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Recent developments in the area of hard- and software create
new possibilities regarding simulation. High resolution monitors
and pointing devices (mice) allow us to build simulation models
quickly and clearly. Fast processors allow detailed simulation and
even animation of long runs. However, these developments risk
obliterating the need to analyze the reliability of the results gen-
erated. People used to look carefully at data from a simulation,
whereas nowadays a smooth presentation eases away any second
thoughts. As simulation studies often support important strate-
gic decisions, there is a marked danger is such a development. It
is unacceptable such decisions are based on unfounded results, so
sufficient attention must be paid to the reliability of simulation.
These thoughts led to the present handbook.

The Dutch version of this handbook by the first author has been
used several years for teaching students from logistics and man-
agement at Eindhoven University of Technology. The growing
international contacts at our university required an English ver-
sion. This version was edited by the second author, who wishes
to thank the Stan Ackermans Institute for financial support and
Karin Luit for the translation.
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This handbook is intended for persons with little experience in statistics,
yet involved in simulation studies. It can also be used for reference and

as an addition to the manual for any simulation tools used.
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1 Introduction

Suppose you own a large discotheque and are facing problems in deploy-
ing your staff on Saturday nights. On the one hand at certain times there
is too much staff capacity, on the other hand customers complain about
long waiting times for getting their coats hung up and ordering drinks.
Because you feel you are employing too much staff and yet are facing
the threat of losing customers due to excessive waiting times, you de-
cide to make a thorough investigation. Examples of questions you want
answered are:

e What are the average waiting times of customers at the different
bars and at the cloakroom?

e What is the occupation rate of the bar staff?

e Will waiting times be reduced substantially if extra staff is de-
ployed?

e Would it serve a purpose to deploy staff flexibly? (e.g. no longer
assigning staff members to one bar only)

e What is the effect of introducing refreshment coupons on average
waiting times?

e Will it serve a purpose to use waiters?

e What are the effects of introducing a ‘happy hour’ to spread the
arrivals of guests?

To answer these and similar questions, a simulation model can be used.
A simulation model reflects reality and thus can be used to simulate that
reality in a computer. In the same way that an architect uses construc-
tion drawings to try and gain insight in the house modeled, a systems
analyst may use simulation models to gain insight in the business process
modeled.

When does it serve a purpose to set up a simulation model? Some obvious
reasons are:

e Gaining insight in an existing or proposed future situation. By
charting a business process, it becomes apparent what is important
and what is not.

e A real experiment is foo expensive. Simulation is a cost-effective
way to analyze several alternatives. Hiring extra staff or introduc-
ing a refreshment coupons system is too expensive to try out in
reality if it does not lead to improvement. You want to know in
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advance whether a certain measure will have the desired effect. Es-
pecially when starting up a new business process, simulation can
save a lot of money.

e A real experiment is too dangerous. Some experiments cannot be
carried out in reality. Before a railway company installs a new
traffic guidance system, it must assess the safety consequences. The
same holds for other processes where safety is critical (e.g. aviation
or nuclear reactors).

Sometimes, rather than using simulation, a mathematical model, also
called an analytical model is sufficient. In Operations Research (OR)
many models have been developed which can be analyzed without simu-
lation, such as queuing models, combined optimalization models, stochas-
tic models, etc. Although the scope of these models is limited compared
to simulation, why simulate if a simple analytical model can also do the
job? In comparison to a simulation model, an analytical model has less
detail and so requires less parameter data. Moreover, it requires much
less resources (both time and computing power) to achieve the derivation
of reliable conclusions.

Strong points of simulation models versus analytical models:

e Simulation is flexible. Any situation, no matter how complex, can
be investigated through simulation.

e Simulation can be used to answer widely divergent questions. It
is possible to assess e.g. waiting times, occupation rates and fault
percentages from one and the same model.

e Simulation is easy to understand. In essence, it is nothing but re-
playing a modeled situation. In contrast to many analytical models,
little specialist knowledge is necessary to understand the model.

Unfortunately, simulation also has some disadvantages.

e A simulation study can be very time consuming. Sometimes, very
long simulation runs are necessary to achieve reliable results.

e One has to be very careful in interpreting simulation results. De-
termining the reliability of results can be very treacherous indeed.

e Simulation does not offer proofs. Whatever occurs in a correct
simulation model may occur in reality, but the reverse does not
hold. Things can happen in reality that are not witnessed during
the simulation experiments.



Simulation is often used to numerically support strategic decisions. Sim-
ulation models can be rapidly constructed by using user-friendly simu-
lation tools. However, a faulty model or a wrong interpretation of the
results may lead to decisions without justification. Therefore, this hand-
book will focus on the validation of models made and the correct deriva-
tion and interpretation of simulation results.

This handbook is arranged as follows. Chapter 2 treats the construc-
tion of a simulation model. Chapter 3 will focus on the ‘input side’ of
simulation, i.e. obtaining the necessary samples. A major part of this
chapter will treat the various probability distributions that samples are
drawn from. Chapter 4 focuses on the ‘output side’ of a simulation study:
the interpretation of the results. Finally, chapter 5 reviews a number of
frequent mistakes.

2 Constructing a simulation model

For the construction of a simulation model we use a tool, which ensures
that the computer can simulate the situation charted by the model. We

Simulation tool : ) : . )
A LIon tools can differentiate between two kinds of simulation tools:

Simulation languages A simulation language is a programming lan-
guage with special provisions for simulation. Examples of simu-
lation languages are SIMULA, GPSS, SIMSCRIPT, SIMPAS, SI-
MON, MUST and GASP.

Simulation packages A simulation packageis a tool with building blocks
for a certain application area, which allow the rapid creation of
a simulation model, mostly graphically. Examples of simulation
packages for production processes are: SIM-FACTORY, WITNESS
and TAYLOR.

