
YAWL: Yet Another Workflow Language

W.M.P. van der Aalst1,2 and A.H.M. ter Hofstede2

1 Department of Technology Management, Eindhoven University of Technology
P.O. Box 513, NL-5600 MB, Eindhoven, The Netherlands.

w.m.p.v.d.aalst@tm.tue.nl
2 Centre for Information Technology Innovation, Queensland University of Technology

P.O. Box 2434, Brisbane Qld 4001, Australia.
a.terhofstede@qut.edu.au

Abstract. Based on a rigorous analysis of existing workflow management sys-
tems and workflow languages, a new workflow language is proposed: YAWL (Yet
Another Workflow Language). To identify the differences between the various
languages, we have collected a fairly complete set of workflow patterns. Based
on these patterns we have evaluated several workflow products and detected con-
siderable differences in their ability to capture control flows for non-trivial work-
flow processes. Languages based on Petri nets perform better when it comes to
state-based workflow patterns. However, some patterns (e.g. involving multiple
instances, complex synchronisations or non-local withdrawals) are not easy to
map onto (high-level) Petri nets. This inspired us to develop a new language by
taking Petri nets as a starting point and adding mechanisms to allow for a more
direct and intuitive support of the workflow patterns identified. This paper moti-
vates the need for such a language, specifies the semantics of the language, and
shows that soundness can be verified in a compositional way. Although YAWL is
intended as a complete workflow language, the focus of this paper is limited to
the control-flow perspective.

1 Introduction

Despite the efforts of the Workflow Management Coalition (WfMC, [41, 18]), workflow
management systems use a large variety of languages and concepts based on different
paradigms. Most of the products available use a proprietary language rather than a tool-
independent language. Some workflow management systems are based on Petri nets but
typically add both product specific extensions and restrictions [1, 6, 16]. Other systems
use a completely different mechanism. For example, IBM’s MQSeries Workflow uses
both active and passive threads rather than token passing [42]. The differences between
the various tools are striking. One of the reasons attributed to the lack of consensus
of what constitutes a workflow specification is the variety of ways in which business
processes are otherwise described. The absence of a universal organisational “theory”,
and standard business process modelling concepts, it is contended, explains and ulti-
mately justifies the major differences in workflow languages - fostering up a “horses
for courses” diversity in workflow languages. What is more, the comparison of differ-
ent workflow products winds up being more of a dissemination of products and less of
a critique of workflow language capabilities [7].

YAWL: Yet Another Workflow Language 2

Workflow specifications can be understood, in a broad sense, from a number of
different perspectives (see [6, 33]). The control-flow perspective (or process) perspec-
tive describes tasks and their execution ordering through different constructors, which
permit flow of execution control, e.g., sequence, choice, parallelism and join synchro-
nisation. Tasks in elementary form are atomic units of work, and in compound form
modularise an execution order of a set of tasks. The data perspective deals with busi-
ness and processing data. This perspective is layered on top of the control perspective.
Business documents and other objects which flow between activities, and local vari-
ables of the workflow, qualify in effect pre- and post-conditions of task execution. The
resource perspective provides an organisational structure anchor to the workflow in
the form of human and device roles responsible for executing tasks. The operational
perspective describes the elementary actions executed by tasks, where the actions map
into underlying applications. Typically, (references to) business and workflow data are
passed into and out of applications through activity-to-application interfaces, allowing
manipulation of the data within applications.

The focus of this paper is on the control-flow perspective. Clearly, this provides an
essential insight into a workflow specification’s effectiveness. The data flow perspective
rests on it, while the organisational and operational perspectives are ancillary. If work-
flow specifications are to be extended to meet newer processing requirements, control
flow constructors require a fundamental insight and analysis. Currently, most workflow
languages support the basic constructs of sequence, iteration, splits (AND and XOR)
and joins (AND and XOR) - see [6, 41]. However, the interpretation of even these basic
constructs is not uniform and it is often unclear how more complex requirements could
be supported. Indeed, vendors are afforded the opportunity to recommend implemen-
tation level “hacks”. The result is that neither the current capabilities of workflow lan-
guages nor insight into more complex requirements of business processes is advanced
[7].

We indicate requirements for workflow languages through workflow patterns [7,
71]. As described in [51], a “pattern is the abstraction from a concrete form which
keeps recurring in specific nonarbitrary contexts”. Gamma et al. [23] first catalogued
systematically some 23 design patterns which describe the smallest recurring interac-
tions in object-oriented systems. The design patterns, as such, provided independence
from the implementation technology and at the same time independence from the essen-
tial requirements of the domain that they were attempting to address (see also e.g. [20]).

We have collected a comprehensive set of workflow patterns to compare the func-
tionality of 15 workflow management systems (COSA, Visual Workflow, Forté Conduc-
tor, Lotus Domino Workflow, Meteor, Mobile, MQSeries/Workflow, Staffware, Verve
Workflow, I-Flow, InConcert, Changengine, SAP R/3 Workflow, Eastman, and FLOWer).
The result of this evaluation reveals that (1) the expressive power of contemporary sys-
tems leaves much to be desired and (2) the systems support different patterns. Note that
we do not use the term “expressiveness” in the traditional or formal sense. If one ab-
stracts from capacity constraints, any workflow language is Turing complete. Therefore,
it makes no sense to compare these languages using formal notions of expressiveness.
Instead we use a more intuitive notion of expressiveness which takes the modelling ef-
fort into account. This more intuitive notion is often referred to as suitability. See [37]

YAWL: Yet Another Workflow Language 3

for a discussion on the distinction between formal expressiveness and suitability. In the
remainder, we will use the term suitability.

In this paper, we cannot repeat the detailed arguments given in [7]. Some readers
may argue that the patterns are selected subjectively. We partly agree. Since we are not
aiming at formal expressiveness but at suitability, we cannot formally prove the need
for each of the patterns. However, in [7] the patterns are motivated in detail. Moreover,
the patterns are based on functionality present in today’s tools and frequently used by
workflow designers when available. (Note that products typically support half of the
patterns but there is no consensus on which half.) Several vendors extended their work-
flow products based on the patterns (cf. BizAgi, FLOWer, Pectra, Staffware, etc.) and
the some open source initiatives haven been inspired by the patterns (cf. jBpm, Werk-
flow). Our patterns site [71] is currently visited about 200 times on an average working
day, thus showing the interest of both academics and practitioners in this work.

The patterns research shows that the suitability of the available workflow manage-
ment systems leaves much to be desired. This observation triggered the question: How
about high-level Petri nets as a workflow language?

Petri nets have been around since the sixties [48] and have been extended with
colour [34, 35] and time [43] to improve expressiveness. Petri nets where tokens carry
data (i.e., are coloured) are often referred to as high-level Petri nets and are supported by
tools such as Design/CPN (University of Aarhus, http://www.daimi.au.dk/designCPN/),
CPN Tools (University of Aarhus, http://www.daimi.au.dk/CPNTools/), and ExSpect
(EUT/D&T Bakkenist, http://www.exspect.com/). Note that these tools and the cor-
responding languages also allow for time and mechanisms to hierarchically structure
complex models. Therefore, we use the term high-level Petri nets to refer to Petri nets
extended with colour, time and hierarchy.

There are at least three good reasons for using Petri net based workflow languages
[1]:

1. Formal semantics despite the graphical nature.
2. State-based instead of (just) event-based.
3. Abundance of analysis techniques.

Unfortunately, a straightforward application of high-level Petri nets does not yield the
desired result. There seem to be three problems relevant for modelling workflow pro-
cesses:

1. High-level Petri nets support coloured tokens, i.e., a token can have a value. Al-
though it is possible to use this to identify multiple instances of a subprocess, there
is no specific support for patterns involving multiple instances and the burden of
keeping track, splitting, and joining of instances is carried by the designer.

2. Sometimes two flows need to be joined while it is not clear whether synchronisation
is needed, i.e., if both flows are active an AND-join is needed otherwise an XOR-
join. Such advanced synchronisation patterns are difficult to model in terms of a
high-level Petri net because the firing rule only supports two types of joins: the
AND-join (transition) or the XOR-join (place).

3. The firing of a transition is always local, i.e., enabling is only based on the tokens
in the input places and firing is only affecting the input and output places. However,

YAWL: Yet Another Workflow Language 4

Basic Control Flow Patterns

• Pattern 1 (Sequence)

• Pattern 2 (Parallel Split)

• Pattern 3 (Synchronization)
• Pattern 4 (Exclusive Choice)

• Pattern 5 (Simple Merge)

Advanced Branching and
Synchronization Patterns

• Pattern 6 (Multi - choice)
• Pattern 7 (Synchronizing Merge)

• Pattern 8 (Multi - merge)

• Pattern 9 (Discriminator)

Structural Patterns
• Pattern 10 (Arbitrary Cycles)

• Pattern 11 (Implicit Termination)

State-based Patterns
• Pattern 16 (Deferred

Choice)

• Pattern 17 (Interleaved
Parallel Routing)

• Pattern 18 (Milestone)

Patterns involving Multiple Instances

• Pattern 12 (Multiple Instances Without
Synchronization)

• Pattern 13 (Multiple Instances With a Priori
Design Time Knowledge)

• Pattern 14 (Multiple Instances With a Priori
Runtime Knowledge)

• Pattern 15 (Multiple Instances Without a Priori
Runtime Knowledge)

Cancellation Patterns
• Pattern 19 (Cancel Activity)

• Pattern 20 (Cancel Case)

Fig. 1. Overview of the 20 workflow patterns described in [7].

some events in the workflow may have an effect which is not local, e.g., because
of an error tokens need to be removed from various places without knowing where
the tokens reside. Everyone who has modelled such a cancellation pattern (e.g.,
a global timeout mechanism) in terms of Petri nets knows that it is cumbersome
to model a so-called “vacuum cleaner” removing tokens from selected parts of the
net.

In this paper, we discuss the problems when supporting the workflow patterns with high-
level Petri nets. Based on this we describe YAWL (Yet Another Workflow Language).
YAWL is based on Petri nets but extended with additional features to facilitate the
modelling of complex workflows.

2 Requirements

Since 1999 we have been working on collecting a comprehensive set of workflow pat-
terns [7]. The results have been made available through the “Workflow patterns WWW
site” [71]. The patterns range from very simple patterns such as sequential routing (Pat-
tern 1) to complex patterns involving complex synchronisations such as the discrim-
inator pattern (Pattern 9). In this paper, we restrict ourselves to the 20 most relevant
patterns. These patterns can be classified into six categories:

1. Basic control-flow patterns. These are the basic constructs present in most work-
flow languages to model sequential, parallel and conditional routing.

YAWL: Yet Another Workflow Language 5

2. Advanced branching and synchronisation patterns. These patterns transcend the
basic patterns to allow for more advanced types of splitting and joining behaviour.
An example is the Synchronising merge (Pattern 7) which behaves like an AND-
join or XOR-join (or in case of more than two flows as a combination of AND-joins
and XOR-joins) depending on the context.

3. Structural patterns. In programming languages a block structure which clearly
identifies entry and exit points is quite natural. In graphical languages allowing for
parallelism such a requirement is often considered to be too restrictive. Therefore,
we have identified patterns that allow for a less rigid structure.

4. Patterns involving multiple instances. Within the context of a single case (i.e., work-
flow instance) sometimes parts of the process need to be instantiated multiple times,
e.g., within the context of an insurance claim, multiple witness statements need to
be processed.

5. State-based patterns. Typical workflow systems focus only on activities and events
and not on states. This limits the expressiveness of the workflow language because
it is not possible to have state dependent patterns such as the Milestone pattern
(Pattern 18).

6. Cancellation patterns. The occurrence of an event (e.g., a customer cancelling an
order) may lead to the cancellation of activities. In some scenarios such events can
even cause the withdrawal of the whole case.

Figure 1 shows an overview of the 20 patterns grouped into the six categories. A detailed
discussion of these patterns is outside the scope of this paper. The interested reader is
referred to [7, 71].

We have used these patterns to evaluate 15 workflow systems: COSA (Ley GmbH,
[59]) , Visual Workflow (Filenet, [17]), Forté Conductor (SUN, [19]), Lotus Domino
Workflow (IBM/Lotus, [47]), Meteor (UGA/LSDIS, [57]), Mobile (UEN, [33]), MQ-
Series/Workflow (IBM, [32]), Staffware (Staffware PLC, [60]), Verve Workflow (Ver-
sata, [62]), I-Flow (Fujitsu, [21]), InConcert (TIBCO, [61]), Changengine (HP, [30]),
SAP R/3 Workflow (SAP, [55]), Eastman (Eastman, [58]), and FLOWer (Pallas Athena,
[8]). In [7, 71] it is reported in what way each of these systems supports each of the
patterns. For each product-pattern combination, we checked whether it is possible to
realise the workflow pattern with the tool. Most of the products only offer direct sup-
port for about half of the patterns. This does not imply that it is impossible to realise
the patterns. In many cases, the designer can resort to coding or spaghetti-like diagrams
(i.e., diagrams with many arcs to enumerate all possible combinations). Clearly, this
makes such systems less suitable for workflow support. Some of the patterns can be re-
alised by constructing them using other patterns. For example, Pattern 6 (Multi-choice)
can be constructed from a combination of Pattern 4 (Exclusive choice) and Pattern 2
(Parallel split). The resulting diagram may be considerably larger, but it is fairly simple
to realise. However, the more advanced synchronisation patterns, patterns involving a
dynamic number of multiple instances, and the state-based patterns are more difficult,
if not impossible, to realise if not present.

