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9.1 INTRODUCTION

The previous chapters have presented different languages and approaches to process
modeling. In this chapter, we review some issues in process modeling from a more
language-independent perspective. To this end, we rely on the concept of pattern:
an “abstraction from a concrete form which keeps recurring in specific non-arbitrary
contexts” [18]. The use of patterns is a proven practice in the context of object-
oriented design, as evidenced by the impact made by the design patterns of Gamma
et al. [10].

Process Aware Information Systems (PAISs) address a number of perspectives.
Jablonski and Bussler [11] identify several such perspectives in the context of work-
flow management. These include the process perspective (describing the control-
flow), organization perspective (structuring of resources), data/information perspec-
tive (to structure data elements), operation perspective (to describe the atomic process
elements) and integration perspective (to “glue” things together). 1 In a typical work-
flow management system, the process perspective is described in terms of some
graphical model, e.g. a variant of Petri nets (see Chapter 7), the organization per-
spective is described by specifying and populating roles and organizational units,
the data/information perspective is described by associating data elements to work-
flow instances (these may be typed and have a scope), the operation perspective is
described by some scripting language used to launch external applications, and the
integration perspective is described by some hierarchy of processes and activities.
In principle, it is possible to define design patterns for each of these perspectives.
However, the focus of this chapter is on patterns restricted to the process (i.e. control-
flow) perspective. This perspective is the best understood as well as the dominant
perspective of workflow. Patterns for the data perspective have been reported in [20],

1Note that in [11] different terms are used.
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while patterns for e.g. the resource perspective are currently under investigation. In
addition it is worthwhile mentioning that the control-flow patterns do not pay too
much attention to issues related to exception handling. A systematic treatment of
exception handling is planned for however, though whether this will take the form of
a collection of patterns remains open at this stage.

The control-flow perspective is concerned with enforcing control-flow dependen-
cies between tasks2, e.g. sometimes tasks need to be performed in order, sometimes
they can be performed in parallel, sometimes a choice needs to be made as to which
task to perform, etc. There is an abundance of approaches towards the specification
of control-flow in PAISs in general, and workflow management systems in partic-
ular. Many commercial workflow management systems and academic prototypes
use languages with fundamental differences. Concepts with similar names may have
significantly different behavior, different languages may impose different restrictions
(e.g. with respect to cycles), and some concepts are supported by a select number of
languages only. The reader is referred to [12, 13, 14] for a fundamental discussion of
some of these issues. This work identifies a number of classes of workflow languages,
which are abstractions of approaches used in practice, and examines their relative
expressive power. The workflow patterns initiative took a more pragmatic approach
focusing on suitability.

The workflow patterns initiative, which this chapter reviews, started in 1999. It
aimed at providing a systematic and practical approach to dealing with the diversity
of languages for control-flow specification. The initiative took the state-of-the-art
in workflow management systems as a starting point and documented a collection
of 20 patterns predominantly derived from constructs supported by these systems.
The patterns provided abstractions of these constructs as they were presented in a
language independent format. The patterns consist of a description of the essence of
the control-flow dependency to be captured, possible synonyms, examples of concrete
business scenarios requiring the control-flow dependency, and for the more complex
ones, typical realization problems and (partial) solutions to these problems.

There are a number of applications of the workflow patterns. The patterns can be
used for the selection of a workflow management system. In that case one would
analyze the problem domain in the context of which the future workflow management
system is to be used, i.e. analyze the needs in terms of required support for various
workflow patterns and subsequently match the requirements with the capabilities of
various workflow management systems (this could be termed a suitability analysis).
Additionally, the patterns can be used for benchmarking purposes, examining relative
strengths and weaknesses of workflow products. Such examinations may be the
basis for language development and adaptations of workflow management systems.
Another use of the patterns can be found in the context where a particular workflow
tool is prescribed and certain patterns need to be captured. Here the workflow patterns
collection acts as a resource for descriptions of typical workarounds and realization
approaches for patterns in different workflow systems.

2In this chapter, the terms “task” and “activity” are used interchangeably.



CLASSIFICATION OF PATTERNS iii

The first paper related to the workflow patterns initiative3 appeared in the CoopIS
conference in 2000 (see [2]). The main paper appeared in 2003 in the Distributed
and Parallel Databases Journal (see [5]). Apart from a description of the complete
set of patterns, this latter paper contains an analysis of 13 commercial workflow
management systems and two academic prototypes in terms of their support for the
patterns. The patterns have been used for analyses of UML Activity Diagrams version
1.4 (see [8]), BML (Business Modeling Language) an approach used in the context of
Enterprise Application Integration (see [24]), and various approaches and proposed
standards in the area of web service composition such as BPEL4WS (see [23] for this
evaluation and Chapter 14 for an introduction to BPEL4WS). The workflow patterns
formed the starting point for the development of YAWL 4 (Yet Another Workflow
Language). This language extends Petri nets with constructs for dealing with some
of the patterns in a more straightforward manner. Though based on Petri nets, its
formal semantics is described as a transition system (see [4]) and YAWL should not
be seen as a collection of macros defined on top of Petri nets. A first description of
the design and implementation of the YAWL environment can be found in [1]. In
this chapter the YAWL notation will be used to explain various patterns.

The goal of this chapter is to take an in-depth look at a selection of the patterns as
presented in [5] from a more didactic perspective. The organization of this chapter is
as follows. A classification of the patterns is discussed which is followed by a detailed
discussion of a selection of patterns organized according to this classification. The
chapter concludes with a brief summary and outlook. Note that whenever products
are referred to in this chapter their version corresponds to the version which was used
for the evaluation in [5] unless stated otherwise.

9.2 CLASSIFICATION OF PATTERNS

As mentioned earlier, the patterns initiative has led to a set of 20 control-flow patterns.
These patterns range from very simple patterns such as sequential routing (Pattern
1) to complex patterns involving complex synchronizations such as the discriminator
pattern (Pattern 9). These patterns can be classified into six categories:

1. Basic control-flow patterns. These are the basic constructs present in most
workflow languages to model sequential, parallel and conditional routing.

