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Abstract. Information systems are facing conflicting requirements. On
the one hand, systems need to be adaptive and self-managing to deal with
rapidly changing circumstances. On the other hand, legislation such as
the Sarbanes-Oxley Act, is putting increasing demands on monitoring
activities and processes. As processes and systems become more flexible,
both the need for, and the complexity of monitoring increases. Our earlier
work on process mining has primarily focused on process discovery, i.e.,
automatically constructing models describing knowledge extracted from
event logs. In this paper, we focus on a different problem complementing
process discovery. Given an event log and some property, we want to
verify whether the property holds. For this purpose we have developed
a new language based on Linear Temporal Logic (LTL) and we combine
this with a standard XML format to store event logs. Given an event
log and an LTL property, our LTL Checker verifies whether the observed
behavior matches the (un)expected/(un)desirable behavior.
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1 Introduction

A constantly changing reality is forcing organizations and their information sys-
tems to adapt at an ever increasing pace. Business Process Management (BPM)
and Workflow Management (WFM) systems increasingly allow for more flexibil-
ity. Instead of recoding the system it typically suffices to reconfigure the system
on the basis of a process model [3]. Several researchers have addressed the prob-
lems related to workflow change [1, 15, 29, 30]. Although the work on workflow
change is highly relevant, in reality many processes are not bound by a WFM
system, or a BPM system driven by an explicit process model. In contrast, some
systems, e.g., the case handling system FLOWer, allow for implicit routing, other
systems allow for much more behavior than desired. For example, people using
the SAP R/3 system are not limited by process models described in the SAP
R/3 Reference Model database [25]. Deviations from the “normal process” may
be desirable but may also point to inefficiencies or even fraud. New legislation



such as the Sarbanes-Oxley (SOX) Act [33] and increased emphasis on corpo-
rate governance has triggered the need for improved auditing systems [23]. For
example, Section 404 of the SOX Act [33] states two requirements: (1) Section
404(a) describes management’s responsibility for establishing and maintaining
an adequate internal control structure and procedures for financial reporting
and assessing the effectiveness of internal control over financial reporting, and
(2) Section 404(b) describes the independent auditors responsibility for attesting
to, and reporting on, management’s internal control assessment. Both require-
ments suggest an increased need for the detailed auditing of business activities.
To audit an organization, these business activities need to be monitored. As
enterprises become increasingly automated, a tight coupling between auditing
systems and the information systems supporting the operational processes be-
comes more important.

Today’s information systems need to compromise between two requirements:
(1) being adaptive and self-managing and (2) being able to be audited. Within
the context of this struggle, we have developed a tool called LTL Checker. This
tool has been developed in the context of our ProM framework1. The ProM
framework offers a wide range of tools related to process mining, i.e., extracting
information from event logs [7]. Process mining is motivated by the fact that
many business processes leave their “footprints” in transactional information
systems (cf. WFM, ERP, CRM, SCM, and B2B systems), i.e., business events
are recorded in so-called event logs. Until recently, the information in these
logs was rarely used to analyze the underlying processes. Process mining aims at
improving this by providing techniques and tools for discovering process, control,
data, organizational, and social structures from event logs, i.e., the basic idea
of process mining is to diagnose business processes by mining event logs for
knowledge.

The work presented in this paper is related to process mining, but, unlike
most process-mining approaches, the emphasis is not on discovery. Instead we
focus on verification, i.e., given an event log we want to verify certain properties.
One example is the 4-eyes principle, i.e., although authorized to execute two
activities, a person is not allowed to execute both activities for the same case.
For example, a manager may submit a request (e.g., to purchase equipment, to
make a trip, or to work overtime) and he may also approve requests. However,
it may be desirable to apply the 4-eyes principle implying that the manager
is not allowed to approve his own request. If there is an event log recording
the events “submit request” and “approve request”, the 4-eyes principle can be
verified easily. More difficult are properties relating to the ordering or presence of
activities. For example, activity A may only occur if it is preceded by activity B
or activity C and immediately followed by activity D. Therefore, we propose an
approach based on temporal logic [26, 28]. More specifically, we use an extension
of Linear Temporal Logic (LTL) [17, 20, 21] tailored towards event logs holding
information on activities, cases (i.e., process instances), timestamps, originators
(the person or resource executing the activity), and related data.

