
Framework for Business Process
Redesign

W.M.P. van der Aalst
K.M. van Hee
Department of Mathematics and Computing Science, Eindhoven University of Technology,
P.O. Box 513, 5600 MB, Eindhoven, The Netherlands, telephone: -31 40 474295, e-mail:
wsinwa@win.tue.nl

A framework based on high-level Petri nets is used to model and analyse business processes.
This framework is a powerful tool to support business process reengineering efforts. The ‘’What,
how and by whom?” approach is introduced to guide the application of this Petri net based
framework.

Keywords: business process (re)design; high-level Petri nets; simulation; ‘what if’-analysis.

1 Introduction

An increasing number of firms are marching to the drumbeat ofbusiness process
redesign (BPR), alternatively calledreengineering. The term reengineering may be new,
but the idea of process redesign is familiar to most engineers involved in logistics and
production control. Just-in-time (JIT), Total Quality Management (TQM), Flexible
Manufacturing Systems (FMS), Computer Integrated Manufacturing (CIM) and
Computer Integrated Logistics (CIL) are some of the buzz words used to signify process
redesign trends in logistics and manufacturing control. However, business process
redesign is not restricted to logistics and manufacturing, it also applies to administrative,
commercial and managerial processes. Nevertheless, we think that many of the
techniques, tools and methods developed for logistics and production control can be used
in the context of business process redesign.

Business process redesign focusses on the fundamental rethinking of business processes,
ignoring organisational boundaries. However, before implementing new business
processes, we want to compare the existing situation with the new (redesigned) situation.
Therefore, we need a tool to quickly capture and model existing processes but also new
processes. This tool should support rigorous changes and catalyze creative thinking.
Moreover, we would like to use this tool to analyse and compare alternative business
processes.

In this paperhigh-level Petri nets are proposed as a tool for the modelling and analysis of
business processes. Petri nets have proved to be useful in the context of logistics and
production control (cf. [2, 4, 5, 19, 24]). However, the application of these Petri nets is

not restricted to logistics and manufacturing, they can also be used to support business
process reengineering efforts.
High-level Petri nets are based on the classical Petri net model introduced by Carl Adam
Petri ([23]). The high-level Petri net model used in this paper is extended with ‘colour’,
‘time’ and ‘hierarchy’. These extensions allow for the representation and study of
complex business processes. The high-level Petri net inherits all the advantages of the
classical Petri net, such as the graphical and precise nature, the firm mathematical
foundation and the abundance of analysis methods. The graphical nature of Petri net is a
very important feature in the context of business process redesign. However, the
practical use of high-level Petri nets and related analysis methods highly depend upon
the availability of adequate computer tools. Fortunately, some tools, based on high-level
Petri nets, have been put on the market. These tools support the modelling and analysis
business process. Thanks to these tools high-level Petri nets have been put into practice
successfully.

To support the use of high-level Petri net for reengineering purposes, we have developed
the ‘’What, how and by whom?” approach. This approach identifies three consecutive
phases in the application of high-level Petri nets to business process redesign. In the
what phase the primary objectives of a company or business unit are investigated. In the
second phase, it is determinedhow these objectives can be reached. This phase is used to
identify the required activities and the ordering of these activities. In theby whom phase,
the allocation of resources (e.g. manpower and machines) to these activities is
determined.

The remainder of this paper is organised as follows. We start with a short introduction to
business process redesign, followed by an introduction to high-level Petri nets. Then we
show how the ‘’What, how and by whom?” approach can be used to map business
processes onto a high-level Petri net. This is illustrated by an example.

2 Business process (re)design

Reengineering business processes means tossing aside existing processes and starting
over. In Hammer and Champy [13] business process redesign (reengineering) is defined
as “thefundamental rethinking andradical redesign of businessprocesses to achieve
dramatic improvements in critical contemporary measures of performance such as costs,
quality and speed”. This definition contains four key words:

� fundamental
Reevaluate the primary goals of the company, ignoring rules and assumptions
formulated in the past.

� radical
Do not try to improve the existing situation, invent completely new ways of
accomplishing work.



� dramatic
Do not use business process redesign to obtain marginal improvements, aim at
order-of-magnitude improvements.

� process
Focus on the business processes instead of organisational structures.

So, in a nutshell, business process redesign (BPR) is an ambitious and rule-breaking
approach focussing on business processes instead of organisational boundaries.

In this paper we will concentrate onrethinking business processes. We will not discuss
the organisational aspects of BPR, the role of information technology nor management
and training issues. For discussions on these other important subjects, the reader is
referred to Hammer and Champy [13] and Morris and Brandon [21]. By narrowing BPR
down like this, three important themes emerge:what, how andby whom?

What? By whom?How?

Figure 1:What, how andby whom?

