
Let’s Go All the Way: From Requirements via
Colored Workflow Nets to a BPEL

Implementation of a New Bank System

W.M.P. van der Aalst1,2, J.B. Jørgensen2, and K.B. Lassen2

1 Department of Technology Management, Eindhoven University of Technology, P.O.
Box 513, NL-5600 MB, Eindhoven, The Netherlands. w.m.p.v.d.aalst@tm.tue.nl
2 Department of Computer Science, University of Aarhus, IT-parken, Aabogade 34,

DK-8200 Aarhus N, Denmark. jbj@daimi.au.dk, krell@daimi.au.dk

Abstract. This paper describes use of the formal modeling language
Colored Petri Nets (CPNs) in the development of a new bank system.
As a basis for the paper, we present a requirements model, in the form of
a CPN, which describes a new bank work process that must be supported
by the new system. This model has been used to specify, validate, and
elicit user requirements. The contribution of this paper is to describe two
translation steps that go from the requirements CPN to an implementa-
tion of the new system. In the first translation step, a workflow model is
derived from the requirements model. This model is represented in terms
of a so-called Colored Workflow Net (CWN), which is a generalization of
the classical workflow nets to CPN. In the second translation step, the
CWN is translated into implementation code. The target implementa-
tion language is BPEL4WS deployed in the context of IBM WebSphere.
A semi-automatic translation of the workflow model to BPEL4WS is
possible because of the structural requirements imposed on CWNs.

Key words: Business Process Management, Workflow Management, BPEL4WS, Col-

ored Petri Nets.

1 Introduction

Bankdata is a Danish company that is currently developing a new system called
the Adviser Portal (AP). AP has been bought by 15 Danish banks and will be
used by thousands of bank advisers in hundreds of bank branches. The scope of
the system is to support advising private customers and small businesses. The
total development effort is 15 developers over a period three years. The first
version is planned to become operational in September 2005.

The main goal of AP is to increase the efficiency and quality of bank advisers’
work. Currently, prior to the deployment of AP, the advisers in Bankdata’s
customer banks often need information, which is scattered over many places: in
different IT systems, on paper sheets in binders or in piles on a desk, on post-
it notes, or even only in the minds of advisers. This hampers both efficiency

and quality; it is time-consuming to search for information, and an adviser may,
e.g., sometimes forget to call a customer when she has promised to do so. The
scattering of information makes it difficult for an adviser to get an overview,
both of her own current and future tasks, and of the information pertaining to a
particular task. Moreover, it makes it difficult for the bank, as an organization,
to coordinate, distribute, and plan work.

Problems like these are mainly caused by the nature of the bank advisers work
processes. To overcome the problems, the AP system will represent a change in
perspective for Bankdata’s software development. Previously, Bankdata focused
on the development of traditional data-centric systems. For the new AP system,
Bankdata uses a process-centric approach: In the new system, there is more focus
on the work processes that must be supported than there has been previously.
Thus, a workflow management system is a central component of AP.

Our focus in this paper is on AP’s support of one specific work process: The
process describing how bank advisers give advice to customers enquiring about
getting a so-called blanc loan. A blanc loan is a simple type of loan, which can
be granted without requiring the customer to provide any security. This is in
contrast to, e.g., mortgage credits and car loans. Blanc loans are typically used
for consumption purposes like travels, weddings, and gifts. They constitute a
relatively high risk for the banks and have a correspondingly high interest rate.

We will describe the use of the formal modeling language Colored Petri Nets
(CPNs) [16, 20] in the development of AP. First, CPN has been used as a vehicle
for requirements engineering for AP. This involved using a requirements model in
the form of a CPN as the core ingredient of an Executable Use Case (EUC) [17] to
describe new work processes and their proposed computer support. This has been
a means to specify, validate, and elicit requirements in a number of workshops
with future users and systems analysts from Bankdata. We will present the
Requirements CPN (RCPN), and we will briefly outline how it has been used.
However, the main focus of this paper is on two translation steps taken to close
the gap between the requirements model and the implementation of the new
system. The first step translates the RCPN into a workflow model in the form of
a Colored Workflow Net (CWN), a new class of Petri nets that we will introduce.
The second step translates the CWN into the chosen implementation language,
which is Business Process Execution Language for Web Services (BPEL4WS)
[5]. (In this paper we will simply use “BPEL” to refer to this de-facto standard.)

The CPNs we present in this paper are created using CPN Tools, a graphical
environment to model, enact and analyze CPNs. (CPN Tools can be downloaded
from www.daimi.au.dk/CPNtools/.)

This paper is structured as follows. Section 2 introduces the overall approach,
including the two translation steps in focus. Section 3 presents the requirements
model. Section 4 introduces the CWN modeling language and describes how the
RCPN is translated into a workflow model in the form of a CWN. Section 5 dis-
cusses how the CWN is translated into BPEL. Section 6 discusses related work.
Section 7 concludes the paper by summarizing the main results and discussing
future work.