The advantage of a simulation language is that almost every situation
can be modeled. The disadvantage is that one is forced to chart the situ-
ation in terms of a programming language. The modeling thus becomes
time-consuming and the model itself provides little insight. A simula-
tion package allows to rapidly build a clear model. Because the model
must be built from ready-made building blocks, the area of application
is limited. As soon as one transgresses the limits of the specific area of
application, e.g. by changing the control structure, the modeling becomes
cumbersome or even impossible.

In the past few years, tools have been introduced with characteristics
of both a simulation language and a simulation package. Examples are
ExSpect, Design/CPN, Extend and ARENA (formerly SIMAN/CINEMA).
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These tools combine a graphic development environment to a program-
ming language, also offering the possibility of animation. ExSpect and
Design/CPN are based on high level Petri nets, allowing the use of analy-
sis techniques apart from simulation. Tools such as Extend and ARENA
are based on proprietary concepts, which makes them less suitable for
further analysis. The use of proprietary building blocks also makes it
hard to interchange simulation models between packages. Standardiza-
tion based on a formal description method such as high-level Petri nets
improves interchangeability between tools.

The lack of a generally accepted method of description makes it impos-
sible to give a generally applicable method of modeling. However, the
phasing of a simulation study is more or less the same for all tools. Fig-
ure 1 shows the phases of a simulation study.
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Figure 1: Phases of a simulation study.

The simulation process starts with a problem definition , describing the
goals and fixing the scope of the simulation study. The scope tells what
will and what will not be a part of the simulation model. The problem
definition should also state the questions to be answered. Preferably,
these questions should be quantifiable. Instead of asking “Are the cus-
tomers satisfied?”, one should ask “How long do customers have to wait
on average?”
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After defining the problem, the next phase is modeling. In this phase
the conceptual model is created. The conceptual model defines classes
of objects and the relations between these objects. In the case of the
discotheque the objects to be distinguished are a/o. staff members, bars,
cloakroom and customers. The relevant characteristics (properties) of
these objects are charted. We distinguish between qualitative and quan-
titative characteristics. Examples of qualitative characteristics are queue
disciplines (How are customers attended to, e.g. in order of arrival (FIFO
- First-In-First-Out) or randomly? (SIRO - Select-In-Random-Order)),
sequences (What actions are performed in what order when a customer
enters?) and decision rules (When do we open an extra bar?). Quan-
titative characteristics of objects describe primarily speed (How many
customers can be served per minute?) and capacity (How many cus-
tomers can be served simultaneously?). If we are dealing with objects
of the same class, we specify these characteristics for the entire class
(parameterized if necessary). Graphs can be drawn for showing connec-
tions between the various objects or object classes. Suitable techniques
are situation diagrams, data flow diagrams or simulation-specific flow
diagrams.

The construction of the conceptual model will most likely unveil incom-
plete and contradictory aspects in the problem definition. Also, the mod-
eling process may bring forth new questions for the simulation study to
answer. In either case, the problem definition should be adjusted.

After the conceptual modeling phase, the realization phase starts. Here,
the conceptual model is mapped onto an ezecutable model. The exe-
cutable model can be directly simulated on the computer. How to create
this model depends strongly on the simulation tool used. Simulation
languages require a genuine design and implementation phase. Simu-
lation packages that fit the problem domain merely require a correct
parametrization. The objects of the conceptual model are mapped to
building blocks from the package and their quantitative characteristics
(e.g. speed) are translated to parameter values of these building blocks.

An executable model is not necessarily correct, so it has to be wverified.
Verification of the model is necessary to examine whether the model
contains qualitative or quantitative errors, like programming errors or
wrong parameter settings. For verification purposes, small trial runs
can be simulated by hand and its results assessed, or a stress test can be
applied to the model. In the stress test the model is subjected to extreme
situations, like having more customers arrive than can be attended to. In
such a case, waiting times measured should increase dramatically in the
course of time. Some tools support more advanced forms of verification.
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Using a Petri net based simulation tool, e.g. all kinds of logical properties
of the model can be proven. For example, certain invariants (the number
of staff members is constant) and other logical properties (absence of
deadlock) can be inferred.

Apart from verification, validation of the model is also required. During
validation we compare the simulation model with reality. When simulat-
ing an existing situation, the results of a simulation run can be compared
to observations from historical data. Simulation models that relate to
possible future situations, can be validated by comparing the simulation
results to calculated results.

Verification and validation may lead to adjustments in the simulation
model. New insights may even lead to adjusting the problem definition
and/or the conceptual model. A simulation model found to be correct
after validation is called a validated model.

Starting from the validated model, experiments can be carried out. These
experiments have to be conducted in such a way that reliable results are
obtained as efficiently as possible. In this stage decisions will be made
concerning the number of simulation runs and the length of each run.

The simulation results will have to be interpreted, to allow feedback to the
problem definition. Reliability intervals will have to be calculated for the
various measures gathered during simulation. Also, the results will have
to be interpreted to answer the questions in the problem definition. For
each such answer the reliability should be stated. All these matters are
summarized in a final report with answers to questions from the problem
definition and proposals for solutions.

Figure 1 shows that feedback is possible between phases. In practice,
many phases do overlap. Specifically, experimentation and interpretation
will often go hand in hand.

Figure 1 assumes the existence of a single simulation model. Usually,
several alternative situations are compared to one another. In that case,
several simulation models are created and experimented with and the
results compared. Often, several possible improvements of an existing
situation have to be compared through simulation. We call this a what-if
analysis. In such a case a model of the current situation is made first.
For this model the phases of Figure 1 are followed. The model is then
repeatedly adjusted to represent the possible future situations. These
adjustments may just concern the executable model (e.g. by changing
parameters). In some cases (e.g. when changing control structures), the
conceptual model is affected too. In each case, the adjustments should
be validated. The different alternatives are experimented with and the
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results compared to indicate the expected consequences of each alterna-
tive.