2.1 What?

What are the prime objectives of a company or business unit? An attempt to reengineer a
business process should always start with this question.
Consider for example an automobile insurance company having problems with the
processing of claims because of the control step to avoid overbilling. Is it really
necessary to check every claim? The objective of the insurance company is to reduce
costs while keeping the customers happy. Therefore, it is not necessary to approve every
claim before the repair to take place. Select a number of garages that are checked
periodically. This way costs can be reduced while keeping the customers happy (damage
is repaired instantly).
Another example is a truck company having problems with the distribution of spare parts
because regional distribution centres are running out of stock frequently. By increasing
the inventory levels in the regional distribution centres, we can improve the customers
service but the costs of stock keeping will rise. However, do we really need these
regional distribution centres? By investing in rapid transport, it may suffice to have only
one central distribution centre.
These examples show that we should always ask the basic question: “Why do we do
what we do?”.

2.2 How?

When we have determinedwhat a company should do, we have to determinehow to do
it. Again we should not be hampered by existing rules and assumptions. Processes, not
organisations, are the object of BPR. Processes in a company correspond to natural
business activities, but they are often fragmented and obscured by organisational
structures. If we have found a process to be redesigned, we should give this process a
name and determine the input and output of the process. Then we determine the work
that has to be done between the start and finish of the process, i.e. all the requiredsteps
are identified. We can think of a such step as a task or an activity. Then we determine the
ordering of these steps, e.g. taska has to be executed before taskb, buta can be executed
in parallel with taskc. In Hammer and Champy [13] a number of guidelines are given to
support this activity:

� The steps in a process should be performed in a natural order.

� Avoid fragmentation of related activities.

� If possible, several steps are combined into one.

� If possible, tasks are allowed to be executed in parallel.

� Avoid complex processes to cope with complex activities.

� Reduce checks and controls as much as possible.
� Make processes generic, i.e. use multiple versions of the same procedure.

� Check whether modern information technology allows you to omit steps.

The result of applying these guidelines will be a partially ordered set of tasks of steps.
We will use the termprocedure to refer to this result. Note that a procedure does not
determinewho is doing the work, i.e. a procedure is just a recipe.

2.3 By whom?

Finally, we have to decidewho is going to do the work and in what order. By allocating
resources (often employees) to tasks, we arescheduling the business process. We can use
advanced scheduling techniques to optimize this allocation. However, in practice simple
and robust heuristics are more appropriate. Therefore, we list a number of guidelines to
support the construction of these heuristics.

� Reduce the number of people involved in the execution of tasks related to one job.
Thus avoiding communication and set-ups.

� Tasks are performed where they make the most sense.

� There should be a balance between specialisation and generalisation.

� There should be a balance between centralisation and decentralisation.



Since Adam Smith’s “The Wealth of Nations” ([25]), people have been attempting to
break work into its simplest and most basic tasks. Due to this specialisation, the
processes have become very complex. As a result the business processes have become
hard to manage, thus causing long processing times and a lot of work-in-progress.
Replacing a specialist by generalists allows for a simplification of the business processes.
Modern information technology allows companies to balance between centralisation and
decentralisation. This way business units can be autonomous while still enjoying the
benefits of centralised control (e.g. economies of scale).

What? By whom?How?

objectives tasks and

procedures

resources and

scheduling

Figure 2:What, how andby whom?

This concludes our discussion on business process redesign. We have seen that the
rethinking of business processes boils down to answering the “What, how and by
whom?” question. In the remainder we will concentrate on a formalism to support this
task.

3 High-level Petri nets

As indicated by Hammer and Champy [13], BPR is characterized by four keywords:
fundamental, radical, dramatic and process. Therefore we need a framework for
modelling processes which forces the user to examine the core of the business process,
thus supporting radical and dramatic changes.
In this paper we use a framework based onhigh-level Petri nets. We will show that this
framework can be used to model and analyse business processes.
A high-level Petri net is a Petri net extended with ‘colour’, ‘time’ and ‘hierarchy’. We
start with an informal introduction to the classical Petri net, followed by a short
description of each of the extensions.

3.1 The classical Petri net model

Historically speaking, Petri nets originate from the early work of Carl Adam Petri ([23]).
Since then the use and study of Petri nets has increased considerably. For a review of the
history of Petri nets and an extensive bibliography the reader is referred to Murata [22].
The classical Petri net is a directed bipartite graph with two node types calledplaces and
transitions. The nodes are connected via directedarcs. Connections between two nodes

cin

busy

free

cout

finishstart

Figure 3: A classical Petri net which represents a machine

cin

busy

free

cout

finishstart

Figure 4: The state after firingstart

of the same type are not allowed. Places are represented by circles and transitions by
rectangles with a marked corner. (In literature transitions are often displayed as bars.)
The marked corner is used to distinguish transitions from subnets, see section 3.4. Places
may contain zero or moretokens, drawn as black dots. The number of tokens may
change during the execution of the net. A placep is called aninput place of a transitiont

