Facilitating Flexibility and Dynamic Exception
Handling in Workflows through Worklets

Michael Adams, Arthur H. M. ter Hofstedg&, David Edmond,
and Wil M. P. van der Aalst?

L Centre for Information Technology Innovation
Queensland University of Technology, Brisbane, Australia
{m3.adams,a.terhofstede,d.edmond }@qut.edu.au
2 Department of Technology Management
Eindhoven University of Technology, Eindhoven, The Netherlands
w.m.p.v.d.aalst@tm.tue.nl

Abstract. This paper presents the basis of an approach for dynamic flexibility,
evolution and exception handling in workflows through the support of flexible
work practices, based not on proprietary frameworks, but on accepted ideas of
how people actually work. A set of principles have been derived from a sound
theoretical base and applied to the developmentarklets an extensible reper-
toire of self-contained sub-processes that can be applied in a variety of situations
depending on the context of the particular work instance.

1 Introduction

Workflow systems are used to configure and control structured business processes from
which well-defined workflow models and instances can be derived [1, 2]. However, the
proprietary frameworks imposed make it difficult to support (i) dynamic evolution (i.e.
modifying process instances during execution) following unexpected or developmen-
tal change in the business processes being modelled [3]; and (ii) deviations from the
process model at runtime [4].

These limitations mean a large subset of business processes do not easily map to
the rigid modelling structures provided [5], due to the lack of flexibility inherent in a
framework that, by definition, imposes rigidity. Process models are ‘system-centric’, or
straight-jacketed6] into the supplied framework, rather than truly reflecting the way
work is actually performed. As a result, users are forced to work outside of the system,
and/or constantly revise the static process model, in order to successfully support their
activities, thereby negating the efficiency gains sought by implementing a workflow
solution in the first place. It is therefore desirable to extend the capabilities of workflow
systems by developing an approach based on natural work practices.

This paper introduces the concept‘aforklets’, an extensible repertoire of self-
contained sub-processes and associated selection and exception handling rules, and
grounded in a formal set of work practice principles cakedivity Theory to support
the modelling, analysis and enactment of business processes. It is organised as follows:
Section 2 surveys issues of dynamic evolution and exception handling in workflows,

provides a brief overview of Activity Theory, then introduces the worklet paradigm.
Section 3 describes how the worklet approach utilRggle Down Ruleso achieve
contextual, dynamic selection at runtime.

2 Achieving Flexibility through Worklets

Rather than continue to try to force business processes into inflexible frameworks (with
limited success), a more flexible approach is needed that is based on accepted ideas of
how people actually work.

A powerful set of descriptive and clarifying principles that describe how work is
conceived, performed and reflected upoidivity Theory which focusses on under-
standing human activity and work practices, incorporating notions of intentionality, his-
tory, mediation, collaboration and development [7]. (A full exploration of Activity The-
ory can be found in: [8, 9]). In [10], the authors undertook a detailed study of Activity
Theory and derived from it a set of principles that describe the nature of participation
in organisational work practices. Briefly, the relevant principles are:

1. Activities (i.e. work processes) ateerarchical (consist of one or more actions),
communalinvolve a community of participants working towards a common objec-
tive), contextuakconditions and circumstances deeply affect the way the objective
is achieved)dynamic(evolve asynchronously), andediated(by tools, rules and
divisions of labour).

2. Actions (i.e. tasks) are undertaken and understood contextually. A repertoire of
actions is maintained and made available to any activity, which may be performed
by making contextual choices from the repertoire.

3. A plan is not a prescription of work to be performed, but merely a guide which is
modified during execution depending on context.

4. Exceptions are merely natural deviations from a plan, and will occur with every
execution, giving rise to learning experiences which can then be incorporated into
future instantiations of the plan.

Consideration of these derived principles have led to the conception of a flexible work-
flow support system that:

— regards the process model as a guide to an activity’s objective, rather than a pre-
scription for it;

— provides for a dynamic repertoire (or catalogue) of actions to be made available for
each task at each execution of a process model;

— provides for choices to be made dynamically from the repertoire at runtime by
considering the specific context of the executing instance; and

— allows those contextual choices to be made, not only for each task, but for ap-
propriate exception handling techniques using the same selection and invocation
mechanism, thus incorporating process exceptions, not only as part of the model,
but as normal and valuable events that lead to natural process evolution.

Each task of a process instance is linked to a extensible repertoire of actions, one of
which is contextually chosen at runtime to carry out the task. In this work, we present
these repertoire-member actions“agrklets”. In effect, a worklet is a small, self-
contained, complete workflow process which handles one specific task (action) in a
larger, composite process (activity). A sequence of worklets are chained to form an
entire workflow process. Note that in Activity Theory terms, a worklet may represent
one action within an activity, or may represent an entire activity. Indeed, a top-level
or manager worklet is developed that captures the entire workflow at a macro level.
From that manager process, worklets are contextually selected and invoked from the
repertoire of each task.