2 Overall Approach

Figure 1 summarizes the overall approach. Translation T0 creates a model of
the real world, in this case the processes and people within banks. The result
of T0 is the requirements model. In the technical report [18], we describe how
T0 is made in cooperation between users and Bankdata analysts, and how the
requirements model is used in an iterative, prototyping fashion; it is constructed
based on informal textual descriptions and diagrams and has served as an engine
to drive a graphical animation.

real world
(a bank)

requirements
model

workflow
model AP system

T0 T1 T2

textual description
Requirements CPN (RCPN)

animation

Colored Workflow Net
(CWN)

BPEL

focus on context (processes and organization) focus on realization (system and software)

Fig. 1. Overview of the different models and translations between these models.

Translation T1 derives the workflow model from the requirements model.
The latter includes both: (1) actions that are to remain manual, when the new
system is deployed; (2) actions that will be supported by the new system in
interaction with human users; (3) actions that are to be fully automated by
the new system. The workflow model includes only actions in categories (2)
and (3). Moreover, the workflow model adds more details. The requirements
model uses the CPN language in an unrestricted manner, e.g., tokens, places,
and transitions may represent any entity deemed to be relevant. In the workflow
model, we restrict ourselves to use only concepts and entities, which are common
in workflow languages. More specifically, we propose Colored Workflow Nets
(CWNs) as the language for making workflow models. A CWN is a CPN model
restricted to the workflow domain and can be seen a high-level version of the
traditional Workflow Nets (WF-nets) [1].

Translation T2 goes from the CWN into skeleton code for the chosen im-
plementation platform. AP is implemented using the IBM WebSphere platform;
IBM WebSphere includes the workflow management tool IBM Process Chore-
ographer, which will be used to orchestrate some of the work processes that are
currently carried out manually in the banks. IBM Process Choreographer uses
BPEL. Therefore, translation T2 translates the CWN into BPEL.

As shown in Figure 1 by a dashed line, translation T1 represents a shift in
focus. Left of T1, the focus is on the context (processes and organization). Right
of T1, the focus is on the realization (system and software). The use of CPN as
a common language for both the requirements model and the workflow model

provides a natural link of these two views. This facilitates a smooth transition
and is an attempt to avoid the classical “disconnect” between business processes
and IT.

All translations T0, T1 and T2 in Figure 1 are done manually for the AP sys-
tem in consideration. Both T0 and T1 are likely to remain manual given their
characteristics; they inherently involve human analysis, decisions, and agree-
ments between stakeholders. Translation T2, however, can be supported using
a computer tool that generates template code for the chosen implementation
platform. We have developed a systematic approach to transform a CWN into
BPEL code. This approach is semi-automatic, i.e., the template code is gener-
ated on the basis of the structure of the underlying workflow net, as described
in the technical report [4].

The translations we present should be seen as a proof-of-concept: They do
not yield a full implementation of the AP system, but they merely demonstrate
the viability of our approach.

3 Requirements Model

In this section, we first present the requirements model, i.e., the RCPN. The
RCPN has been used as an ingredient of an Executable Use Case (EUC) [17],
which support specification, validation, and elicitation of requirements. EUCs
spur communication between stakeholders and can be used to narrow the gap
between informal ideas about requirements and the formalization that eventually
emerges when a system is implemented. An EUC may be seen as a context-
descriptive prototype [6]. In this way, the RCPN has played a similar role as a
high-fidelity prototype implemented in a programming language.

The use of EUCs in the development of AP is described in [18] (this is trans-
lation T0 of Figure 1). In the present paper, we merely give an impression of the
EUC by showing the animation, which is part of it. Figure 2 mimics a situation
in a bank in which there are two advisers, Ann and Bill, their manager Mr.
Banks, and one customer, Mr. Smith. The circles represent blanc loan enquiries.
The animation user can play with the animation and try out various scenarios
and carry out experiments. Note that the animation is constructed using the
animation facilities offered on top of CPN Tools and that the animated objects
interact directly with the running CPN model.

We now present the RCPN; an extract is shown in Figure 3. At the same time,
we also give an informal primer to CPN, which allows the reader to understand
the CPNs in general terms. The primer does not account for all the technicalities
of CPN; its purpose is only to provide an overall impression of the most basic
concepts of the CPN language. For a more thorough introduction, the reader is
referred to [16, 20].

A CPN describes a system’s states and actions. The state of a system is
modeled by places, drawn as ellipses. Places can hold tokens, which have different
types or colors in CPN jargon. These types are a subset of the data types in
Standard ML such as the primitive types integer and string and compositional

Fig. 2. Snapshot of graphical animation.

types such as tuple, list and record. Each place can hold tokens of a certain type.
Usually the type of a place is written in capital letters close to it. All places in
this CPN model have the type LOAN. Figure 4 shows the definition of LOAN.

LOAN is a record type; it consists of a caseid for separating different loan case
instances, a customer, a responsible person (either an adviser or a manager),
the status of the loan (ongoing, grant, etc.), the amount to loan, the monthlyFee
to pay for the loan with a given loan setup, the interestRate, the duration for
paying back the loan, the purpose for loaning the money and the account to put
the money into.

A CPN’s actions are represented by transitions, which are drawn as rectan-
gles. Arcs connect transitions and places. An arc can only connect a transition
with a place or vice versa; it is not possible to e.g. connect two places to each
other.

A CPN can be executed, i.e., there is a semantics specifying when a tran-
sition is enabled and what happens when the transition occur. A transition is
enabled if certain tokens required for the action are present on the transition’s
input places. The input arcs to the transition describe which tokens are needed
for the transition to be enabled. For example, for transition Lookup customer
information and credit information to occur, a token of type LOAN must be
present on the place Customer observed.