2. Advanced branching and synchronization patterns. These patterns transcend
the basic patterns to allow for more advanced types of splitting and joining
behavior. An example is the Synchronizing merge (Pattern 7) which behaves
like an AND-join, XOR-join, or combination thereof,depending on the context.

3. Structural patterns. In programming languages a block structure which clearly
identifies entry and exit points is quite natural. In graphical languages allowing

3www.workflowpatterns.com
4www.yawl-system.com
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Basic Control Flow Patterns

• Pattern 1 (Sequence)

• Pattern 2 (Parallel Split)

• Pattern 3 (Synchronization)
• Pattern 4 (Exclusive Choice)

• Pattern 5 (Simple Merge)

Advanced Branching and
Synchronization Patterns

• Pattern 6 (Multi - choice)
• Pattern 7 (Synchronizing Merge)

• Pattern 8 (Multi - merge)

• Pattern 9 (Discriminator)

Structural Patterns
• Pattern 10 (Arbitrary Cycles)

• Pattern 11 (Implicit Termination)

State-based Patterns
• Pattern 16 (Deferred

Choice)

• Pattern 17 (Interleaved
Parallel Routing)

• Pattern 18 (Milestone)

Patterns involving Multiple Instances

• Pattern 12 (Multiple Instances Without
Synchronization)

• Pattern 13 (Multiple Instances With a Priori
Design Time Knowledge)

• Pattern 14 (Multiple Instances With a Priori
Runtime Knowledge)

• Pattern 15 (Multiple Instances Without a Priori
Runtime Knowledge)

Cancellation Patterns
• Pattern 19 (Cancel Activity)

• Pattern 20 (Cancel Case)

Fig. 9.1 Overview of the 20 workflow patterns described in [5].

for parallelism such a requirement is often considered to be too restrictive.
Therefore, we have identified patterns that allow for a less rigid structure.

4. Patterns involving multiple instances. Within the context of a single case
(i.e. workflow instance) sometimes parts of the process need to be instantiated
multiple times, e.g. within the context of an insurance claim, multiple witness
statements need to be processed.

5. State-based patterns. Typical workflow systems focus only on activities and
events and not on states. This limits the expressiveness of the workflow
language because it is not possible to have state dependent patterns such as the
Milestone pattern (Pattern 18).

6. Cancelation patterns. The occurrence of an event (e.g. a customer canceling
an order) may lead to the cancelation of activities. In some scenarios such
events can even cause the withdrawal of the whole case.

Figure 9.1 shows an overview of the 20 patterns grouped into the six categories. This
classification is used in the next section to highlight some of the patterns.

9.3 EXAMPLES OF CONTROL-FLOW PATTERNS

This section presents a selection of the various control-flow patterns using the clas-
sification shown in Figure 9.1.
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9.3.1 Basic control-flow patterns

The basic control flow patterns essentially correspond to control-flow constructs as
described by the Workflow Management Coalition5 (see e.g. [9] or [22]). These
patterns are typically supported by workflow management systems and as such do
not cause any specific realization difficulties. It should be pointed out though that
the behavior of the corresponding constructs in these systems can be fundamentally
different. In this section the sequence pattern is discussed in terms of the format used
for capturing patterns, while the other four patterns are discussed in a less structured
manner.

Pattern 1 (Sequence)
Description An activity should await the completion of another activity within the
same case before it can be scheduled.
Synonyms Sequential routing, serial routing
Examples

- After the expenditure is approved, the order can be placed.

- The activity select winner is followed by the activity notify outcome.

Implementation
- This pattern captures direct causal connections between activities and is sup-

ported by all workflow management systems. Graphically, this pattern is
typically represented through a directed arc without an associated condition.

There are four other basic control-flow patterns, two of which correspond to splits
and two of which correspond to joins.

The XOR-split corresponds to the notion of an Exclusive choice (Pattern 4). Out
of two or more outgoing branches, one branch is chosen. Such a choice is typically
determined by workflow control data or input provided by users of the system. In
some systems (e.g. Staffware) there is explicit support for XOR-splits, while in
some other systems (e.g. MQSeries/Worfklow) the designer has to guarantee that
only one outgoing branch will be chosen at runtime by providing mutually exclusive
conditions. In the YAWL environment, conditions specified for outgoing arcs of an
XOR-split may overlap. In case multiple conditions evaluate to true, the arc with the
highest preference (which is specified at design time) is selected. If all conditions
evaluate to false, the default arc is chosen. This solution is similar to Eastman’s
solution (see [21], p. 144-145) where a rule list can be specified for an activity, and
these rules are processed after completion of that activity. Among others, this list
may contain rules for passing control to subsequent activities. Control is passed to
the first activity occurring in such a rule, whose associated condition evaluates to
true. A default rule can be specified which does not have an associated condition and

5www.wfmc.org
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therefore should be last in such a list ([21], p. 145). As an example of an XOR-split
consider the case where purchase requests exceeding $10,000 are to be approved
by head office, while purchase requests not exceeding this amount of money can be
approved by the regional offices.

The converse of the XOR-split is the XOR-join or Simple merge (Pattern 5). An
XOR-join is enabled when one of its preceding branches completes. The definition
by the Workflow Management Coalition (WfMC) requires that the XOR-join (called
OR-join by the WfMC) is not preceded by parallelism, i.e. no two or more preceding
branches of the XOR-join run in parallel at any point in time. The pattern incorporates
this requirement, which can be seen as a context assumption. Without this assumption
substantial differences between various workflow products would become apparent,
but we will treat this as a different pattern, the multi-merge, to be discussed in the
next section. In some cases, XOR-joins should have corresponding XOR-splits (e.g.
Visual WorkFlo), which, combined with other similar restrictions, may guarantee that
no parallelism occurs in branches preceding XOR-joins. Such structured workflows
are discussed in [12, 14]. As an example of an XOR-join consider the activity
report outcome which is to be executed after activity finalize rejection or activity
finalize approval completes. It is assumed that these two latter activities never run
in parallel.