if there exists a directed arc fromp to t, p is called anoutput place of t if there exists a
directed arc fromt to p.
We will use the net shown in figure 3 to illustrate the classical Petri net model. This
figure models a machine which processes jobs and has two states (free and busy). There
are four places (cin, free, busy andcout) and two transitions (start and
finish). In the state shown in figure 3 there are four tokens; three in placecin and
one in placefree. The tokens in placecin represent jobs to be processed by the
machine. The token in placefree indicates that the machine is free and ready to
process a job. If the machine is processing a job, then there are no tokens infree and
there is one token inbusy. The tokens in placecout represent jobs which have been
processed by the machine. Transitionstart has two input places (cin andfree) and
one output place (busy). Transitionfinish has one input place (busy) and two
output places (cout andfree).
A transition is calledenabled if each of its input places contains ‘enough’ tokens. An
enabled transition canfire. Firing a transitiont means consuming tokens from the input
places and producing tokens for the output places, i.e.t ‘occurs’.
Transitionstart is enabled in the state shown in figure 3, because each of the input
places (cin andfree) contains a token. Transitionfinish is not enabled because
there are no tokens in placebusy. Therefore, transitionstart is the only transition
that can fire. Firing transitionstart means consuming two tokens, one fromcin and



rb

rr bb

red black

Figure 5: A Petri net which represents a ball-game

one fromfree, and producing one token forbusy. The resulting state is shown in
figure 4. In this state only transitionfinish is enabled. Hence, transitionfinish fires
and the token in placebusy is consumed and two tokens are produced, one forcout
and one forfree. Now transitionstart is enabled, etc. Note that as long as there are
jobs waiting to be processed, the two transitions fire alternately, i.e. the machine
modelled by this net can only process one job at a time.
Sometimes there are multiple arcs between a place and a transition indicating that
multiple tokens need to be consumed/produced. Consider for example the net shown in
figure 5. There are two arcs connecting transitionrr and input placered, this means
thatrr is enabled if and only if there are at least two tokens inred. If rr fires, then two
tokens are consumed fromred and one token is produced forblack.
The Petri net shown in figure 5 models the following game. The tokens in the places
red andblack represent red and black balls in an urn respectively. As long as there are
at least two balls in the urn, a person takes two balls from the urn. If the balls are of the
same colour, then a black ball is returned, otherwise a red ball is returned. Transitionrb
fires if the person takes two balls having different colours. Transitionrr fires if two red
balls are taken, transitionbb fires if two black balls are taken. It can be verified that
given an initial state there is precisely one terminal state, i.e. eventually a state is reached
where no transitions are enabled.
The classical Petri net model has been used in many application areas, e.g.
communication protocols, flexible manufacturing systems and distributed information
systems (see Murata [22]). However, Petri nets describing real systems tend to be
complex and extremely large. To solve these problems, many authors propose extensions
of the basic Petri net model. We will discuss three of these extensions; ‘colour’, ‘time’
and ‘hierarchy’. Such extensions are a necessity for the successful application of Petri
nets to the modelling of large and complex systems.

3.2 Adding colour

Tokens often represent objects (e.g. resources, goods, humans) in the modelled system.
Therefore, we often want to represent attributes of these objects. If a truck is modelled
by a token in the Petri net, then we may want to represent the capacity, registration
number, location, etc. of the truck. Since these attributes are not easily represented by a
token in a classical Petri net, we extend the Petri net model withcoloured or typed

cin

busy

free

cout

finishstart

prod:TRUCK.A11
id:3241

date:29-01-94

type:M35
mode:FM4

Figure 6: Adding colour

tokens. In a coloured Petri net each token has a value often referred to as ‘colour’. Many
coloured Petri net models have been proposed in literature (cf. [2, 15, 17, 18]). One of
the main reasons for such an extension is the fact that uncoloured nets tend to become
too large to handle.
We will use the machine modelled in figure 3 to clarify this concept. Tokens in the places
cin andcout represent jobs. These jobs may have attributes like an identification
number, a description and a due-date. We can model this by giving the tokens incin
andcout a value (colour) which corresponds to these attributes. In figure 6 we see that
the job incin refers to a productTRUCK.A11 and has an identification number3241
and a due-date29-01-94. The token in placefree represents a machine and its value
contains information about this machine (type and mode).
Transitions determine the values of the produced tokens on the basis of the values of the
consumed tokens, i.e. a transition describes the relation between the values of the ‘input
tokens’ and the values of the ‘output tokens’. It is also possible to specify
‘preconditions’, e.g. transitionstart may have a precondition which specifies that jobs
require a machine of a specific type.

3.3 Adding time

For real systems it is often important to describe thetemporal behaviour of the system,
i.e. we need to model durations and delays. Since the classical Petri net is not capable of
handling quantitative time, we add a timing concept. There are many ways to introduce
time into the classical Petri net ([2]). We use a timing mechanism where time is
associated with tokens and transition determine delays.
Consider the net shown in figure 7. Each token has atimestamp which models the time
the token becomes available for consumption. The token infree has timestamp 0, the
tokens incin have timestamps ranging from 1 to 9. Since these timestamps indicate
when tokens become available, transitionstart becomes enabled at time 1. (Time 1 is
the earliest moment for which each of the input places contains a token which is
available.) Therefore, transitionstart fires at time 1, thereby producing a token for
busy with delay 3. The timestamp of this token is equal to 1+3=4. Transitionfinish
will be the next to fire (at time 4), etc. The delay of a produced token can be described by
a fixed value, an interval or a probability distribution (cf. [2, 9, 20, 22]).



cin

busy

free

cout

finishstart

0

1
2 9 "d=3"