While the results reported in [7] mainly refer to suitability, the results in [37–39]
consider formal expressiveness. In this work several “idealised” classes of workflow
languages have been analyzed in terms of their expressive power. For example, MQ-

YAWL: Yet Another Workflow Language 6

Series/Workflow (IBM, [32]) is an example of a language beloning to the so-called class
of Synchronising Workflow Models. Synchronising Workflow Models can be thought of
as propagating true and false tokens. If an activity receives a true token, it will execute.
If it receives a false token, it will simply pass it on. Branches of choices not chosen
propagate false tokens, while branches that are chosen propagate true tokens. Synchro-
nisation points await tokens from all incoming branches and, depending on their type,
either 1) propagate a true token if it has received at least one true token, and a false
token otherwise, or 2) propagate a true token if it has received only true tokens, and a
false token otherwise. Synchronising Workflow Models offer direct support for Pattern
7 (Synchronising merge) but have problems dealing with loops. A detailed discussion
of the formal expressiveness is beyond the scope of this paper. However, it is impor-
tant to note that there are striking differences between languages and many of the more
advanced constructs cannot be realised by the basic control-flow patterns.

The lessons learned by both evaluating contemporary systems using a set of work-
flow patterns and a detailed analysis of the fundamental control-flow mechanisms pro-
vide a solid basis for YAWL. The remainder of this paper is organised as follows. In
Section 3 we analyse the suitability of Petri nets as a workflow language. Based on
this and the lessons learned, we present the control-flow perspective of a new workflow
language named YAWL in Section 4. We give a formal definition, provide formal se-
mantics, and introduce a correctness notion. Using this correctness notion we will show
that it can be verified in a compositional way. To conclude the paper, we relate YAWL
to existing approaches, summarise the main results, and discuss future plans.

3 Limitations of Petri Nets as a control-flow language for
workflows

Given the fact that workflow management systems have problems dealing with work-
flow patterns it is interesting to see whether established process modelling techniques
such as Petri nets can cope with these patterns. The table listed in the appendix shows an
evaluation of high-level Petri nets with respect to the patterns. (Ignore the column under
YAWL for the time being.) We use the term high-level Petri nets to refer to Petri nets ex-
tended with colour (i.e., data), time, and hierarchy [6]. Examples of such languages are
the coloured Petri nets as described in [35], the combination of Petri nets and Z speci-
fication described in [28], and many more. These languages are used by tools such as
Design/CPN (University of Aarhus, http://www.daimi.au.dk/designCPN/) and ExSpect
(EUT/D&T Bakkenist, http://www.exspect.com/). Although these languages and tools
have differences when it comes to for example the language for data transformations
(e.g., arc inscriptions) there is a clear common denominator. When we refer to high-
level Petri nets we refer to this common denominator. To avoid confusion we use the
terminology as defined in [35] as much as possible.

Compared to existing languages high-level Petri nets are quite expressive when it
comes to supporting the workflow patterns. Recall that we use the term “expressiveness”
not in the formal sense. High-level Petri nets are Turing complete, and therefore, can do
anything we can define in terms of an algorithm. However, this does not imply that the
modelling effort is acceptable. High-level nets, in contrast to many workflow languages,

YAWL: Yet Another Workflow Language 7

have no problems dealing with state-based patterns. This is a direct consequence of the
fact that Petri nets use places to represent states explicitly. Although high-level Petri nets
outperform most of the existing languages when it comes to modelling the control flow,
the result is not completely satisfactory. As indicated in the introduction we see serious
limitations when it comes to (1) patterns involving multiple instances, (2) advanced
synchronisation patterns, and (3) cancellation patterns. In the remainder of this section
we discuss these limitations in more detail.

3.1 Patterns involving multiple instances

Suppose that in the context of a workflow for processing insurance claims there is a
subprocess for processing witness statements. Each insurance claim may involve zero
or more witness statements. Clearly the number of witness statements is not known
at design time. In fact, while a witness statement is being processed other witnesses
may pop up. This means that within one case a part of the process needs to be instanti-
ated a variable number of times and the number of instances required is only known at
run time. The required pattern to model this situation is Pattern 15 (Multiple instances
without a priori runtime knowledge). Another example of this pattern is the process
of handling journal submissions. For processing journal submissions multiple reviews
are needed. The editor of the journal may decide to ask a variable number of review-
ers depending on the nature of the paper, e.g., if it is controversial, more reviewers are
selected. While the reviewing takes place, the editor may decide to involve more re-
viewers. For example, if reviewers are not responsive, have brief or conflicting reviews,
then the editor may add an additional reviewer. Other examples of multiple instances
include orders involving multiple items (e.g., a customer orders three books from an
electronic bookstore), a subcontracting process with multiple quotations, etc.

It is possible to model a variable number of instances executed in parallel using a
high-level Petri net. However, the designer of such a model has to keep track of two
things: (1) case identities and (2) the number of instances still running.

At the same time multiple cases are being processed. Suppose x and y are two active
cases. Whenever, there is an AND-join only tokens referring to the same case can be
synchronised. If inside x part of the process is instantiated n times, then there are n
“child cases” x.1 . . . x.n. If for y the same part is also instantiated multiple times, saym,
then there are m “child cases” y.1 . . . y.m. Inside the part which is instantiated multiple
times there may again be parallelism and there may be multiple tokens referring to
one child case. For a normal AND-join only tokens referring to the same child case
can be synchronised. However, at the end of the part which is instantiated multiple
times all child cases having the same parent should be synchronised, i.e., case x can
only continue if for each child case x.1 . . . x.n the part has been processed. In this
synchronisation child cases x.1 . . . x.n and child cases y.1 . . . y.m should be clearly
separated. To complicate matters the construct of multiple instances may be nested
resulting in child-child cases such as x.5.3 which should be synchronised in the right
way. Clearly, a good workflow language does not put the burden of keeping track of
these instances and synchronising them at the right level on the workflow designer.

Besides keeping track of identities and synchronising them at the right level, it is
important to know how many child cases need to be synchronised. This is of particular

YAWL: Yet Another Workflow Language 8

relevance if the number of instances can change while the instances are being pro-
cessed (e.g., a witness which points out another witness causing an additional witness
statement). In a high-level Petri net this can be handled by introducing a counter keep-
ing track of the number of active instances. If there are no active instances left, the
child cases can be synchronised. Clearly, it is also not acceptable to put the burden of
modelling such a counter on the workflow designer.

3.2 Advanced synchronisation patterns

Consider the workflow process of booking a business trip. A business trip may involve
the booking of flights, the booking of hotels, the booking of a rental car, etc. Suppose
that the booking of flights, hotels, and cars can occur in parallel and that each of these
elements is optional. This means that one trip may involve only a flight, another trip may
involve a flight and a rental car, and it is even possible to have a hotel and a rental car
(i.e., no flight). The process of booking each of these elements has a separate description
which may be rather complex. Somewhere in the process, these optional flows need to
be synchronised, e.g., activities related to payment are only executed after all booking
elements (i.e., flight, hotel, and car) have been processed. The problem is that it is not
clear which subflows need to be synchronised. For a trip not involving a flight, one
should not wait for the completion of booking the flight. However, for a business trip
involving all three elements, all flows should be synchronised. The situation where there
is sometimes no synchronisation (XOR-join), sometimes full synchronisation (AND-
join), and sometimes only partial synchronisation (OR-join) needed is referred to as
Pattern 7 (Synchronising merge).

It is interesting to note that the Synchronising merge is directly supported by InCon-
cert, Eastman, Domino Workflow, and MQSeries Workflow. In each of these systems,
the designer does not have to specify the type of join; this is automatically handled by
the system.

In a high-level Petri net each construct is either an AND-join (transition) or an
XOR-join (place). Nevertheless, it is possible to model the Synchronising merge in var-
ious ways. First of all, it is possible to pass information from the split node to the join
node. For example, if the business trip involves a flight and a hotel, the join node is in-
formed that it should only synchronise the flows corresponding to these two elements.
This can be done by putting a token in the input place of the synchronisation transition
corresponding to the element car rental. Secondly, it is possible to activate each branch
using a “Boolean” token. If the value of the token is true, everything along the branch
is executed. If the value is false, the token is passed through the branch but all activities
on it are skipped. Thirdly, it is possible to build a completely new scheduler in terms
of high-level Petri nets. This scheduler interprets workflow processes and uses the fol-
lowing synchronisation rule: “Fire a transition t if at least one of the input places of t
is marked and from the current marking it is not possible to put more tokens on any of
the other input places of t.” In this last solution, the problem is lifted to another level.
Clearly, none of the three solutions is satisfactory. The workflow designer has to add
additional logic to the workflow design (case 1), has to extend the model to accommo-
date true and false tokens (case 2), or has to model a scheduler and lift the model to
another level (case 3).

YAWL: Yet Another Workflow Language 9

It is interesting to see how the problem of the Synchronising merge has been handled
in existing systems and literature. In the context of MQSeries Workflow the technique
of “dead-path elimination” is used [42, 32]. This means that initially each input arc is
in state “unevaluated”. As long as one of the input arcs is in this state, the activity is
not enabled. The state of an input arc is changed to true the moment the preceding ac-
tivity is executed. However, to avoid deadlocks the input arc is set to false the moment
it becomes clear that it will not fire. By propagating these false signals, no deadlock is
possible and the resulting semantics matches Pattern 7. The solution used in MQSeries
Workflow is similar to having true and false tokens (case 2 described above). The idea
of having true and false tokens to address complex synchronisations was already raised
in [24]. However, the bipolar synchronisation schemes presented in [24] are primarily
aimed at avoiding constructs such as the Synchronising merge, i.e., the nodes are pure
AND/XOR-splits/joins and partial synchronisation is not supported nor investigated.
In the context of Event-driven Process Chains (EPC’s, cf. [36]) the problem of deal-
ing with the Synchronising merge also pops up. The EPC model allows for so-called
∨-connectors (i.e., OR-joins which only synchronise the flows that are active). The se-
mantics of these ∨-connectors have been often debated [3, 12, 40, 52, 54]. In [3] the
explicit modelling is advocated (case 1). Dehnert and Rittgen [12] advocate the use of
a weak correctness notion (relaxed soundness) and an intelligent scheduler (case 3).
Langner et al. [40] propose an approach based on Boolean tokens (case 2). Rump [54]
proposes an intelligent scheduler to decide whether an ∨-connector should synchronise
or not (case 3). In [52] three different join semantics are proposed for the ∨-connector:
(1) wait for all to come (corresponds to the Synchronising merge, Pattern 7), (2) wait
for first to come and ignore others (corresponds to the Discriminator, Pattern 9), and
(3) never wait, execute every time (corresponds to the Multi merge, Pattern 8). The
extensive literature on the synchronisation problems in EPC’s and workflow systems
illustrates that patterns like the Synchronising merge are relevant and far from trivial.

3.3 Cancellation patterns

Most workflow modelling languages, including high-level nets, have local rules directly
relating the input of an activity to output. For most situations such local rules suffice.
However, for some events local rules can be quite problematic. Consider for example the
processing of Customs declarations. While a Customs declaration is being processed,
the person who filed the declaration can still supply additional information and no-
tify Customs of changes (e.g., a container was wrecked, and therefore, there will be less
cargo than indicated on the first declaration). These changes may lead to the withdrawal
of a case from specific parts of the process or even the whole process. Such cancella-
tions are not as simple as they seem when for example high-level Petri nets are used.
The reason is that the change or additional declaration can come at any time (within a
given time frame) and may affect running and/or scheduled activities. Given the local
nature of Petri net transitions, such changes are difficult to handle. If it is not known
where in the process the tokens reside when the change or additional declaration is re-
ceived, it is not trivial to remove these tokens. Inhibitor arcs allow for testing whether
a place contains a token. However, quite some bookkeeping is required to remove to-
kens from an arbitrary set of places. Consider for example 10 parallel branches with

YAWL: Yet Another Workflow Language 10

10 places each. To remove 10 tokens (one in each parallel branch) one has to consider
1010 possible states. Modelling a “vacuum cleaner”, i.e., a construct to remove the 10
tokens, is possible but results in a spaghetti-like diagram. Therefore it is difficult to deal
with cancellation patterns such as Cancel activity (Pattern 19) and Cancel case (Pattern
20) and anything in-between.

In this section we have discussed limitations of high-level Petri nets when it comes to
(1) patterns involving multiple instances, (2) advanced synchronisation patterns, and
(3) cancellation patterns. Again, we would like to stress that high-level Petri nets are
able to express such routing patterns. However, the modelling effort is considerable,
and although the patterns are needed frequently, the burden of keeping track of things
is left to the workflow designer.

4 YAWL: Yet Another Workflow Language

In the preceding sections we have demonstrated that contemporary workflow manage-
ment systems are less suitable and that high-level Petri nets, although providing a good
starting point, do not solve all of these problems. This triggered the development of the
language named YAWL (Yet Another Workflow Language). The goal of this joint effort
between Eindhoven University of Technology and Queensland University of Technol-
ogy is to overcome the limitations mentioned in the previous section. The starting point
will be Petri nets extended with constructs to address the multiple instances, advanced
synchronisation, and cancellation patterns. In this section, we define the language and
provide operational semantics.

4.1 Definition

Figure 2 shows the modelling elements of YAWL. YAWL extends the class of workflow
nets described in [2, 6] with multiple instances, composite tasks, OR-joins, removal of
tokens, and directly connected transitions. YAWL is inspired by Petri nets but is not just
a macro package built on top of high-level Petri nets: It is a completely new language
with independent semantics.1

A workflow specification in YAWL is a set of extended workflow nets (EWF-nets)
which form a hierarchy, i.e., there is a tree-like structure. Tasks2 are either atomic tasks
or composite tasks. Each composite task refers to a unique EWF-net at a lower level
in the hierarchy. Atomic tasks form the leaves of the tree-like structure. There is one
EWF-net without a composite task referring to it. This EWF-net is named the top level
workflow and forms the root of the tree-like structure.

Each EWF-net consists of tasks (either composite or atomic) and conditions which
can be interpreted as places. Each EWF-net has one unique input condition and one

1 Note that YAWL can be mapped onto high-level Petri nets. However, this mapping is far from
trivial and YAWL can also be mapped to any other Turing complete language. Therefore, we
would like to emphasise that the semantics of YAWL is independent from high-level Petri nets.