The AND-split can be used to initiate parallel execution of two or more branches
(Pattern 2). It should be remarked that the description in [5], which was adapted
from the original formulation by the WfMC, left open the possibility that no true
parallelism takes place, so that these branches could be executed in an interleaved
manner. This interpretation is convenient, as it can be used in contexts where other
constraints (e.g. on resources) do not permit activities of different branches to be
executed at the same time, but where the specification should be flexible enough
to allow the execution environment to decide itself which activity of which branch
should be scheduled next (hence one should not be forced to make an arbitrary
decision at design time). An example of an AND-split could be in the context of an
application process where after short-listing of candidates, referee reports need to be
obtained and interviews need to be held. For a particular candidate, these activities
could be done in parallel or in any order. In terms of implementation, sometimes
the AND-join is supported in an implicit manner (e.g. MQSeries/Workflow), where
conditions are required to be specified for all outgoing branches. In those cases the
AND-join can be realized by specifying the condition represented by the Boolean
constant true for all these branches.

The AND-join is the converse of the AND-split and synchronizes its incoming
branches (Pattern 3). All incoming branches of an AND-join need to be completed
before the AND-join can proceed the flow. E.g. a decision for a particular candidate
can only be made once their referee reports have been received and they have been
interviewed. Again, there is a context assumption for this pattern. It should not be
possible that a branch signals its completion more than once before all other branches
have completed. So the AND-join only needs to remember whether a particular
branch has completed or not. Note that it is possible that a completion signal is never
received for a particular branch in which case the AND-join causes a deadlock.
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Figure 9.2 provides an overview of the graphical constructs in YAWL that can be
used to capture the basic control-flow patterns. In this figure, boxes denote “tasks”
while circles denote “conditions”. These correspond to the notions of transition and
place in Petri nets respectively (See Chapter 7).6 These YAWL constructs do not
require the context assumptions of some of the patterns presented in this section and
as such have a broader interpretation than these patterns (e.g. the simple merge can
be realized by the YAWL XOR-join, but this XOR-join also realizes the Multi-merge
pattern discussed in the next section).

AND-split task

XOR-split task

AND-join task

XOR-join task

Sequence

Fig. 9.2 Some basic symbols used in YAWL.

9.3.2 Advanced branching and synchronization patterns

The patterns presented in this section deal with less straightforward split and join
behavior and, though not uncommon in practice, pose more difficulties in terms of
their support by contemporary workflow management systems. The Multi-choice
(Pattern 6) and the Synchronizing merge (Pattern 7) will be looked at in-depth, the
other patterns will be discussed more briefly.

While only one outgoing branch is chosen in case of an XOR-split, the OR-split
or Multi-choice allows a choice for an arbitrary number of branches.

Pattern 6 (Multi-choice)
Description Out of several branches, a number of branches are chosen based on user
input or data accessible by the workflow management system.
Synonyms Conditional routing, selection, OR-split.
Examples

6Note that in the YAWL representation of the Sequence (which appears in the figure), the condition does
not need to be explicitly shown.
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- After the execution of activity determine teaching evaluation, execution of
activity organize student evaluation may commence as well as execution of
activity organize peer review. At least one of these two activities is executed,
possibly both.

Problem Workflow management systems that allow for the specification of condi-
tions on transitions support this pattern directly. Sometimes however the multi-merge
needs to be realized in terms of the basic patterns (e.g. Staffware supports AND-splits
and XOR-splits, but nothing “in between”).
Implementation

- As mentioned above, this pattern is directly supported by systems that allow
for conditions to be specified for transitions (as is e.g. the case for Verve, Fort é
Conductor, and MQSeries/Workflow). As stated in the previous section, such
systems provide implicit support for XOR-splits and AND-splits. However,
their approach also allows for splits that are neither (selection of more than one
branch, but not all). The multi-merge may be considered a generalization of
the XOR-split and the AND-split.

- An OR-split in YAWL is shown in Figure 9.3. It should be noted that in
the YAWL environment, at least one outgoing transition needs to be chosen,
which makes its OR-split slightly less general than the pattern. In YAWL, the
selection of at least one branch is guaranteed by the specification of a default
branch which is chosen if none of the conditions evaluate to true (including the
condition associated with the default branch!).

B

A

C

C1

C2determine_teaching_evaluation

organize_peer_review

organize_student_evaluation

Fig. 9.3 Multi-choice in YAWL.

- For those languages that only support the basic XOR-splits and AND-splits
there are two solutions:

• Transform the �-way multi-choice into an AND-split followed by � bi-
nary XOR-splits, each of which checking whether the condition of the
corresponding branch in the multi-choice is true or not. If a condition
evaluates to true, the corresponding activity needs to be executed, other-
wise no action is required.

• Transform the �-way multi-choice into an XOR-split with �� outgoing
branches. Each of these outgoing branches corresponds to a particular
subset of outgoing branches that may be chosen as part of the multi-choice
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(AND-splits would be used for those subsets that consist of at least two
outgoing branches). The associated condition should capture that the
corresponding conditions of these branches are true, but that this doesn’t
hold for any of the conditions associated with the other branches (note
that this solution indeed guarantees mutual exclusion of the outgoing
branches of the XOR-split). This solution is exponential in terms of the
number of outgoing transitions as opposed to the previous solution.

These solutions are illustrated in YAWL in Figure 9.4, where it should be
noted that contrary to YAWL’s semantics we assume that the multi-choice of
Figure 9.3 also allows none of the branches to be executed (to be in line with
the description of the pattern).