Figure 7: Adding time

cin

busy

free

cout

finishstarti o

Figure 8: The definition of themachine system

3.4 Adding hierarchy

Although timed coloured Petri nets allow for a succinct description of many business
processes, precise specifications for real systems have a tendency to become large and
complex. This is the reason we provide a hierarchy construct, calledsystem. A system is
an aggregate of places, transitions and (possibly) subsystems.
Figure 8 shows the definition of themachine system. This system is composed of two
places (free andbusy) and two transitions (start andfinish) and twoconnectors
(cin andcout). These connectors provide an interface with the environment of the
machine system. Thecin connector is aninput connector (i.e. tokens may enter the
system via this connector),cout is anoutput connector (i.e. tokens may leave the
system via this connector). If a system is used then the connectors are connected to
places at a ‘higher level’. Consider for example the net shown in figure 9. In this net the

arrive leave

machine

machine

machine

Figure 9: Three parallel machines modelled in terms of themachine system

busy

free
finishstart

machine

busy

free
finishstart

machine

busy

free
finishstart

machine

arrive leave

Figure 10: The corresponding ‘flat net’

same definition is ‘installed’ three times. In this case, for each of these ‘installations’ the
cin connector is connected to the placearrive and thecout connector is connected
to the placeleave, i.e. the connectors of themachine system are ‘glued’ on top of
places at a higher level. If we replace each system by it definition we obtain a ‘flat net’,
i.e. a net without hierarchy. In fact, the semantics of a net with hierarchy are given by the
corresponding flat net. Figure 10 shows the flat net which corresponds to the net shown
in figure 9.
Both transitions and systems are able to consume and produce tokens. In a sense,
transitions are atomic systems, i.e. systems without an internal state. In other words, a
transition is a memoryless system. Therefore, we use similar symbols for transitions and
systems. Both transitions and systems are modelled by rectangles and transitions have a
marked corner to indicate the fact that they are atomic.
The system concept allows for hierarchical modelling, i.e. it is possible to decompose
complex systems into smaller subsystems. (Note that it is possible to have an arbitrary
number of levels.) For practical applications of Petri nets, the system concept is of the
utmost importance. The system concept can be used to structure large specifications. At
one level we want to give a simple description of the system (without having to consider
all the details). At another level we want to specify a more detailed behaviour.
For a more elaborate discussion on hierarchy constructs, the reader is referred to Jensen
[17], van der Aalst [2, 7] and van Hee [15].

3.5 Language and tools

In the remainder of this paper we will refer to Petri nets extended with ‘colour’, ‘time’
and ‘hierarchy’ ashigh-level Petri nets.



Only a few high-level Petri net models (i.e. hierarchical timed coloured Petri net models)
have been proposed in literature. Even fewer high-level Petri net models are supported
by software tools. Nevertheless, there are at least two software products,ExSpect
([2, 7, 16]) andDesign/CPN ([17]), that are being distributed on a commercial basis.
Both software products provide a graphical interface to create, modify and simulate
high-level Petri nets. Moreover, they provide analysis tools and reporting facilities.
To specify the behaviour of each transition (i.e. the number of tokens produced and the
value and delay of each produced token), Design/CPN provides an ‘inscription language’
(expressions on the input and output arcs of a transition). ExSpect (Executable
Specification Tool) uses a ‘Z-like’ specification language (Spivey [26]) to describe the
behaviour of a transition. Both languages originate from ‘pure’ functional languages.
The approach described in this paper is based on the software package ExSpect. ExSpect
has been developed by the information systems department of Eindhoven University of
Technology. Since 1992, ExSpect is being distributed by Bakkenist1.

3.6 Analysis of Petri nets

The complexity of the design and control problems encountered in modern business
processes is increasing. Therefore, we need methods and techniques to support both the
modellingand analysis of these systems. High-level Petri nets often allow for a
representation which is close to the problem situation, i.e. it is possible to model the
system in a natural manner. This representation can be used as a starting point for
various kinds of analysis. In a sense, the Petri net representation serves as an interface
between the problem situation and the method(s) of analysis. In fact, high-level Petri
nets provide a ‘solver-independent’ medium that can be used to make a concise
‘blue-print’ of the business process we want to analyse. This blue-print may be used at
different levels of decision making and can be used as a starting point for various means
of analysis. Compared to the usual algorithmic approaches (where the emphasis is on the
analysis process rather than the modelling process), our approach is characterized by the
fact that during the modelling process the user is not shackled by the techniques which
are going to be used to analyse the model.
For an overview of the many analysis methods developed for Petri nets the reader is
referred to Jensen [18], Murata [22], Silva and Vallette [24] and [2, 3]. These methods
can be used to prove properties (safety properties, invariance properties, deadlock, etc.)
and to calculate performance measures (response times, waiting times, occupation rates,
etc.). In this way it is possible to evaluate alternative designs.

4 Mapping business processes onto high-level Petri nets

High-level Petri nets are suitable for the modelling and analysis of business processes.
By using a Petri net based framework, we are able to abstract from organisational
aspects. To illustrate the application of Petri-net to BPR, we will show how these nets
can be used to answer the “What, how and by whom?” question formulated in section 2.