When a transition occurs, all tokens that are needed for its enabling are
consumed and tokens are produced on all output places as described by the out-
going arcs. For example, when transition Lookup customer information and
credit information occurs, a token of type LOAN is consumed from Customer
observed and depending on whether the status of the LOAN token is set to
refusal or ongoing, the token will be moved to either Early refusal or Ready
for advising.

A CPN may consist of multiple modules, organized in a hierarchy. The RCPN
consists of 7 modules and the module shown in Figure 3 is the top level model.

Ready for
advising

LOAN

Ready for further
processing

LOAN

Refusal

LOAN

Recommendation
given

LOAN

Loan
established

LOAN

Grant or
prior approval

given
LOAN

Customer
observed

LOAN

Early
refusal

LOAN

Observe
customer
enquiry

Advising
/

Simulation
Advising / Simulation

Make / review / change
 decision

[s<>ongoing andalso
s<>established]

Production [grantgivet loan]

Production

Lookup
customer information and

credit information

Recommendation

Recommendation

Prior approval

Prior approval

Refuse

#status loan = refusal

loan

loan

loan
[s = refusal]%
(setStatus loan s)

[s = recommendation]%
(setStatus loan s)

loan

[(s = priorApproval)
orelse (s = grant)]%
(setStatus loan s)

loanForTravelling

loan

[s <> refusal]%loan

[s = refusal]%loan

loan

loan

loan

loan

loan

loan

loan

Fig. 3. Extract of the RCPN.

As placeholders for modules on lower levels, so-called substitution transitions
are used. A substitution transition is represented as a rectangle with a small
box with the module name near it. For example, Advising / Simulation is a
substitution transition. This means that the details of how advising and what is
called simulation is done are modeled on another module of the model. Note that

colset LOAN = record caseid: INT

* customer: STRING

* responsible: STRING

* status: STATUS

* amount: AMOUNT

* monthlyFee: MONTHLYFEE

* interestRate: INTEREST

* duration: DURATION

* purpose: STRING

* account: INT;

Fig. 4. LOAN type.

in the jargon used in the banks, simulation means that an adviser does some
calculations and suggests various values for monthly payment, interest rate, and
loan period to a customer.

The RCPN describes the control flow of actions which can happen from the
point when a customer makes a blanc loan application until the request is either
refused or established and in what sequence actions can occur. In the following,
we describe how a single loan application is handled.

When transition Observer customer enquiry occurs, a LOAN token is put
on Customer observed. Two things can happen at this point: (1) The adviser
refuses the loan right away, e.g. if he knows that the customer has a bad credit his-
tory; (2) the adviser agrees to handle the loan application. In (1), the blanc loan
application is terminated and a LOAN token is put on the place Early refusal.
In (2), a LOAN token is put on Ready for advising. When the loan is in the
state Ready for advising, it can go into the module Advising / Simulation.
This is a module which models the creation of a task in a advisers task list and
the first blanc loan application setup; i.e. how much money to loan, at which
interest rate and so on. After this is done the LOAN token is put on Ready for
further processing.

A choice is made at transition Make / review / change decision. This
models the choice which the adviser must take at this point. The choices are
grant, recommendation, prior approval or refusal, which are explained below.

– Grant is given if the blanc loan application is reasonable this choice is made.
The LOAN token will be moved to Grant or prior approval given and
then into the Production module. Here the blanc loan is finalized. This
involves printing some necessary documents. Finally, the token is placed on
the place Loan established.

– Recommendation means that the adviser’s manager must make the decision.
E.g., advisers are only permitted to grant loans up to a certain amount of
money. This is modeled by the LOAN token being moved to Recommendation
given. After this point it can enter the Recommendation module in which
the behavior of the manager changing the status of the loan to either grant
or refusal is modeled. After the module has executed, the token is moved

to Ready for advising. The behavior described earlier from this point can
occur again.

– Prior approval is the case where the adviser accepts the blanc loan applica-
tion but needs more information from the customer before continuing to pro-
cess the blanc loan. Here the token is moved to Grant or prior approval
given. From here it can enter the module Prior approval which models
the situation where the processing of the loan is postponed. After this has
been executed, the LOAN token is moved to Ready for advising. If a blanc
loan has been given a prior approval it will always be granted at some point.

– Refusal applies if the adviser and customer cannot agree on a loan setup the
application is refused. This is modeled by moving the LOAN token to Refusal.
Then no other activities are possible for that particular loan application; this
models that the case is ended.

All runs of a blanc loan application either end up in the state Early refusal,
Refusal, or Loan established. The first two are for cases where applications
are refused and the third is for cases where applications are approved.

4 From Requirements Model to Workflow Model

In this section, we address translation T1 of Figure 1, which takes the RCPN
described in the previous section and transforms it into a workflow model rep-
resented in terms of a CWN. We first motivate the need for a workflow model,
then we introduce the class of CWNs, and finally, we present the CWN model
for our case study.