The people involved in a simulation study have their specific responsibil-
ities. In the first place, there are users: the persons confronted with the
problem to be investigated. Secondly, there is a systems analyst , respon-
sible for writing a clear problem definition. The analyst also creates the
conceptual model. Depending on the tools used, the systems analyst can
be supported by a programmer to realize the simulation model. The num-
ber of simulation experiments often dictates who should conduct them.
If the experiments have to be conducted regularly, e.g. for supporting
tactical decisions, a user seems appropriate. If it concerns a simulation
study supporting a one-time strategic decision, the systems analyst or
programmer is preferred. For the correct interpretation of the simulation
results, it is of the utmost importance that the persons involved have
sufficient knowledge of the statistical aspects of simulation.

The users and builders of a simulation model (the systems analyst and
the programmer) are in general different people. Agreement between
them is of prime importance, though. The eventual model should fit the
ideas that the user had in mind. One way of promoting user involvement
is by animation. Animation is the graphical simulation of the modeled
situation from a simulation model, e.g. by moving objects that change
shape. In this way an animated movie can be made of the model, that
suits the user’s experience. Although animation is a useful tool for e.g.
the validation of a model by the user, one must take care. Pretty ani-
mations may cause the user to accept a model without questioning the
quantitative results.

executable
simulation model

simulation

—_— .
experiment

samples

—
results

Figure 2: Input and output of a simulation experiment.

The remainder of this handbook will focus primarily on the statistical as-
pects of simulation experiments. Figure 2 shows the input and output of
a simulation experiment. The input consists of an executable simulation
model and random samples from various parameterized probability dis-
tributions. The output consists of (mostly numerical) simulation results.
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Chapter 3 focuses on the random sampling necessary for the experiment.
Chapter 4 deals with the interpretation of simulation results.

3 Sampling from distributions

3.1 Random and pseudo-random numbers

A simulation experiment is little more than replaying a modeled situa-
tion. To replay this situation in computer, we have to make assumptions
not only for the modeled system itself but also for its environment. As
we cannot or will not model these matters in detail we turn to Monte
Carlo! We do not know when and how many customers will enter a post
office, but we do know the mean and variation of customer arrivals. So
we have the computer take seemingly random samples from a probabil-
ity distribution. The computer is by nature a deterministic machine,
so techniques have been developed to generate so-called pseudo-random
numbers.

A random generator is a piece of software for producing pseudo-random
numbers. The computer does in fact use a deterministic algorithm to
generate them, which is why they are called “pseudo” random. Most
random generators generate pseudo-random numbers between 0 and 1.
Each value between 0 and 1 being equally probable, these values are
said to be distributed uniformly over the interval between 0 and 1. It
depends on the random generator whether 0 and/or 1 themselves can be
generated. This matter is of technical relevance only.

Most random generators generate a series of pseudo-random numbers %
according to the formula:

X, = (aX,,_1 + b) modulo m

For each i, X; is is a number from the set {0,1,2,...,m — 1} and %
matches a sample from a uniform distribution between 0 and 1. The
numbers a, b and m are chosen in such a way that the sequence can hardly
or not, at all be distinguished from ‘truly random numbers’. This means
that the sequence X; must visit each of the numbers 0,1,2,...,m—1 once.
Also, m is chosen as near as possible to the largest integer that can be
manipulated directly by the computer hardware. There are several tests
to check the quality of a random generator (cf. [2, 12, 14, 9]): frequency
test, correlation test, run test, gap test and poker test.

A good random generator for a 32 bit computer is:

X, = 16807X,,_; modulo (2*' — 1)
That is: a = 16807, b = 0 and m = 23! — 1. For a 36-bit machine:
X, = 3125X,, ; modulo (2% — 31)
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is a good choice.

The first number in the sequence (X)) is called the seed. The seed com-
pletely determines the sequence of random numbers. In a good random
generator, different seeds produce different sequences. Sometimes the
computer selects the seed itself (e.g. based on a systems clock). How-
ever, preferably the user should consciously select a seed himself, allowing
the reproduction of the simulation experiment later. Reproducing a sim-
ulation experiment is important whenever an unexpected phenomenon
occurs that need further examination.

Most simulation languages and packages possess an adequate random
generator. This generator can be seen as a black box: a device that
produces (pseudo) random numbers upon request. However, beware:
pseudo-random numbers are not truly random! (A deterministic algo-
rithm is used to generate them.) Do not use more than one generator
and take care in selecting the seed.

To illustrate the dangers in using random generators we mention two
well-known pitfalls.

The first mistake is using the so-called ‘lower order bits’ of a random
sequence. For example, if a random generator produces the number
0.1321734234, the higher order digits 0.13217 are ‘more random’ than
the lower order digits 34234. In general the lower order digits show a
clear cyclical behavior.

Another frequent mistake is the double use of a random number. Suppose
that the same random number is used twice for generating a sample from
a probability distribution. This introduces a dependency into the model
that does not exist in reality, which may lead to extremely deceptive
results.

3.2 Some distributions

Only rarely do we need random numbers uniformly distributed between
0 and 1. Depending on the situation, we need samples from different
probability distributions. A probability distribution specifies which values
are possible and how probable each of those values is.

To simplify the discussion of random distributions and samples from
probability distributions, we introduce the term random variable. A ran-
dom variable X is a variable with a certain probability of taking on
certain values. For example, we can model the throwing of a dice by
means of a variable X that can take on the values 1,2,3,4,5 and 6. The
probability of obtaining any value a from this set is %. We can write this
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as follows:
ifa € {1,2,3,4,5,6}
else

Dol

HX:d:{

Given a random variable X we can define its expectation and variance.
The expectation of X, denoted by IE[X], is the average to be expected
from a large number of samples from X. We also say the mean of X.
The variance, denoted as Var[X], is a measure for the average deviation
of the mean (expectation) of X. If X has a high variance, many samples
will be distant from the mean. A low variance means that in general
samples will be close to the mean. The expectation of a random variable
X is often denoted with the letter p, the variance (Var[X]) is denoted
as 02. The relation between expectation and variance is defined by the
following equality:

VarX] = E[(X — 1)?] = E[X?] - 1

As Var[X] is the expectation of the square of the deviation from the
mean, the square root of Var[X] is a better measure for the deviation

from the mean. We call 0 = /Var[X] the standard deviation of X. If
the standard deviation of X is large compared to the mean, we may say
that X is wildly distributed. For more details we refer to Appendix A
and the list of references.