1Bakkenist Management Consultants, Wisselwerking 46, 1112 XR, Diemen, The Netherlands.

4.1 What?

After selecting a business process to be redesigned, we determine the boundaries of this
process. The input and output which pass this boundary signify the meaning of this
process for the company. By focussing on the input and output of a business process, we
should be able to destill the prime objectives of this process.
Business processes are mapped onto systems. The business process to be reengineered is
modelled by an open system, i.e. a net exchanging tokens with some environment.
Figure 11 shows a business process modelled by a system with one input place and one
output place. We can determinewhat a business process should do by observing the

output

business 
process

input

Figure 11: A business process is modelled by a system

relevant interactions with the environment, i.e. input and output are investigated to
determine the prime objectives. Modelling a business process by a system forces us to
reconsider the prime objectives of a business process.

To illustrate the mapping of business processes onto high-level Petri nets, we use a
business process in an automobile insurance company having problems with the
processing of claims. The processcheck claim handles claims related to car damage.
If a claimant reports car damage, this process checks whether the claim is justified. The
input of this business process is the inflow of claims of people having car damage, the
output is the outflow of claims that have been screened. The processcheck claim is
modelled by a system with the same name. Figure 12 shows that this system has one
input place (claim) and two output places (accepted claim and
rejected claim). The tokens in these places represent claims. Placeclaim
contains claims that have to be checked. Claims in placeaccepted claim have been
checked and turned out to be justified. Claims in placerejected claim have not
been accepted for some reason.

4.2 How?

If we have determined the input and output of a business process, we focus on the work
that has to be done between the start and finish of the process. First, we identify the steps
that are required to do the work. Then we consider the ordering of these steps. We will



accepted_claim rejected_claim

claim

claim
check_

Figure 12: The processcheck claim

use the termtask instead of the term step. A task is atomic which means that it is
considered as an indivisible amount of work. Examples of tasks are: typing a letter,
making a telephone call, signing a document and making an invoice. A business process
is composed of a number of tasks, these tasks have to be executed in a particular order.
Tasks are mapped onto transitions. Each task corresponds to a transition in the system
which represents the business process to be reengineered. These transitions are linked
together by places and other transitions, thus defining a partial ordering of tasks. This
way, we definehow the business process should work. At this moment we do not bother
about who is going to process these tasks, we only determine the tasks required and the
ordering of these tasks.

The processcheck claim requires three tasks:check insurance,
contact garage andok?. The taskcheck insurance is executed to check
whether the claimant is insured for the damage reported. The taskcontact garage is
performed to inquire about the damage. If these two tasks have been performed, a
decision has to be made (taskok?); the claim is accepted or not. If transitionok? fires,
it produces one token. This token is placed in output placeaccepted claim or in
output placerejected claim, depending on the results of the two checks.

Figure 13 shows a possible business process composed of these three tasks. The tasks
are executed sequentially; firstcheck insurance, thencontact garage and
finally ok?. The tasks are represented by transitions and are linked together by the
placesc1 andc2. Tokens in these two places correspond to claims being processed.
The value of such a token contains information about the claim, e.g. claim number, name
and address of claimant, license number, etc.

It is not a requirement that the three tasks are executed sequentially. The tasks
check insurance andcontact garage may be executed in parallel. Figure 14
shows an alternative business process where these two tasks are executed in parallel. The
transitionsfork andjoin do not represent tasks; they have been added to allow the
taskscheck insurance andcontact garage to be executed in parallel.

rejected_claimaccepted_claim

ok?

contact_garage

claim

check_insurance

c2

c1

i

oo

Figure 13: The processcheck claim (alternative 1)

Transitions such asfork andjoin representcontrol activities. Control activities are
used for the routing of work, synchronisation, etc.
The places in a system which represents a business process are used to model the flow of
work. Tokens in these places represent documents, signals, goods, forms, etc. The value
of such a token contains information about the object represented by the token. Most
tokens have some unique identity, e.g. a document number or a case number.
Procedures are represented by systems. Systems may be composed of subsystems (see
section 3.4). Therefore, it is possible to nest procedures, i.e. a complex procedure may be
composed of less complex procedures.
The result of the ‘how’-phase is a partially ordered set of tasks, represented in terms of a
Petri net. In this phase we do not bother about who is going to execute these tasks.
Therefore, we will use the termprocedure instead of process. The figures 13 and 14
show two alternative procedures for the processcheck claim.

Petri nets allow for many analysis techniques, see section 3.6. We can use these
techniques to analyse business procedures modelled in terms of a Petri net. We can use
Petri net theory to verify the correctness of a procedure, e.g. absence of deadlock,
invariance properties, termination, etc. In fact, we can prove that, for an external
observer, the two procedures shown in figure 13 and in figure 14 behave (logically) the
same!



claim

rejected_claimaccepted_claim

check_insurance

contact_garage

c1 c2

c3 c4

c5

join

ok?

fork

i

o o

Figure 14: The processcheck claim (alternative 2)

4.3 By whom?

A procedure does not determinewho is doing the work, e.g. figure 14 does not specify
which employee will check the insurance of the claimant. In the ‘by whom’-phase we
decide who is going to do the work and in what order. By allocatingresources to tasks,
we arescheduling the business process. We use the term resource to denote some entity
capable of processing certain tasks, e.g. a person or a machine.
Resources are able to perform a limited set of tasks. Aresource class is a set of similar
resources. Each task requires resources from a given resource class. A group of
telephone operators, a group of office employees and a group of claim appraisers are
examples of resource classes.