1 Both documentation and software can be downloaded from www.processmining.org.
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Fig. 1. The role of verification in the context of process mining.

Figure 1 shows the “bigger picture”, i.e., the role of log-based verification
in relation to other process-mining methods such as process discovery. The in-
formation system is there to support, control and/or follow operational pro-
cesses. Through the information system (parts of) the operational process is
(are) recorded. Using process discovery, models (e.g., Petri nets) may be gener-
ated to explain the observed behavior. Unfortunately, process discovery may be
intractable for many processes. However, for most processes one can formulate
(un)expected/(un)desirable properties. These properties can be directly com-
pared with the event log. Note that, in principle, one can first build a model
and then compare the model and some property using model checking. We do
not do this because in the discovery process typically information is lost and
for some logs process discovery may be intractable. Note that log-based verifi-
cation is also different from conformance testing where the model and event log
are compared (see Figure 1). Log-based verification is more robust than most
other process-mining approaches. For example, even for very complicated pro-
cesses resulting in spaghetti-like diagrams it is easy to verify the 4-eyes principle
mentioned before.

This paper reports on the language developed to formulate properties in the
context of event logs, the approach used to check these properties, the imple-
mentation of the LTL Checker in the ProM framework, and the relation between
this work and process discovery. It is important to note that process discovery
is difficult in situations where a lot of flexibility is offered. As indicated, an ap-
proach based on verification is more robust because it can focus on the essential



properties. Hence, the LTL Checker is a welcome addition towards a wider range
of process mining tools.

This paper is organized as follows. Section 2 introduces a running example
that will be used to illustrate the concept of process mining. The ProM frame-
work and the XML format used to store event logs is presented in Section 3.
Then the new LTL language is introduced and it is shown how properties can be
specified. Section 5 shows how these properties can be verified using the newly
developed LTL Checker in ProM. Finally, some related work is discussed and
the paper is concluded.

2 Running example

Today, many enterprise information systems store relevant events in some struc-
tured form. For example, WFM systems typically register the start and comple-
tion of activities. ERP systems like SAP log all transactions, e.g., users filling
out forms, changing documents, etc. Business-to-Business (B2B) systems log the
exchange of messages with other parties. Call center packages but also general-
purpose Customer Relationship Management (CRM) systems log interactions
with customers. These examples show that many systems have some kind of
event log often referred to as “history”, “audit trail”, “transaction log”, etc.
[7, 8]. The event log typically contains information about events referring to
an activity and a case. The case (also named process instance) is the “thing”
which is being handled, e.g., a customer order, a job application, an insurance
claim, a building permit, etc. The activity (also named task, operation, action,
or work-item) is some operation on the case. Typically, events have a timestamp
indicating the time of occurrence. Moreover, when people are involved, event
logs will typically contain information on the person executing or initiating the
event, i.e., the originator. Based on this information several tools and techniques
for process mining have been developed.

As a running example, we will use the process shown in Figure 2. The process
describes the reviewing process of a paper for a journal and is represented in
terms of a Petri net (more specifically a workflow net [3]). After inviting three
reviewers (activity A) each of the reviewers returns a review or a time-out occurs,
e.g., for the first review eitherB or C occurs. Then the reviews that were returned
in time are collected (activity G) and a decision is made (activity H). There are
three possible outcomes of this decision: (1) the paper is accepted (I), (2) the
paper is rejected (J), or (3) an additional reviewer is needed (K). Similar to the
original three reviewers, the additional reviewer may return the review in time
(L) or not (M).