In this section we show some widely used probability distributions, start-
ing with discrete probability distributions. The values that a discretely
distributed random variable can take on have are separated; the distance
between any two such values will exceed a certain minimum. Often, there
are only finitely many such values.

3.2.1 Bernoulli distribution

If X is a random variable distributed according to a Bernoulli distribution
with parameter p, then it may take on the value 1 with probability p and
0 with probability 1 — p. So:

PX=0=1—-p en P[X=1]=p

The expectation E[X], i.e. the mean value, is p. The variance Var[X]
equals p(1 — p). Often, the value 1 signifies success and 0 failure of an
experiment.

3.2.2 Discrete homogeneous distribution

A random variable X is distributed according to a discrete homogeneous
distribution with a lower bound of a and an upper bound of b, if it can



take on only integer values between and including a and b and each such
value is equally probable. The lower bound a and the upper bound b are
integers. In this case the probability of a certain value k£ equals:

—r— ifk€{a,a+1,a+2,...,b—1,b}
PIX = #] :{ (()b—a)+1 else

The expectation (IE[X]) equals “t. The variance (Var[X]) equals w
Rolling a dice corresponds to taking a sample from a discrete homoge-

neous distribution with lower bound 1 and upper bound 6.

3.2.3 Binomial distribution

Suppose we do n experiments that can either succeed or fail. Per ex-
periment the chance of success equals p. What is the probability of &
successes? We can model this with a binomial distribution with param-
eters n and p. Suppose X is distributed binomially with parameters n

Bi ial
inomia and p. For z € {0,1,...,n} we have:

distribution
n e

The expectation equals np. The variance equals np(1 — p). Throwing 10
coins on a table and counting the tails corresponds to taking a sample
from a binomial distribution with parameters n = 10 and p = 0.5. A
special case of the binomial distribution is the Bernoulli distribution (n =

1).

3.2.4 Geometrical distribution

Suppose repeating an experiment with a chance of success p until we are
successful for the first time. The number of experiments thus needed is
a sample from a geometrical distribution with parameter p. Suppose X
being distributed geometrically with parameter p, then for each positive

Geometrical )
integer number £:

distribution _
PIX =K = (1-p)p

The expectation equals %. The variance equals lp;f. This distribution is

also called the Pascal distribution.

3.2.5 Poisson distribution

The Poisson distribution is strongly related to the negative exponential
distribution seen later in this book. If the time between two consecu-
tive arrivals of a customer in a supermarket is distributed according to
the negative exponential distribution with parameter A, the number of

Poisson distribution



Probability density

Uniform distribution

a,b

Negative exponential
distribution

A

customers entering the supermarket per time unit is distributed Poisson
with parameter \.

Suppose X is distributed Poisson with parameter A, then for each integer
number £ the following holds:

)\k
_ A

The expectation (IE[X]) equals A. The variance (Var[X]) also equals A.

Think of a supermarket where customers enter according to a negative

exponential distribution. The average time between two arrivals is 15
1

minutes (0.25 hour), that is to say A = 55z = 4. The number of arrivals
1

per hour is distributed Poisson with parameter A = 55 = 4. The average

number of arrivals per hour therefore equals 4. The variance also equals
4.

Next in this section we will discuss some continuous distributions. Unlike
discrete distributions, the notion IP[X = k| giving the probability of a
certain value k£ has no importance. (For continuous distributions, P[X =
k] = 0 for any k.) The important notion is the probability density. The
larger the probability density fx (k) of a continuously distributed random
variable X at the point k£ becomes, the greater the probability that a
sample from X is close to k.

3.2.6 Uniform distribution

The uniform distribution, also called homogeneous distribution, is very
simple. Between a lower bound ¢ and an upper bound b all values are
equally probable. A random variable X distributed uniformly with pa-
rameters ¢ and b has probability density fx(z) = ;%= for z between a
and b (a <z <b) and fx(z) =0 for z < a or x > b. Figure 3 is a graph
showing the probability density for the uniform distribution with a = 2
and b = 4.

From this figure we infer that all values between a and b are equally

probable. The expectation (IE[X]) equals %2 The variance (Var[X])
(b—a)?
[P

equals

3.2.7 Negative exponential distribution

The negative exponential distribution is often used to model arrival pro-
cesses. The negative exponential distribution has only one parameter
A. Let X be a negative exponentially distributed random variable with
parameter A. The corresponding probability density will be (z > 0):

fx(z) = ™M
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Figure 3: The uniform distribution with parameters a = 2 and b = 4.
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Figure 4: Negative exponential distributions with parameters A = 1.0,
A=0.5and A = 2.0.
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Figure 4 shows this probability density for A = 1.0, A = 0.5 and A = 2.0.
The expectation equals % The variance equals /\—12 If a random variable
X, negative exponentially distributed with parameter A, defines an ar-
rival process, A is called the intensity of the arrival process. The random
variable X is used to model the time between two consecutive arrivals.
The higher the intensity of the arrival process (i.e. the larger \), the larger
the mean number of arrivals per time unit. If A = 10, the expected time
between two consecutive arrivals is 0.10 time units. The mean number
of arrivals per time unit in this case equals 10. If A = 100, then the
expected time between two consecutive arrivals equals 0.01 time units
and the mean number of arrivals per time unit equals 100.

