
A Formal Modeling Approach for Supply Chain Event Management

Emily (Rong) Liu and Akhil Kumar Wil van der Aalst

Smeal College of Business Faculty of Technology Management
Penn State University Eindhoven Technical University

University Park, PA 16802, USA Eindhoven, Netherlands
{rull110,akhilkumar}@psu.edu w.m.p.v.d.aalst@tm.tue.nl

Abstract: As supply chains become more dynamic it is important to be able to model them formally as
business processes. In particular, there is a need for a sense and respond capability to react to events in a
real-time manner. In this paper, we propose time Petri nets as a formalism for doing so. Hence, we
describe seven basic patterns that are used to capture modeling concepts that arise commonly in supply
chains. Next, we show how to combine these patterns to build a complete Petri net and analyze it using
reachability analysis, dependency graphs and simulation.

Keywords: Supply Chain Event Management, Petri nets, time Petri nets, colored Petri nets, event
causality, dependency graph, reachability analysis.

1. Introduction

The pressures of global competition and the need for extensive inter-organizational collaboration are
forcing companies to streamline their supply chains and make them agile, flexible and responsive.
Consequently, a supply chain must be able to handle large numbers of events, both expected and
unexpected. The unexpected events, also called exceptions, typically arise because there is usually a gap
between supply chain planning and execution [4]. Supply chain planning sets a target that can be achieved
based on a given set of constraints at a given time. In a dynamic supply chain environment, the constraints
are always changing, so exceptions or deviations from plans occur almost regularly. Examples of
exceptions are inaccurate forecast, product out-of-stock, shipment delayed etc., and they are costly.
Moreover, events tend to propagate in collaborative supply chains across partners, resulting in the well-
known bullwhip effect [8]. Such risks have given rise to the new field of Supply Chain Event
Management (SCEM). The goal of SCEM is to introduce a control mechanism for managing events, in
particular, exceptions, and responding to them dynamically.

A supply chain event is “any individual outcome (or non-outcome) of a supply chain cycle, (sub) process,
activity, or task” [3]. Events are correlated with each other to form a “cloud” of events; some events have
significant consequences and therefore they must be monitored closely, while others are of lesser
importance. The critical problem lies in extracting the significant events and responding to them in real-
time. Doing so requires an ability to monitor them proactively, simulate them to help decision-making,
and use them to control and measure business processes [10]. In this paper, we present a methodology
that uses a Petri net approach to formulating supply chain event rules and analyzing the cause-effect
relationships between events.

Petri-nets are a powerful modeling technique for problems involving coordination in a variety of domains.
A variant of Petri-nets called time Petri-nets allows us to model time intervals also. Considering the
dynamic characteristic of supply chain events, such Petri nets are useful for describing the time
constraints associated with events. Through this approach, we can detect events, perform cause-effect
analysis, forecast their consequences and prioritize them. More importantly, this approach can be used to
create an event engine that can monitor the status of a supply chain and intelligently react to events.

2. Overview of Supply Chain Events

When supply chain partners are integrated, events at one partner may have impact on other partners, and
their responses to these events may cause a storm of events. Therefore, causality analysis is the key to
controlling such a storm. Our analysis begins with events and event rules.

In general, events in an organization can come from the following three sources: (1) Task status related
events, such as the end of a task or the beginning of a task. These events are usually regular; (2) Events
produced by a task: for example, events “stock partially available” or "out of stock" are the result of the
“check availability” task; and, (3) External events which may arrive from other supply chain partners or
from the external environment, e.g., new order arrival, inbound shipment delay, import policy change etc.

These types of events are captured directly during a process, and called simple or primitive events as
opposed to composite events. Composite events are derived from simple events by event aggregation. A
composite event A is deduced when a group of simple events occurs [9]. A group of simple events may
together reveal potential problems. For example, if a product is out of stock once in a month, perhaps it is
quite normal and an alarm should not be generated, but if this stock out happens two times in a week,
then it may reflect some underlying problems in the product supply chain and this should be recognized
by generating an event. As another example, a group of stock trading events, related by accounts, timing
and other data, taken together, may constitute a violation of a policy or regulations [9]. Event aggregation
is a mechanism to filter simple events and extract meaningful information from them by setting up alarms
in advance and reacting to possible crises.

Thus, event aggregation extracts value from a management point of view out of trivial and unorganized
simple events. In order to achieve this objective, it is important to recognize event patterns and set up
aggregation rules. Besides aggregation rules, business rules must also be considered. Business rules
capture the causal relationships between events. For example, if an order is delayed for more than time T,
then it is automatically cancelled. Therefore, we need a rule to express the idea that the event “order
delayed by T” is the cause of event “order cancelled”.