For the process shown in Figure 2, we may log events such as the ones shown
in Table 1. As discussed before, each event refers to a case (e.g., case 1) and
an activity (e.g., invite reviewers). Moreover, in this case the timestamp and
originator are logged. The first line of the fragment shown in Table 1 states
that John executed step A (invite reviewers) for case 0 on the first of January
2005. Table 1 does not show that for some events additional data is logged.
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Fig. 2. Running example.

Table 1. A fragment of the event log.

case id activity id originator timestamp

...
case 0 invite reviewers John 2005-01-01T08:00
case 1 invite reviewers John 2005-01-01T08:00
case 0 get review 1 Nick 2005-02-06T08:00
case 0 get review 2 Pete 2005-03-07T08:00

...

For example, each case has a data element title and each review result (e.g.,
get review 1) has a result attribute which is either accept or reject. Table 1
only shows a fragment of the log used throughout this paper. The log holds
information about 48 cases (i.e., papers) and 354 events and is used as a running
example.

3 ProM Framework and XML Format

The LTL Checker presented in this paper is embedded in the ProM framework
and should be seen as an addition to a collection of process mining tools. There-
fore, we first describe the ProM framework and some of the process mining
techniques that have been developed in this framework. The goal of this section
is to introduce the format used to log events and to provide a brief overview of
some of the techniques complementing the results presented in this paper.

In Table 1 we showed a fragment of some event log. We assume a standard
log format, named MXML, and have developed several adaptors to map logs



Fig. 3. XML schema for the MXML format used by ProM.

in different information systems onto our log format (e.g., Staffware, FLOWer,
MS Exchange, MQSeries, etc.). Figure 3 shows the hierarchical structure of
MXML. The format is XML based and is defined by an XML schema (cf.
www.processmining.org).

The ProM framework has been developed as a completely plug-able environ-
ment. It can be extended by simply adding plug-ins, i.e., there is no need to
know or recompile the source code. Currently, more than 30 plug-ins have been
added. The most interesting plug-ins are the mining plug-ins and the analysis
plug-ins. The architecture of ProM allows for five different types of plug-ins:

Mining plug-ins which implement some mining algorithm, e.g., mining algo-
rithms that construct a Petri net based on some event log.

Export plug-ins which implement some “save as” functionality for some ob-
jects (such as graphs). For example, there are plug-ins to save EPCs, Petri
nets, spreadsheets, etc.

Import plug-ins which implement an “open” functionality for exported ob-
jects, e.g., load instance-EPCs from ARIS PPM.

Analysis plug-ins which typically implement some property analysis on some
mining result. For example, for Petri nets there is a plug-in which constructs
place invariants, transition invariants, and a coverability graph.

Conversion plug-ins which implement conversions between different data for-
mats, e.g., from EPCs to Petri nets.

For the process perspective, four mining plug-ins are available including the
α plug-in [9], a genetic miner, and a multi-phase miner. The goal of these plug-
ins is to extract a process model from a given event log without using any
additional knowledge of the process. For example, based on the log mentioned
in Section 2 (i.e., the log holding information on 48 papers and 354 events), the
α plug-in discovers the process model shown in Figure 4. Note that this model is
identical to the one shown in Figure 2. Of course the layout is different since it is
automatically generated. For the organizational/social perspective, one mining



Fig. 4. The α mining plug-in in ProM used to discover the underlying process model.

plug-in named MinSoN is available [6]. If we apply this plug-in to the same log,
ProM constructs the social network shown in Figure 5. A social network shows
all actors in the organization and their relationships. Based on an analysis of the
log (e.g., transfer of work or similarity of work profiles), the relationships and
their relative strength are derived. Figure 5 shows how these can be analyzed,
e.g., using a tool like NetMiner. The screenshot on the left shows that John and
Mike are the two central players in the reviewing process. This is no surprise
since John is the editorial assistant (responsible for the contacts with reviewers
and authors) and Mike is the editor of the journal. The screenshot on the right-
hand-side of Figure 5 illustrates how NetMiner can discover “cliques” in a social
network.