2 Note that in YAWL we use the term task rather than activity to remain consistent with earlier
work on workflow nets [2, 6].

YAWL: Yet Another Workflow Language 11

Condition

Input condition

Output condition

Atomic task

AND-split task

XOR-split task

Composite task

Multiple instances
of an atomic task

Multiple instances
of a composite task

OR-split task

AND-join task

XOR-join task

OR-join task

... remove tokens

Fig. 2. Symbols used in YAWL.

unique output condition (see Figure 2). In contrast to Petri nets, it is possible to connect
“transition-like objects” like composite and atomic tasks directly to each other without
using a “place-like object” (i.e., conditions) in-between. For the semantics this construct
can be interpreted as a hidden condition, i.e., an implicit condition is added for every
direct connection.

Each task (either composite or atomic) can have multiple instances as indicated in
Figure 2. It is possible to specify a lower bound and an upper bound for the number
of instances created after initiating the task. Moreover, it is possible to indicate that the
task terminates the moment a certain threshold of instances has completed. The moment
this threshold is reached, all running instances are terminated and the task completes.
If no threshold is specified, the task completes once all instances have completed. Fi-
nally, there is a fourth parameter indicating whether the number of instances is fixed
after creating the initial instances. The value of the parameter is “static” if after creation
no instances can be added and “dynamic” if it is possible to add additional instances
while there are still instances being processed. Note that by extending Petri-nets with
a construct having these four parameters (lower bound, upper bound, threshold, and
static/dynamic), we directly support all patterns involving multiple instances (cf. Sec-
tion 3.1), and in addition, the Discriminator pattern (Pattern 9) under the assumption of
multiple instances of the same task. In fact, we also support the more general n-out-of-
m join [7].

We adopt the notation described in [2, 6] for AND/XOR-splits/joins as shown in
Figure 2. Moreover, we introduce OR-splits and OR-joins corresponding respectively
to Pattern 6 (Multi choice) and Pattern 7 (Synchronising merge), cf. Section 3.2.

YAWL: Yet Another Workflow Language 12

Finally, we introduce a notation to remove tokens from places irrespective of how
many tokens there are. As Figure 2 shows this is denoted by dashed rounded rectangles
and lines. The enabling of the task does not depend on the tokens within the dashed area.
However, the moment the task executes all tokens in this area are removed. Clearly, this
extension is useful for the cancellation patterns, cf. Section 3.3. Independently, this
extension was also proposed in [10] for the purpose of modelling dynamic workflows.

A workflow specification is composed of one or more extended workflow nets (EWF-
nets). Therefore, we first formalise the notion of an EWF-net.

Definition 1 (EWF-net). An extended workflow net (EWF-net) N is a tuple (C, i,o, T,
F, split , join, rem,nofi) such that:

– C is a set of conditions,
– i ∈ C is the input condition,
– o ∈ C is the output condition,
– T is a set of tasks,
– F ⊆ (C \ {o} × T) ∪ (T × C \ {i}) ∪ (T × T) is the flow relation,
– every node in the graph (C ∪ T, F) is on a directed path from i to o,
– split : T → {AND ,XOR,OR} specifies the split behaviour of each task,
– join : T → {AND ,XOR,OR} specifies the join behaviour of each task,
– rem : T
→ IP(T ∪ C \ {i,o}) specifies the additional tokens to be removed by

emptying a part of the workflow, and
– nofi : T
→ IN× INinf × INinf ×{dynamic, static} specifies the multiplicity of each

task (minimum, maximum, threshold for continuation, and dynamic/static creation
of instances).

The tuple (C, T, F) corresponds to a classical Petri net [50] where C (the set of condi-
tions) corresponds to places, T (the set of tasks) corresponds to transitions, and F is the
flow relation. There are however two differences. First of all, there are two special con-
ditions/places: i and o. Secondly, the flow relation also allows for direct connections
between tasks/transitions. Note that the idea to have a special input condition/place i
and a special output condition/place o has been adopted from the class of workflow
nets [2, 6]. The four functions split , join , rem , and nofi specify the properties of each
task. The first two functions (i.e., split and join) are used to specify whether a task
is an AND/OR/XOR-split/join. The third function rem is a partial function specify-
ing which parts of the net should be emptied. Emptying a part of an EWF-net is like
removing tokens from a selected set of places.3 Note that the range of rem includes
tasks. IP(T ∪ C \ {i,o}) is the set of all sets including conditions in C \ {i,o} and
tasks in T . Removing tokens from a task corresponds to aborting the execution of that

3 Note that we did not formalise the token concept in the context of YAWL. This is just a refer-
ence to tokens as they are used to represent states in a Petri net. This reference should support
readers familiar with Petri nets. Other readers should just think of tokens as objects indicating
the partial state of a process. We will formalise the concept of a state in Section 4.3.

YAWL: Yet Another Workflow Language 13

task. However, if a task is a composite task, its removal implies the removal of all to-
kens it contains.4 nofi is a partial function specifying the attributes related to multiple
instances.

Whenever we introduce an EWF-net N we assume C, i, o, T , F , split , join , rem ,
and nofi defined as N = (C, i,o, T, F, split , join, rem,nofi). If ambiguity is possible,
we use subscripts, i.e., CN , iN, oN, TN , FN , splitN , joinN , remN , and nofiN . We
use π1(nofi(t)) to refer to the minimal number of instances initiated, π2(nofi(t)) to
refer to the maximal number of instances initiated, π3(nofi(t)) is the threshold value
(to terminate before all instances have completed), and π4(nofi(t)) indicates whether it
is possible to add instances while handling the other instances.

For convenience, we extend the functions rem and nofi in the following way. If
t ∈ T \ dom(rem), then rem(t) = ∅. If t ∈ T \ dom(nofi), then π1(nofi(t)) = 1,
π2(nofi(t)) = 1, π3(nofi(t)) = ∞, π4(nofi(t)) = static. This allows us to treat these
partial functions as total functions in the remainder (unless we explicitly inspect their
domains).

Now we define a workflow specification.5 Recall that a workflow specification is
composed of EWF-nets such that they form a tree-like hierarchy.

Definition 2. A workflow specification S is a tuple (Q, top, T �,map) such that:

– Q is a set of EWF-nets,
– top ∈ Q is the top level workflow,
– T � = ∪N∈QTN is the set of all tasks,
– ∀N1,N2∈QN1
= N2 ⇒ (CN1 ∪ TN1) ∩ (CN2 ∪ TN2) = ∅, i.e., no name clashes,
– map : T �
→ Q\{top} is a surjective injective function which maps each compos-

ite task onto an EWF net, and
– the relation {(N1, N2) ∈ Q×Q | ∃t∈dom(mapN1

)mapN1
(t) = N2} is a tree.

Q is a non-empty set of EWF-nets with a special EWF-net top. Composite tasks are
mapped onto EWF-nets such that the set of EWF-nets forms a tree-like structure with
top as root node. T � is the set of all tasks. Tasks in the domain of map are composite
tasks which are mapped onto EWF-nets. Throughout this paper we will assume that
there are no name clashes, e.g., names of conditions differ from names of tasks and
there is no overlap in names of conditions and tasks originating from different EWF-
nets. If there are name clashes, tasks/conditions are simply renamed.

To illustrate the definitions in this section, we apply YAWL to some of the examples
used in the previous section.

Example: Patterns involving multiple instances Figure 3 shows three workflow spec-
ifications dealing with multiple witness statements in parallel. The first workflow speci-
fication (a), starts between 1 and 10 instances of the composite task process witness sta-
tements after completing the initial task register witnesses. When all instances have

4 Note that in an EWF-net there are no composite tasks. Composite tasks are created by relating
EWF-nets using the map function as shown in Definition 2.

5 Note that Definition 2 only refers to the control-flow perspective. Therefore, it should not be
considered as a full specification of the workflow, e.g., data and organisational aspects are
missing.

YAWL: Yet Another Workflow Language 14

completed, task archive is executed. The second workflow specification shown in Fig-
ure 3(b), starts an arbitrary number of instances of the composite task and even allows
for the creation of new instances. The third workflow specification (c) starts between 1
and 10 instances of the composite task process witness statement but finishes if all have
completed or at least three have completed. The three examples illustrate that YAWL
allows for a direct specification of Multiple Instances With a Priori Runtime Knowledge
(Pattern 14), Multiple Instances Without a Priori Runtime Knowledge (Pattern 15), and
the Discriminator (Pattern 9).

register_
witnesses

archive
process_
witness_

statements

[1,10,inf,static]

(a) A workflow processing between 1 and 10 witness statements
without the possibility to add witnesses after registration (Pattern 14).

(b) A workflow processing an arbitrary number of witnesses with
the possibility to add new witnesses "on the fly" (Pattern 15).

register_
witnesses

archive
process_
witness_

statements

[1,10,3,static]

(c) A workflow processing between 1 and 10 witness statements
with a threshold of 3 witnesses (extension of Pattern 9).

register_
witnesses

archive
process_
witness_

statements

[1,inf,inf,dynamic]

Fig. 3. Some examples illustrating the way YAWL deals with multiple instances.

Example: Advanced synchronisation patterns As explained in Section 3.2, an OR-
join can be interpreted in many ways. Figure 4 shows three possible interpretations
using the booking of a business trip as an example. The first workflow specification (a)

YAWL: Yet Another Workflow Language 15

starts with an OR-split register which enables tasks flight, hotel and/or car. Task pay is
executed for each time one of the three tasks (i.e., flight, hotel, and car) completes. This
construct corresponds to the Multi merge (Pattern 8). The second workflow specification
shown in Figure 4(b) is similar but combines the individual payments into one payment.
Therefore, it waits until each of the tasks enabled by register completes. Note that if only
a flight is booked, there is no synchronisation. However, if the trip contains two or even
three elements, task pay is delayed until all have completed. This construct corresponds
to the Synchronising merge (Pattern 7). The third workflow specification (c) enables all
three tasks (i.e., flight, hotel, and car) but pays after the first task is completed. After the
payment all running tasks are cancelled. Although this construct makes no sense in this
context it has been added to illustrate how the Discriminator can be supported (Pattern
9) assuming that all running threads are cancelled the moment the first one completes.

Example: Cancellation patterns Figure 5 illustrates the way YAWL supports the two
cancellation patterns (patterns 19 and 20). The first workflow specification (a) shows
the Cancel activity pattern which removes all tokens from the input conditions of task
activity. In the second workflow specification (b) there is a task removing all tokens and
putting a token in the output condition thus realising the Cancel case pattern.

The examples given in this section illustrate that YAWL solves many of the problems
indicated in Section 3. The table in the appendix shows that YAWL supports 19 of the
20 patterns used to evaluate contemporary workflow systems. Implicit termination (i.e.,
multiple output conditions) is not supported to force the designer to think about termi-
nation properties of the workflow. It would be fairly easy to extend YAWL with this
pattern (simply connect all output conditions with an OR-join having a new and unique
output condition). However, implicit termination also hides design errors because it is
not possible to detect deadlocks. Therefore, there is no support for this pattern.

To conclude this section, we consider some more examples and discuss the role of
constructs involving time. Figure 6 shows three fragments of a process where as a re-
sult of the booking of a flight, a hotel, and/or a car, task pay and/or task cancel are/is
executed. The first workflow specification (a) starts with an AND-split register which
enables tasks flight, hotel and/or car. The latter three tasks can have a positive or a neg-
ative outcome. Task pay can only be executed if all three booking tasks have a positive
result. Task cancel can only occur if at least one of the booking tasks failed and the
others have been completed. Note that in Figure 6(a) task cancel has to wait even if it
is clear that there will never a payment. Moreover, tokens can get “stuck” in-between
the three middle tasks (flight, hotel and car) and pay. The second workflow specifica-
tion (b) improves this by making task cancel an XOR-join rather than an OR-join and
removing all tokens from the relevant part of the process after cancellation. Figure 6(c)
shows an even more sophisticated control flow. Unlike the first two specifications, the
tasks flight, hotel and/or car are optional. Therefore, task pay can no longer be repre-
sented by an AND-join since not all three input tasks have to be executed. To solve
this problem an additional task is introduced: decide. Task decide occurs only if all
bookings that were enabled by register have been completed. Cancel may occur if one
of the bookings failed. Note that both decide and cancel may be enabled at the same

YAWL: Yet Another Workflow Language 16

register

(a) Task pay is executed each time one of the three preceding task
completes (Pattern 8).

flight

hotel

car

pay

register

(b) Task pay is executed only once, i.e., after all started tasks have
completed (Pattern 7).

flight

hotel

car

pay

register

(c) Task pay is executed only once, i.e., after the first task has
completed (Pattern 9).

flight

hotel

car

pay

Fig. 4. Some examples illustrating the way YAWL deals with advanced synchronisation patterns.

YAWL: Yet Another Workflow Language 17

(a) Cancel activity (Pattern 19).

(b) Cancel case (Pattern 20).

cancel_activity

activity

Fig. 5. Some examples illustrating the way YAWL deals with cancellation patterns.

YAWL: Yet Another Workflow Language 18

register

(a) Task pay is executed if all three bookings succeed, otherwise
cancel is executed after all booking attempts have completed.

flight

hotel

car

pay

(b) Task pay is executed if all three bookings succeed, if one of the
bookings fails all other bookings are cancelled by task cancel.

cancel

register

flight

hotel

car

pay

cancel

(c) Task cancel is executed if one of the bookings fails. Task decide
will only be executed if no more bookings can succeed, and then
decides whether to pay or wait for cancellation.

register

flight

hotel

car

decide

cancel

pay

Fig. 6. Some more examples illustrating the more subtle behaviour of YAWL.