Moreover, a supply chain is viewed as a series of synchronous and asynchronous interactions among
trading partners. Usually, when an event, particularly an exception, happens, the trading partner
responsible for it may react to this event within a reasonable resolution time to resolve it. For instance,
suppose an order is delayed for delivery. If the delay is within an acceptable range specified by the
customer, the customer is notified of the delay and the order is processed. However, if the delay exceeds
the acceptable tolerance (also called expiration time), the order should be automatically cancelled, and
hence, the event “order delay” is not relevant in this case. On the other hand, a series of new actions arises
because of this new event, such as canceling the order, removing any reservations made, refunding any
payments, etc. Therefore, to model events and event rules precisely, our modeling approach should be
able to capture such temporal constraints correctly.

3. Petri nets Preliminaries

A Petri net is a directed graph consisting two kinds of nodes called places and transitions. In general,
places are drawn as circles and transitions as boxes or bars. Directed arcs connect transitions and places
either from a transition to a place or from a place to a transition. Arcs are labeled with positive integers as
their weight (the default weight is 1). Places may contain tokens. In Figure 1, one token is represented by
a black dot in place p1. A marking is denoted by a vector M, where its pth element M(p) is the number of
tokens in place p. The firing rules of Petri nets are [11]:

(1) A transition t is enabled if each input place of t contains at least w(p,t) tokens, where w(p,t) is the
weight of the arc from p to t. (By default, w(p,t) is 1.)

(2) The firing of an enabled transition t removes w(p,t) tokens from each input place p of t, and adds
w(t,p) tokens to each output place p of t, where w(t,p) is the weight on arc from t to p.

There is another special type of arc called the inhibitor arc with a small circle rather than arrow at the end.
An inhibitor from a place to a transition prohibits the transition from being enabled, and thus firing, if
there is a token in the place. An example of an inhibitor arc will come later.

The above classical Petri nets can be extended by associating a time interval [I1, I2] with each transition,
where I1 (I2) is the minimum (maximum) time the transition must wait for before firing after it is enabled.
Such a Petri net is known as Time Petri net (TPN) [12]. If I1 = I2, we just associate one time value with
each transition. If the interval is not specified, we assume I1 = I2 = 0. Moreover, tokens can be tagged with
data values (or a color) to create a colored Petri net (CPN) [7]. For example, we use tokens of different
colors (or values) for each order or product. In a CPN the arcs are also labeled with colors. For example,
in Figure 1, two tokens colored “q” are consumed if transition t1 fires. The fired transition t1 will put one
token colored “r” in place p2. Moreover, if there are two tokens colored “q” continuously existing in
place p1, transition t1 will fire no later than time 4. If there is still a token colored “q” remaining in place
p1 after time 4 (relative to arrival of this token), transition t2 will fire shortly after time 4 (denoted as 4+∆,
where ∆ is a very short time period, close to 0) and before or at time 8. Analysis techniques for TPNs are
discussed in [1,5,12].

4. Event patterns to model Supply Chain Rules

We turn now to develop the techniques to formulate event related rules as Petri net structures. In most
cases, events are not only the triggers but also consequences of supply chain tasks. Therefore, it is quite
natural to model events as places of a Petri net. Thus, the terms events and places are used
interchangeably. Moreover, time Petri nets offer an attractive choice for modeling the dynamic aspect in
supply chains. Next we discuss the seven patterns mentioned before.

Pattern 1 (cause-result pattern): A simple cause-result pattern is the most basic pattern for describing
event relationships. It shows that event e1 can cause event e2 within a time period [I1, I2].

Example 1: If an order is delayed (e1), contact customer (e2) before time T1.

Figure 2 shows the time Petri net model of this example. Note that Order numbers can be considered as a
color set here, i.e., each order has a different color. Transition t1 must fire within time T1 after it is
enabled. Transition t1 corresponds to the action “notify customer”.

Pattern 2 (Repeat_cause-one_effect pattern): This pattern concerns the case where multiple occurrences
of one event within a certain time period cause another single event to occur.