A

C

B

A

B

C
B

C

C1

~C1

~C2

C2

C1 & C2

~C1 & ~C2

C1 & ~C2

~C1 & C2

determine_
teaching_
evaluation

organize_peer_
review

organize_student_
evaluation

organize_student_
evaluation

organize_peer_
review

determine_
teaching_
evaluation

Fig. 9.4 Expanding a multi-choice in terms of simple choice and parallel split (illustrated in
YAWL). “∼ C” stands for “not C”.

While the multi-choice does not cause too many problems in contemporary work-
flow management systems, the same cannot be said for the so-called Synchronizing
merge (Pattern 7) which in a structured context can be seen as its converse. Consider
the YAWL schema of Figure 9.5. After activity � (determine teaching evaluation)
either � (organize peer review) or � (organize student evaluation) or both � and
� will be executed (note that as mentioned before, in YAWL the multi-choice has
to choose at least one of the outgoing branches). The synchronization prior to the
execution of activity� (interpret results) should now be such that only active threads
should be waited upon. In particular, if activity � is not triggered after the OR-split,
then the OR-join should not wait for it and same for activity �. This is achieved
through the use of an OR-join in YAWL. The use of an AND-join here may lead
to a deadlock in case either � or � was chosen (but not both), while the use of a
synchronization construct which executes� upon completion of any of the incoming
branches (multi-merge) may lead to executing this activity twice in case both � and
� were chosen.



x

C

A D

B

determine_teaching_evaluation

organize_peer_review

organize_student_evaluation

interpret_results

Fig. 9.5 Illustration of the synchronizing merge in YAWL.

In the description of the synchronizing merge a more general approach will be
taken, in line with the formalization in YAWL, than the one described in [5].

Pattern 7 (Synchronizing Merge)
Description A form of synchronization where execution can proceed if and only
if one of the incoming branches has completed and from the current state of the
workflow it is not possible to reach a state where any of the other branches has
completed.
Synonyms Synchronizing join, OR-join.
Examples

- Consider again the example presented in Pattern 6 (Multi-choice). After ac-
tivities organize student evaluation and organize peer review have finished,
activity interpret results could be scheduled. This activity should only await
completion of those activities that were actually executed and itself be per-
formed once.

Problem The main challenge of achieving this form of synchronization is to be able
to determine when more completions of incoming branches are to be expected. In
the general case, this may require an expensive state analysis.
Implementation

- In workflow systems such as MQSeries/Workflow and InConcert the synchro-
nizing merge is supported directly because of the evaluation strategy used.
In MQSeries/Workflow activities have to await signals from all incoming
branches. Such a signal may indicate that a certain branch completed and
that the associated condition evaluated to true, or it indicates that a certain
branch was bypassed or that the associated condition evaluated to false. De-
pending on the particular combination of signals received and the evaluation of
the join condition the activity is or is not executed and a corresponding signal
is propagated. In InConcert, activities just await signals from all incoming
branches and the evaluation of a precondition (not the value of these signals)
will determine whether they themselves will be executed or not. In either case,
no deadlock will occur as neither MQSeries/Workflow nor InConcert allows
cycles.

- The interpretation of the OR-join in YAWL (as formalized in [4]) is such that
it is enabled if and only if an incoming branch has signaled completion and
from the current state it is not possible to reach a state (without executing any
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OR-join) where another incoming branch signals completion. While this can
handle workflows of a structured nature it can also handle workflows such as
the one displayed in Figure 9.6. As a possible scenario consider the situation
where after completion of activity � both activities � and � are scheduled.
If activity � completes, and activity � has not completed then activity � can
not be executed as it is possible that activity � will be chosen after completion
of �. In this case, if after completion of activity �, activity � is chosen,
activity � can be scheduled for execution as it is not possible to reach a state
where activity � will be scheduled. So the OR-join guarantees that activity
� has to await completion of activity � if it was scheduled, and if activity
� was scheduled, activity � has to at least await the outcome of the decision
after completion of activity �. If activity � was subsequently chosen it does
not need to wait for completion of activity � , but if activity � was chosen
it will have to await completion of that activity. Current work with respect
to the OR-join in YAWL is reconsidering the treatment of other OR-joins in
the reachability analysis required for determining whether a certain OR-join is
enabled and is examining algorithmic solutions for this analysis.

C

E

B

A
D

F

Fig. 9.6 Another illustration of the synchronizing merge in YAWL.

- As it is stated in [21] (p. 109) that “non-parallel work items routed to Join
worksteps bypass Join Processing” an XOR-split followed by an AND-join in
Eastman does not necessarily lead to a deadlock. Hence joins have information
about the number of active threads to be expected. The situation captured by the
YAWL workflow in Figure 9.5 would not cause any problems in Eastman as the
OR-join would know whether to expect parallel execution of � and � or not.
While this solution works fine in a structured context where information about
active threads initiated after a split can be passed on to a corresponding join,
this does not work so well in a context where workflows are not fully structured.
Consider again the YAWL workflow depicted in Figure 9.6. In Eastman this
specification leads to a deadlock if � was chosen and after completion of � a
choice for activity � was made. The OR-join would then keep waiting for the
completion of activity � .

- In the context of EPCs (see Chapter 6), there exists a body of research exam-
ining possible interpretations of the OR-join [3, 7, 15, 19].
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- In case there is no direct support for the OR-join, it may require some work
to capture its behavior (and without the use of the data perspective and under a
certain notion of equivalence, it may not always be possible, see [13, 12]). In
a structured context a multi-choice could be replaced as indicated in the two
solutions in its pattern description and synchronization can then be achieved
in a straightforward manner.

The Multi-merge (Pattern 8) does not make the context assumption specified for
the XOR-join in the previous section. It will execute the activity involved as many
times as its incoming branches signal completion. This interpretation allows these
incoming branches to be executing in parallel. The YAWL XOR-join corresponds to
the multi-merge.