Fig. 5. The social network discovered by ProM exported to the SNA tool NetMiner.



Figures 4 and 5 show how process mining techniques can be used to discover
models based on some event log. The results presented in this paper are related
to process mining, but unlike the mining plug-ins mentioned the focus is not on
discovery. Instead, the focus is on verification. Therefore, in the context of the
ProM framework, the LTL Checker should be considered as an analysis plug-in
rather than a mining plug-in.

4 Formulating Properties: The LTL Language

Assuming that the information system at hand left a “footprint” in some event
log, it is interesting to check whether certain properties hold or not. Before
being able to check such properties, a concrete language for formulating dynamic
properties is needed. Given the fact that we consider behavioral properties where
ordering and timing are relevant, some temporal logic seems to be the best basis
to start from [26, 28]. There are two likely candidates: Computational Tree Logic
(CTL) and Linear Temporal Logic (LTL) [17, 20, 21]. Given the linear nature of
an event log, LTL is the obvious choice. It would only make sense to use CTL
if first a model (e.g., an automaton) was built before evaluating the property.
Unlike most of the existing process mining techniques supported in the ProM
framework, we try to avoid this and simply use LTL as a basis directly working
on the event log.

It is not sufficient to select LTL as a language. To easily specify properties in
the context of MXML, a dedicated language is needed that exploits the structure
shown in Figure 3. Therefore, in addition to standard logical operators, we need
dedicated statements to address the properties of cases and events. For example,
it should be easy to use the various attributes of a case (both standard ones such
as case, activity, timestamp, originator and event type, and context specific ones
such as data values).

We have developed a powerful language that includes type definitions, renam-
ing, formulas, subformulas, regular expressions, date expressions, propositional
logic, universal and existentional quantification, and temporal operators such as
nexttime (©F ), eventually (�F ), always (�F ), and until (F � G). A complete
description of the language is beyond the scope of this paper but is given in [11].
To illustrate the language we use the examples shown in Table 2.

The notation ate.X is used to refer to some attribute X of an audit trail
entry (ate), i.e., an event in the event log. Similarly pi.X is used to refer to
attribute X of a process instance (pi), i.e., a case. There are several predefined
attributes, e.g., ate.WorkflowModelElement refers to the activity (or other pro-
cess elements) being executed. ate.Originator is the resource executing it, i.e.,
the person. ate.Timestamp is the timestamp of the event. ate.EventType is
the type of the event (i.e., schedule, assign, reassign, withdraw, start, complete,
suspend, etc.). The three set declarations shown in Table 2 (lines 1-3) declare
that ate.WorkflowModelElement, ate.Originator, and ate.EventType can be
used for quantification, e.g., ate.WorkflowModelElement may refer to the activ-
ity related to the current event but may also be used to range over all activities



appearing the a case. Line 5 declares the DateTime format used when specifying
a value (note that this allows for shorter notations than the standard XML for-
mat). Line 6 declares a data attribute at the level of an event. The data attribute
result is used to record the outcome of a single review in the running example.
Line 7 shows a data attribute at the level of a case. Note that both attributes
are of type string. To allow for shorter/customized names our language allows
for renaming. As shown in lines 9-11, ate.Originator, ate.Timestamp, and
ate.WorkflowModelElement are renamed to person, timestamp, and activity
respectively. These names are used in the remainder of Table 2.

The goal of the LTL language is to specify properties. Properties are de-
scribed using the formula construct. Formulas may be nested and can have
parameters. To hide formulas that are only used indirectly, the subformula con-
struct should be used. Table 2 describes five formulas and two subformulas. Lines
13-14 specify a formula without any parameters. The property holds for a given
event log if for each paper there was an acceptance (activity I in Figure 2) or
a rejection (activity J in Figure 2) but not both. To formulate this both tem-
poral and logical operators are used: <> is the syntax for the temporal operator
eventually (�F ), <-> denotes “if and only if”, and ! is the negation. Line 14
uses the shorthand activity defined in Line 11 twice. activity == "accept"
is true if the WorkflowModelElement attribute of the current event points to
the acceptance activity. Hence, <>(activity == "accept") holds if the accep-
tance activity was executed. Similarly, <>(activity == "reject") holds if the
rejection activity was executed. Using <-> and ! we can formulate that exactly
one of these two should hold. The formula accept_or_reject_but_not_both
can be evaluated for each case in the log. If it holds for all cases, it holds for the
entire log.