3.2.8 Normal distribution

The normal distribution has many applications. This distribution is used
for modeling processing times, response times, stock levels and transport
times. Often, one does not know the exact distribution of a certain
random variable, but some of its characteristics (like mean and variance)
are known. In such cases, the normal distribution is often used as an
approximation. This standard practice is however not without dangers;
it needs justification! The normal distribution has two parameters p and
0. The probability density of a o, y-normally distributed random variable
X is defined as follows:
1 —(2=w)?
= 202
Ixo) = Jaeer ¢
Unlike the negative exponential distribution this random variable can
also take on negative values. Figure 5 shows for a number of parameter
values the corresponding probability densities. The probability densities
are maximal around p. As we digress from the mean, the probability
density decreases. The smaller o, the faster the probability density de-
creases, so for small o, a value near pu is very likely. The expectation
(IE[X]) equals p. The variance (Var[X]) equals 0.
If 4 =0 and o = 1, we call this a standard normal distribution. If Y is
a standard normally distributed random variable, then X = p+ oY is
a normally distributed random variable with parameters p and o. Con-
versely, if X is a normally distributed random variable with parameters
i and o, then Y = X—;’ﬁ is a standard normally distributed random vari-
able.

If we use a normally distributed random variable for modeling time dura-
tions, like processing times, response times or transport times, we must
be aware that this random variable can also take on negative values. In
general negative durations are impossible; this may even cause a failure
of the simulation software. To circumvent this problem, we might take a
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Figure 5: Normal distributions with parameters p = 0.0 and o consecu-
tively 1, 0.5 and 2.

new sample whenever the given sample produces a negative value. Note
that this will affect the mean and the variance. Therefore, this solution
is recommended only if the probability of a negative value is very small.
We use the following rule of thumb: “If y — 20 < 0 we cannot omit
negative values generated.”.

3.2.9 Gamma distribution

A characteristic of the normal distribution is its symmetry. We often
need ‘skewed’ distributions instead, where the probability densities below
and above the mean are distributed differently. In this case a gamma
distribution might be chosen. A random variable X is gamma distributed
with parameters » > 0 and A > 0 if for all x > 0:

)\()\I)rfl ef)\m

fX(x) = F(T)

(The function I' is the mathematical gamma function.) Figures 6, 7 and
8 show the probability densities for a number of parameter values.

These figures clearly show that the gamma distribution, depending on
the parameter values has many manifestations. If » does not exceed 1,
fx is a monotonously decreasing function. In this case values close to 0
are most probable. If » > 1, the function will first grow to a maximum
and then decrease monotonously. The parameter r therefore determines
the shape of the distribution. The parameter A\ determines the ‘spread’
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Figure 8: Gamma distributions with parameter A = 2 and r consecutively
1, 0.5 and 2.

of the distribution. The larger A, the more probable is a value close to
0. The expectation (IE[X]) equals {. The variance (Var[X]) equals 3.

The modal value of a probability distribution is the value for which the
probability density is maximal, i.e. m is the modal value of an X if
for each x: fx(m) > fx(x). The modal value of a gamma distributed
random variable X depends on r and A. If » < 1, 0 is the most probable
value, i.e. the modal value of X equals 0. If » > 1 the modal value equals
r—1

- A special case of gamma distribution is the negative exponential

distribution (r = 1).

3.2.10 Erlang distribution

The Erlang distribution is a special case of the gamma distribution. A
gamma distribution with an integer parameter r, is also called an Erlang
distribution. A random variable which is distributed Erlang with pa-
rameters r (integer) and A can be considered the sum of r independent,
negative exponentially distributed random variables with parameters A.
If X is distributed Erlang with parameters r and A, then:

Ayt e
fx(x) = T o

(Note that n! is the factorial function: the product of all integers from 1
up to n. If r is an integer, then I'(r) = (r — 1)!.) Figure 9 shows for a
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Figure 9: Erlang distributions with parameter A = 2 and r consecutively
1, 2 and 3.

The expectation equals . The variance equals 5.

3.2.11 2 distribution

The x? distribution is another special case of the gamma distribution.
A x? distribution has a single parameter v. This v is a positive integer
and represents the number of degrees of freedom. A random variable
X distributed x? with v degrees of freedom is the same as a random
variable distributed gamma with parameters r = 3 and A = % Figure 10
shows the probability density for a number of values v. The expectation
equals v. The variance equals 2v. There is also a connection between
the normal distribution and the x? distribution. If X, Xs,..., X, are
mutually independent standard normally distributed random variables,
the random variable X = X? + X7 + ... + X? is distributed exactly
x? with parameters v = n. The x? distribution is used specifically for
‘goodness-of-fit’ tests.

3.2.12 Beta distribution

Like the uniform distribution, the beta distribution is distributed over
a finite interval. We use it for random variables having a clear upper
and lower bound. The beta distribution has four parameters a, b, r and
s. The parameters a and b represent the upper and lower bounds of



Standard beta
distribution

Figure 10: x? distributions with v =1, v =2, v =3, v =4 and v = 5.

the distribution. The parameters r (r > 0) and s (s > 0) determine the
shape of the distribution. For each 2 (a < x < b), the probability density
is defined as follows:

1 T(r+s) fz—a\"'(b—z\""
fx(z) = b < > ( )

—a T'(r)T(s) \b—a b—a
If a =0 and b =1 we call this a standard beta distribution. Figures 11,
12 and 13 show, assuming a standard beta distribution, for a number of
values of r and s the corresponding probability densities. Clearly, the
beta distribution is very varied.
If r =s =1, X is distributed homogeneously with parameters a and b.
The larger/smaller = becomes, the greater/lesser the chance of a value
close to b. If r < 1, the probability density is large close to a. If s < 1,
the probability density is large close to b. If > 1 and s > 1, the modal

value (the maximum probability density) lies somewhere between a and
b. The expectation equals:

-
EX]|= b—
X] = a+ (h— a)——
The variance equals:
rs(b— a)?