YAWL: Yet Another Workflow Language 19

time. If cancel occurs before decide, there is no need to make a decision because one of
the results was negative anyway. If decide occurs before cancel, it will decide to pay if
all bookings were completed successfully. If one of the bookings failed, it should wait
for the cancellation and therefore one of the output arcs of decide is also an input arc.
This way the payment subprocess is fixed so that it can be cancelled. Figure 6 does not
model any compensation, i.e., to cancel a booking it is often not sufficient to stop the
control flow but one needs to initiate additional tasks to compensate previous steps in
the process. It should be obvious that such aspects can be modelled by YAWL.6

Thus far, we did not consider the role of time and events. Clearly a workflow lan-
guage should be able to receive events and model timed constructs such as time-outs.
Given the expressive power of YAWL we do not need to add explicit routing constructs
for catching events and time-outs. We simply offer tasks which can handle these things.
For example, we can offer various types of timed tasks, i.e., tasks that do nothing but
wait for some specified time, and event tasks, i.e., tasks that do nothing other than wait-
ing for an event to occur. For notational convenience we will label event tasks with
the letter “E” and timed tasks with the letter “T”. To clarify this consider Figure 7. In
each of the four examples, task pay is an event task which indicates that it is an auto-
matic task triggered by the occurrence of some event (e.g., the arrival of a message).
Task time out is a timed task, i.e., an automatic task that only waits for some time to
complete. Since this is simply a task and not part of the YAWL language, there may
be several predefined tasks offering such a service. The delay (i.e., the time the task
takes to complete) may be absolute (“Wait until the due date of the order.”) or relative
(“Wait for 1 week from now.”) and may depend on data or external conditions. In all
four examples, there is a “race” between the payment and the time-out which starts
after sending the bill. Figure 7(a) shows the situation where task time out cancels the
payment process when it completes. Note that even if the payment is being processed,
the top branch may be cancelled. Also note that the condition between send bill and
pay is shown explicitly. This way it is possible to clearly indicate that also waiting pay-
ments are withdrawn when time out completes. Figure 7(b) shows the situation where
task time out only cancels the payment process when it did not start yet. In Figure 7(a)
and (b) the time-out process does not need to be cancelled after processing the pay-
ment because if the time-out occurs after payment there is nothing to cancel. However,
if the task time out does not just withdraw tokens but also represents some real work
or triggers other tasks to further handle the cancellation process, then task pay needs
to cancel the cancellation process as is shown in Figure 7(c). Task cancel order is a
task initiated after the time-out occurred to compensate the effect of not receiving the
payment within the prespecified time. When task pay completes it cancels the whole
lower branch. Note that time out has an explicit input condition to indicate that if, for
some reason, the task was not started when the payment is completed, the cancellation
process is still cancelled properly. Figure 7(d) shows an extension of (c) where before
cancellation a couple of reminders are sent to the customer. Task send reminder is an
XOR-split which, based on the number of reminders already sent, decides to go for an-
other reminder or cancel the payment process. Note that this way it is possible to model

6 Another approach would be to extend YAWL with transactional features (cf. Section 6). For
the moment, we choose not to do so.

YAWL: Yet Another Workflow Language 20

send_bill

(a) Task time_out is a timed activity, if it finishes before task pay is
completed it cancels the payment subprocess .

time_out

pay

(b) The payment process is only cancelled if the time-out occurs
before task pay is started.

T

send_bill

time_out

pay

T

(c) As in (a) but now the payment cancels the cancellation
subprocess.

send_bill

time_out

pay

T
cancel_order

(d) Instead of immediately cancelling the payment process when the
time-out completes, a prespecified number of reminders is sent
before cancelling the order.

send_bill

time_out

pay

T
cancel_ordersend_reminder

E

E

E

E

Fig. 7. Some more examples illustrating that YAWL can deal with constructs involving time and
external events without offering dedicated constructs.

YAWL: Yet Another Workflow Language 21

things like: “If the customer does not pay after one week, a reminder is sent. This is
repeated four times or until the customer pays. If the customer did not pay after four
reminders, the order is cancelled.”.

The four examples shown in Figure 7 demonstrate that YAWL does not need specific
constructs for patterns involving time and/or events. They also illustrate the ability of
YAWL to specify complex workflow processes with challenging control-flow require-
ments.

4.2 Notation

Before describing the formal semantics of YAWL, we introduce some useful notations.
To navigate through an EWF-net it is useful to define the preset and postset of a

node (i.e., either a condition or task). To simplify things we add an implicit condition
c(t1,t2) between two tasks t1, t2 if there is a direct connection from t1 to t2. For this
purpose we define the extended set of conditions Cext and the extended flow relation
F ext.

Definition 3. Let N = (C, i,o, T, F, split , join, rem,nofi) be an EWF-net. Cext =
C∪{c(t1,t2) | (t1, t2) ∈ F∩(T×T)} andF ext = (F\(T×T))∪{(t1, c(t1,t2)) | (t1, t2) ∈
F ∩ (T × T)} ∪ {(c(t1,t2), t2) | (t1, t2) ∈ F ∩ (T × T)}. Moreover, auxiliary functions
• , • : (Cext ∪ T) → IP(Cext ∪ T) are defined that assign to each node its preset
and postset, respectively. For any node x ∈ Cext ∪ T , •x = {y | (y, x) ∈ F ext} and
x• = {y | (x, y) ∈ F ext}.

Note that the preset and postset functions depend on the context, i.e., the EWF-net the
function applies to.

Definition 4. Whenever we introduce a workflow specification S = (Q, top, T �,map),
we assume TA, TC , TSI , TMI , C� to be defined as follows:

– TA = {t ∈ T � | t
∈ dom(map)} is the set of atomic tasks,
– TC = {t ∈ T � | t ∈ dom(map)} is the set of composite tasks,
– TSI = {t ∈ T � | ∀N∈Q t
∈ dom(nofiN)} is the set of single instance tasks,
– TMI = {t ∈ T � | ∃N∈Q t ∈ dom(nofiN)} is the set of (potentially) multiple

instance tasks, and
– C� = ∪N∈Q Cext

N is the extended set of all conditions.

If ambiguity is possible, we use subscripts, i.e., TA
S , TC

S , TSI
S , TMI

S , and C�
S . Within

the context of a single workflow specification we will omit these subscripts. Moreover,
since the domains of the functions splitN , joinN , remN , and nofiN do not overlap for
different N ∈ Q we can omit the subscripts.

A workflow specification defines a tree-like structure. To navigate through this
structure we define the function unfold . Given a set of nodes (i.e., tasks and condi-
tions), unfold returns these nodes and all child nodes.

YAWL: Yet Another Workflow Language 22

Definition 5. Let S = (Q, top, T �,map) be a workflow specification. We define the
function unfold : IP(T � ∪ C�) → IP(T � ∪ C�) as follows. For X ⊆ T � ∪ C�:

unfold(X) =

∅ if X = ∅
{x} ∪ unfold(X \ {x}) if x ∈ X ∩ (C� ∪ TA)
{x} ∪ unfold((X \ {x}) ∪ Tmap(x) ∪ Cext

map(x)) if x ∈ X ∩ TC

Note that the unfold(X) returns each node in X and all nodes contained by the nodes
in X . For atomic tasks and conditions, no unfolding is needed. For composite tasks, all
nodes contained by these tasks are included in the result, i.e., unfold(X) recursively
traverses all composite tasks in X .

A

B

C

D

E

F

G

H

I J

itop otop

c1
c2

i1 o1

i2 o2

Fig. 8. An example.

Figure 8 shows an example of a workflow specification to illustrate the notations.
TA = {A,B,E, F,G,H, I, J} is the set of atomic tasks and TC = {C,D} is the
set of composite tasks. TSI = {A,B,C,E, F,G,H, I, J} and TMI = {D}, i.e., D
is the only task (potentially) having multiple instances. Apart from input and output
conditions, there are only two explicit conditions (c1 and c2). All other conditions in
the set C� are implicit, e.g., c(A,B) is an implicit condition corresponding to the arc
connecting A and B. unfold({B, c2,D}) = {B, c2,D, i2, I, J, o2, c(I,J)}, i.e., if D is
unfolded and all tasks and conditions (including the implicit ones) contained by D are
added.

4.3 Semantics

Definition 2 defines, in mathematical terms, the syntax of a workflow specification.
Based on this definition it is straightforward to give a concrete workflow language, e.g.

YAWL: Yet Another Workflow Language 23

in terms of XML. However, Definition 2 does not give any semantics. Thus far we have
only given intuitive descriptions of the dynamic behaviour of a workflow specification
S. In the remainder of this section we will provide a formal semantics. We will do this
in three steps. First, we introduce some preliminaries (bags and identifiers). Then we
define the state space corresponding to a workflow specification S. Finally, we specify
the state transitions possible.

Preliminaries The definition of the state space corresponding to a workflow specifica-
tion is inspired by the concept of tokens in coloured Petri nets. The state space consists
of a collection of tokens having a value. Since we abstract from data in this paper, it
suffices that each token has an identity. To deal with multiple tokens in the same place
having the same identity, we need to resort to bags. Moreover, we need to structure the
set of case identifiers to relate child instances to parent instances. The latter is needed
to deal with multiple instances.

In this paper, bags are defined as finite multi-sets of elements from some alphabet
A. A bag over alphabetA can be considered as a function fromA to the natural numbers
IN such that only a finite number of elements from A are assigned a non-zero function
value. For some bag X over alphabet A and a ∈ A, X(a) denotes the number of
occurrences of a in X , often called the cardinality of a in X . The set of all bags over
A is denoted B(A). For the explicit enumeration of a bag, a notation similar to the
notation for sets is used, but using square brackets instead of curly brackets and using
superscripts to denote the cardinality of the elements. For example, [a2, b, c3] denotes
the bag with two elements a, one b, and three elements c; the bag [a2 | P (a)] contains
two elements a for every a such that P (a) holds, where P is some predicate on symbols
of the alphabet under consideration. To denote individual elements of a bag, the same
symbol “∈” is used as for sets: For any bag X over alphabet A and element a ∈ A, a ∈
X if and only if X(a) > 0. The sum of two bags X and Y , denoted X � Y , is defined
as [an | a ∈ A ∧ n = X(a) + Y (a)]. The difference of X and Y , denoted X − Y , is
defined as [an | a ∈ A∧ n = max((X(a) − Y (a)), 0)]. size(X) =

∑
a∈A X(a) is the

size of the bag. The binding of sum and difference is left-associative. The restriction of
X to some domain D ⊆ A, denoted X |̀D, is defined as [aX(a) | a ∈ D]. Restriction
binds stronger than sum and difference. The notion of subbags is defined as expected:
Bag X is a subbag of Y , denoted X ⊆ Y , if and only if, for all a ∈ A, X(a) ≤ Y (a).
X ⊂ Y , if and only if, X ⊆ Y and for some a ∈ A, X(a) < Y (a). Note that any
finite set of elements from A also denotes a unique bag over A, namely the function
yielding 1 for every element in the set and 0 otherwise. Therefore, finite sets can also
be used as bags. If X is a bag over A and Y is a finite subset of A, then X −Y , X �Y ,
Y −X , and Y �X yield bags over A. Moreover, X ⊆ Y and Y ⊆ X are defined in a
straightforward manner.

Less straightforward is the way we deal with case identifiers. Each case (i.e., work-
flow instance) needs to have a unique identifier. Moreover, parts of the process may
be instantiated multiple times. These sub-instances should again have unique identi-
fiers, etc. To handle these issues, we assume an infinite set I extended with parent-child
relationships.

YAWL: Yet Another Workflow Language 24

Definition 6. I is an infinite set of case identifiers. We define the following functions on
I:

– child : I × IN \ {0} → I . child(i, n) is the n-th child of i.
– children : I → IP(I). j ∈ children(i) if and only if j is a child of i, i.e.,

children(i) = {child(i, n) | n ∈ IN \ {0}}.
– children∗ : I → IP(I) is the reflexive transitive closure of children , i.e.,

children∗(i) = ∪n∈IN childrenn(i), where
children0(i) = {i} and childrenn+1(i) = children(childrenn(i)).7

Function child is defined such that for any i, j ∈ I and n,m ∈ IN: child(i, n) =
child(j,m) implies i = j and n = m.

Each identifier has an infinite number of child instances. These child instances are or-
dered and non-overlapping, i.e., child(i, n) is the n-th child of i and for any i, j ∈ I
and n,m ∈ IN: child(i, n) = child(j,m) implies i = j and n = m. Based on child
the functions children and children∗ provide the set of direct children and the set of
all descendants respectively. Note that i ∈ children∗(i) and i
∈ children(i) for any
i ∈ I . It is possible to construct I and the corresponding functions as is shown in
Chapter 11 of [28]. An example of an encoding of I is I = IN∗ (sequences of nat-
ural numbers) and child(i, n) = i.n where i ∈ IN∗ and n ∈ IN \ {0}. 62.231.77
is an element of such I , child(62.231.77, 9) = 62.231.77.9, children(62.231.77) =
{62.231.77.1, 62.231.77.2, . . .}, and children∗(62.231.77) = {62.231.77, 62.231.77.1,
62.231.77.2, . . . , 62.231.77.1.1, 62.231.77.1.2, . . .}. Note that such encoding is similar
to IP addresses on the Internet.

Using the notation for bags and the definition of I we can define the state space of
a workflow specification.

State space We will use the set of case identifiers I to distinguish cases. Moreover, be-
cause of parallelism, a single case can be in multiple conditions and/or tasks. Therefore,
we represent a state as a bag of objects where each object is represented by a location
and an identity. Readers familiar with (coloured) Petri nets can think of these objects
as (coloured) tokens. Readers not familiar with Petri nets can think of these objects as
“substates” or “threads of control”. In the remainder we will use the term token.8 For
reasons of simplicity we will assume that each task has four states: exect (for a task
(instance) being executed), mi at (for a task (instance) being active), mi et (for a task
being entered, i.e., task instances which have been created but not yet being executed),
and mi ct (for a task (instance) that has completed). The states mi at, mi et, and
mi ct have been added to deal with multiple instances. If there would not be multiple
instances, the state exect would have been sufficient. State mi et keeps track of task
instances that have been created but still are waiting to be executed. State mi ct keeps
track of task instances that have been completed. Task instances move from mi et, to

7 Note that we have applied the function children to a set of identifiers rather than a single
element. This extended use, however, is straightforward.