4.1 Requirements Models Versus Workflow Models

In an RCPN, tokens, places and transitions may be used to represent arbitrary
concepts relevant for requirements engineering. For example, tokens are used
to represent customers, meeting rooms, conflicts, office equipment, paper doc-
ument, etc. Some of these concepts have no counterpart in the final system.
Given that a workflow management system is to be used, the vocabulary must
be limited to the concepts supported by that system. For example, a workflow
management system may know about cases, case attributes, tasks, roles, etc.
but may not support concepts like meeting rooms and conflicts. Therefore, we
propose a system-independent language in-between the requirements level and the
implementation level. To do this, we first define some standard terminology and
discuss differences between the requirements-level and workflow-level models.

Workflow processes, like the processing of blanc loans, are case-driven, i.e.,
tasks are executed for specific cases. A case may represent a blanc loan, but
also the request to open a bank account, a customer complaint, or an insurance
claim. These case-driven processes, also called workflows, are marked by at least
the following three dimensions: (1) the control-flow dimension, (2) the resource
dimension, and (3) the case dimension [1]. The control-flow dimension is con-
cerned with the partial ordering of tasks. The tasks which need to be executed are

identified and the routing of cases along these tasks is determined. Conditional,
sequential, parallel and iterative routing are typical structures specified in the
control-flow dimension. Tasks are executed by resources. Resources are human
(e.g., an adviser) and/or non-human (e.g., a printer). In the resource dimension
these resources are classified by identifying roles (resource classes based on func-
tional characteristics) and organizational units (groups, teams or departments).
Each resource may have multiple roles and belong to multiple organizational
units. For the execution of a task, a collection of resources may be required.
(Although most workflow management systems assume only one resource to be
involved in the execution of a task.) The required properties of the resources
involved may be defined in terms of roles and organizational units, e.g., task
“Recommend” needs to be executed by a “manager” of the “loans department”.
Both the control-flow dimension and the resource dimension are generic, i.e.,
they are not tailored towards a specific case. The third dimension of a workflow
is concerned with individual cases which are executed according to the process
definition (first dimension) by the proper resources (second dimension). Cases
may have attributes, e.g., some account number or the interest rate. The at-
tribute names and their types are generic while the concrete attribute values are
specific for a concrete case.

In summary, workflow models should have the following three properties:

W1 The workflow model should use a restricted vocabulary common for work-
flow management systems as indicated above. Only concepts such as case,
task, resource, role, organizational unit, and attribute may be used to con-
struct workflow models.

W2 The workflow model includes only actions (i.e., tasks) which are to be
supported by the workflow management system (i.e., it includes no tasks, e.g.
manual actions, the system will not be aware of).

W3 The workflow model refines selected parts of the requirements model to en-
able system support. Note that granularity of tasks may not be dealt with in
detail at the requirements-level. However, at the workflow-level, the splitting
and/or merging tasks is important as it directly influences the implementa-
tion of the system.

This paper proposes CWNs as a workflow modeling language sitting in-
between the RCPN and BPEL, as shown in Figure 1.

4.2 Colored Workflow Nets

A Colored Workflow Net (CWN) is a CPN as defined in [16, 20]. However, it
is restricted as indicated in Section 4.1. Note that a CWN covers the control-
flow perspective, the resource perspective, and the data/case perspective, and
abstracts from implementation details and language/application specific issues.
A CWN should be a CPN with only places of type Case, Resource or CxR. These
types are as defined in Figure 5.

A token in a place of type Case refers to a case and some or all of its at-
tributes. Tokens in a place of type Resource represent resources. Places of type

colset CaseID =union C:INT;

colset AttName = string;

colset AttValue = string;

colset Attribute = product AttName * AttValue;

colset Attributes = list Attribute;

colset Case = product CaseID * Attributes timed;

colset ResourceID = union R:INT;

colset Role = string;

colset Roles = list Role;

colset OrgUnit = string;

colset OrgUnits = list OrgUnit;

colset Resource = product ResourceID * Roles * OrgUnits timed;

colset CxR = product Case * Resource timed;

Fig. 5. Places in a CWN need to be of type Case, Resource or CxR.

CxR hold tokens that refer to both a case and a resource. Such places are used
if resources need to execute a sequence of tasks for the same case, e.g., chained
execution.

A CWN where all places of type Resource are removed should correspond
to a Sound Workflow Net (sound WF-net) as defined in [1]. Although WF-nets
have been defined for classical Petri nets it is easy to generalize the definition
to CPN as discussed in [1, 2]. The basic requirement is that there is one source
place and one sink place and all other nodes (places and transitions) are on a
path from source to sink. Moreover, given a token on the input place, eventually
one token should appear on the output place and the rest of the places should
be empty.

There should be conservation of cases and resources. This can be formulated
in terms of colored place invariants [16]. For every resource place r there should
be a (colored) place invariant associating weight 1 to r and selected places of
type CxR (if any) and weight 0 to all other places. Moreover, there is a (colored)
place invariant associating weight 1 to the source and sink place and positive
weights to all other places of type Case or CxR (and weight 0 to all places of type
Resource).

Transitions correspond to tasks supported by the workflow system. They
should not violate the soundness and conservation properties mentioned above.
Therefore, we propose the following guidelines.

– The following variables should be defined: c, c1, c2, c3, etc. of type Case and
r, r1, r2, r3, etc. of type Resource. Using a fixed set of variables facilitates
both the interpretation and automated translation of CWNs. For similar
reasons we structure the arc inscriptions and guards (see below).