Var[X] =

(r+s)%(r+s+1)

A beta distribution is ‘skewed’ (not symmetrical) whenever r # s. There-
fore, the most probable value (modal value) may differ from the expec-

tation. If r > 1 and s > 1, the modal value equals a + (b — a)r_’;;iZ. If
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Figure 11: Beta distributions with parameters a = 0, b = 1 and r con-
secutively 1.0, 2.0 and 1.0, and s consecutively 1.0, 1.0 and 2.0.
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Figure 12: Beta distributions with parameters ¢ = 0, b = 1 and r con-
secutively 0.5, 2.0 and 0.5, and s consecutively 0.5, 0.5 and 2.0.
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Figure 13: Beta distributions with parameters a = 0, b = 1 and r con-
secutively 5.0, 2.0 and 5.0, and s consecutively 5.0, 5.0 and 2.0.

r < 1lors < 1, the maximal probability density is achieved at b (if 7 < s)
ora (if s <r).

Suppose we want a standard beta distribution with an expectation p and
a variance o2. In that case we have to choose r and s as follows:

. M2(102— 1o i
s = a —0/21)2/1 — (1= p)

This is only possible if the following condition is met:

o < p(l —p)

As each sample is between 0 and 1, there is an upper bound to the
variance (at most 0.25).

A beta distributed random variable Y with lower bound a, upper bound
b, expectation p and variance o2, is obtained by constructing a random
variable X, distributed standard beta with expectation £~ and variance

b
(bfz)Q. Y is then defined by Y = (b —a)X + a.

A well-known application of the beta distribution is PERT (Program
Evaluation and Review Technique). PERT is a technique used by project
managers assess throughput times. For each activity PERT needs three
estimates of its duration:
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(i) an optimistic estimate (i.e. a lower bound),
(ii) a pessimistic estimate (i.e. an upper bound),
(iii) an estimate of the most probable duration (modal value).

If we model the duration of such an activity by means of a beta distri-
bution, we use the first two estimates to determine the parameters a and
b. If ¢ is the most probable duration, the parameters r and s are set so
that the expectation and the variance take on the following values:

_atdc+bd
He= 6
o2 — (b—a)?
36

Therefore, if a lower and upper bound are given, the variance is fixed.

4 Processing the results

We use simulation to assess present or future situations. During sim-
ulation, measurements are taken. Suppose, a bank considers buying
new cash dispensers. Through simulation, information must be obtained
about waiting times and errors. In this section we show how assertions
can be made about these quantities from a simulation study.

4.1 Mean and variance

During simulation there are repeated observations of quantities such as
waiting times, run times, processing times, and/or stock levels.

A player throws a dice 10 times and observes the number that comes up.
The following observations are made : 3, 4, 6, 1, 1, 2, 5, 3, 3, and 2.
Separate observations have little interest. People use simulation to obtain
statistical information about a certain quantity, e.g. to assess the average
throughput time of an order.

Suppose we have k consecutive observations, called x1,xs,...z;. These
observations are also called a random sample.

The mean of a number of observations is also called the sample mean.
We denote the sample mean of z1, x5, ...x; as Z. We can find T by adding
the observations and dividing the sum by k:

Z?:1 T
k
Please note that the sample mean is an estimate of the true mean.

The wvariance of a number of observations is also called the sample vari-
ance. This variance is a measure for the deviation from the mean. The

T =
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smaller the variance, the closer the observations will be to the mean. We
can find the sample variance s? by using the following formula:

2_226:1(%' x)Z
§ ==
k—1

We can rewrite this formula as:

If during a simulation we keep track of (1) the number of observations
k, (2) the sum of all observations . | z; and (3) the sum of the squares
of all observations Zle x;2, we can determine the sample mean and the
sample variance. The square root of the sample variance s = v/s2 is also
called the sample standard deviation. The standard deviation s gives
a more adequate impression of the deviations from the mean than the
sample variance s.

Apart for the mean and the variance of a random sample, there is also the
so-called median of k observations xy, xs, ..., x;. The median is the value
of the observation in the ‘middle’ after sorting the observations w.r.t.
their value. An ‘observation in the middle’ only exists if the number
of observations is odd. In case of an even number of observations, the
average of the two observations in the middle is taken. In a simulation
experiment, we have to save and sort all observations in order to calculate
their median.

In a simulation experiment the following waiting times are measured:
2.3,3.4,2.2, 28, 5.6,3.2,6.8, 3.2, 5.3 and 2.1. Using the random sample
we can determine the sample mean and the sample variance. The sample
mean is 3.69 and the sample variance is 2.648. The median is 3.2.

4.2 Subruns and preliminary run

In a simulation experiment, we can easily determine the sample mean
and the sample variance of a certain quantity. We can use the sample
mean as an estimate for the expected true value of this quantity (e.g.
waiting time), but we can not determine how reliable this estimate is.
A simulation experiment consists of a number of partial experiments
(subruns) that allow us to assess the reliability of the simulation results.

4.2.1 Necessity

Consider a post office with one counter. Customers enter the post of-
fice according to a Poisson process with intensity 6. The time between
two consecutive customers is therefore distributed negative exponentially
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with an average of 0.167 hours (10 minutes). The service time is also dis-
tributed negative exponentially. The average service time is 0.1 hours (6
minutes). We want to determine the average waiting time of customers.
Based on a simulation experiment that assesses the waiting times of 1000
consecutive customers, we observe a mean waiting time of 0.21 hours
(approximately 12 minutes). (These are the results of a truly conducted
simulation experiment.) The expected waiting time can be calculated
mathematically in this case. (M/M/1-queue, see appendix C.) This
calculated mean waiting time equals 0.15 hours (9 minutes). Conducting
a longer simulation of, say, 50.000 customers will corroborate this last
value. The estimate based on the first simulation experiment therefore
differs substantially from the real expected waiting time.

