactly one initial event and one final
event. Functions refer to the entries that appear in a process log, events however
do not appear in the log. Therefore, we make the assumption here that each
event uniquely causes a function to happen and that functions result in one or
more events. An exception to this assumption is made when there are multiple
functions that are the start of the instance. These functions are all preceded
by an AND-split connector. This connector is preceded by the initial event.
Consequently, all other connectors are preceded by functions and succeeded by
events.

Definition 4.1. (Instance EPC) Consider a set of events E, a set of functions
F , a set of connectors C and a set of arcs A ⊆ ((E ∪ F ∪ C) × (E ∪ F ∪ C)) \
1 A graph is strongly connected if there is a directed path from any node to any other

node in the graph.



((E × E) ∪ (F × F )). We call (E,F,C,A) an instance EPC if and only if the
following conditions hold.

1. E ∩ F = F ∩ C = E ∩ C = ∅
2. Functions and events alternate in the presence of connectors: ∀n1,n2∈E∪F

∀(c1,c2)∈(A∩(C×C))+∪I((n1, c1) ∈ A ∧ (c2, n2) ∈ A) ⇒ (n1 ∈ E ⇔ n2 ∈ F ),
where I = {(c, c) | c ∈ C}.

3. The graph (E ∪ F ∪ C,A) is acyclic.
4. There exists exactly one event ei ∈ E such that there is no element n ∈ F ∪C

such that (n, ei) ∈ A. We call ei the initial event.
5. There exists exactly one event ef ∈ E such that there is no element n ∈ F∪C

such that (ef , n) ∈ A. We call ef the final event.
6. The graph (E ∪ F ∪ C,A ∪ {(ef , ei)}) is strongly connected.
7. For each function f ∈ F there are exactly two elements n1, n2 ∈ E ∪C such

that (f, n1) ∈ A and (n2, f) ∈ A. Functions only have one input and one
output.

8. For each event e ∈ E/{ei, ef} there are exactly two elements n1, n2 ∈ F ∪C
such that (e, n1) ∈ A and (n2, e) ∈ A. Events only have one input and one
output, except for the initial and the final event. For them the following
holds. For ei there is exactly one element n ∈ F ∪ C such that (ei, n) ∈ A
and for ef there is exactly one element n ∈ F ∪ C such that (n, ef ) ∈ A.

4.1 Generating Instance EPCs

Using the formal definition of an instance EPC from Definition 4.1, we introduce
an algorithm that produces an instance EPC from an instance graph as defined
in Definition 3.3. In the instance EPC generated it makes sense to label the
functions according to the combination of the task name and event type as they
appear in the log. The labels of the events however cannot be determined from
the log. Therefore, we propose to label the events in the following way. The
initial event will be labeled “initial”. The final event will be labeled “final”. All
other events will be labeled in such a way that it is clear which function succeeds
it. Connectors are labeled in such a way that it is clear whether it is a split or
a join connector and to which function or event it connects with the input or
output respectively.

Definition 4.2. (Converting instance graphs to EPCs) Let W be a process
log and let G = (NG, EG)σ be an instance graph for some process instance
σ ∈ W . To create an instance EPC, we need to define the four sets E, F , C and
A.

– The set of functions F is defined as F = {fi | i ∈ Dσ}. In other words, for
every entry in the process instance, a function is defined.

– The set of events E is defined as E = {efi
| fi ∈ F and ∃j∈Dσ

(j �σ i)} ∪
{einitial, efinal}. In other words, for every function there is an event preceding
it, unless it is a minimal element with respect to �σ. Furthermore, there is
an initial event einitial and a final event efinal.



– The set of connectors C is defined as C = Csplit ∪ Cjoin ∪ Ci ∪ Cf where
Csplit = {c(split,fi) | fi ∈ F ∧ |i •G | > 1} and
Cjoin = {c(join,efi

) | efi
∈ E ∧ | •G i| > 1} and

Ci = {c(split,einitial) | |0 •G | > 1} and
Cf = {c(join,efinal) | | •G (|NG| − 1)| > 1}.
Here, the connectors are constructed in such a way that connectors are al-
ways preceded by a function, except in case the process starts with parallel
functions, since then the event einitial is succeeded by a split connector.