– Arcs from a place to a transition (i.e., input arcs) should only use the fol-
lowing inscriptions:
• c, c1, c2, c3, etc. for arcs from places of type Case.
• r, r1, r2, r3, etc. for arcs from places of type Resource.

• (c,r), (c,r1), (c1,r1), (c2,r1), etc. for arcs from places of type CxR.
– Arcs from a transition to a place (i.e., output arcs) should satisfy the same

requirements unless they are conditional and of the form [C]%c or [C]%(c,r)
(where C is some condition depending on the case attributes).

– Guards should be logical expressions created only using functions such as
match, has role, has orgunit, etc. Function match can be used to make
sure that all arc inscriptions involved in one transition bind to the same case
id. Function has role can be used to make sure that the resource selected
has a given role. Function has orgunit can be used to make sure that the
resource selected is a member of a specific organizational unit. The definitions
of these functions are straightforward but beyond the scope of this paper.

– Each transition should have a code region. This is executed when the transi-
tion occurs. In the context of CWNs, code regions are used to link the case
attributes of the input tokens to the output tokens. Since arc expressions
cannot manipulate the case content, i.e., only route cases, this is the only
way of changing the attributes of a case.

As indicated above, guards should only be used to make sure that only to-
kens corresponding to the same case are merged and that the tasks are ex-
ecuted by the proper resources. A typical guard is: match(c1,c2) andalso
has_role(r1,"manager") andalso has_orgunit(r1,"loans"). We do not put
any requirements on the code regions other than that the conservation of cases
and resources should be guaranteed. Note that tasks are executed by humans us-
ing applications. In a CWN model one can try to model these but it will always be
an approximation. Typically it is impossible to make a complete/accurate model
of some bank application or bank advisor. Therefore, we can only try to approxi-
mate them and mapping the CPN code regions to some implementation language
(e.g., BPEL) will have to be partly manual either at implementation/configuration-
time or at run-time.

In this paper, we will not give a formal definition of CWNs. Rather, we focus
on the CWN for the AP system.

4.3 Workflow Model for AP

Figure 6 shows the CWN, which is derived from the RCPN of Figure 3. The
CWN reflects the parts in the RCPN that should be orchestrated by the workflow
system. As stated in W2, it should not contain actions which are not supported
by the system. We therefore leave out transitions Observer customer enquiry,
Lookup customer information and credit information and Refuse, and the
places Customer observed, Early refusal, and Ready for advising. The rest
of the RCPN has been mapped into the CWN form as shown in Figure 6.

It can be observed that the CPN shown in Figure 6 is a CWN as defined in
Section 4.2. It is easy to see that all places are of type Resource, Case or CxR.
If the resource places are removed from the model, a WF-net emerges, i.e. all
nodes are on a path from start to end node. In this context it is also evident
that the net has a start and end node and is indeed sound, i.e., all cases begin

c1

r

(c2,r)

(c1,r)

[has_att (c2, "status",S"rejection")]
%c2

[has_att (c2, "status",S"grant")]
%c2

[has_att (c2, "status",S"recommendation")]
%c2

r

c1

[has_att (c2, "status",S"grant")]
%c2

[has_att (c2, "status",S"rejection")]%c2

r

c1

r
(c2,r)

r
(c1,r)

c2

c1c2

[has_att (c2, "status",S"prior approval")]
%c2

Simulate
input (r, c1);
output (c2);
action
(c1);

[has_role(r,"adviser")]

Make decision

input (r, c1, i4);
output (c2);
action
(makeDecision (c1, i4));

[has_role(r,"adviser")]

Recommend
input (r, c1, i2);
output (c2);
action
(makeDecision (c1, i2));

[has_role(r,"manager")]

Finalize
loan

input (r, c1);
output (c2);
action
(c1);

[has_role(r,"adviser")]

Print
and

establish

input (r, c1);
output (c2);
action
(set_att (c1, "status", S"established"));

[has_role(r,"adviser")]

Information
received

input (c1);
output (c2);
action
(set_att (c1, "status", S"grant"));

Start
state

Case

initialCases(0)

Res 1

Resource

initialResources(0)

Resources

Ready for further
processing

CxR

Reject 1

CaseEnd state

Grant given

Case

Recommendation
given

Case

Reject 2

CaseEnd state

Res 2

Resource

initialResources(0)

Resources

Res 3

Resource

initialResources(0)

Resources

Loan
finalized

CxR

End
state

CaseEnd state

Waiting
for

information
Case

Fig. 6. The result of translation T2 : the CWN for AP.

from the place Start and end up in one of the places in the End state fusion
set. Also the guidelines regarding the arc inscriptions and guards of transitions
representing tasks are satisfied. Note the code regions in Figure 6 linking input
to output via an action part.

Apart from satisfying properties (W1)-(W3) mentioned in Section 4.1, as a
natural result of being created later than the requirements model, the workflow
model improves a number of things — the workflow model corrects some errors
and shortcomings in the RCPN and improves the modelling of a number of
aspects. As an example, the RCPN contained traces which are not possible in
the real world. For example, a loan could be given a prior approval and then
rejected. In the real world a loan can only be granted if a prior approval had
been given. Therefore we have restricted the behavior in the workflow model to
avoid such execution paths.

In the following we give a structured translation of the requirements model to
the workflow model beginning from the first activity in a blanc loan application
process.