Therefore, we need a mechanism to determine the reliability of a certain
result. One might think that the sample variance can be used to answer
this question. However, this is not the case because the sample variance
based on the waiting times of 1000 consecutive customers only estimates
the average deviation from the sample mean waiting time. It does not
say how well the sample mean estimates the expectation. We tackle this
problem by introducing subruns. Instead of one long simulation run we
conduct a series of smaller simulation runs, from which we compare the
results.

Suppose that instead of one long simulation run with 1000 customers, we
had executed 10 consecutive runs with 100 customers each. Table 1 gives
for each of these subruns a separate sample mean. The mean over these
10 subruns is about 0.21 hours. The table clearly exhibits the differences
between the various sample means. The estimated waiting time varies
between 0.12 and 0.31 hours. Therefore, these data are not sufficient to
estimate the waiting time to be expected. So, by dividing the simulation
experiment into subruns, we obtained an impression of the reliability.
We can also quantify this impression.

4.2.2 Subruns and initial phenomena

Instead of one long simulation run, we use several smaller subruns. In
doing so, we need to distinguish between two situations:

(1) A stable situation, meaning the circumstances are constant. Quan-
tities like e.g. the arrival intensities of customers are the same
throughout the simulation. There are no structural peaks. Also,
no startup effects occur: we are interested in the stable state of a
process.

(ii) An unstable situation, where the circumstances change structurally
during simulation. For instance, an “empty” state characterizes the
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subrun mean
number | waiting time
0.16
0.14
0.29
0.12
0.26
0.31
0.13
0.28
0.21
0.28
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Table 1: The sample mean itemized per subrun.

beginning and end of the simulation. Often there is a clear start
and end; this is called a terminating process.

Analyzing the average waiting time of a customer in the post office at a
given time of the day can be done in stable situation. We assume that
the arrival process and the service process have certain characteristics at
this time of the day. However, the analysis of the average waiting time
of customers during the whole day requires an unstable situation. We
might see a different arrival process at the end of the day than at 10 AM.
The reason that we differentiate between stable and unstable situations
is the fact that this influences the format of the simulation experiment.

If we are dealing with a stable situation, we can execute the subruns
sequentially. Each subrun, except the first, starts in the final state of the
last subrun. This means that we can execute one long simulation run
and cut it into equal pieces (subruns). We just store the relevant results
of each subrun. We have to treat the first piece of such a simulation
run carefully. For example, the choice of the seed influences the first
measured results. Also, so-called initial phenomena may cause the results
to be influenced by a chosen initial state. If we start with an empty post
office, the first arriving customer will be immediately served. While this
is a limited effect, there are situations where the initial state chosen will
have a long-lasting influence on certain quantities. If, in simulating a
manufacturing plant, we choose an empty initial state (i.e., with no work
at hand) if will take some time before the throughput times measured do
reflect the corresponding quantities during normal operation.

To minimize the effect of initial phenomena we start with a special sub-
run called the preliminary run (or start-up run). The results gathered
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in this run will be disregarded when estimating a certain quantity. The
preliminary run has to be long enough for the initial phenomena to dis-
appear. When simulating our manufacturing plant we can conclude the
preliminary run as soon as the amount of work at hand has reached a
stable level.

In dealing with an unstable situation, we can no longer execute the sub-
runs after one another. Initial phenomena, if any, are an essential part of
the simulation. Each subrun therefore has to start from the same start-
ing condition. By using a different seed for each subrun, the results of
the various subruns are still independent and can be compared to each
other during analysis. If we want to analyze the waiting times in a post
office for the entire day, each subrun represents one day. Each of these
subruns starts in the state that there are no customers in the post office
and ends after, at the end of the day, all customers have left.

Relevant questions when setting up a simulation experiment are:

Is a preliminary run necessary?

How long should the preliminary run be?

e How many subruns are necessary?

How long should each subrun be?

Let us try and answer these questions. A preliminary run is necessary
only if we are simulating a stable situation, where the initial state differs
from the average state experienced during simulation. The length of
a preliminary run depends on how much the initial state differs from
an average state and how fast the simulation reaches a stable situation.
We can chart the development of some relevant quantities in time and
estimate from this chart when a stable state has been reached. This
question is a difficult one. For example, the required number of subruns
strongly depends on the desired reliability of the final results and the
length of each subrun. We will deal with this subject later. For unstable
situations, the length of a subrun is usually fixed. The length is e.g.
one day, one morning or the time needed to handle one request. For
stable situations, we must make certain that each subrun is long enough
to ensure that the initial state of one subrun does not depend upon the
initial state of the next subrun. Suppose that at the start of a subrun
there is an extremely long queue. If the length of a subrun is too short,
this queue will not have been processed in the next subrun. In that case
a dependency exists between the results of the two subruns. This can
lead to an incorrect interpretation of results. A rule of thumb is that each
subrun should contain at least one regeneration point. A regeneration
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point is a certain state that the system regularly returns to. An example
regeneration point for the post office simulation is the state where the
post office is empty of customers.

4.3 Analysis of subruns

Suppose we have executed n subruns and measured a certain result x; for
each subrun i. We know there exists a “true” value (called p) that each
x; approximates and we want to derive assertions about p from the x;.
For example, z; is the mean waiting time measured in subrun ¢ and p the
“true” mean waiting time that we could find by conducting a hypothetical
simulation experiment of infinite length. (Instead, we might consider the
mean variance of the waiting time, the mean occupation rate of a server
or the mean length of a queue.) We must be certain that the values x;
are mutually independent for all subruns. (We have, e.g. forced this by
choosing a long enough subrun length). Given the results z1, zs, . .., Z,,
we derive the sample mean 7:

2?21 Z;

n

T =

and the sample variance s%:

&2 — Sz —T)?
n—1

Note that the sample mean and the sample variance for the results of the
various subruns should not be confused with the mean and the variance
of a number of measures within one subrun! We can consider T as an
estimate of . The value T can be seen as a sample from a random variable
X called estimator. The value ! —= is an indication of the reliability of

the estimate 7. If % is small, it is a good estimate.
n

4.3.1 The situation with over 30 subruns

If there is a large number of subruns, we can consider the estimator X
(because of the central limit theorem) as normally distributed. We will
therefore treat the situation with over 30 subruns as a special case.