8 In spite of the use of Petri-net terminology, it is important to note that we do not use standard
Petri-net semantics, e.g., the firing rule is modified considerably.

YAWL: Yet Another Workflow Language 25

exect, to mi ct. For any token residing in any of these three states there is a correspond-
ing token in state mi at to keep track of all instances.

Definition 7. A workflow state s of a specification S = (Q, top, T �,map) is a multiset
over Q�×I where Q� = C�∪(∪t∈T�{exect,mi at,mi et,mi ct}), i.e., s ∈ B(Q�×
I).

A workflow state s is a bag of tokens where each token is represented by a pair con-
sisting of a condition from Q� and an identifier from I , i.e., s ∈ B(Q� × I). For a
token (x, i) ∈ s, x denotes the location of the token and i denotes the identity of the
token. Location x is either (1) an implicit or explicit condition (x ∈ Q�) or (2) a task
state of some task t ∈ T � (x ∈ {exect,mi at,mi et,mi ct}). When defining the state
transitions it will become clear that reachable workflow states will satisfy the invari-
ant that the number of tokens in mi at equals the sum of tokens in exect, mi et, and
mi ct, i.e., the number of active instances equals the number of executing, entered, and
completed instances.

Note that in the workflow state we do not distinguish between atomic and composite
tasks. We could have omitted task states for composite tasks. For reasons of simplic-
ity, we did not do so. For similar reasons we do not distinguish between tasks hav-
ing a single instance and tasks (potentially) having multiple instances. We could have
omitted mi at, mi et, and mi ct for each t ∈ TSI . However, this would have com-
plicated things without changing the semantics. Instead we assume that for t ∈ TSI :
π1(nofi(t)) = 1, π2(nofi(t)) = 1, π3(nofi(t)) = ∞, π4(nofi(t)) = static.

To query workflow states (or parts of workflow states), we define three projection
functions.

Definition 8. Let s ∈ B(Q�× I) be a workflow state and x ∈ Q�. id(s) = {i | (y, i) ∈
s}, id(s, x) = [in | i ∈ I ∧ n ∈ IN ∧ n =

∑
(x,i)∈s s(x, i)], and q(s) = [yn | y ∈

Q� ∧ n ∈ IN ∧ n =
∑

i∈I | (y,i)∈s s(y, i)].

id(s) returns the set of all identities appearing in state s. id(s, x) returns a bag of iden-
tities appearing in location x in state s. q(s) returns a bag of locations marked in state s
by some token.

State transitions To complete the semantics of a workflow specification, we need
to specify all possible state transitions. The state space combined with the transition
relation defines a transition system.

Figure 9 shows all possible transitions for an atomic task t using a Petri-net-like
notation.9 There are five types of transitions: enter , start , complete, exit , and add .
Each of these transitions is relative to some task t. Figure 9 also shows the four task
states mi at, exect, mi et, and mi ct. The decomposition of an atomic task into five
transitions is independent of the hierarchical structure of the model. Therefore, Fig-
ure 9 should not be confused with the YAWL diagrams shown before. It should only be
considered as a “roadmap” for reading the subsequent definitions.

9 Although some of the terminology (e.g. token and transition) is borrowed from Petri nets, the
diagram should not be read as a normal Petri net, e.g., enter produces a variable number of
tokens and exit consumes a variable number of tokens as indicated by the “thick” arcs.

YAWL: Yet Another Workflow Language 26

entert exitt

add

startt completet

mi_at

mi_ctmi_et

exect

Fig. 9. Illustration of the semantics of an atomic task t.

Transition enter occurs when it is time to execute task t. If join(t) = XOR, it
suffices if one of the conditions in the preset of t holds a token. If join(t) = AND , each
of the input conditions needs to hold a token corresponding to the same case/instance
(i.e., all input tokens need to have the same identity). If join(t) = OR, the number of
input tokens is in-between the number of tokens needed for the XOR-join and AND-
join. (We will come back to this later.) As in an ordinary Petri net, transition enter
removes the tokens that enabled the task. The number of tokens produced depends on
the number of instances that needs to be created. If t ∈ TSI , two tokens are produced:
one for mi at and one for mi et. If more instances need to be created, more tokens
are produced. However, the number of tokens produced for mi at always matches the
number of tokens produced for mi et. Similarly, the identities match.

Transition start occurs when the execution of the task starts. This transition is en-
abled for each token in mi et. When this transition fires it consumes a token from
mi et and produces a token for exect.

Transition complete occurs when the execution is completed. When this transition
fires it consumes a token from exect and produces a token for mi ct.

Transition exit occurs when all instances corresponding to the same parent have
completed. This transition is not like an ordinary Petri-net transition in the sense that the
number of tokens consumed depends on the number of instances created. In addition,
this transition removes tokens from selected parts of the specification as indicated by
rem(t). The number of tokens produced depends on split(t).

Transition add is only relevant for tasks t with t ∈ TMI and π4(nofi(t)) =
dynamic. As long as the maximum number is not reached, the transition can create
new instances by adding a token to mi et. The transition removes all tokens having
the same parent from mi at and returns these tokens to mi at including an additional
token corresponding to the new child instance. This may seem to be a complicated way
of adding a single token. However, it is done this way to make sure that the token gets
the right identifier.

Figure 9 only considers atomic tasks. If t is a composite task, there is a corre-
sponding subnet map(t). Figure 10 illustrates how the composite task t is connected

YAWL: Yet Another Workflow Language 27

entert

map(t)

imap(t) omap(t)

exitt

add

startt completet

mi_at

mi_ctmi_et

exect

Fig. 10. Illustration of the semantics of a composite task t.

through the input and output conditions (imap(t) and omap(t)) to the subnet map(t).
At the semantical level each composite task is decomposed into the structure shown in
Figure 10. If t ∈ TC , then start produces an additional token for the input condition
of the corresponding subnet. Moreover, if t ∈ TC , then complete can only fire if the
output condition of the corresponding subnet holds a token with the right identity (i.e.,
the identities of the tokens in exect and omap(t) match). Again we would like to stress
that Figure 10 is not a YAWL model, it is only used to illustrate the semantics which
will be defined in this section. Workflow designers using YAWL do not need to see this
internal behaviour. Moreover, it is important to note that although YAWL borrows some
of the concepts of Petri nets it is not some extension built on top of high-level Petri nets.
It is a completely new language having independent semantics as will be shown in the
remainder.

The following definitions formalise the set of transitions possible in a given state
by specifying so-called binding relations. The first binding relation is bindingenter.
bindingenter(t, i, c, p, s) is a Boolean expression which evaluates to true if enter can
occur for task t, case/instance i, in state s, while consuming the bag of tokens c and
producing the bag of tokens p.

Definition 9. Let S = (Q, top, T �,map) be a specification and t ∈ T �, i ∈ I , c, p, s ∈
B(Q� × I). The Boolean function bindingenter(t, i, c, p, s) yields true if and only if an
n ∈ IN exists such that all of the following conditions hold:

– Tokens to be consumed are present in the state:

c ⊆ s

YAWL: Yet Another Workflow Language 28

– Tokens are consumed from the input conditions of the task involved and at most one
token can be consumed from each condition of the preset:

q(c) ⊆ •t
– n tokens are created both for the active task state and the entered task state of the

task involved:

p = [(mi at, j) | j = child(i, k) ∧ 1 ≤ k ≤ n] �
[(mi et, j) | j = child(i, k) ∧ 1 ≤ k ≤ n]

– The number n of tokens created is not less than the lower bound and not more than
the upper bound specified for the task involved:

π1(nofi(t))) ≤ n ≤ π2(nofi(t))

– Tokens to be produced were not already in the state, i.e., a task is instantiated only
once for a given identifier:

s ∩ p = ∅
– Tokens to be consumed all refer to the same identity:

{i} = id(c)

– For AND-join behaviour, all input conditions need to have tokens:

join(t) = AND ⇒ q(c) = •t
– For OR-join behaviour, at least one input condition needs to have tokens:

join(t) = OR ⇒ q(c)
= ∅
– For XOR-join behaviour, one token from one input condition is consumed:

join(t) = XOR ⇒ q(c) is a singleton

Similarly, the other binding relations are given and binding(t, i, c, p, s) is the overall
binding relation. The next binding relation is bindingstart.

Definition 10. Let S = (Q, top, T �,map) be a specification and t ∈ T �, i ∈ I ,
c, p, s ∈ B(Q� × I). The Boolean function bindingstart(t, i, c, p, s) yields true if and
only if all of the following conditions hold:

– Tokens to be consumed are present in the state:

c ⊆ s

– Just one token is consumed which was in the entered task state of the task involved:

c = [(mi et, i)]

YAWL: Yet Another Workflow Language 29

– A token is produced for the input condition of the corresponding decomposition (if
existing) and a token is produced for the executing task state of the task involved:

p = [(exect, i)] � [(imap(t), i) | t ∈ TC]

The counterpart of bindingstart is bindingcomplete.

Definition 11. Let S = (Q, top, T �,map) be a specification and t ∈ T �, i ∈ I ,
c, p, s ∈ B(Q� × I). The Boolean function bindingcomplete(t, i, c, p, s) yields true if
and only if all of the following conditions hold:

– Tokens to be consumed are present in the state:

c ⊆ s

– For a token to be able to complete, it has to be in the executing task state of the task
involved and its decomposition (if present) needs to be finished:

c = [(exect, i)] � [(omap(t), i) | t ∈ TC]

– Completing implies producing a token for the completed task state of the task in-
volved:

p = [(mi ct, i)]

Next we define the binding relation for the exit transition. This is done in two steps.
bindingexit(t, i, c, p, s) (Definition 12) does not take the removal of additional tokens
into account, i.e., rem(t) is ignored. However, bindingrem

exit(t, i, c, p, s) (Definition 13)
extends bindingexit(t, i, c, p, s) to remove these additional tokens.

Definition 12. Let S = (Q, top, T �,map) be a specification and t ∈ T �, i ∈ I ,
c, p, s ∈ B(Q� × I). The Boolean function bindingexit(t, i, c, p, s) yields true if and
only if all of the following conditions hold:

– Tokens to be consumed are present in the state:

c ⊆ s

– Tokens are produced only for output conditions of the task involved and at most one
token can be produced for each condition in the postset:

q(p) ⊆ t•
– Tokens to be consumed are children of the instance considered, and they occur in

both the active task state and the completed task state of the task involved (and
tokens in other task states are not affected):

c ⊆ �{[(mi at, j), (mi ct, j)] | j ∈ children(i)}
– If a token is consumed from the active task state then its corresponding token is

removed from the completed task state and vice versa:

id(c,mi at) = id(c,mi ct)

YAWL: Yet Another Workflow Language 30

– All children of the identifier involved have completed or at least as many as required
by the threshold of the task involved have completed:

id(s− c,mi at) ∩ children(i) = ∅ ∨ size(id(c,mi ct)) ≥ π3(nofi(t))

– The only tokens produced are those with the identifier involved:

{i} = id(p)

– For AND-split behaviour, tokens are produced for all output conditions of the task
involved:

split(t) = AND ⇒ q(p) = t•
– For OR-split behaviour, tokens are produced for some of the output conditions of

the task involved:
split(t) = OR ⇒ q(p)
= ∅

– For XOR-split behaviour, a token is produced for exactly one of the output condi-
tions of the task involved:

split(t) = XOR ⇒ q(p) is a singleton

Definition 13. Let S = (Q, top, T �,map) be a specification and t ∈ T �, i ∈ I ,
c, p, s ∈ B(Q� × I). The Boolean function bindingrem

exit(t, i, c, p, s) yields true if and
only if a c′ ∈ B(Q� × I) exists with bindingexit(t, i, c′, p, s) such that:

c = c′ � [(x, j) ∈ s− c′ | j ∈ children∗(i) ∧
((∃t′∈unfold(rem(t)∪{t})∩T�

x ∈ {exect′ ,mi at′ ,mi et′ ,mi ct′}) ∨
x ∈ unfold(rem(t) ∪ {t}) ∩ C�)]

I.e., from all conditions part of task t (and its descendants, if it has a decomposition) and
part of its removal set (and descendants of elements thereof) tokens are removed that
correspond to children of identifier i. Note that in case the threshold for continuation
was reached, executing the exit part of the task involved implies cancellation of all child
instances (if existing) which have not yet completed.

Definition 14. Let S = (Q, top, T �,map) be a specification and t ∈ T �, i ∈ I ,
c, p, s ∈ B(Q� × I). The Boolean function bindingadd(t, i, c, p, s) yields true if and
only if an n ∈ IN exists such that all of the following conditions hold:

– Tokens to be consumed are present in the state:

c ⊆ s

– The tokens to be consumed are children of the identifier involved present in the
active task state of the task involved:

c = [(mi at, j) | j = child(i, k) ∧ 1 ≤ k ≤ n]

YAWL: Yet Another Workflow Language 31

– All children of the identifier involved present in the active task state of the task
involved are consumed:

id(s− c,mi at) ∩ children(i) = ∅

– It is still possible to create an extra token without violating the upper bound speci-
fied for the task involved:

n < π2(nofi(t))

– The task involved should allow for the creation of extra tokens while handling the
other tokens:

π4(nofi(t)) = dynamic

– An extra token is added to the active task state and to the entered task state of the
task involved:

p = c � [(mi at, child(i, n+ 1)), (mi et, child(i, n+ 1))]

Note that n tokens are removed from mi at and n + 1 are returned to this task state.
This way the result is one additional token in the active task state. The same token is
added to the entered task state mi et.

Now we can define the binding relation binding(t, i, c, p, s). Note that this relation
excludes OR-joins. OR-joins will be incorporated later.