In addition, for each exception (an event that is not expected to occur in most in-
stances), a complementary worklet for handling the event may be defined, to be dynam-
ically incorporated into a running workflow instance on an as-needed basis. Further,
worklets to handle these potential events are constructedantly the same ways
those for standard processes. Importantly, the method used to handle an exception is
captured by the system, and so a history of the event and the method used to handle
it is recorded for future instantiations. In this way, the process model undergoes a dy-
namic natural evolution. At the same time, a repertoire for each task is dynamically
constructed as different approaches to completing a task are developed, derived from
the context of each process instance.

3 Context and Worklet Selection

In order to realise the worklet approach, the situated contextual factors relevant to each
case instance are required to be quantified and recorded [11] so that the appropriate
worklet can be ‘intelligently’ selected from the repertoire at runtime.

The types of contextual data that may be recorded and applied to a business case
may be categorised as follows (examples are drawn frabom@ference Proceedings
process):

— Generic (case independent)data attributes that can be considered likely to occur
within any process (of course, the data values change from case to case). Such data
would include descriptors such as created when, created by, times invoked, last
invoked, current status; and agent or worker descriptors such as experience, skKills,
rank, history with this worklet and so on. Process execution states also belong to
this category.

— Case dependent witha-priori knowledge: that set of data that are known to be
pertinent to a particular case or instantiation. Generally, this data set reflects the
data objects of a particular process instance. Examples are: the dates invitations,
papers and reviews sent and received; timeouts both approaching and expired; and
actual committee member, reviewer and paper data.

— Case dependent with naa-priori knowledge: that set of data that only becomes
known when the case is active and deviations from the process occur. Examples in
this category may include data that describe a missing paper, a request to withdraw
a paper or a conference cancellation.

Each worklet is a representation of a particular situated action, the runtime selection
of which relies on the relevant context of each case instance, derived from case and
historical data. The worklet selection process is achieved through the use of modified
Ripple Down Rule$RDR), which comprise a hierarchical set of rules with associated
exceptions, first devised by Compton and Jansen [12].

The fundamental feature of RDR is that it avoids the difficulties inherent in attempt-
ing to compile,a-priori, a systematic understanding, organisation and assembly of all
knowledge in a particular domain. Instead, it allows for general rules to be defined first
with refinements added later as the need arises [13].

An RDR Knowledge Base is a collection of simple rules of the fornctihdition
then conclusiori, conceptually arranged in a binary tree structure (fig. 1). Each rule
node may have a false (‘or’) branch and/or a true (‘exception’) branch to another rule
node, except for the root node, which contains a default rule and can have a true branch
only. If arule is satisfied, the true branch is taken and the associated rule is evaluated; if
it is not satisfied, the false branch is taken and its rule evaluated [14]. When a terminal
node is reached, if its rule is satisfied, then its conclusion is taken; if its rule is not
satisfied, then the conclusion of the last rule satisfied on the path to that node is taken.
This tree traversal provides impliéaality - a rule on an exception branch is tested for
applicability only if its parent (next-general) rule is also applicable.

n »;”condmon ~‘,‘
<t - »
true
AssessClaim - JRUPEEESs -~
“3=-----. conclusion)
ClaimAmount > $10,000
Condition not satisfied Condition satisfied
ReferToManager
ClaimsYTD >= 1 AssessorRank >= “Senior”
InvestigateClaim AssessClaim
ClaimAmount < $3,000 ClaimAmount > $50,000

AssessClaim ReferToManager

. on

StormDamage ClaimantStatus = “Suspect”

ExpressPayment Investigate

Fig. 1. Conceptual Structure of a Ripple Down Ruksgess Clainkxample)

If the conclusion returned is found to be unsuitable for a particular case instance, a
new rule is formulated that defines the contextual circumstances of the instance and is

added as a new leaf node. In essence, each added exception rule is a refinement of its
parent rule.

Each node incorporates a set of case descriptors, called the ‘cornerstone case’,
which describe the actual case that was the catalyst for the creation of the rule. The con-
dition for the new rule is determined by comparing the descriptors of the current case
to those of the cornerstone case of the returned conclusion and identifying a sub-set of
differences. Not all differences will be relevant — it is only necessary to determine the
factor or factors that make it necessary to handle the current case in a different fashion
to the cornerstone case to define a new rule. The identified differences are expressed as
attribute-value pairs, using the normal conditional operators. The current case descrip-
tors become the cornerstone case for the newly formulated rule; its condition is formed
by the identified attribute-values and represents the context of the case instance that
caused the addition of the rule.

The Selection ProcessWhen a process model is created, it is stored as a template

of ‘placeholders’. Each placeholder corresponds to a particular chain of RDRs within

which are referenced a repertoire of worklets, one of which will be selected and as-
signed to the placeholder dynamically. Initially, the RDR chain for each placeholder

will consist of a single node containing a default rule and a conclusion referencing the
one worklet defined. Note that whenever the model is viewed by a stakeholder, each
placeholder in the template is filled with a reference to the conclusion of the default

rule (i.e. the default worklet) for that placeholder.