Lines 16-18 define the property that any decision (activity H in Figure 2)
should be directly followed by a rejection (J), acceptance (I) or invitation (K).
The following logical and temporal operators are used to achieve this: [] to de-
note the always operator (�F ), -> for implication, _O denote the nexttime oper-
ator (©F ), and \/ for the logical or. The part []( (activity == "decide" ->
states that it should always be the case that if the current activity is decide, the
following should hold. The second part starts with _O to indicate that immedi-
ately after the decision step the current activity should be of one of the three
mentioned.

The formula specified in lines 23-27 uses the parameterized subformula de-
fined in lines 20-21. The subformula states whether at some point in time activity
a was executed by person p. Note that both parameters are typed through the
declarations in the top part of Table 2. Formula not_the_same_reviewer calls
the subformula six times to express the requirement that no reviewer should
review the same paper twice. In terms of Figure 2: activities B, D, and F should
be executed by different people. Note that universal quantification over the set
people involved is used (cf. forall[p:person | ...) where person is renamed
in Line 9 and declared to be a set type in Line 2.



Table 2. Some LTL formulas for the running example.

1 set ate.WorkflowModelElement;

2 set ate.Originator;

3 set ate.EventType;

4

5 date ate.Timestamp := "yyyy-MM-dd";

6 string ate.result;

7 string pi.title;

8

9 rename ate.Originator as person;

10 rename ate.Timestamp as timestamp;

11 rename ate.WorkflowModelElement as activity;

12

13 formula accept_or_reject_but_not_both() :=

14 (<>(activity == "accept") <-> !(<>(activity == "reject")));

15

16 formula action_follows_decision() :=

17 []( (activity == "decide" -> _O( ((activity == "accept" \/

18 activity == "reject") \/ activity == "invite additional reviewer") )));

19

20 subformula execute( p : person, a : activity ) :=

21 <> ( (activity == a /\ person == p ) ) ;

22

23 formula not_the_same_reviewer() :=

24 forall[p:person |

25 (((!(execute(p,"get review 1")) \/ !(execute(p,"get review 2"))) /\

26 (!(execute(p,"get review 1")) \/ !(execute(p,"get review 3")))) /\

27 (!(execute(p,"get review 2")) \/ !(execute(p,"get review 3")))) ];

28

29 subformula accept(a : activity ) :=

30 <> ( (activity == a /\ ate.result == "accept" ) ) ;

31

32 formula dont_reject_paper_unjustified() :=

33 (((accept("get review 1") /\ accept("get review 2")) /\

34 accept("get review 3"))

35 -> <> ( activity == "accept" ) );

36

37 formula started_before_finished_after(start_time:timestamp,

38 end_time:timestamp) :=

39 (<>( timestamp < start_time ) /\ <>( timestamp > end_time ));



The formula specified in lines 32-34 uses the parameterized subformula de-
fined in lines 29-30. The subformula checks whether there is some event corre-
sponding to activity a that has a data attribute result set to value accept, i.e.,
ate.result == "accept". Note that ate.result was declared in Line 6. For-
mula dont_reject_paper_unjustified states that a paper with three positive
reviews (three accepts) should be accepted for the journal.

The last formula in Table 2 (lines 36-37) shows that it is also possible to use
timestamps. The formula has two parameters (start and end time) and it holds
if each case was started before the given start time and ended after the given
end time.