Definition 15. Let S = (Q, top, T �,map) be a specification and t ∈ T �, i ∈ I ,
c, p, s ∈ B(Q� × I). The Boolean function binding(t, i, c, p, s) yields true if and only
if any of the following conditions holds:

– The enter part of a task is enabled, but the task does not have OR-join behaviour:

bindingenter(t, i, c, p, s) ∧ join(t)
= OR

– The start part of a task is enabled:

bindingstart(t, i, c, p, s)

– The complete part of a task is enabled:

bindingcomplete(t, i, c, p, s)

– The exit part of a task is enabled:

bindingrem
exit(t, i, c, p, s)

– The add part of a task is enabled:

bindingadd(t, i, c, p, s)

YAWL: Yet Another Workflow Language 32

Based on the explanations given before, the definitions of most bindings are straight-
forward. As indicated before, bindingrem

exit(t, i, c, p, s) extends bindingexit(t, i, c, p, s)
and the overall binding relation binding(t, i, c, p, s) excludes OR-joins. It is important
to note that Figure 10 is just added for illustration purposes: The transition rules are
quite different from the standard firing rule in a (coloured) Petri net.

Using binding(t, i, c, p, s) we can define a partial transition relation excluding OR-
joins.

Definition 16. Let S = (Q, top, T �,map) be a specification and s1 and s2 two work-
flow states of S. s1 � s2 if and only if there are t ∈ T �, i ∈ I , c, p ∈ B(Q� × I) such
that binding(t, i, c, p, s1) and s2 = (s1 − c) � p.

� defines a partial transition relation on the states of workflow specification. The re-

flexive transitive closure of � is denoted
∗� and Rpartial(s) = {s′ ∈ B(Q�×I) | s ∗�

s′} is the set of states reachable from state s without enabling any OR-joins (all in the
context of some workflow specification).

Thus far, we excluded OR-joins from the transition relation because the OR-join
implies a partial synchronisation. Whether there are enough tokens for such partial syn-
chronisation cannot be decided locally (see Section 3.2). The required functionality is
specified by Pattern 7 (Synchronising merge, [7, 71]) and can be described as follows:
“an OR-join requires at least one token and waits until it is not possible to add any rel-
evant tokens to the set of input conditions”. This informal requirement is formalised in
the following definition.

Definition 17. Let S = (Q, top, T �,map) be a specification and s1 and s2 two work-
flow states of S. s1 � s2 if and only if s1 � s2 or each of the following conditions is
satisfied:

– There are t ∈ T �, i ∈ I , c, p ∈ B(Q� × I) such that
join(t) = OR, bindingenter(t, i, c, p, s1), and s2 = (s1 − c) � p.

– For each s ∈ Rpartial(s1), there is no c′ ∈ B(Q� × I) such that
bindingenter(t, i, c′, p, s) and c′ > c.

� is the transition relation which also takes OR-joins into account. � includes all state
transitions in � and adds transitions of type enter if the number of consumed tokens
cannot be increased by postponing the occurrence of the OR-join.

The reflexive transitive closure of � is denoted
∗
� and R(s) = {s′ ∈ B(Q� ×

I) | s ∗
� s′} is the set of states reachable from state s. If ambiguity is possible, we will

add subscripts, i.e., �S ,
∗
�S , and RS .

The state space B(Q�
S × I) and transition relation �S define a transition sys-

tem (B(Q�
S × I),�S) for S. It is also possible to define a labelled transition sys-

tem by taking the bindings into account. For example, label a transition corresponding
to bindingstart(t, i, c, p, s) as start t,i. Such a labelled transition system can be aug-
mented with different notions of equivalence, e.g., branching bisimilarity [25]. It is also
possible to abstract from certain actions by renaming them to τ (silent action). For ex-
ample, it may be useful to abstract from exit t in the semantics. The choice of a good

YAWL: Yet Another Workflow Language 33

equivalence relation for workflow management is a topic in itself [37]. Therefore, we
restrict ourselves to giving the transition system (B(Q�

S × I),�S).
Interesting initial states for (B(Q�

S × I),�S) are [(itop , i) | i ∈ X] where X ⊆ I
such that for all i, j ∈ X: children∗(i)∩ children∗(j) = ∅ if i
= j. These initial states
correspond to states with a number of cases marking the initial condition for the top-
level workflow. The requirement on X is needed to avoid interacting cases, i.e., tokens
of different cases should not get mixed.

4.4 Soundness

Definition 17 specifies the semantics of any workflow specification as defined in Def-
inition 2. However, some workflows may be less desirable. For example, it is possible
to specify workflows that may deadlock, are unable to terminate, or have dead parts.
Therefore, we define a notion of soundness. For the definition of soundness we assume
an initial state with one case marking the initial condition of the top-level workflow.

Definition 18. Let S = (Q, top, T �,map) be a specification with initial state [(itop , i)]
for some i ∈ I .

S has the option to complete iff for any state s ∈ R([(itop , i)]): [(otop , i)] ∈ R(s).
S has no dead tasks iff for any t ∈ T there is a state s ∈ R([(itop , i)]) such that

exect ∈ q(s).
S has proper completion iff for any state s ∈ R([(itop , i)]): if s ≥ [(otop , i)], then

s = [(otop , i)].
S is sound iff S has the option to complete, has no dead tasks, and has proper

completion.

The definition of the option to complete, absence of dead tasks, proper completion, and
soundness are straightforward translations of the properties given in [2, 6] for WF-nets
to workflow specifications. The four properties can be extended to initial states with n
cases in the initial state. However, for interesting initial states this makes no difference.
Let sX = [(itop , i) | i ∈ X] where X ⊆ I such that X
= ∅ and for all i, j ∈ X:
children∗(i)∩ children∗(j) = ∅ if i
= j. S has the option to complete iff for any state
s ∈ R(sX): [(otop , j) | j ∈ X] ∈ R(s). S has no dead tasks iff for any t ∈ T there
is a state s ∈ R(sX) such that exect ∈ q(s). S has proper completion iff for any state
s ∈ R(sX): if s ≥ [(otop , j) | j ∈ X], then s = [(otop , j) | j ∈ X]. One could also
define a notion of n-soundness where n = size(X). However, a workflow specification
S is sound if and only if it is n-sound. This property can be verified using the argument
that tokens of different cases cannot get mixed when starting in sX .

The notion of soundness for workflow specification can also be used to define
soundness of EWF-nets.

Definition 19. Let N = (C, i,o, T, F, split , join, rem,nofi) be an EWF-net. S =
({N}, N, T, ∅) is the corresponding workflow specification consisting of just this EWF-
net. N has the option to complete, has no dead tasks, and has proper completion if and
only if S has the option to complete, has no dead tasks, and has proper completion
respectively. N is sound if and only if S is sound.

YAWL: Yet Another Workflow Language 34

In this section we have defined the YAWL language and its semantics. In Section 4.1
we defined the syntax of a workflow specification in mathematical terms. In Section 4.3
we defined the semantics of a workflow specification by providing a transition sys-
tem. Finally, in Section 4.4 we defined soundness for both workflow specifications and
EWF-nets as the basic notion of correctness. Although YAWL is based on Petri nets, the
language really extends (coloured) Petri nets as was shown in this section. The advan-
tages of YAWL over Petri nets are that it is easy to deal with patterns involving multiple
instances, advanced synchronisation patterns, and cancellation patterns as was shown
in this section.

5 Analysis

YAWL is more suitable than (high-level) Petri nets in the sense that there is direct
support for several patterns that are difficult to deal with using (coloured) Petri nets.
Petri nets are known for the wide variety of available analysis techniques and tools.
Therefore, it is interesting to see which results can be transferred from Petri nets to
YAWL. In this section, we will not address this question in detail. Instead, we give an
interesting compositionality result.

A workflow specification S is composed of a set of EWF-nets Q and soundness has
been defined for both workflow specifications and EWF-nets. Therefore, it is interest-
ing to investigate whether soundness of each EWF-net in Q implies soundness of the
workflow specification S. The following theorem shows that this is indeed the case, as
long as we do not allow nested OR-joins.

Theorem 1. Let S = (Q, top, T �,map) be a specification without OR-joins (i.e.,
join(t)
= OR for any t ∈ T �). S is sound if each N ∈ Q is sound.

Proof. Let each N ∈ Q be sound. We need to prove that S is sound by showing that S
has the option to complete, has no dead tasks, and has proper completion. To do this we
use the fact that relation H = {(N1, N2) ∈ Q×Q | ∃t∈dom(mapN1

)mapN1
(t) = N2}

is a tree. For each N ∈ Q: N ↓= {N ′ ∈ Q | (N,N ′) ∈ H}, i.e., N ↓ is the set of EWF-
nets having N as a direct parent node in the tree structure. N ↓∗= {N ′ ∈ Q | (N,N ′) ∈
H∗} is the transitive variant, i.e., all descendents of N including N .

For each N ∈ Q, we define SN as the specification composed of EWF-nets N ↓∗
and top element N . It is easy to see that this is a specification satisfying all the require-
ments stated in Definition 2. Using induction we will show that SN is sound.

First we consider all leaf nodes. For each leaf node N : SN is sound because S =
({N}, N, T, ∅) and N is sound (cf. Definition 19).

Next we consider all nodes whose direct descendents have been shown to be sound,
i.e., consider nodes N such that for each N ′ ∈ N ↓: SN ′ is proven to be sound. In
the remainder of this proof we show that for such an N , SN is sound. SN has the
option to complete because the only way to block the top level net is through blocking
a completet transition for some composite task t mapped onto some EWF-net N ′.
However, this is not possible because SN ′ is sound. Moreover, there cannot be any
tokens left in SN ′ because the moment a token is put onto oN ′ , SN ′ has no other tokens
corresponding to the same instance. SN has no dead tasks because each task t in N

YAWL: Yet Another Workflow Language 35

can be enabled. As a result any of the tasks in SN ′ can be activated if t is mapped onto
some EWF-net N ′. SN has proper completion for similar reasons as it has the option to
complete. As a result SN is sound because SN has the option to complete, has no dead
tasks, and has proper completion. Note that the requirement that there are no OR-joins
is essential here, because the presence of an OR-join at the lower level can change the
behavior of an OR-join at the higher level.

The induction step can be repeated until N = top and thus we can prove that
Stop = S is sound. �

This theorem shows that the correctness of a YAWL workflow specification can be
verified in a compositional way as long as there are no OR-joins. Clearly, multiple OR-
joins can destroy compositionality because the presence of an OR-join at the lower
level can change the behavior of an OR-join at the higher level. � defines a partial
transition relation excluding OR-joins. An interesting question would be if � could be
modified such that Theorem 1 also holds for specification with multiple OR-joins, e.g.,
only exclude OR-joins which are in a “cycle”. This is not trivial as is shown in [4].

Theorem 1 has been included in this paper to demonstrate that the formal semantics
of YAWL allow for the development of analysis methods and supporting theories. The
goal is to transfer as many results from the Petri-net domain to YAWL as possible. Given
the expressiveness of YAWL, these results are directly applicable to a range of existing
workflow languages. For example, we expect that for restricted YAWL specifications
we can use invariants comparable to place and transition invariants in Petri nets [13, 35,
50].

6 Related work

In this section some workflow languages used in the literature will be analysed in terms
of their support for the patterns as presented in [7]. The aim is to provide some insight
into the relative strength of YAWL with respect to these approaches in terms of support
for the control flow perspective. The results are summarised in Table 1. It should be
noted that a pattern-based analysis of 13 commercial workflow offerings can be found
in [7]. For an analysis of UML activity diagrams 1.4 in terms of (some of) the patterns,
we refer to [15]. BPEL4WS, a proposed standard for web service composition, has
been analysed in [70], while another such proposed standard, BPML, has been analysed
in [5]. WfMC’s XPDL [68] is assessed in terms of the patterns in the appendix. Note
that the appendix also provides a general explanation of how to correctly interpret the
various ratings.

The approach described in ADEPTflex [49] takes structured models as a starting
point, hence splits and joins can be matched, and loops have a unique entry and a unique
exit (hence arbitrary loops are not supported, and neither is implicit termination). In this
structured context, the discriminator is supported through “parallel branching with final
selection”. The deferred choice is supported as decisions may be made by users in which
case all possible options are offered and once one option is selected, the other options
are withdrawn. One can use “soft synchronization” to capture the synchronising merge.
It should be noted that the corresponding edge and the edge corresponding to “strict

YAWL: Yet Another Workflow Language 36

pattern product

A
D

E
PT

fle
x

[4
9]

O
PE

N
flo

w
[2

6]

E
PC

[3
6]

M
en

to
r

[6
9,

46
,4

5]

C
T

R
[1

1,
56

]

M
et

eo
r

[5
7]

M
ob

ile
[3

3]

W
A

SA
[6

6]

E
xo

tic
a

[4
4]

C
Fs

[1
4]

1 (seq) + + + + + + + + + +
2 (par-spl) + + + + + + + + + +
3 (synch) + + + + + + + + + +
4 (ex-ch) + + + + + + + + + +

5 (simple-m) + + + + + + + + + +
6 (m-choice) -(i) + + - + + + + + -
7 (sync-m) +(ii) - + - + - - + + -
8 (multi-m) - - - - - + - - - -

9 (disc) +(ii) - - + - +/- + - - -
10 (arb-c) - -(i) + - - + - - - -
11 (impl-t) - -(i) + - - - - + + +

12 (mi-no-s) - - - - - + - - - -
13 (mi-dt) + + + + + + + + + +
14 (mi-rt) - - - - - - - - -(iii) -
15 (mi-no) - - - - - - - - - -
16 (def-c) + - - + + - - - - -

17 (int-par) - - - - - - + - - -
18 (milest) - - - +/- - - - - - -
19 (can-a) - - - + - - - - - -
20 (can-c) - - - + - - - - - -

Table 1. Main results of evaluating workflow languages used in the literature using the workflow
patterns [7, 71]. (i) Support for this pattern could not be deduced from the paper. (ii) Only in a
structured context. (iii) If the Bundle concept of FlowMark is used this “-” should change into a
“+”.