In the ‘by whom’-phase we have specify the link between tasks and resources, i.e. we
have to describe aresource manager which assigns resources to tasks. The resource
manager controls the allocation of resources. A resource manager can be a person, a
computer system or a combination of the two.

In figure 14 we have abstracted from the fact that there are resources. When we define a
procedure, we assume that the tasks are executed instantly. In reality this is not the case,
some time passes between the moment a task emerges and the moment it is executed.
Therefore, we have to model tasks by systems instead of transitions. In figure 14, we
have to replace the transitionscheck insurance, contact garage andok? by
three systems. Each of these systems is composed of two transitions and one place, see
figure 15. Transitionexecute fires when the task is activated by a token in the place

et

execute execute_task

task_completed

complete

i

o

o

i

cin

cout

Figure 15: A task is a system composed to two transitions

connected to output connectorcin. Transitioncomplete fires when the task has been
completed and produces a token for the place connected to output connectorcout. The
output connectorexecute task and the input connectortask completed are
connected to a resource manager. If transitionexecute fires, a token is sent to the
resource manager via output connectorexecute task. The value of this token
contains information about the task2 to be executed (e.g. identification, workload and
resource class). When this task has been executed, the resource manager sends a token to
the task via input connectortask completed. The tokens in placeet represent tasks
that have not been completed yet. Transitioncomplete has a precondition which
makes sure that the proper task is removed from placeet when a token arrives via input
connectortask completed.

2We also use the term task to denote a task instance.



If we replace each transition which represents a task by a system, we obtain the Petri-net
shown in figure 16. The resource manager is also modelled by a system and the places

claim

rejected_claimaccepted_claim

check_insurance

contact_garage

c1 c2

c3 c4

c5

join

ok?

fork

task_completed

execute_task
resource_manager

Figure 16: The processcheck claim with resources

execute task andtask completed have been added to enable the
communication between the tasks and the resource manager. In this case the tasks
check insurance, contact garage andok? are connected to the same resource
manager. However, it is also possible to have multiple resource managers.

A token exchanged viaexecute task has a value which contains information about
the task to be executed. The value of such a token is typically composed of:

(i) a job identification, tasks are executed on behalf of a specific case (e.g. a claim, an
article, an order),

(ii) a task identification, the name or the code of a task,

(iii) a resource class, a task requires a resource from a specific resource class,

(iv) and some additional information about the task to be executed (e.g. priorities, due
dates).

The resource manager uses this information to schedule the tasks to be executed.

A resource manager is a scheduler which allocates resources to tasks, i.e. it decides who
is going to do the work and in what order. We can use advanced scheduling techniques to
optimize this allocation. However, in practice simple and robust heuristics are more
appropriate. Figure 17 shows a system which models a very simple resource manager. In

begin

end

freebusy

o

i

execute_task

task_completed

Figure 17: A very simple resource manager

this case, each resource is modelled by a token infree orbusy. A token in place
free corresponds to a resource which is ready to execute a task. A token inbusy
corresponds to a resource which is busy executing a task. The tokens in the input place
execute task represent tasks waiting to be executed. Transitionbegin fires when a
resource starts processing a task. Transitionbegin has a precondition which makes
sure that a resource from the proper resource class is allocated to the task to be executed.
The tasks are executed in first-in-first-out (FIFO) order. If transitionbegin fires, then it
produces a token for place busy with a delay. This delay corresponds to the time required
to execute the task. Transitionend fires when a task has been executed.
We can also model a resource manager which uses advanced scheduling techniques. In
this case, the resource manager uses more information about the task to be scheduled. By
assigning a priority to each task, we can favour an important task above less important
tasks. We can use most of the priority rules for rule based scheduling (cf. Haupt [14]).
Typical priority rules are: SPT (shortest processing time), MWKR (most work
remaining), LWKR (least work remaining), DD (earliest due-date), etc.



Figure 16 looks rather complicated because of the connections between the tasks and the
resource manager. However, we can automate the construction of this part of the figure.
We only have to describe the procedure (see figure 14) and the scheduling rules used by
the resource manager to specify the business process completely.

4.4 Example

By modelling a procedure and a resource manager we are able to analyse the resulting
business process. Petri net based analysis techniques can be used to evaluate the
performance of the modelled business process. We can use these techniques to calculate
the estimated throughputof a process, the average throughput time of a job, the estimated
occupation rate, etc. For example, we are able to compare the performance of the two
procedures shown in figure 13 and 14 (given a workload and a scheduling discipline).
Assume that the arrival of claims that have to be checked by the processcheck claim
can be described by a Poisson arrival process (i.e. the time between two arrivals is
negative exponentially distributed). The average time between two arrivals is 10
minutes. Moreover, there are three office employees; Cindy, John and Laura. Cindy is
qualified to contact the garage (taskcontact garage), John can do two types of
tasks;check insurance andok?. Laura is the only one qualified to do all three types
of tasks. We assume that the time required to execute a task is independent of the person
executing the task. Taskcontact garage takes between 5 and 7 minutes (uniformly
distributed). The other two tasks take between 2 and 4 minutes (uniformly distributed).