The Discriminator7 (Pattern 9) provides a form of synchronization for an activity
where out of a number of incoming branches executing in parallel, the first branch to
complete initiates the activity. When the other branches complete they do not cause
another invocation of the activity. After all branches have completed the activity is
ready to be triggered again (in order for it to be usable in the context of loops). In
YAWL, one of the ways to capture the discriminator involves the usage of cancelation
regions (cf. [4]). The discriminator is specified with a multi-merge and a cancelation
region encompassing the incoming branches of the activity. In this realization, the
first branch to complete starts the activity involved, which then cancels the other
executing incoming branches. This is not in exact conformance with the original
definition of the pattern (as it actually cancels the other branches), but this choice
is motivated by the fact that it is clear in this approach what the region is that is in
the sphere of the discriminator giving it a clearer semantics. The discriminator is a
special case of the n-out-of-m join (sometimes referred to as partial join [6]) as it
corresponds to a 1-out-of-m join.

9.3.3 Structural patterns

This section briefly examines two so-called structural patterns: arbitrary cycles and
implicit termination. Structural patterns deal with syntactic restrictions that some
languages impose on workflow specifications.

Some workflow systems only allow the specification of loops with unique entry and
exit points. Arbitrary cycles, where there are multiple ways of exiting from the loop
or multiple ways of entering the loop, are not allowed. Sometimes this is enforced in
an explicit manner, e.g. in languages that are structured (see e.g. [14]), while some-
times the restriction comes about through the fact that iterative behavior can only be
specified through postconditions on decompositions (as e.g. in MQSeries/Workflow).
The process specified in the decomposition is to be repeated till the postcondition
evaluates to true. In the case of MQSeries/Workflow, this more implicit way of spec-
ifying loops is a direct consequence of the evaluation strategy used, where incoming

7The term Discriminator originates from Verve Workflow.
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signals are expected from all incoming branches of an activity. Obviously, cycles in
a specification would then cause a deadlock. YAWL allows for the specification of
arbitrary cycles. In [12, 14], expressiveness issues in relation to structured workflows
are investigated. It is shown that not all arbitrary cycles can be converted to structured
cycles (in the context of a given equivalence notion and without considering the data
perspective).

At least two different termination strategies can be distinguished for workflows.
In one approach, a workflow execution is considered completed when no activity can
be scheduled anymore (and the workflow is not in a deadlock). This is referred to
as implicit termination (e.g. supported by MQSeries/Workflow, Staffware). In the
other approach the workflow is considered completed if a designated end point is
reached. Though other activities may still be executing, they are terminated when
this happens. While the two approaches are different, in some cases workflows
following one approach may be converted to workflows conforming to the other
approach. In [13] it is shown how so-called standard workflows which do not contain
a deadlock and do not have multiple concurrent instances of the same activity at any
stage, can be transformed into equivalent standard workflows with a unique ending
point so that when this ending point is reached, no other part of the workflow is still
active. YAWL does not support implicit termination as to force workflow designers
to carefully think about workflow termination.

9.3.4 Patterns involving multiple instances

The patterns in this section involve a phenomenon that we will refer to as multiple
instances. As an example, consider the reviewing process of a paper for a conference.
Typically, there are multiple reviews for one paper and some activities are at the level
of the whole paper (e.g. accept/reject) while others are at the level of a single review
(e.g. send paper to reviewer). This means that inside a case (i.e. the workflow
instance, in this example a paper) there are sub-instances (i.e. the reviews) that need
to be dealt with in parallel (i.e. in parallel multiple reviewers may be reviewing
the same paper). Multiple-instance patterns are concerned with the embedding of
sub-instances in cases (i.e. workflow instances). From a theoretical point of view the
concept is relatively simple and corresponds to multiple threads of execution referring
to a shared definition. From a practical point of view it means that an activity in a
workflow graph can have more than one running, active instance at the same time.
As we will see, such behavior may be required in certain situations. The fundamental
problem with the implementation of these patterns is that due to design constraints
and lack of anticipation for this requirement most of the workflow engines do not
allow for more than one instance of the same activity to be active at the same time
(in the context of a single case).

When considering multiple instances there are two types of requirements. The
first requirements has to do with the ability to launch multiple instances of an activity
or a subprocess. The second requirement has to do with the ability to synchronize
these instances and continue after all instances have been handled. Each of the
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patterns needs to satisfy the first requirement. However, the second requirement may
be dropped by assuming that no synchronization of the instances launched is needed.

If the instances need to be synchronized, the number of instances is highly relevant.
If this number is fixed and known at design time, then synchronization is rather
straightforward. If, however, the number of instances is determined at run-time
or may even change while handling the instances, synchronization becomes very
difficult. Therefore, Figure 9.1 names three patterns with synchronization. If no
synchronization is needed, the number of instances is less relevant: Any facility to
create instances within the context of a case will do. Therefore, Figure 9.1 names
only one pattern for multiple instances without synchronization.

In this section we highlight only one of the four multiple instance patterns. This is
the most complex of these patterns since it requires synchronization while the number
of instances can even vary at runtime.

Pattern 15 (Multiple Instances Without a Priori Runtime Knowledge)
Description For one case an activity is enabled multiple times. The number of
instances of a given activity for a given case is not known during design time, nor
is it known at any stage during runtime, before the instances of that activity have to
be created. Once all instances are completed some other activity needs to be started.
It is important to note that even while some of the instances are being executed or
already completed, new ones can be created.
Examples

- Consider the reviewing process of a paper for a conference where there are
are multiple reviews for one paper. The number of reviewers may be fixed
initially, say 3, but may be increased when there are conflicting reviews or
missing reviews. For example, initially three reviewers are appointed to review
a paper. However, halfway the reviewing period a reviewer indicates that he
will not be able to complete the review. As a result a fourth reviewer (i.e. the
fourth instance) is appointed. At the end of the review period only two reviews
are returned. Moreover, the two reviews are conflicting (strong accept versus
strong reject). As a result, the PC chair appoints a fifth reviewer (i.e. the fifth
instance).