YAWL: Yet Another Workflow Language 37

synchronization” can be used between different parallel branches, hence the approach
goes beyond approaches that are fully structured. Apart from the deferred choice, other
state-based patterns are not supported. In addition, there is no support for cancellation
and multiple active instances of the same activity within the same case.

Apart from the basic control flow patterns, OPENflow [26] supports the multi-
choice and multiple instances with a priori design time knowledge (note though that
this pattern always receives a “+” rating if parallelism/synchronisation is supported).
Interestingly, it also supports the notion of recursive decomposition: “Genesis tasks
can also be utilised to specify workflow applications that contain recursive executions,
that is a task structure whose execution will potentially cause the execution of its own
structure as one of its sub-tasks.” [26]. There is no pattern corresponding to recursive
decomposition.

EPCs [36] allow for arbitrary cycles, implicit termination, multi-choice, and the
synchronising merge, but do not support multiple active instances of the same activity
within the same case, the discriminator, the multi-merge, cancellation, and the state-
based patterns. One could argue that the multi-choice is not supported because the OR-
split connector typically does not have an explicit specification. However, this also holds
for some of the other constructs and is directly caused by the fact that it is typically used
in an informal manner. As indicated in the discussion in Section 3.2 the semantics of
the OR-join is also under-specified, and thus the support for the synchronising merge
may also be debated.

In the Mentor project [69, 46, 45] state and activity charts are used for workflow
specification. These languages were proposed in the context of the STATEMATE sys-
tem described in [27]. The evaluation given here is based on this reference. Since state
charts are defined in terms of classical automata, the notion of being in a state more
than once at a given point in time (which would correspond to having mulitple tokens
in the same place in a Petri net) is not supported. As a result, there is inherently no sup-
port for multiple active instances of the same activity within the same case, nor for the
multi-merge. Also, there is no support for arbitrary cycles. Specifically, when a transi-
tion crosses the boundary of a concurrent region in a state chart, the semantics is that
all the states in that region and in its sibling regions are exited if this transition is taken.
Hence it is not possible to express arbitrary cycles crossing concurrent regions with the
same semantics as in YAWL. State charts must have a single final state hence there is
no support for implicit termination. Additionally, there are no constructs corresponding
to the multi-choice, the synchronising merge, and interleaved parallel routing. Finally,
the milestone pattern receives a “+/-” as in the condition part of an ECA rule one can
test whether the execution is in a given state through the predicate in. It should be re-
marked that state charts offer an operator called “History”, which allows resumption of
the state of execution that existed prior to a cancellation event. This feature does not
have a corresponding pattern.

Concurrent Transaction Logic [9] (CTR) is used in [11, 56] for workflow specifi-
cation. Apart from the basic control flow patterns, CTR supports the multi-choice, the
synchronising merge, multiple instances with a priori design time knowledge, and the
deferred choice. CTR goes beyond fully structured approaches when it comes to par-

YAWL: Yet Another Workflow Language 38

allel structures as messaging can be used to achieve synchronisation between parallel
branches (see Example 2.2 in [9]).

The evaluations of Meteor and Mobile are taken from [7]. Note that in [7] it is
remarked that Mobile is extensible and that hence the evaluation restricts itself to the
standard functionality offered.

In terms of support for the workflow patterns, WASA [64, 66, 67] corresponds to
MQ/Series Workflow (which is evaluated in [7]). Contrary to MQ/Series Workflow, it-
eration in WASA is supported through recursion: “... a workflow schema i can appear as
a sub-workflow schema of itself ...” [66] (page 50). As stated before, there is no pattern
corresponding to this feature. Note that the focus of WASA is not on expressiveness but
on supporting workflow change.

The Exotica Research Project is described in [44] where it is stated that “... we
have focused on a particular commercial product, FlowMark, IBM’s workflow product
...”. As remarked in [7], the Bundle construct is supported by FlowMark, but not by
MQSeries/Workflow version 3.1. If this feature was used in Exotica, this would mean
that in Table 1, support for multiple instances with a priori runtime knowledge, would
change from a “-” to a “+”.

The WASA and Exotica research projects illustrate that several research prototypes
have been influenced by the IBM product FlowMark and its successors MQSeries
Workflow and WebSphere MQ Workflow. See [42] for more details. It is also inter-
esting to see that FlowMark-specific concepts such as “Death Path Elimination” have
been adopted in web service composition languages such as WSFL and BPEL4WS.

Communicating Flowcharts (CFs) [14] support the basic control flow patterns, im-
plicit termination, and multiple instances with a priori design time knowledge, but none
of the other workflow patterns.

The Vortex approach described in [31] does not really amend itself to a pattern-
based analysis, as all control flow dependencies are captured through the data perspec-
tive.

A lot of work has been done in the area of transactional aspects of workflows, see
e.g. [22, 29, 63, 65]. It seems that transactional aspects play a role at a different level
than typical control flow aspects, though the separation between the two is not al-
ways clear-cut (consider e.g. the cancellation patterns). The relation between YAWL
and transactional concepts needs to be researched.

7 Conclusion

Through the analysis of a number of languages supported by workflow management
systems a number of patterns was distilled in previous work. While all these patterns
can be realised in high-level Petri nets, some of these patterns can only be realised
in a rather indirect way requiring a lot of specification effort. The language YAWL
was designed, based on Petri nets as to preserve their strengths for the specification of
control-flow dependencies in workflows, with extensions that allowed for straightfor-
ward specification of these patterns.

YAWL can be considered a very powerful workflow language, built upon expe-
riences with languages supported by contemporary workflow management systems.

YAWL: Yet Another Workflow Language 39

While not a commercial language itself it encompasses these languages (from a control-
flow patterns perspective), and, in addition, has a formal semantics. Such an approach is
in contrast with e.g. WfMC’s XPDL [68] which takes commonalities between various
languages as a starting point and does not have formal semantics. Its design hopefully
allows YAWL to be used for the purposes of the study of expressiveness and interoper-
ability issues.

It is important to note that there is a trade-off between the number of constructs
in a language and the patterns supported, i.e., in language design the main goal is to
keep the language simple but expressive. Although YAWL is more expressive, it does
not use an excessive number of constructs. Moreover, workflow languages should not
be confused with programming languages. In a programming language it is easy to add
a macro. The graphical nature of workflow languages and the interactions at runtime
(workflows are reactive), complicate the use of a simple macro facility.

The definition of YAWL presented in this paper only supports the control-flow
perspective. However, the relations with the other perspectives (e.g., the data and the
resource perspectives) are relevant and are being investigated. At this point in time,
YAWL has been extended with the the data perspective. For YAWL to be more appli-
cable in the area of web services and Enterprise Application Integration (EAI) it is also
desirable that support for communication patterns (e.g. the ones specified in [53]) is
built-in. Other directions for future research include extending YAWL with transaction
capabilities and developing advanced analysis techniques (e.g., invariants).

We invite the reader to use the current version of YAWL. The latest version can be
downloaded from http://www.citi.qut.edu.au/yawl. Note that YAWL is an open-source
initiative. Therefore, we also welcome additions to the software.

Acknowledgements. The authors would like to thank Alistair Barros, Marlon Dumas,
Bartek Kiepuszewski, and Petia Wohed for their collaborative work on the workflow
patterns. We would also like to thank Marlon Dumas for his remarks in relation to
the evaluation of state charts. Moreover, we would particularly like to thank Lachlan
Aldred for implementing the YAWL engine and commenting on earlier versions of the
paper. We thank Lindsay Bradford for his work on the development of a design tool for
YAWL, which is currently being implemented. We also thank Eric Verbeek for pointing
out that Theorem 1 does not hold for nested OR-joins. Finally, we would like to thank
the reviewers for their valuable suggestions.

Disclaimer. We, the authors and the associated institutions, assume no legal liability
or responsibility for the accuracy and completeness of any information about work-
flow products, workflow languages, and standards contained in this paper. However,
we made all possible efforts to ensure that the results presented are, to the best of our
knowledge, up-to-date and correct.

References

1. W.M.P. van der Aalst. Chapter 10: Three Good reasons for Using a Petri-net-based Workflow
Management System. In T. Wakayama, S. Kannapan, C.M. Khoong, S. Navathe, and J. Yates,
editors, Information and Process Integration in Enterprises: Rethinking Documents, volume

YAWL: Yet Another Workflow Language 40

428 of The Kluwer International Series in Engineering and Computer Science, pages 161–
182. Kluwer Academic Publishers, Boston, Massachusetts, 1998.

2. W.M.P. van der Aalst. The Application of Petri Nets to Workflow Management. The Journal
of Circuits, Systems and Computers, 8(1):21–66, 1998.

3. W.M.P. van der Aalst. Formalization and Verification of Event-driven Process Chains. Infor-
mation and Software Technology, 41(10):639–650, 1999.

4. W.M.P. van der Aalst, J. Desel, and E. Kindler. On the Semantics of EPCs: A Vicious Circle.
In M. Nüttgens and F.J. Rump, editors, Proceedings of the EPK 2002: Business Process
Management using EPCs, pages 71–80, Trier, Germany, November 2002. Gesellschaft für
Informatik, Bonn.

5. W.M.P. van der Aalst, M. Dumas, A.H.M. ter Hofstede, and P. Wohed. Pattern-Based Anal-
ysis of BPML (and WSCI). QUT Technical report, FIT-TR-2002-05, Queensland University
of Technology, Brisbane, 2002.

6. W.M.P. van der Aalst and K.M. van Hee. Workflow Management: Models, Methods, and
Systems. MIT press, Cambridge, MA, 2002.

7. W.M.P. van der Aalst, A.H.M. ter Hofstede, B. Kiepuszewski, and A.P. Barros. Workflow
Patterns. Distributed and Parallel Databases, 14(1):5–51, 2003.

8. Pallas Athena. Flower User Manual. Pallas Athena BV, Apeldoorn, The Netherlands, 2002.
9. A.J. Bonner and M. Kifer. Concurrency and Communication in Transaction Logic. In M.J.

Maher, editor, Proceedings of the Joint International Conference and Symposium on Logic
Programming, September 2-6, 1996, Bonn, Germany, pages 142–156. MIT Press, 1996.

10. P. Chrzastowski-Wachtel. A Top-down Petri Net Based Approach for Dynamic Workflow
Modeling. In W.M.P. van der Aalst, A.H.M. ter Hofstede, and M. Weske, editors, Interna-
tional Conference on Business Process Management (BPM 2003), volume 2678 of Lecture
Notes in Computer Science, pages 336–353. Springer-Verlag, Berlin, 2003.

11. H. Davulcu, M. Kifer, C.R. Ramakrishnan, and I.V. Ramakrishnan. Logic Based Modeling
and Analysis of Workflows (Extended Abstract). In Proceedings of the Seventeenth ACM
SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems, June 1-3, 1998,
Seattle, Washington, pages 25–33. ACM Press, 1998.

12. J. Dehnert and P. Rittgen. Relaxed Soundness of Business Processes. In K.R. Dittrich,
A. Geppert, and M.C. Norrie, editors, Proceedings of the 13th International Conference on
Advanced Information Systems Engineering (CAiSE’01), volume 2068 of Lecture Notes in
Computer Science, pages 157–170. Springer-Verlag, Berlin, 2001.

13. J. Desel and J. Esparza. Free Choice Petri Nets, volume 40 of Cambridge Tracts in Theoret-
ical Computer Science. Cambridge University Press, Cambridge, UK, 1995.

14. G. Dong, R. Hull, B. Kumar, J. Su, and G. Zhou. A Framework for Optimizing Distributed
Workflow Executions. In R. Connor and A. Mendelzon, editors, Research Issues in Struc-
tured and Semistructured Database Programming: 7th International Workshop on Database
Programming Languages, DBPL’99, Kinloch Rannoch, UK, September 1999. Revised Pa-
pers, volume 1949 of Lecture Notes in Computer Science, pages 152–167, Heidelberg, Ger-
many, 2000. Springer-Verlag.

15. M. Dumas and A.H.M. ter Hofstede. UML activity diagrams as a workflow specification
language. In M. Gogolla and C. Kobryn, editors, Proc. of the 4th Int. Conference on the Uni-
fied Modeling Language (UML01), volume 2185 of LNCS, pages 76–90, Toronto, Canada,
October 2001. Springer Verlag.

16. C.A. Ellis and G.J. Nutt. Modelling and Enactment of Workflow Systems. In M. Ajmone
Marsan, editor, Application and Theory of Petri Nets 1993, volume 691 of Lecture Notes in
Computer Science, pages 1–16. Springer-Verlag, Berlin, 1993.

17. FileNet. Visual WorkFlo Design Guide. FileNet Corporation, Costa Mesa, CA, USA, 1997.
18. L. Fischer, editor. Workflow Handbook 2001, Workflow Management Coalition. Future

Strategies, Lighthouse Point, Florida, 2001.

YAWL: Yet Another Workflow Language 41

19. Forté. Forté Conductor Process Development Guide. Forté Software, Inc, Oakland, CA,
USA, 1998.

20. M. Fowler. Analysis Patterns: Reusable Object Models. Addison-Wesley, Reading, Mas-
sachusetts, 1997.

21. Fujitsu. i-Flow Developers Guide. Fujitsu Software Corporation, San Jose, CA, USA, 1999.
22. G. Alonso and D. Agrawal and A. El Abbadi and M. Kamath and R. Günthör and C. Mo-

han. Advanced Transaction Models in Workflow Contexts. In Proceedings of the Twelfth
International Conference on Data Engineering, February 26 - March 1, 1996, New Orleans,
Louisiana. IEEE Computer Society, 1996.

23. E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns: Elements of Reusable
Object-Oriented Software. Professional Computing Series. Addison Wesley, Reading, MA,
USA, 1995.

24. H. J. Genrich and P. S. Thiagarajan. A Theory of Bipolar Synchronization Schemes. Theo-
retical Computer Science, 30(3):241–318, 1984.