We use simulation to compare the two procedures described in section 4.2, see figure 18.
During the simulation of these two alternatives, we measured the average throughputtime
of claims and the occupation rate of each office employee. Table 1 reports the average
throughputtime of claims and the occupation rate for the two alternatives. This table

subrun average throughputtime occupationrate
alternative 1 alternative 2 alternative 1 alternative 2

Cindy John Laura Cindy John Laura

1 13.34 10.76 41.6 35.6 40.4 37.3 41.1 41.0
2 13.19 11.33 41.3 35.2 40.2 37.2 40.7 40.8
3 13.42 10.97 41.5 35.7 40.3 37.2 40.9 40.9
4 12.96 10.48 41.6 35.2 39.8 36.9 41.0 41.2
5 13.44 10.52 40.8 35.3 39.9 37.1 41.3 41.2
6 13.31 10.61 41.1 35.6 40.1 36.9 41.4 41.1
7 13.27 10.50 41.2 35.7 40.2 37.3 41.0 41.3
8 13.25 10.75 41.3 35.3 40.4 37.0 41.2 41.4
9 13.27 10.98 41.7 35.2 40.6 37.6 41.1 41.0
10 13.50 10.97 41.6 35.8 40.5 37.3 41.2 40.9

Table 1: Some simulation results

shows that alternative 2 is preferable. The average throughputtime of claims is reduced

claim

rejected_claimaccepted_claim

check_insurance

contact_garage

c1 c2

c3 c4

c5

join

ok?

fork

i

o o

rejected_claimaccepted_claim

ok?

contact_garage

claim

check_insurance

c2

c1

i

oo

Alternative 1 Alternative 2

Figure 18: Two alternative procedures for the processcheck claim

by the parallel execution of the taskscontact garage andcheck insurance. In
both alternatives, the workload is balanced over the employees.
We have used the Petri net based tool ExSpect ([7, 16]) to obtain the results presented in
table 1. By using this tool we can model both alternatives in half an hour. Simulating
one alternative for 70 days takes about 5 minutes on a SUN/SPARC workstation.

4.5 Summary of the “What, how and by whom” approach

In this section we showed that it is possible to model business processes in terms of
high-level Petri nets. We identified three phases; (1) the ‘What?’ phase, (2) the ‘How?’
phase and (3) the ‘By whom?’ phase.
In the ‘What?’ phase we identify the process to be reengineered. This process is mapped
onto a system.
In the ‘How?’ phase we identify the required tasks and the ordering of these tasks, i.e.
we define a procedure. Such a procedure is mapped onto a system composed of
transitions and places. The tasks in this procedure are mapped onto transitions. Control
activities for synchronisation and the routing of work are also modelled by transitions.
The flow of work is modelled by places.
The ‘By whom?’ phase is the final phase. In this phase we allocate resources to tasks. In
this phase we model tasks by systems instead of transitions. Moreover, we add a system
for each resource manager.



5 Conclusion

Several other techniques have been proposed to support business process reengineering
efforts. Diagramming techniques such as flowcharts, decision trees, Warnier-Orr
diagrams, state transition diagrams, fishbone diagrams, hierarchy charts, dataflow
diagrams and business activity maps (cf. Morris and Brandon [21]) have been used to
represent business processes. Most of these techniques suffer from two important
drawbacks: (1) the lack of formal semantics and (2) the absence of powerful analysis
methods and tools.
High-level Petri nets have a formal semantics. A Petri net model of a business process is
a precise and unambiguous description of the behaviour of the modelled process. The
precise nature and the firm mathematical foundation of Petri nets have resulted in an
abundance of analysis methods and tools.
Despite of the formal background, Petri nets are easy to understand. The graphical
nature can be used to visualise business processes in a natural manner and supports the
communication between people involved in a BPR project.

The ‘’What, how and by whom?” approach presented in this paper can be used to model
business processes in a step by step manner. Improving an existing business process
requires a thorough understanding of this process. This can be achieved by modelling the
“as is” process. The model of the “as is” process can be used as a stepping stone for
models of “to be” alternatives. Analysis techniques, such as simulation, can be used to
compare the “as is” model with the “to be” models.

The buzzwords business process reengineering and workflow management are often
bracketed together. Workflow management is concerned with the control of business
processes. Workflow management software allows for new business processes, i.e.
recent developments in information technology enable companies to reengineer business
processes. The approach presented in this paper can also be used to reengineer workflow
processes and to (re)configure workflow management systems (cf. Van der Aalst, van
Hee and Houben [6] and Ellis and Nutt [11]). Practical experiences show that the
‘’What, how and by whom?” approach is especially useful for the modelling and
analysis of office logistics.