Generally, resource places are put in the model to reflect which human re-
sources are available/needed at certain steps in the process. Note that place
fusion [16] is used in Figure 6, i.e., the three resource places are actually the
same place.

The first activity that occurs in the process is that an adviser proposes a
loan setup in the module Advising / Simulation, this is mapped to transi-
tion Simulate which is the first possible activity which can occur in the work-
flow model. (Recall that the term “simulation” is part of the jargon used in
banks and refers to a specific activity.) For this to happen an adviser must
perform the work which is reflected by the arc from Res 1 and the guard
[has role(r,"adviser")] on Simulate. The adviser resource is not put back
before a decision about the loan is made in the transition Make decision. It is
modeled in this way to reflect that it is the same adviser that proposed the loan
which makes the decision.

The decision can have four possible outcomes as in the RCPN: (1) grant, (2)
recommendation, (3) prior approval or (4) refusal. In contrast to the RCPN it
is not possible to make this decision twice, i.e., the flow of the loan case will
not loop back to the decision node Make/review/change decision. Below we
describe how each of the four following scenarios are translated:

– In the RCPN, the case went into the module Production if a grant was
given. This is reflected by the transitions Finalize loan and Print and
establish. These are both done by the same adviser. This is reflected by
the arcs connected to resource place Res 3 and the guard of Simulate.

– If recommendation is given, the activity Recommend can occur. This is the
translation of the module Recommendation in the requirement CPN. It is
modeled by two outgoing arcs from the transition Recommend and a required
manager resource from the resource place Res 2. In case of a refusal the
case ends which is reflected by the case being moved to the end state of the
workflow model.

– If a prior approval is given, the case moves to a waiting position on the
place Waiting for information until the information arrives. When this
happens, Information received occurs and the status of the loan is set to
grant and the case follows the path for a loan with a grant from this point.

– When a refusal is issued, the blanc loan is moved to the end state with a
rejection as status to reflect the termination of the case.

5 From Workflow Model to Implementation

Now we focus on translation T2 of Figure 1. We do not present our technique
to map a CWN onto BPEL in detail. For more details we refer to a technical
report defining the mapping from WF-nets to BPEL [4].

The key issue is that CWNs can be used to semi-automatically generate
BPEL code. It is possible to fully automatically generate template code. How-
ever, to come to a full implementation, programmers must manually complete
the work, e.g., by providing the “glue” to existing applications and data struc-
tures.

BPEL offers many routing constructs. The atomic activity types are: invoke
to invoke an operation of a web service described in WSDL, receive to wait for
a message from an external source, reply to reply to an external source, wait
to remain idle for some time, assign to copy data from one data container to
another, throw to indicate errors in the execution, terminate to terminate the
entire service instance, and empty to do nothing. To compose these atomic activ-
ity types, the following structured activities are provided: sequence for defining
an execution order, switch for conditional routing, while for looping, pick for
race conditions based on timing or external triggers, flow for parallel routing,
and scope for grouping activities to be treated by the same fault-handler. Typ-
ically there are multiple ways of realizing the same behavior, e.g., the flow
construct can be used to build sequences and switches but also the sequence
and switch constructs may be used.

We have developed an iterative approach to “discover” patterns in CWNs
that correspond to constructs in BPEL and generate template code based on this.
The approach works as follows. First, the CWN is mapped onto an annotated
WF-net. (Figure 7 shows an example of such mapping.) This involves removing
the resource places and resource-related inscriptions, removing the color-related
information, and replace transitions that represent choices by a small network.
The resulting “uncolored” WF-net is annotated with information that can be
used for the BPEL translation, e.g., conditions for choices. In the annotated WF-
net we try to select a maximal sequence component, i.e., a sound workflow subnet
that is both a state machine and a marked graph [1, 26]. This part of the net is
reduced to a single transition representing the sequence (cf. Figure 7). If there is
no maximal sequence component, the algorithm looks for some other structured
component (e.g., a “switch”, “pick”, “while”, or “flow”) that is maximal in some
sense. Again this component is reduced to a single transition. (The approach
also allows for ad-hoc and reusable components with a corresponding BPEL
mapping.) By applying these rules iteratively the Petri net is parsed completely
and the parse tree is used to generate the BPEL code as illustrated by Figure 7.

We have applied the algorithm to map the CWN shown in Figure 6 onto
BPEL code and tested this using IBM WebSphere Studio. The BPEL code and
screenshots of WebSphere Studio can be downloaded from http://www.daimi.
au.dk/∼krell/CoopIS05/.

6 Related Work

Since the early nineties, workflow technology has matured [14] and several text-
books have been published, e.g., [2, 10]. Petri nets have been used for the mod-

Simulate

Make
decision

Choice 1 To
Recommendation

given

Choice 1 To
Waiting for
information

Choice 1
To Grant

Given

Choice 1
To Reject

Recommend
Information

received

Choice 2 To
Reject 2

Finalize
loan

Start
state

Ready for
further

processing

Choice 1

Recommendation
given

Waiting for
information

Grant
given

End
state

Choice 2
Loan

finalized

Print and
establish

Choice 2
To Grant

given

<receive name=”Simulate”/>

<sequence name=”Sequence 1”>
 <receive name=”Simulate”/>
 <invoke name=”Make decision”/>
</sequence>

<invoke name=”Make decision”/>

Sequence 1

Fig. 7. The “uncolored” WF-net with some snippets of generated BPEL code.

eling of workflows [2, 7, 10] but also the orchestration of web services [22]. The
Workflow Management Coalition (WfMC) has tried to standardize workflow
languages since 1994 but failed to do so. XPDL, the language proposed by the
WfMC, has semantic problems [1] and is rarely used. In a way BPEL [5] suc-
ceeded in doing what the WfMC was aiming at. However, BPEL is really at
the implementation level rather than the workflow modeling level or the require-
ments level (thus providing the motivation for this paper).