- The requisition of 100 computers involves an unknown number of deliveries.
The number of computers per delivery is unknown and therefore the total
number of deliveries is not known in advance. After each delivery, it can be
determined whether a next delivery is to come by comparing the total number
of delivered goods so far with the number of the goods requested. After
processing all deliveries, the requisition has to be closed.

- For the processing of an insurance claim, zero or more eyewitness reports
should be handled. The number of eyewitness reports may vary. Even when
processing eyewitness reports for a given insurance claim, new eyewitnesses
may surface and the number of instances may change.

Problem Some workflow engines provide support for generating multiple instances
only if the number of instances is known at some stage of the process. This can be
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compared to a “for” loop in procedural languages. However, these constructs are of
no help to processes requiring “while” loop functionality. Note that the comparison
with the “while” construct may be misleading since all instances may run in parallel.
Implementation

- YAWL directly supports multiple instances. Figure 9.7 shows a process where
there may be multiple witnesses processed in parallel. Composite activity �
(process witness statements) consists of three steps (�, �, � ) which are
executed for each witness. Figure 9.7 does not show that the number of
instances of � may be changed at any point in time, i.e. even when the
processing of witness statements has already started. This is a setting of �.
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Fig. 9.7 Illustration of the multiple instances pattern in YAWL.

- FLOWer (see Chapter 19) is one of the few commercial systems directly
supporting this pattern. In FLOWer it is possible to have dynamic subplans.
The number of instances of each subplan can be changed at any time (unless
specified otherwise).

- If the pattern is not supported directly, typical implementation strategies in-
volve a counter indicating the number of active instances. The counter is
incremented each time an instance is created and decremented each time an
instance is completed. If, after activation, the counter returns to 0, then the
construct completes and the flow continues. Consider for example, Figure 9.7.
In activity � the counter is set to some value indicating the initial number of
witnesses. While executing instances of composite activity �, new instances
may be created. For each created instance, the counter is incremented by 1.
Each time � is executed for some instance (i.e. � completes), the counter is
decremented. If the value of the counter equals 0, no more witnesses can be
added and � gets enabled. Note that the counter only takes care of the syn-
chronization problem. In addition to the counter, the implementation should
allow for multiple instances running in parallel.



xvi

Multiple instances are not only interesting from a control-flow point of view. Note
that each instance will have its own data elements but at the same time it may be
necessary to aggregate data. For example, in Figure 9.7 each witness may have an
address, i.e. each instance of � has a case attribute indicating the address of the
witness. However, in � it may be interesting to determine the number of witnesses
living at the same address. This implies that it is possible to query the data of each
instance to do some calculations.

9.3.5 State-based patterns

In [17] supporting evidence from a number of sources is collected with respect to
the time spent waiting as a percentage of the total execution time (i.e. cycle/flow
time) averaged over workflow instances in areas dealing with insurance and pension
claims, and tax returns. In the five sources mentioned, this average percentage is at
least 95% (and in three of these sources at least 99%), which implies that workflow
instances are typically in a state awaiting processing rather than being processed.
Many computer scientists, however, seem to have a frame of mind, typically derived
from programming, where the notion of state is interpreted in a narrower fashion
and is essentially reduced to the concept of data or a position in the queue of some
activity. As this section will illustrate, there are real differences between work
processes and computing and there are business scenarios where an explicit notion
of state is required.
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Fig. 9.8 A example illustrating state-based patterns.
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To illustrate two of the state-based patterns, consider Figure 9.8. This is again a
YAWL diagram. However, in contrast to the earlier diagrams, Figure 9.8 explicitly
shows the states in-between activities. Note that YAWL uses a Petri-net-like notation
to model states (i.e. places). The initial state of the case (i.e. process instance) is
modeled by start. The final state is modeled by end. If there is a token in start, the first
activity � can be executed. The last activity � will put a token in end. In-between�
(register) and � (archive) two parallel processes are executed. The upper part models
the logistical subprocess while the lower parts models the financial subprocess. In
the logistical subprocess there is an Exclusive choice (Pattern 4) modeled by �. If
the ordered goods are available,� wil put a token in ��. If the ordered goods are not
available, a replenishment order is planned (token in place c4) or the missing goods
have already been ordered (token in place c3). In the financial subprocess (i.e. lower
part) there is also a choice. After sending the bill (� ) there is a choice between the
decision to send a reminder (activity 	) and the receipt of the payment (activity 
).
Note that this decision is not made by � , i.e. after completing activity � the choice
between 	 and 
 is not fixed but depends on external circumstances, e.g. 	 may
be triggered by a clock (e.g. after four weeks) while 
 is triggered by the customer
actually paying for the ordered goods. Note that the choice modeled by c6 is different
from the choice modeled by �: in c6 there is a “race” between two activities 	 and

 while after executing � the next activity is fixed by putting a token in c3 (�), c4
(�), or c5 (�). As indicated, the construct involving� corresponds to the traditional
Exclusive choice (Pattern 4) supported by most systems and languages. The construct
involving c6 corresponds to the Deferred choice (Pattern 16) described in this section.
Figure 9.8 also shows another state-based pattern: the milestone (Pattern 18). This
is the construct involving 	 and c7. Note that 	 is an AND-split/AND-join and
therefore it can only occur if there is a token in c7. This implies that it is only possible
to send a reminder if the goods have been shipped. The purpose of the milestone
pattern is to be able to test the state in another parallel branch. If 	 would always
occur exactly once, this construct would not be needed, i.e. the two arcs representing
the milestone could be replaced by a new place connecting � to 	 . However, for
some cases 	 is not executed at all (i.e. the customer is eager to pay) while for other
cases 	 is executed multiple times (i.e. the customer is reluctant to pay). Therefore,
this alternative solution does not work properly. Note that in this case the deferred
choice and milestone are connected. In general this is not the case since both patterns
can occur independently. There is a third state-based pattern (Pattern 17: interleaved
parallel routing). The pattern is used to enforce mutual exclusion without enforcing
a fixed order. A discussion of this pattern is beyond the scope of this chapter. Instead
we restrict our attention to the deferred choice.