25. R.J. van Glabbeek and W.P. Weijland. Branching Time and Abstraction in Bisimulation
Semantics. Journal of the ACM, 43(3):555–600, 1996.

26. J.J. Halliday, S.K. Shrivastava, and S.M. Wheater. Flexible Workflow Management in the
OPENflow System. In 4th International Enterprise Distributed Object Computing Confer-
ence (EDOC 2001), 4-7 September 2001, Seattle, Washington, Proceedings, pages 82–92.
IEEE Computer Society, 2001.

27. D. Harel, H. Lachover, A. Naamad, A. Pnueli, M. Politi, R. Sherman, A. Shtull-Trauring, and
M. Trakhtenbrot. STATEMATE: A Working Environment for the Development of Complex
Reactive Systems. IEEE Transactions on Software Engineering, 16(4):403–414, 1990.

28. K.M. van Hee. Information System Engineering: a Formal Approach. Cambridge University
Press, 1994.

29. I. Houston, M.C. Little, I. Robinson, S.K. Shrivastava, and S.M. Wheater. The CORBA
Activity Service Framework for Supporting Extended Transactions. In R. Guerraoui, editor,
Middleware 2001: IFIP/ACM International Conference on Distributed Systems Platforms,
Heidelberg, Germany, November 12-16, 2001. Proceedings, volume 2218 of Lecture Notes
in Computer Science, pages 197–215. Springer-Verlag, 2001.

30. HP. HP Changengine Process Design Guide. Hewlett-Packard Company, Palo Alto, CA,
USA, 2000.

31. R. Hull, F. Llirbat, E. Simon, J. Su, G. Dong, B. Kumar, and G. Zhou. Declarative Workflows
that Support Easy Modification and Dynamic Browsing. In G. Georgakopoulos, W. Prinz,
and A.L. Wolf, editors, Work Activities Coordination and Collaboration (WACC’99), pages
69–78, San Francisco, February 1999. ACM press.

32. IBM. IBM MQSeries Workflow - Getting Started With Buildtime. IBM Deutschland En-
twicklung GmbH, Boeblingen, Germany, 1999.

33. S. Jablonski and C. Bussler. Workflow Management: Modeling Concepts, Architecture, and
Implementation. International Thomson Computer Press, London, UK, 1996.

34. K. Jensen. Coloured Petri Nets: A High Level Language for System Design and Analysis. In
G. Rozenberg, editor, Advances in Petri Nets 1990, volume 483 of Lecture Notes in Computer
Science, pages 342–416. Springer-Verlag, Berlin, 1990.

35. K. Jensen. Coloured Petri Nets. Basic Concepts, Analysis Methods and Practical Use. Vol-
ume 1. EATCS monographs on Theoretical Computer Science. Springer-Verlag, Berlin,
1997.

36. G. Keller, M. Nüttgens, and A.W. Scheer. Semantische Processmodellierung auf der
Grundlage Ereignisgesteuerter Processketten (EPK). Veröffentlichungen des Instituts für
Wirtschaftsinformatik, Heft 89 (in German), University of Saarland, Saarbrücken, 1992.

YAWL: Yet Another Workflow Language 42

37. B. Kiepuszewski. Expressiveness and Suitability of Languages for Control Flow Modelling
in Workflows. PhD thesis, Queensland University of Technology, Brisbane, Australia, 2003.
Available via http://www.workflowpatterns.com.

38. B. Kiepuszewski, A.H.M. ter Hofstede, and W.M.P. van der Aalst. Fundamentals of Control
Flow in Workflows. Acta Informatica, 39(3):143–209, 2003.

39. B. Kiepuszewski, A.H.M. ter Hofstede, and C. Bussler. On structured workflow modelling.
In B. Wangler and L. Bergman, editors, Proc. of the 12th Int. Conference on Advanced Infor-
mation Systems Engineering (CAiSE00), volume 1789 of LNCS, pages 431–445, Stockholm,
Sweden, June 2000. Springer Verlag.

40. P. Langner, C. Schneider, and J. Wehler. Petri Net Based Certification of Event driven Process
Chains. In J. Desel and M. Silva, editors, Application and Theory of Petri Nets 1998, volume
1420 of Lecture Notes in Computer Science, pages 286–305. Springer-Verlag, Berlin, 1998.

41. P. Lawrence, editor. Workflow Handbook 1997, Workflow Management Coalition. John
Wiley and Sons, New York, 1997.

42. F. Leymann and D. Roller. Production Workflow: Concepts and Techniques. Prentice-Hall
PTR, Upper Saddle River, New Jersey, USA, 1999.

43. M. Ajmone Marsan, G. Balbo, and G. Conte et al. Modelling with Generalized Stochastic
Petri Nets. Wiley series in parallel computing. Wiley, New York, 1995.

44. C. Mohan, G. Alonso, R. Günthör, and M. Kamath. Exotica: A Research Perspective on
Workflow Management Systems. IEEE Data Engineering Bulletin, 18(1):19–26, 1995.

45. P. Muth, J. Weissenfels, M. Gillmann, and G. Weikum. Integrating Light-Weight Workflow
Management Systems within Existing Business Environments. In Proceedings of the 15th
International Conference on Data Engineering, 23-26 March 1999, Sydney, Australia, pages
286–293. IEEE Computer Society, 1999.

46. P. Muth, J. Weissenfels, M. Gillmann, and G. Weikum. Workflow History Management in
Virtual Enterprises Using a Light-Weight Workflow Management System. In Proceedings
of the Ninth International Workshop on Research Issues on Data Engineering: Information
Technology for Virtual Enterprises, 23-24 March, 1999, Sydney, Australia, pages 148–155,
1999.

47. S.P. Nielsen, C. Easthope, P. Gosselink, K. Gutsze, and J. Roele. Using Lotus Domino Work-
flow 2.0, Redbook SG24-5963-00. IBM, Poughkeepsie, USA, 2000.

48. C.A. Petri. Kommunikation mit Automaten. PhD thesis, Fakultät für Mathematik und Physik,
Technische Hochschule Darmstadt, Darmstadt, Germany, 1962.

49. M. Reichert and P. Dadam. ADEPTflex: Supporting Dynamic Changes of Workflow without
Loosing Control. Journal of Intelligent Information Systems, 10(2):93–129, 1998.

50. W. Reisig and G. Rozenberg, editors. Lectures on Petri Nets I: Basic Models, volume 1491
of Lecture Notes in Computer Science. Springer-Verlag, Berlin, 1998.

51. D. Riehle and H. Züllighoven. Understanding and Using Patterns in Software Development.
Theory and Practice of Object Systems, 2(1):3–13, 1996.

52. P. Rittgen. Modified EPCs and their Formal Semantics. Technical report 99/19, University
of Koblenz-Landau, Koblenz, Germany, 1999.

53. W.A. Ruh, F.X. Maginnis, and W.J. Brown. Enterprise Application Integration: A Wiley Tech
Brief. John Wiley and Sons, New York, 2001.

54. F. Rump. Geschäftsprozessmanagement auf der Basis ereignisgesteuerter Prozessketten.
Reihe Wirtschaftsinformatik, Teubner Verlag, Germany, 1999.

55. SAP. WF SAP Business Workflow. SAP AG, Walldorf, Germany, 1997.
56. P. Senkul, M. Kifer, and I.H. Toroslu. A Logical Framework for Scheduling Workflows

under Resource Allocation Constraints. In Proceedings of the 28th International Conference
on Very Large Data Bases, Hong Kong, China, 2002, pages 694–705, 2002.

57. A. Sheth, K. Kochut, and J. Miller. Large Scale Distributed Information Systems (LSDIS)
laboratory, METEOR project page. http://lsdis.cs.uga.edu/proj/meteor/meteor.html.

YAWL: Yet Another Workflow Language 43

58. Eastman Software. RouteBuilder Tool User’s Guide. Eastman Software, Inc, Billerica, MA,
USA, 1998.

59. Software-Ley. COSA 3.0 User Manual. Software-Ley GmbH, Pullheim, Germany, 1999.
60. Staffware. Staffware 2000 / GWD User Manual. Staffware plc, Berkshire, United Kingdom,

2000.
61. Tibco. TIB/InConcert Process Designer User’s Guide. Tibco Software Inc., Palo Alto, CA,

USA, 2000.
62. Verve. Verve Component Workflow Engine Concepts. Verve, Inc., San Francisco, CA, USA,

2000.
63. G. Vossen. Transactional Workflows (tutorial). In F. Bry, R. Ramakrishnan, and K. Ra-

mamohanarao, editors, Proceedings of the 5th International Conference on Deductive and
Object-Oriented Databases (DOOD’97), volume 1341 of Lecture Notes in Computer Sci-
ence, pages 20–25. Springer-Verlag, Berlin, 1997.

64. G. Vossen and M. Weske. The WASA2 Object-Oriented Workflow Management System. In
A. Delis, C. Faloutsos, and S. Ghandeharizadeh, editors, SIGMOD 1999, Proceedings ACM
SIGMOD International Conference on Management of Data, June 1-3, 1999, Philadelphia,
Pennsylvania, USA, pages 587–589. ACM Press, 1999.

65. G. Weikum and G. Vossen. Transactional Information Systems: Theory, Algorithms, and
the Practice of Concurrency Control and Recovery. Morgan Kaufmann Publishers, San
Francisco, CA, 2002.

66. M. Weske. Formal Foundation, Conceptual Design, and Prototypical Implementation of
Workflow Management Systems. Habilitation’s thesis, University of Münster, Germany,
2000.

67. M. Weske. Formal Foundation and Conceptual Design of Dynamic Adaptations in a Work-
flow Management System. In R. Sprague, editor, Proceedings of the Thirty-Fourth Annual
Hawaii International Conference on System Science (HICSS-34). IEEE Computer Society
Press, Los Alamitos, California, 2001.

68. WFMC. Workflow Management Coalition Workflow Standard: Workflow Process Defini-
tion Interface – XML Process Definition Language (XPDL) (WFMC-TC-1025). Technical
report, Workflow Management Coalition, Lighthouse Point, Florida, USA, 2002.

69. D. Wodtke, J. Weissenfels, G. Weikum, and A.K. Dittrich. The Mentor Project: Steps To-
ward Enterprise-Wide Workflow Management. In Proceedings of the Twelfth International
Conference on Data Engineering, February 26 - March 1, 1996, New Orleans, Louisiana.
IEEE Computer Society, 1996.

70. P. Wohed, W.M.P. van der Aalst, M. Dumas, and A.H.M. ter Hofstede. Analysis of Web
Services Composition Languages: The Case of BPEL4WS. In I.Y. Song, S.W. Liddle, T.W.
Ling, and P. Scheuermann, editors, 22nd International Conference on Conceptual Modeling
(ER 2003), volume 2813 of Lecture Notes in Computer Science, pages 200–215. Springer-
Verlag, Berlin, 2003.

71. Workflow Patterns Home Page. http://www.workflowpatterns.com.

A A comparison of high-level Petri nets and YAWL using the
patterns

The table shown in this appendix indicates for each pattern whether high-level Petri nets
and/or YAWL offer direct support (indicated by a “+”), partial direct support (indicated
by a “+/-”), or no direct support (indicated by a “-”). For comparison, we also included
the WfMC’s XPDL [68]. It is important to correctly interpret the “+”, “+/-”, and “-”. A

YAWL: Yet Another Workflow Language 44

“+” is only given if the language offers a feature that allows for a direct realisation of the
pattern without any restrictions, without the need for coding inside or outside the tool,
and without the need to unfold the construct into other constructs. If the language offers
a feature that allows for a direct realisation of the pattern but also imposes restrictions, it
is rated with “+/-”. If the language only offers constructs to realise the pattern indirectly
(through coding, unfolding using other constructs, etc.) or does not support the construct
at all, it is rated “-”. For more details on the rating on the basis of patterns we refer to
[7] where 15 workflow products are rated using the same principle.

pattern XPDL high-level Petri nets YAWL
1 (seq) + + +

2 (par-spl) + + +
3 (synch) + + +
4 (ex-ch) + + +

5 (simple-m) + + +
6 (m-choice) + + +
7 (sync-m) + −(i) +
8 (multi-m) - + +

9 (disc) - −(ii) +
10 (arb-c) + + +
11 (impl-t) + −(iii) −(iv)

12 (mi-no-s) + + +
13 (mi-dt) + + +
14 (mi-rt) - −(v) +
15 (mi-no) - −(vi) +
16 (def-c) - + +

17 (int-par) - + +
18 (milest) - + +
19 (can-a) - +/−(vii) +
20 (can-c) - −(viii) +

(i) The synchronising merge is not supported because the designer has to keep track
of the number of parallel threads and decide to merge or synchronise flows (cf.
Section 3.2).

(ii) The discriminator is not supported because the designer needs to keep track of the
number of threads running and the number of threads completed and has to reset
the construct explicitly by removing all tokens corresponding to the iteration (cf.
Section 3.2).

(iii) Implicit termination is not supported because the designer has to keep track of
running threads to decide whether the case is completed.

(iv) Implicit termination is not supported because the designer is forced to identify one
unique final node. Any model with multiple end nodes can be transformed into a
net with a unique end node (simply use a synchronising merge). This has not been
added to YAWL to force the designer to think about successful completion of the
case. This requirement allows for the detection of unsuccessful completion (e.g.,
deadlocks).

YAWL: Yet Another Workflow Language 45

(v) Multiple instances with synchronisation are not supported by high-level Petri nets
(cf. Section 3.1).

(vi) Also not supported, cf. Section 3.1.
(vii) Cancel activity is only partially supported since one can remove tokens from the

input place of a transition but additional bookkeeping is required if there are multi-
ple input places and these places may be empty (cf. Section 3.3).

(viii) Cancel activity is not supported because one needs to model a vacuum clearer to
remove tokens which may of may not reside in specific places (cf. Section 3.3).