Several attempts have been made to capture the behavior of BPEL [5] in
some formal way. Some advocate the use of finite state machines [13], others
process algebras [12], and yet others abstract state machines [11] or Petri nets

[23, 21, 24, 25]. (See [23] for a more detailed literature review.) For a detailed
analysis of BPEL based on the workflow patterns [3] we refer to [28].

Most papers on BPEL focus on the technical aspects. This paper focuses on
the life-cycle of getting from informal requirements to a concrete BPEL imple-
mentation based on a concrete case study. Therefore, the work is perhaps most
related to the work of Juliane Dehnert who investigated the step from infor-
mal business models expressed in terms of Event-driven Process Chains (EPCs)
to workflow models expressed in terms of WF-nets [8, 9]. However, her work is
mainly at theoretical level and does not include concrete case studies or map-
pings onto some implementation language.

The work reported in this paper is also related to the various tools and
mappings used to generate BPEL code being developed in industry. Tools such as
the IBM WebSphere Choreographer and the Oracle BPEL Process Manager offer
a graphical notation for BPEL. However, this notation directly reflects the code
and there is no intelligent mapping as shown in this paper. This implies that users
have to think in terms of BPEL constructs (e.g., blocks, syntactical restrictions
on links, etc.). More related is the work of Steven White that discusses the
mapping of BPMN onto BPEL [27] and the work by Jana Koehler and Rainer
Hauser on removing loops in the context of BPEL [19]. Our work differs from
these publications in the following way: we address the whole life-cycle (i.e., not
a specific step or a specific problem as in [19]), we provide algorithms to support
the mapping (unlike, e.g., [27]), and we use CPNs as a basis (i.e., start from a
language with formal semantics).

The translation from WF-nets to BPEL (translation T2) is described in more
detail in a technical report [4]

7 Conclusions

In this paper, we have used a real-life example (the new AP system of Bankdata)
to go from a requirements model to a proof-of-concept BPEL implementation
using the CPN language and CPN Tools. Figure 1 summarizes our approach and
shows the different models and translations proposed. The focus of this paper
has been on translations T1 and T2. Essential for this approach is the use of the
CPN language, first in unrestricted form (the RCPN) and then in restricted form
(the CWN). The restrictions facilitate the automatic generation of (template)
code.

In this paper, we introduced the CWN model and the translation to BPEL
code. We believe that our approach can be generalized to other systems within
and outside Bankdata. We also believe that our approach can be modified
for other target implementation languages (e.g., languages used by systems
of TIBCO/Staffware, FLOWer, COSA, and FileNet). Further case studies are
needed to prove this point. We also aim at concrete tool support for the transla-
tion of CWN to BPEL. At this point in time, we provide only a manual procedure
to accomplish this. We plan to develop a dedicated tool for this.

Another direction for future research is to develop techniques, tools, and
animations specific for CWN. The CWN model can be seen as the high-level
variant of the classical workflow nets, adding the data and resource perspectives.
For workflow nets there are strong theoretical results, dedicated editors, and
analysis tools [1, 26]. The goal is to offer similar support for CWNs. For example,
it is interesting to explore different notions of soundness including the data and
resource perspectives [1, 8, 15].

Acknowledgements We thank Bankdata for allowing us to participate in the
AP project. We thank the users and analysts we have worked with, in particular
Gert Schmidt Sofussen, who has contributed significantly to the RCPN.

References

1. W.M.P. van der Aalst. Business Process Management Demystified: A Tutorial
on Models, Systems and Standards for Workflow Management. In Lectures on
Concurrency and Petri Nets, volume 3098 of Lecture Notes in Computer Science,
pages 1–65. Springer-Verlag, Berlin, 2004.

2. W.M.P. van der Aalst and K.M. van Hee. Workflow Management: Models, Methods,
and Systems. MIT press, Cambridge, MA, 2002.

3. W.M.P. van der Aalst, A.H.M. ter Hofstede, B. Kiepuszewski, and A.P. Barros.
Workflow Patterns. Distributed and Parallel Databases, 14(1):5–51, 2003.

4. W.M.P. van der Aalst and K.B. Lassen. Translating Workflow Nets to BPEL4WS.
BETA Working Paper Series, Eindhoven University of Technology, Eindhoven,
2005.

5. T. Andrews, F. Curbera, et al. Business Process Execution Language for Web
Services, Version 1.1. Standards proposal by BEA Systems, International Business
Machines Corporation, and Microsoft Corporation, 2003.

6. C. Bossen and J.B. Jørgensen. Context-descriptive Prototypes and Their Applica-
tion to Medicine Administration. In Proc. of Designing Interactive Systems DIS
2004, pages 297–306, Cambridge, Massachusetts, 2004. ACM.