Example 2: If product s is out of stock (e1) more than once within period T2, contact supply chain
manager (e2). (Note, s is the product ID)

This example introduces the notion of expiration time of events. If an event is not consumed (in this case,
event e1) by a rule, it may expire after a time interval. The Petri net model in Figure 3 represents the time
constraints pertaining to these events. Whenever tokens arrive at place e′1 and e″1, (as a result of event e1)

p2t1

[0, 4]

p1
Q

R

t2

q
p3

S
s

2`q
r

Figure 1: Colored time Petri net

[4+Δ, 8]

Order
delayed

Customer
notification

Q Q

Figure 2: Petri net of Example 1

e1 t1

[0, T1]

e2
q q

transition t2 and t3 are enabled, but they cannot fire immediately. When there are two tokens arriving in
place e′1 and e″1, transition t1 fires immediately and produces the event e2, “Notify SC Manager”. After
transition t1 fires, two tokens are returned to place e′1, because event e′1 may be used by other rules.
However, tokens in place e″1 are consumed, so transition t1 cannot fire repeatedly. Since transition firing
takes no time, t3 is still continuously enabled. If a token stays in place e′1 for time t2 after its arrival, t3
fires and event e1 expires. Thus, it is possible that event e′1 expires without t1 firing, if there is only one
token arriving within interval t2. Simultaneously, transition t2 fires so that e″1 expires.

Pattern 3 (Inclusive choice): The need for this construct arises when multiple, alternative events can
occur based on temporal conditions. Example 3 illustrates this pattern.

Example 3: If an order, with lead time L2, has not been shipped (i.e., not consumed by some other rule)
within time L2 after it is confirmed (e0), the order is treated as delayed (e1); however, if an order is
delayed by more than time T3, it is treated as undeliverable and cancelled (e2). (Perhaps the customer
does not want it if the delay is more than T3.)

When an order is confirmed (see Figure 4), a token is placed in place e′0 and e″0 as well. Transitions t1, t2,
and t3 are enabled but do not fire at that moment. If this token is consumed by the shipment transition t4
before time L2 (relative to its arrival), transitions t1 and t3 are disabled, but transition t2 will fire at time
L2+T3+∆ after the token arrival. Otherwise, if during the time interval [L2, L2+T3], this token remains
in place e′0, transition t1 will fire. After transition t1 fires, this token is immediately brought back to e′0
because some other rules (like t3) may use it later. If there is still a token in e′0 after L2+T3, transition t3
fires and produces event “order cancelled”. Thus, the token in e′0 is consumed. In general, if this rule is
triggered, it can produce two possible results: order delayed and order cancelled, or only order delayed,
depending upon the temporal relationships. One can see this rule actually has complex semantics, yet its
Petri net model offers a relatively simple way for describing such temporal relationships.

Other patterns: Four other patterns are summarized, each with a brief description and an example, in
Table 1. They represent other possibilities for modeling event relationships in supply chains.

Figure 3: Petri net of Example 2

e′1 t1

e2

T2

t2

T2 e″1

2`s

2`s

Expired e″1

t3

s

Expired e1

s

2`s

s

Notify SC
Manager

t0

s
s

s

s

Out-of-stock
 e1

Order cancelled

Figure 4: Petri net model of an order process

Order delayed
e1t1

[L2, L2+T3]
e′0

Q Q

t3

q
 L2+T3 +∆

e2

Q
q

q

q

q

e″0

t2

L2+T3 +∆

t0
q

q
q

q

e″0 expired

e0

Order confirmed

Q

Q

q

Note:
q: order number,
 q∈Q

t4 e4
e3Inventory ready

Order shipped
q

q Q

5. Analysis, Discussion and Conclusions

We have developed an approach for modeling event relationships in a supply chain through Petri-nets.
The formalism consists of 7 basic patterns that capture cause-effect relationships in Petri-nets, where the
places or circles represent events and the transitions or boxes represent the (possibly delayed) effect of the
events. The delay is captured by the time intervals on the transition boxes. Although these patterns are not
exhaustive, they are sufficient for most situations and this formal approach, based on Petri-nets, allows
new patterns to be constructed when necessary. Moreover, these patterns can be combined together as
building blocks to create more complex Petri-nets. As real world events occur, tokens are placed to
represent them. Then, we can use Petri-net algorithms for reachability analysis to predict the likely
consequences of these events and build cause-effect dependency graphs. In one supply chain model
created with 14 patterns, we were able to model many intricate interactions between different orders. For
instance, product A was out of stock with the distributor and a rush supply order was issued, but this rush
supply order was rejected by the first alternative vendor because of a production delay. Then another
vendor was contacted; nevertheless, order O1 became too late, and was eventually cancelled. However,
order O2 shipped on time. By modifying the scenario slightly, it was possible to ship both orders on time.
Moreover, by focusing the analysis on the exception orders only, the complexity can be controlled.

Pattern name Example

Pattern 4: 1-of-N causes – single effect:
Alternative causes produce one effect. Here, if
the order is delayed by more than T4 or
rejected by one vendor, then alternative
vendors are contacted.