The formulas shown in Table 2 are specific for the running example intro-
duced in Section 2. However, many generic properties can be defined, e.g., the
4-eyes principle. Recall that this principle states that, although authorized to
execute two activities, a person is not allowed to execute both activities for the
same case. The following formula can be used to verify this:

formula four_eyes_principle(a1:activity,a2:activity) :=
forall[p:person |(!(execute(p,a1)) \/ !(execute(p,a2)))];

The property four_eyes_principle("invite reviewers","decide") checks
whether activities A and H in Figure 2 are indeed executed by different people.
This example and the formulas in Table 2 provide an impression of the LTL
language we have developed. It can be seen as a temporal logic tailored towards
events logs. For more details we refer to [11] and www.processmining.org. The
next section elaborates on the tool support for this language.

5 Verifying Properties: The LTL Checker

In Section 3, the ProM framework has been introduced. To be able to verify prop-
erties using the language presented, three plug-ins are needed: (1) a mining plug-
in to load and filter an MXML file, (2) an import plug-in to load LTL files like the
one shown in Table 2, and (3) an analysis plug-in providing the graphical inter-
face and doing the actual verification. For convenience a large number of generic
properties have been specified (e.g., the 4-eyes principle). There are about 60
application-independent properties focusing on the ate.WorkflowModelElement
(activity), ate.Originator (person), ate.Timestamp, and ate.EventType at-
tributes. Only for specific questions (e.g., related to data) the user needs to spec-
ify new formulas. The 60 standard formulas are stored in a default file that can be
applied directly without any knowledge of the LTL syntax described in the pre-
vious section. It is possible to link HTML markup to any formula. This markup
is shown to the user when selecting a formula. This should support the selec-
tion and interpretation of the corresponding property. Note that formulas may be
parameterized and users need to type a value for each parameter, e.g., the two ac-
tivity names in four_eyes_principle("invite reviewers","decide"). The
graphical user interface shows the HTML text and a form that need to be filled
out, cf. Figure 6.



Fig. 6. Formula selection, help text, and configuration in the LTL Checker.

The implementation of the actual LTL Checker is rather complicated. How-
ever, the core structure of the checker is fairly straightforward as is sketched
in the remainder of this section. Let L denote the event log and F a formula
expressed in the language described in the previous section. (If F is parame-
terized, then it is evaluated for concrete parameter values.) checklog(L,F ) =
∀π∈L(check(F, π, 0)) evaluates to true if F holds for the log L. π ∈ L is a process
instance (i.e., case) represented by a sequence of audit trail entries (i.e., events).
|π| is the length of π, i.e., the number of events, and πi is the (i − 1)-th entry,
i.e., π = π0π1 . . . π|π|−1.

check(F, π, 0) checks whether the formula F holds for the first process-in-
stance π ∈ L (i.e., the π at position 0 in L). For temporal operators, the position
in the sequence π is relevant as well. Therefore, let F denote a formula, π a case,
and i a number (0 ≤ i < |π|).

check(F, π, i) =
if F =

expr(πi) ⇔
true, expr is atomic and holds for i-th audit trail entry of π, i.e., πi;
false, expr is atomic and does not hold for i-th audit trail entry of π;

¬φ⇔ ¬check(φ, π, i);
φ ∧ ψ ⇔ check(φ, π, i) ∧ check(ψ, π, i);
φ ∨ ψ ⇔ check(φ, π, i) ∨ check(ψ, π, i);
φ→ ψ ⇔ check(φ, π, i) → check(ψ, π, i);
φ↔ ψ ⇔ check(φ, π, i) ↔ check(ψ, π, i);



∀x∈X(φx) ⇔ ∀x∈X(check(φx, π, i));
∃x∈X(φx) ⇔ ∃x∈X(check(φx, π, i));
�φ⇔

check(φ, π, i) ∧ check(F, π, i+ 1), 0 ≤ i < (|π| − 1);
check(φ, π, i), i = (|π| − 1);

�φ⇔
check(φ, π, i) ∨ check(F, π, i+ 1), 0 ≤ i < (|π| − 1);
check(φ, π, i), i = (|π| − 1);