– The set of arcs A is defined as A = Aef ∪Afe∪Asplit∪Ajoin∪Ai∪Af where
Aef = {(efi

, fi) ∈ (E × F )} and
Afe = {(fi, efj

) ∈ (F × E) | (i, j) ∈ EG ∧ |i •G | = 1 ∧ | •G j| = 1}
Asplit ={(fi, c(split,fi)) ∈ (F × Csplit)}∪

{(c(split,fi), efj
) ∈ (Csplit × E) | (i, j) ∈ EG ∧ | •G j| = 1}∪

{(c(split,fi), c(join,efj
)) ∈ (Csplit × Cjoin) | (i, j) ∈ EG} and

Ajoin ={(c(join,efi
), efi

) ∈ (Cjoin × E)}∪
{(fi, c(join,efj

)) ∈ (F × Cjoin) | (i, j) ∈ EG ∧ |i •G | = 1} and
Ai = {(einitial, c(split,einitial)) ∈ (E × Ci)}∪

{(c(split,einitial), fi) ∈ (Ci × F )|(0, i) ∈ EG} and
Af = {(c(join,efinal), efinal) ∈ (Cf × E)}∪

{fi, (c(join,efinal)) ∈ (F × Df )|(i, (|NG| − 1)) ∈ EG}.
It is easily seen that the instance EPC generated by Definition 4.2 is indeed

an instance EPC, by verifying the result against Definition 4.1.

Initial

Status
change to A

Status
change to B

Final

A

B

S /\ /\

Fig. 3. Instance EPC for σ1.

In definitions 3.3 and 4.1 we have given an algorithm to generate an instance
EPC for each instance graph. The result of this algorithm for both cases in the
example of Table 1 can be found in Figure 3. In Section 5 we will show the
practical use of this algorithm to ARIS PPM.

5 Example

In this section, we present an example illustrating the algorithms described in
sections 3 and 4. We will start from a process log with some process instances.
Then, we will run the algorithms to generate a set of instance EPCs that can be
imported into ARIS PPM.

5.1 A process log

Consider a process log consisting of the following traces.



case identifier task executions

case 1 S1, A2, B3, F4, C5, D6, H7, G8, T9

case 2 S1, A2, C3, B4, E5, H6, F7, G8, T9

case 3 S1, A2, D3, B4, C5, F6, H7, G8, T9

case 4 S1, A2, E3, B4, C5, H6, F7, G8, T9

case 5 S1, A2, B3, D4, F5, H6, C7, G8, T9

case 6 S1, A2, B3, E4, F5, H6, C7, G8, T9

case 7 S1, A2, B3, F4, D5, C6, H7, G8, T9

case 8 S1, A2, B3, F4, E5, C6, H7, G8, T9

case 9 S1, A2, D3, C4, B5, H6, F7, G8, T9

case 10 S1, A2, C3, E4, H5, B6, F7, G8, T9

Table 2. A process log.

The process log in Table 2 shows the execution of tasks for a number of
different instances of the same process. To save space, we abstracted from the
original names of tasks and named each task with a single letter. The subscript
refers to the position of that task in the process instance.

Using this process log, we will first generate the causal relations from Defi-
nition 3.1. Note that casual relations are to be defined between tasks and not
between log entries. Therefore, the subscripts are omitted here. This definition
leads to the following set of causal relations: {S → A, A → B, A → C,
A → D, A → E, B → F, D → H, E → H, F → G,
C → G, H → G, G → T}.

Using these relations, we generate instance graphs as described in Section 3
for each process instance. Then, these instance graphs are imported into ARIS
PPM and a screenshot of this tool is presented (cf. Figure 5).