Pattern 16 (Deferred Choice)
Description A point in the workflow process where one of several branches is chosen.
In contrast to the XOR-split, the choice is not made explicitly (e.g. based on data
or a decision) but several alternatives are offered to the environment. However, in
contrast to the OR-split, only one of the alternatives is executed. This means that
once the environment activates one of the branches the other alternative branches are
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withdrawn. It is important to note that the choice is delayed until the processing in
one of the alternative branches is actually started, i.e. the moment of choice is as late
as possible.
Synonyms External choice, implicit choice, deferred XOR-split.
Examples

- See the YAWL diagram shown in Figure 9.8. After sending the bill (� ) there
is a choice between the decision to send a reminder (activity	) and the receipt
of the payment (activity
). This decision is not made by � but is resolved by
the “race” between 	 and 
, i.e. a race between a time trigger (end of a four
week period) and an external trigger (the receipt of the payment).

- At certain points during the processing of insurance claims, quality assurance
audits are undertaken at random by a unit external to those processing the
claim. The occurrence of an audit depends on the availability of resources to
undertake the audit, and not on any knowledge related to the insurance claim.
Deferred choices can be used at points where an audit might be undertaken.
The choice is then between the audit and the next activity in the processing
chain. The activity capturing the audit triggers the next activity to preserve the
processing chain.

Problem Many workflow management systems support the XOR-split described
in Pattern 4 (Exclusive choice) but do not support the deferred choice. Since both
types of choices are desirable (see examples), the absence of the deferred choice is a
real problem. The essence of the problem is the moment of choice as illustrated by
Figure 9.9. In Figure 9.9(a) the choice is as late a possible (i.e. when� or � occurs)
while in Figure 9.9(b) the choice is resolved when completing�.
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(a)  Deferred choice (Pattern 16) (b)  Exclusive choice (Pattern 4)

Fig. 9.9 The moment of choice in the Patterns 4 (Exclusive choice) and 16 (Deferred choice).

Implementation
- COSA is one of the few systems that directly supports the deferred choice.

Since COSA is based on Petri nets it is possible to model implicit choices as
indicated in Figure 9.9(a). YAWL is also based on Petri nets and therefore
also supports the deferred choice. Some systems offer partial support for this
pattern by offering special constructs for a deferred choice between a user
action and a time out (e.g. Staffware) or two user actions (e.g. FLOWer).
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- Although many workflow management systems have problems dealing with
the deferred choice, emerging standards in the web services composition do-
main have no problems supporting the patterns. For example, BPEL offers a
construct called pick which directly captures this pattern.

- Assume that the workflow language being used supports cancelation of activ-
ities (Pattern 19) through either a special transition (e.g. Staffware) or through
an API (most other engines). Cancelation of an activity means that the activ-
ity is being removed from the designated worklist as long as it has not been
started yet. The deferred choice can be realized by enabling all alternatives
via an AND-split. Once the processing of one of the alternatives is started, all
other alternatives are canceled. Consider the deferred choice between � and
� in Figure 9.9(a). This could be implemented using cancelation of activities
in the following way. After �, both � and � are enabled. Once � is se-
lected/executed, activity � is canceled. Once � is selected/executed, activity
� is canceled. Note that the solution does not always work because � and �
can be selected/executed concurrently.

- Another solution to the problem is to replace the deferred choice by an explicit
XOR-split, i.e. an additional activity is added. All triggers activating the
alternative branches are redirected to the added activity. Assuming that the
activity can distinguish between triggers, it can activate the proper branch.
Note that the solution moves part of the routing to the application or task level.
Moreover, this solution assumes that the choice is made based on the type of
trigger.

9.3.6 Cancelation patterns

When discussing possible solutions for the deferred choice pattern, we already men-
tioned the pattern Cancel activity (Pattern 19). This is one of two cancelation patterns.
The other pattern is Cancel case (Pattern 20). The cancel activity pattern disables
an enabled activity, i.e. a thread waiting for the execution of an activity is removed.
The cancel case pattern completely removes a case, i.e. workflow instance, (i.e. even
if parts of the process are instantiated multiple times, all descendants are removed).
Both constructs are supported by YAWL through a more generic construct which re-
moves all tokens from a given region. A more detailed discussion of the cancelation
patterns is outside the scope of this chapter.

9.4 CONCLUSION

This chapter introduced several control-flow patterns which can be used to support
modeling efforts, to train workflow designers, and to assist in the selection of work-
flow management systems. Although inspired by workflow management systems
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the patterns are not limited to workflow technology but applicable to Process Aware
Information Systems (PAIS) ranging from EAI platforms and web services compo-
sition languages to case-handling systems and groupware. For example, the patterns
have not only been used to evaluate several commercial and academic workflow
management systems [5, 4] but also several standards including UML [8], BML
[24], and BPEL4WS [23]. For more information on these evaluations and inter-
active animations for each of the patterns we refer to www.workflowpatterns.com.
Throughout this chapter we used YAWL diagrams to illustrate the patterns. YAWL
[4] demonstrates that it is possible to support the patterns in a direct and intuitive
manner. YAWL is an open-source initiative and supporting tools can be downloaded
from www.yawl-system.com. Current research aims at further developing YAWL
and to develop patterns and pattern languages for other perspectives than control-
flow (notably the resource perspective; a collection of data patterns was recently
reported in [20]).
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Fig. 9.10 How to model this in terms of Pi calculus?