©φ⇔
check(φ, π, i+ 1), 0 ≤ i < (|π| − 1);
false, i = (|π| − 1);

φ � ψ ⇔
check(ψ, π, i) ∨ (check(φ, π, i) ∧ check(F, π, i+ 1)), 0 ≤ i < (|π| − 1);
check(ψ, π, i) ∨ check(φ, π, i), i = (|π| − 1);

The expr function is a function which computes atomic Boolean expressions
that may involve all kinds of attributes (e.g., timestamps etc. but also data values
or case attributes). Given the fact that there are many comparison operators,
typing issues and advanced features such as pattern matching, the coding of the
LTL Checker is more complex than the sketch just given suggests.

The unfolding of the quantifications may be an expensive operation. How-
ever, no quantification is bigger than the number of events within a single case.
Moreover, each case (process instance) can be checked in isolation thus making
the algorithms tractable. Note that logs may contain thousands or even mil-
lions of cases. However, the number of events per case is typically less than 100.
Therefore, from a practical point of view, the core algorithm is linear in the size
of the log.

To conclude, we show a screenshot of the result, cf. Figure 7. It shows the
result of four_eyes_principle("get review 1","get review 3") applied to
the log with 48 cases. 47 of these cases satisfy the property. Only for one case
(case 2), the property is not satisfied as shown in Figure 7. Indeed the paper is
reviewed by Trudy twice. In one review, she rejects the paper while in another
one she accepts it.

For every property, the LTL Checker partitions the set of cases into two sets:
LOK (the cases that satisfy the property) and LNOK (the ones that do not).
If LNOK = ∅, the property holds. Otherwise, LNOK provides counterexamples.
Both sets can be saved and analyzed further. For example, it is possible to
construct a process model or social network for LOK or LNOK . This may be
helpful when analyzing (root) causes for violations of a desirable property.

6 Related Work

Although focusing on a completely different problem, the work reported in this
paper is related to earlier work on process mining, i.e., discovering a process
model based on some event log. The idea of applying process mining in the
context of workflow management was first introduced in [10]. Cook and Wolf



Fig. 7. The LTL Checker detected a problem when checking the 4-eyes principle.

have investigated similar issues in the context of software engineering processes
using different approaches [13]. Herbst and Karagiannis also address the issue
of process mining in the context of workflow management using an inductive
approach [22]. They use stochastic task graphs as an intermediate representation
and generate a workflow model described in the ADONIS modeling language.
Then there are several variants of the α algorithm [9, 35]. In [9] it is shown
that this algorithm can be proven to be correct for a large class of processes.
In [35] a heuristic approach using rather simple metrics is used to construct
so-called “dependency/frequency tables” and “dependency/frequency graphs”.
This is used as input for the α algorithm. As a result it is possible to tackle the
problem of noise. For more information on process mining we refer to a special
issue of Computers in Industry on process mining [8] and a survey paper [7].
Given the scope of this paper, we are unable to provide a complete listing of the
many papers on process mining published in recent years. Instead, we refer to
our website www.processmining.org and the references there for a more elaborate
overview.

Conformance testing, i.e., checking whether a given model and a given event
log fit together, can be a seen a very specific form of log-based verification.
Instead of some logical formula, a process model (e.g., Petri net) is used to
verify whether the log satisfies some behavioral properties. Therefore, the work
of Cook et al. [14, 12] is closely related to this paper. In [14] the concept of
process validation is introduced. It assumes an event stream coming from the
model and an event stream coming from real-life observations. Both streams are
compared. Only in the last part of the paper an attempt is made to selectively



try and match possible event streams of the model to a given event stream. As
a result only fitness is considered and the time-complexity is problematic as the
state-space of the model needs to be explored. In [12] the results are extended
to include time aspects. The notion of conformance has also been discussed in
the context of security [5], business alignment [2], and genetic mining [4].