7. P. Chrzastowski-Wachtel. A Top-down Petri Net Based Approach for Dynamic
Workflow Modeling. In International Conference on Business Process Management
(BPM 2003), volume 2678 of Lecture Notes in Computer Science, pages 336–353.
Springer-Verlag, Berlin, 2003.

8. J. Dehnert. A Methodology for Workflow Modeling: From Business Process Mod-
eling Towards Sound Workflow Specification. PhD thesis, TU Berlin, Berlin, Ger-
many, 2003.

9. J. Dehnert and W.M.P. van der Aalst. Bridging the Gap Between Business Models
and Workflow Specifications. International Journal of Cooperative Information
Systems, 13(3):289–332, 2004.

10. M. Dumas, W.M.P. van der Aalst, and A.H.M. ter Hofstede. Process-Aware Infor-
mation Systems. Wiley & Sons, 2005.

11. D. Fahland and W. Reisig. ASM-based semantics for BPEL: The negative control
flow. In Proc. 12th International Workshop on Abstract State Machines, pages
131–151, Paris, France, March 2005.

12. A. Ferrara. Web services: A process algebra approach. In Proceedings of the 2nd
international conference on Service oriented computing, pages 242–251, New York,
NY, USA, 2004. ACM Press.

13. J.A. Fisteus, L.S. Fernández, and C.D. Kloos. Formal verification of BPEL4WS
business collaborations. In Proceedings of the 5th International Conference on
Electronic Commerce and Web Technologies (EC-Web ’04), volume 3182 of Lecture
Notes in Computer Science, pages 79–94, Zaragoza, Spain, August 2004. Springer-
Verlag, Berlin.

14. D. Georgakopoulos, M. Hornick, and A. Sheth. An Overview of Workflow Manage-
ment: From Process Modeling to Workflow Automation Infrastructure. Distributed
and Parallel Databases, 3:119–153, 1995.

15. K. van Hee, N. Sidorova, and M. Voorhoeve. Soundness and Separability of Work-
flow Nets in the Stepwise Refinement Approach. In Application and Theory of
Petri Nets 2003, volume 2679 of Lecture Notes in Computer Science, pages 335–
354. Springer-Verlag, Berlin, 2003.

16. K. Jensen. Coloured Petri Nets. Basic Concepts, Analysis Methods and Practical
Use. Volume 1. EATCS monographs on Theoretical Computer Science. Springer-
Verlag, Berlin, 1997.

17. J.B. Jørgensen and C. Bossen. Executable Use Cases: Requirements for a Pervasive
Health Care System. IEEE Software, 21(2):34–41, 2004.

18. J.B. Jørgensen and K.B. Lassen. Aligning Work Processes and the Adviser Por-
tal Bank System. In International Workshop on Requirements Engineering for
Business Need and IT Alignment, 2005.

19. J. Koehler and R. Hauser. Untangling Unstructured Cyclic Flows A Solution Based
on Continuations. In CoopIS 2004, volume 3290 of Lecture Notes in Computer
Science, pages 121–138, 2004.

20. L.M. Kristensen, S. Christensen, and K. Jensen. The Practitioner’s Guide to
Coloured Petri Nets. International Journal on Software Tools for Technology
Transfer, 2(2):98–132, 1998.

21. A. Martens. Analyzing Web Service Based Business Processes. In Proceedings of the
8th International Conference on Fundamental Approaches to Software Engineering
(FASE 2005), volume 3442 of Lecture Notes in Computer Science, pages 19–33.
Springer-Verlag, Berlin, 2005.

22. M. Mecella, F. Parisi-Presicce, and B. Pernici. Modeling E-service Orchestration
through Petri Nets. In Proceedings of the Third International Workshop on Tech-
nologies for E-Services, volume 2644 of Lecture Notes in Computer Science, pages
38–47. Springer-Verlag, Berlin, 2002.

23. C. Ouyang, W.M.P. van der Aalst, S. Breutel, M. Dumas, A.H.M. ter Hofstede, and
H.M.W. Verbeek. Formal Semantics and Analysis of Control Flow in WS-BPEL.
BPM Center Report BPM-05-13, BPMcenter.org, 2005.

24. C. Stahl. Transformation von BPEL4WS in Petrinetze (In German). Master’s
thesis, Humboldt University, Berlin, Germany, 2004.

25. H.M.W. Verbeek and W.M.P. van der Aalst. Analyzing BPEL Processes using
Petri Nets. In Proceedings of the Second International Workshop on Applications
of Petri Nets to Coordination, Workflow and Business Process Management, pages
59–78. Florida International University, Miami, Florida, USA, 2005.

26. H.M.W. Verbeek, T. Basten, and W.M.P. van der Aalst. Diagnosing Workflow
Processes using Woflan. The Computer Journal, 44(4):246–279, 2001.

27. S. White. Using BPMN to Model a BPEL Process. BPTrends, 3(3):1–18, 2005.
28. P. Wohed, W.M.P. van der Aalst, M. Dumas, and A.H.M. ter Hofstede. Analysis

of Web Services Composition Languages: The Case of BPEL4WS. In 22nd Inter-
national Conference on Conceptual Modeling (ER 2003), volume 2813 of Lecture
Notes in Computer Science, pages 200–215. Springer-Verlag, Berlin, 2003.