Pattern 5: 1 cause – N results: One cause can
lead to multiple concurrent effects. If the order
is delayed, then the customer is notified and
the shipment rescheduled.

Pattern 6: N causes – 1 result: Multiple causes
in conjunction can produce one result. If the
shipper of a confirmed order (e2) is not
available (e1), find another shipper (e3).

Pattern 7: Non-occurrence of an event: A result
is produced if an event does not occur. In this
example, if the out-of-stock event does not
occur (i.e., there is no token in e2), then t1 can
fire upon an order arrival. Notice the inhibitor
arc from e2 to t1. e2 expires after a time T2.

Table 1: Patterns 4, 5, 6 and 7 (name, description and example for each pattern)

Petri net simulation offers another mature technique for analyzing the Petri net models. There are many
available simulation software packages that facilitate the use of simulation for decision-making. By
adjusting time intervals associated with transitions and other parameter values, it is possible to perform
various types of scenario analyses. Moreover, we can simulate the effect of proposed changes in supply
chains by adding new events or event rules.

Order delayed

e2
Q q

qe0

Q

Shipment rescheduled

Q

t1
e1 q

Customer notified

e2

e0

t2 Order rejected

Contact alternative
vendors Q

Q q qe1

Order delayed

Q

q

t1

q

T4

e1 e3

Shipper unavailable
Q Q

q

e2

Order Confirmed

q
t1

Find another shipper

e2

e3

Out-of-stock

S

Q
q

q e1

Order arrival

Q

s
t1

Order confirmed

t2
T2

Expired

e2

Q

q

Related research for detailed modeling of supply chains is still limited. In Casati, et al. [6], Time Petri
nets are integrated into databases and used for semantic mapping of events in the computer networks
domain. The transitions are associated with guard conditions expressed as database constraints. It is an
interesting approach with possible applications in supply chains, but harder to implement and verify.
Other approaches are discussed in [3, 9]. In addition, patterns have been studied systematically in the
context of workflows [2]. These workflow patterns are somewhat similar to supply chain event patterns,
but they do not address the complex temporal constraints involved in supply chain event patterns.

In summary, as supply chains become more tightly integrated across partners, it is becoming increasingly
important to respond in real-time to events (called sense-and-respond capability). We described a novel
approach to model event relationships in a supply chain using Petri-net patterns that can be combined to
create a complete Petri-net. The Petri-net can be verified for correctness and algorithms can be used to
perform cause effect analysis.

References

1. Aalst, W.M.P. van der. “Interval Timed Coloured Petri Nets and their Analysis,” Application and
Theory of Petri Nets 1993, Marsan, M. A. (ed.), Lecture Notes in Computer Science, 691:(453-472).
Springer-Verlag, Berlin, 1993.

2. Aalst, W.M.P. van der, Hofstede, A.H.M. ter, Kiepuszewski, B., and Barros, A.P. “Workflow
Patterns,” Distributed and Parallel Databases, 14(1):5-51, 2003.

3. Alvarenga, C.A. and Schoenthaler, R.C. “A New Take on Supply Chain Event Management,” Supply
Chain Management Review, March/April, 2003, pp. 29-35.

4. Asgekar, V. “Event Management Graduates with Distinction,” Supply Chain Management Review,
September/October, 2003, pp. 15-16.

5. Berthomieu, B., and Diaz, M. “Modeling and Verification of Time Dependent Systems Using Time
Petri Nets,” IEEE Transactions on Software Engineering, 17(3):259-273, 1991.

6. Casati, F., Du, W. and Shan, M. “Semantic Mapping of Events,” HP Labs Technical, HPL-98-74
980421.

7. Jensen, K. Coloured Petri Nets: Basic Concepts, Analysis Methods and Practical Use, Volume 1,
Springer-Verlag, Berlin Heidelberg, 1992, pp. 1-55.

8. Lee, H., Padmanabhan, V. and Whang, S. “The Bullwhip Effect in Supply Chains,” Sloan
Management Review(38), 1997, pp.93-102.

9. Luckham, D. The Power of Events, Addison-Wesley, Boston, 2002.
10. Montgomery N. and Waheed, R. “Supply Chain Event Management Enables Companies to Take

Control of Extended Supply Chains,” Report on European E-Business, AMR Research, September
2001.

11. Murata, T. “Petri Nets: Properties, Analysis and Application,” In Proceedings of the Institute of
Electrical and Electronics Engineers, 77(4): 541-580, April 1989.

12. Wang, J. Timed Petri Nets Theory and Application, Kluwer Academic Publishers, Boston, 1998, pp.
63-123.