Monitoring events with the goal to verify certain properties has been inves-
tigated in several domains, e.g., in the context of requirements engineering [16,
31, 32] and program monitoring [17, 20, 21]. It is also interesting to note the pos-
sible applications of such techniques in the context of monitoring web services.
In such a distributed environment with multiple actors, it is highly relevant to
be able to monitor the behavior of each actor.

The work of Robinson [31, 32] on requirements engineering is highly related.
He suggests the use of LTL for the verification of properties. Important dif-
ferences between this approach and ours are the focus on real-time monitoring
(with model-checking capabilities to warn for future problems) and the coding
required to check the desired properties. The following quote taken from [31]
illustrates the focus of this work: “Execution monitoring of requirements is a
technique that tracks the run-time behavior of a system and notes when it devi-
ates from its design-time specification. Requirements monitoring is useful when
it is too difficult (e.g., intractable) to prove system properties. To aid analy-
sis, assumptions are made as part of the requirements definition activity. The
requirements and assumptions are monitored at run-time. Should any such con-
ditions fail, a procedure can be invoked (e.g., notification to the designer).” In a
technical sense, the work of Havelund et al. [20, 21] is highly related. Havelund et
al. propose three ways to evaluate LTL formulas: (1) automata-based, (2) using
rewriting (based on Maude), (3) and using dynamic programming. We use the
latter approach (dynamic programming).

Process mining, conformance testing, and log-based verification can be seen
in the broader context of Business (Process) Intelligence (BPI) and Business
Activity Monitoring (BAM). In [18, 19, 34] a BPI toolset on top of HP’s Pro-
cess Manager is described. The BPI tools set includes a so-called “BPI Process
Mining Engine”. In [27] Zur Muehlen describes the PISA tool which can be
used to extract performance metrics from workflow logs. Similar diagnostics are
provided by the ARIS Process Performance Manager (PPM) [24]. The latter
tool is commercially available and a customized version of PPM is the Staffware
Process Monitor (SPM) which is tailored towards mining Staffware logs. Note
that none of the latter tools is supporting conformance testing or the checking of
(temporal) properties. Instead, the focus of these tools is often on performance
measurements rather than monitoring (un)desirable behavior.

For a more elaborate description of the LTL language and checker we refer to
manual of the LTL Checker [11]. Note that this is the first paper describing both.
Moreover, it is the first paper discussing the application of log-based verification
in the context of process mining.



7 Conclusion

This paper presents both a language and a tool to enable the verification of
properties based on event logs. The language is based on LTL and is tailored
towards events logs stored in the MXML format. The MXML format is a tool-
independent format to log events and can be generated from audit trails, transac-
tion logs and other data sets describing business events. Current software allows
for the easy collection of such data, cf. BPM, WFM, CRM, BAM systems. More-
over, the need for both flexibility [1, 15, 29, 30] and auditing capabilities (cf. the
Sarbanes-Oxley Act [33]) underpins the relevance of the results presented in this
paper.

We have predefined 60 typical properties one may want to verify (e.g., the 4-
eyes principle). These can be used without any knowledge of the LTL language.
In addition the user can define new sets of properties. These properties may be
application specific and may refer to data. Each property is specified in terms
of a so-called formula. Formulas may be parameterized, are reusable, and carry
explanations in HTML format. This way both experts and novices may use the
LTL Checker. The LTL Checker has been implemented in the ProM framework
and the results can be further analyzed using a variety of process mining tools.

We do not propose to solely use LTL for the type of analysis discussed in this
paper. In addition to the LTL Checker and the process mining tools, conventional
tools such as SQL and XPath can also be used to query and filter event logs.
For example, in the context of a case study we loaded MXML files into an
Oracle database to query them using SQL. SQL allows for the analysis of simple
questions like the 4-eyes principle but not for the easy formulation of temporal
questions, e.g., action_follows_decision (cf. lines 16-18 in Table 2). Recently,
we also developed a so-called conformance checker that measures the “difference”
between a process model and a log (cf. www.processmining.org).
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