References

[1] W.M.P. van der Aalst. Modelling and Analysis of Complex Logistic Systems. In
H.J. Pels and J.C. Wortmann, editors,Integration in Production Management
Systems, volume B-7 ofIFIP Transactions, pages 277–292. Elsevier Science
Publishers, Amsterdam, 1992.

[2] W.M.P. van der Aalst.Timed coloured Petri nets and their application to logistics.
PhD thesis, Eindhoven University of Technology, Eindhoven, 1992.

[3] W.M.P. van der Aalst. Interval Timed Coloured Petri Nets and their Analysis. In
M. Ajmone Marsan, editor,Application and Theory of Petri Nets 1993, volume 691
of Lecture Notes in Computer Science, pages 453–472. Springer-Verlag, New York,
1993.

[4] W.M.P. van der Aalst. Modelling and analysis of production systems using a Petri
net based approach. In T.O. Boucher, M.A. Jafari, and E.A. Elsayed, editors,
Proceedings of the conference on Computer Integrated Manufacturing in the
Process Industries, pages 179–193, East Brunswick, USA, 1994.

[5] W.M.P. van der Aalst. Putting Petri nets to work in industry.Computers in
Industry, 25(1):45–54, 1994.

[6] W.M.P. van der Aalst, K.M. van Hee, and G.J. Houben. Modelling workflow
management systems with high-level Petri nets. InProceedings of the second
Workshop on Computer-Supported Cooperative Work, Petri nets and related
formalisms, 1994.

[7] W.M.P. van der Aalst and A.W. Waltmans. Modelling logistic systems with
EXSPECT. In H.G. Sol and K.M. van Hee, editors,Dynamic Modelling of
Information Systems, pages 269–288. Elsevier Science Publishers, Amsterdam,
1991.

[8] R. Ardhaldjian and M. Fahner. Using simulation in the business process
reengineering effort.Industrial engineering, pages 60–61, July 1994.

[9] B. Berthomieu and M. Diaz. Modelling and verification of time dependent systems
using Time Petri Nets.IEEE Transactions on Software Engineering,
17(3):259–273, March 1991.

[10] T.H. Davenport.Process innovation : reengineering work through information
technology. Harvard Business School Press, Boston, 1993.

[11] C.A. Ellis and G.J. Nutt. Modelling and Enactment of Workflow Systems. In
M. Ajmone Marsan, editor,Application and Theory of Petri Nets 1993, volume 691
of Lecture Notes in Computer Science, pages 1–16. Springer-Verlag, New York,
1993.

[12] M. Hammer. Reengineering work: Don’t automate, Obliterate.Harvard Business
review, pages 104–112, July/August 1990.

[13] M. Hammer and J. Champy.Reengineering the corporation. Nicolas Brealey
Publishing, London, 1993.

[14] R. Haupt. A survey of priority rule-basedscheduling.OR Spectrum, 11:3–16, 1989.

[15] K.M. van Hee.Information System Engineering: a Formal Approach. Cambridge
University Press, 1994.



[16] K.M. van Hee, L.J. Somers, and M. Voorhoeve. Executable specifications for
distributed information systems. In E.D. Falkenberg and P. Lindgreen, editors,
Proceedings of the IFIP TC 8 / WG 8.1 Working Conference on Information System
Concepts: An In-depth Analysis, pages 139–156, Namur, Belgium, 1989. Elsevier
Science Publishers, Amsterdam.

[17] K. Jensen. Coloured Petri Nets: A High Level Language for System Design and
Analysis. In G. Rozenberg, editor,Advances in Petri Nets 1990, volume 483 of
Lecture Notes in Computer Science, pages 342–416. Springer-Verlag, New York,
1990.

[18] K. Jensen.Coloured Petri Nets. Basic concepts, analysis methods and practical
use. EATCS monographs on Theoretical Computer Science. Springer-Verlag, New
York, 1992.

[19] K. Jensen and G. Rozenberg, editors.High-level Petri Nets: Theory and
Application. Springer-Verlag, New York, 1991.

[20] M. Ajmone Marsan, G. Balbo, and G. Conte. A Class of Generalised Stochastic
Petri Nets for the Performance Evaluation of Multiprocessor Systems.ACM
Transactions on Computer Systems, 2(2):93–122, May 1984.

[21] D. Morris and J. Brandon.Reengineering your business. McGraw-Hill, New York,
1993.

[22] T. Murata. Petri Nets: Properties, Analysis and Applications.Proceedings of the
IEEE, 77(4):541–580, April 1989.

[23] C.A. Petri.Kommunikation mit Automaten. PhD thesis, Institut f¨ur instrumentelle
Mathematik, Bonn, 1962.

[24] M. Silva and R. Valette. Petri Nets and Flexible Manufacturing. In G. Rozenberg,
editor,Advances in Petri Nets 1989, volume 424 ofLecture Notes in Computer
Science, pages 274–417. Springer-Verlag, New York, 1990.

[25] A. Smith. The Wealth of Nations. 1776.

[26] J.M. Spivey.The Z Notation: A Reference Manual. Prentice-Hall, Englewood
Cliffs, 1989.