Note that the 20 patterns mentioned in this chapter are not complete. Therefore, we
invite users, researchers and practitioners to contribute. Moreover, some systems and
languages have limitations not adequately addressed by the patterns. For example, in
Staffware it is not allowed to connect a condition (i.e. an exclusive choice/XOR-split)
to a wait step (i.e. synchronization/AND-join). Moreover, a condition in Staffware
is always binary, i.e. to model a choice involving three alternatives two condition
elements are needed. For most of these limitations there are simple workarounds.
However, this is not always the case as is illustrated by the following example.
Consider the Petri net shown in Figure 9.10. This model shows a simple classical
Petri net with 8 transitions. First � is executed followed by � and � in parallel. �
is followed by �, however, � has to wait for the completion of both � and �, etc.
Finally,	 is executed and all transitions have been executed exactly once. Although
the Petri net is very simple (e.g. it does not model any choices, only parallelism),
process algebras like Pi calculus [16] have problems modeling this example. To
understand the problem consider the Petri net shown in Figure 9.10 without the
connection between � and � . In that case the sequences ����� and ����
 are
executed in parallel in-between � and 	 . In terms of Pi calculus (or any other
process algebra) this is denoted as ��������|����
��	 . In this notation the “�”
is used to denote sequence and the “|” denotes parallelism. Indeed this notation is
elegant and allows for computer manipulation. Unfortunately, such a simple notation
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is not possible if the connection between � and � is restored. The linear language
does not allow for this while for a graph based language like Petri nets this is not
a problem. Note that the claim is not that Pi calculus cannot model the process
shown in Figure 9.10. However, it illustrates that even powerful languages like Pi
calculus have problems supporting certain patterns. This is particularly relevant in
the domain of web services where Pi calculus is being put forward as a starting point
for developing (future versions of) languages for describing service-based processes.
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9.5 EXERCISES

Exercise 9.1 (Identification of patterns in an informal description)
Consider the following informal description of a process for insurance claim handling.

When a claim is received, it is first registered. After registration, the claim is
classified leading to two possible outcomes: simple or complex. If the claim
is simple, the insurance is checked. For complex claims, both the insurance
and the damage are checked independently. After the check(s), an assessment
is performed which may lead to two possible outcomes: positive or negative.
If the assessment is positive, the garage is phoned to authorize the repairs and
the payment is scheduled (in this order). In any case (whether the outcome is
positive or negative), a letter is sent to the customer and the process is considered
to be complete. At any moment after the registration and before the end of
the process, the customer may call to modify the details of the claim. If a
modification occurs before the payment is scheduled, then the claim is classified
again, and the process is repeated from that point on. If a modification occurs
after the payment is scheduled and before the letter is sent, a “stop payment”
task is performed and the process is repeated starting with the classification of
the claim.

Which tasks can be identified in this scenario, and which workflow patterns link
these tasks?

Exercise 9.2 (Identification of patterns in an existing model)
Consider the YAWL specification in Figure 9.11. Which patterns occur in this
specification and where? For example, the “AND-split” pattern can be found between
tasks “register”, “send form”, and “evaluate”.

Exercise 9.3 (Identification of patterns in an existing model)
Consider the UML activity diagram shown in Figure 5.1 (Chapter 5). Which patterns
occur in this model and where? Same question for the ARIS function flow in Figure
6.2 (Chapter 6).



xxii

register

send_form

process_form

time-out

archive

C3C1

C2

C4

process_complaint check_proc

C5evaluate

start ready

Fig. 9.11 YAWL specification for exercise 9.2.

Exercise 9.4 (Pattern implementation)
Figures 9.5 and 9.6 feature two YAWL specifications illustrating the multi-choice
(OR-split) and the synchonizing merge (OR-join) patterns. Translate these YAWL
specifications into classical Petri nets (see Chapter 7). In other words, expand the
YAWL OR-split and OR-join constructs in terms of places and transitions (possibly
labeled with empty tasks).

Exercise 9.5 (Pattern implementation)
Figure 9.12 contains a YAWL specification in which the edges are labeled with
boolean expressions ��, ��, �� and their negations.
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~C1

~C2

~C3
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Fig. 9.12 YAWL specification for Exercise 9.5.

This specification contains an arbitrary loop in which tasks � and � can be re-
peated multiple times in alternation until the process completes. A possible execution
of this process specification is ��, i.e. task � is executed, then condition �� evalu-
ates to true so� is executed after which condition�� evaluates to false so the process
terminates. Other possible executions include ��, ���, ���, ����, ����,
etc.

Some process modeling or process execution languages only provide constructs
for structured loops (e.g. constructs of the form ����� ����	�
���� { �
�����


�� �
����� 
� �� 
����
�	 }) like in contemporary imperative programming



EXERCISES xxiii

languages such as C and Java.8. How could the specification in Figure 9.12 be ex-
pressed in a language that provides “while” loops, conditional statements of the form
�� ����	�
���� { �
�����
 �� �
����� }, and simple sequencing between
tasks (which can be denoted using a semicolon ’;’), but does not support arbitrary
loops. Consider each of the following two cases:

1. The language in question supports “break” statements allowing to exit a “while”
loop in the middle of its body like in contemporary imperative programming
languages such as C and Java.

2. The language in question does not support “break” statements. Hint: You may
introduce one or several auxiliary boolean variable(s). When a condition is
evaluated, it can be assigned to a boolean variable and this variable can be used
in the condition parts of “if” and “while” statements.

Exercise 9.6 (Evaluation of PAIS development platforms)
Select a tool for PAIS development (see for example the tools mentioned in Chapters
1–4 and 17). Evaluate the selected tool in terms of the patterns. The evaluation
should state, for each of the patterns presented in this chapter, whether the tool
provides “direct support” for that pattern or not. If the answer to this question is
positive for a given pattern, briefly explain how the pattern is supported. Otherwise,
provide (if possible) a workaround solution to capture the pattern in question. Some
sample evaluations of tools can be found in [5].
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