Suppose that, after a while, a new business rule is formulated. In conventional work-
flow systems, this would require a re-definition of the model. Using the worklet ap-
proach, it simply requires a new worklet to be added to the repertoire and a new rule
added as a refinement to the appropriate RDR, negating the need to explicitly model the
choices and repeatedly update the model (with each iteration increasingly camouflaging
the original business logic).

In all future case instances, the new worklet defined would be chosen for that place-
holder if the condition defined by choosing the attribute differences occur in that in-
stance’s case data. Over time, the RDR chain for the placeholder grows as refinements
are added to the rule base (fig. 1).

Exception Handling.Worklets may also be defined and used to provide exception han-
dling capabilities for events that occur during the execution of a case instance. When
such an event occurs, a corresponding global system event is triggered that passes an
appropriate message to all active worklets. Each worklet has a second, separate RDR
rule base for exceptions, which is interrogated when a message is received. If the default
condition in an exception RDR chain is an identifier for the message received, then the
worklet will handle that exception by invoking an appropriately selected exception han-
dling worklet (which may modify the current state of its parent worklet when activated
(e.g. suspend it), and again on completion, as required). If there is no RDR defined for
that exception, it is simply ignored.

Exceptions may be triggered by a combination of (a) system generated messages
(e.g. deadline reached, state change of another worklet, etc); (b) domain dependent data

(e.g. unmet thresholds, missing data etc.); and (c) external triggers (i.e. user interac-
tions). Exception handling is passed hierarchically through the execution tree to each
parent worklet in turn until all ‘interested’ worklets have handled the exception. This
method ensures that all exception handling tasks are defined and performed locally and
in a distributed manner.

References

1. W.M.P. van der Aalst, Mathias Weske, and Dolfi@bauer. Case handling: A new paradigm
for business process suppditata & Knowledge Engineering3(2):129-162, 2005.

2. Gregor Joeris. Defining flexible workflow execution behaviors. In Peter Dadam and Manfred
Reichert, editorsEnterprise-wide and Cross-enterprise Workflow Management: Concepts,
Systems, Applicationsolume 24 of CEUR Workshop ProceedingBaderborn, Germany,
October 1999.

3. Alex Borgida and Takahiro Murata. Tolerating exceptions in workflows: a unified frame-
work for data and processes. Proceedings of the International Joint Conference on Work
Activities, Coordination and Collaboration (WACC'99)ages 59-68, San Francisco, CA,
February 1999. ACM Press.

4. Fabio Casati. A discussion on approaches to handling exceptions in workflou&SChV
Workshop on Adaptive Workflow SysteB®eattle, USA, November 1998.

5. Jakob E. Bardram. | love the system - | just don’t use it! Aroceedings of the 1997
International Conference on Supporting Group Work (GROUPR,' @Hpenix, Arizona, 1997.

6. W.M.P. van der Aalst and P.J.S. Berens. Beyond workflow management: Product-driven
case handling. In S. Ellis, T. Rodden, and 1. Zigurs, editiomgrnational ACM SIGGROUP
Conference on Supporting Group Woppages 42-51, New York, 2001. ACM Press.

7. Bonnie A. Nardi. Activity Theory and Human-Computer Interactigrages 7—16. In Nardi
9], 1996.

8. E(.]Engestrom.Learning by Expanding: An Activity-Theoretical Approach to Developmental
Research Orienta-Konsultit, Helsinki, 1987.

9. Bonnie A. Nardi, editorContext and Consciousness: Activity Theory and Human-Computer
Interaction MIT Press, Cambridge, Massachusetts, 1996.

10. Michael Adams, David Edmond, and Arthur H.M. ter Hofstede. The application of activity
theory to dynamic workflow adaptation issues. Rroceedings of the 2003 Pacific Asia
Conference on Information Systems (PACIS 20p8pes 1836-1852, Adelaide, Australia,
July 2003.

11. Debbie Richards. Combining cases and rules to provide contextualised knowledge based sys-
tems. InModeling and Using Context, Third International and Interdisciplinary Conference,
CONTEXT 2001volume 2116 ofLecture Notes in Artifical Intelligencgages 465-469,
Dundee, UK, July 2001. Springer-Verlag, Berlin.

12. P. Compton and B. Jansen. Knowledge in context: A strategy for expert system mainte-
nance. In J.Siekmann, editétroceedings of the 2nd Australian Joint Artificial Intelligence
Conferencevolume 406 ofecture Notes in Atrtificial Intelligenc@ages 292—-306, Adelaide,
Australia, November 1988. Springer-Verlag.

13. Tobias Scheffer. Algebraic foundation and improved methods of induction of ripple down
rules. InProcceedings of the Pacific Rim Workshop on Knowledge Acquisi@igdney,
Australia, 1996.

14. B. Drake and G. Beydoun. Predicate logic-based incremental knowledge acquisition. In
P. Compton, A. Hoffmann, H. Motoda, and T. Yamaguchi, editBreceedings of the sixth
Pacific International Knowledge Acquisition Workshgmages 71-88, Sydney, December
2000.