5.2 Instance graphs

To illustrate the concept of instance graphs, we will present the instance graph
for the first instance, “case 1”. In order to do this, we will follow Definition 3.2
to generate an instance ordering for that instance. Then, using these orderings,
an instance graph is generated. Applying Definition 3.2 to case 1 in the log
presented in Table 2 using the casual relations given in Section 5.1 gives the
following instance ordering: 0 � 1, 1 � 2, 2 � 3, 3 � 4, 4 � 8, 8 � 9, 2 �
5, 5 � 8, 2 � 6, 6 � 7, 7 � 8, 8 � 9, 9 � 10.

Using this instance ordering, an instance graph can be made as described
in Definition 3.3. The resulting graph can be found in Figure 4. Note that the
instance graphs of all other instances are isomorphic to this graph. Only, the
numbers of the nodes change.
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Fig. 4. Instance graph for case 1.



For each process instance, such an instance graph can be made. Using the
algorithm presented in Section 4 each instance can than be converted into an
instance EPC. These instance EPCs can be imported directly into ARIS PPM for
further analysis. Here, we would like to point out again that our tools currently
provide an implementation of the algorithms in this paper, such that the instance
EPCs generated can be imported into ARIS PPM directly. A screenshot of this
tool can be found in Figure 5 where “case 1” is shown as an instance EPC.
Furthermore, inside the boxed area, the aggregation of some cases is shown.
Note that this aggregation is only part of the functionality of ARIS PPM. Using
graphical representations of instances, a large number of analysis techniques is
available to the user. However, creating instances without knowing the original
process model is an important first step.

Fig. 5. ARIS PPM screenshot.

6 Related Work

The idea of process mining is not new [1, 3, 5–7, 11, 12, 15, 16, 18, 21] and most
techniques aim at the control-flow perspective. For example, the α-algorithm
allows for the construction of a Petri net from an event log [1, 5]. However, process
mining is not limited to the control-flow perspective. For example, in [2] we use
process mining techniques to construct a social network. For more information
on process mining we refer to a special issue of Computers in Industry on process
mining [4] and a survey paper [3]. In this paper, unfortunately, it is impossible
to do justice to the work done in this area. To support our mining efforts we
have developed a set of tools including EMiT [1], Thumb [21], and MinSoN [2].
These tools share the XML format discussed in this paper. For more details we
refer to www.processmining.org.



The focus of this paper is on the mining of the control-flow perspective.
However, instead of constructing a process model, we mine for instance graphs.
The result can be represented in terms of a Petri net or an (instance) EPC.
Therefore, our work is related to tools like ARIS PPM [12], Staffware SPM [20],
and VIPTool [10]. Moreover, the mining result can be used as a basis for applying
the theoretical results regarding partially ordered runs [8].

7 Conclusion

The focus of this paper has been on mining for instance graphs. Algorithms are
presented to describe each process instance in a particular modelling language.
From the instance graphs described in Section 3, other models can be created as
well. The main advantage of looking at instances in isolation is twofold. First, it
can provide a good starting point for all kinds of analysis such as the ones imple-
mented in ARIS PPM. Second, it does not require any notion of completeness
of a process log to work. As long as a causal relation is provided between log
entries, instance graphs can be made. Existing methods such as the α-algorithm
[1, 3, 5] usually require some notion of completeness in order to rediscover the
entire process model. The downside thereof is that it is often hard to deal with
noisy process logs. In our approach noise can be filtered out before implying the
causal dependencies between log entries, without negative implications on the
result of the mining process.

ARIS PPM allows for the aggregation of instance EPCs into an aggregated
EPC. This approach illustrates the wide applicability of instance graphs. How-
ever, the aggregation is based on simple heuristics that fail in the presence of
complex routing structures. Therefore, we are developing algorithms for the inte-
gration of multiple instance graphs into one EPC or Petri net. Early experiments
suggest that such a two-step approach alleviate some of the problems existing
process mining algorithms are facing [3, 4].
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