The fact that ﬁ measures how well T approximates u, allows us to
determine the time that we can stop generating subruns.

(i) Choose a value d for the permitted standard deviation from the
estimated value 7.

'The variance of the estimator X is Var[z] = Var[2 > " | 2] = "—: The standard
deviation of T thus equals ﬁ As s is a good estimate of o, the amount ﬁ yields a

good estimate for the standard deviation of T.
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(ii) Generate at least 30 subruns and note per subrun the value x;.

(iii) Generate additional subruns until == < d, where s is the sample

n —

standard deviation and n the number of subruns executed.
(iv) The sample mean T is now an estimate of the quantity to be studied.

There are two other reasons why in this case at least 30 subruns have
to be executed. In the first place, X is only approximately normally
distributed with a large number of subruns. This is a compelling reason
to make sure that there are at least 30 mutually independent subruns.
Another reason for choosing an adequate number of subruns is the fact
that by increasing the number of subruns, s becomes a better estimate
of the true standard deviation.

Given a large number of independent subruns, we can also determine
a confidence interval for the quantity to be studied. Because T is the
average of a large number of independent measures, we can assume that
T is approximately normally distributed. (see Appendix A). From this
fact, we deduce the probability that p lies within a so-called confidence
interval. Given the sample mean T and the sample standard deviation
s, the true value p conforms with confidence (1 — «) to the following
equation:

_ s o _ s a

x—ﬁz(§)<u<x+% 2(5)
where z(%) is defined as follows. If Z is a standard normally distributed
random variable, then IP[Z > z(x)] = . For a number of values of z,
z(z) is shown in table 2. The value « represents the unreliability, that is
the chance that p does not conform to the equation. Typical values for

a range from 0.001 to 0.100. The interval

is also called the (1 — a)-confidence interval for the estimated value p.

X 7(x)

0.001 | 3.090
0.005 | 2.576
0.010 | 2.326
0.050 | 1.645
0.100 | 1.282

Table 2: P[Z > z(x)] = = where Z is standard normally distributed.



Example

We can illustrate the above with the following example. A company is
worried about the workload of the help desk staff. This has become so
high that absenteeism has increased substantially. To look into this sit-
uation a simulation study was done to determine how to decrease the
workload. To assess the workload in the present situation, a simulation
experiment consisting of 30 subruns was conducted. Each subrun repre-
sents one working day. The average occupation rate of help desk staff
per subrun is shown in Table 3.

subrun | average | subrun | average || subrun | average
number | load number | load number | load
factor factor factor
1 0.914 11 0.894 21 0.898
2 0.964 12 0.962 22 0.912
3 0.934 13 0.973 23 0.943
4 0.978 14 0.984 24 0.953
5 0.912 15 0.923 25 0.923
6 0.956 16 0.932 26 0.914
7 0.958 17 0.967 27 0.923
8 0.934 18 0.924 28 0.936
9 0.978 19 0.945 29 0.945
10 0.976 20 0.936 30 0.934

Table 3: De The average occupation rate per subrun.

The sample mean is 0.9408 and the sample variance is 0.000617. So,
all the data needed to set up a (1 — «)-confidence interval are known:
n =30, T = 0.9408, s> = 0.000617 and therefore s = 0.02485. If we take
a equal to 0.010 we will find the following confidence interval:

0.02485 0.010 0.02485 0.010
0.9408 — 2(==—),0.9408 + 2(———)
V30 2 V30 2

As 2(0.005) = 2.576 this is therefore the interval [0.9291,0.9525]. The
larger the unreliability «, the smaller the corresponding confidence in-
terval. For example, for o = 0.10 we will find the confidence interval
[0.9333,0.9483]. From the results we can safely infer that the occupation
rate for the help desk staff is quite high!

4.3.2 The situation with less than 30 subruns

In some cases we can do with less than 30 subruns. In this case, the
results of the separate subruns (z;) have to be approximately normally
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distributed. If the result of a subrun x; is the average of a large number
of observations, then (by the central limit theorem,) each z; is approx-
imately normally distributed. So if z; is, say, the average waiting time,
average service time or average throughput time of a large number of cus-
tomers, x; is approximately normally distributed. By using this property,
we can deduce, given n subruns with a sample mean 7, sample deviation
s and reliability (1 — «) the following confidence interval:

T = e (5), T = tua(3)
r— —= n— a 7'1‘ = 'n— o
NIRRT NIRRT
where t,(x) is the critical value of a Student’s t-distribution, also called
t-distribution, with v degrees of freedom. Table 4 shows for a number of
values of v and z the critical value ¢,(z).

ty(z) T =
0.100 ‘ 0.050 ‘ 0.010 ‘ 0.001
v=1| 3.08] 6.31|31.82| 318.31
2 1.89 | 292 | 6.96 | 22.33
3 1.64 | 235| 454 | 10.21
4 1.3 213 3.75 7.17
5| 1.48 | 2.02| 3.37 5.89
6 1441 194 | 3.14 5.21
71 1.41| 1.89| 3.00 4.79
8 1.40 | 1.86| 2.90 4.50
9 1.38 | 1.83 | 2.82 4.30
10 1.37 ] 1.81 | 2.76 4.14
15 1.34 | 1.75| 2.60 3.73
20 1.33 | 1.72| 2.53 3.55
25 1.32 | 1.71| 249 3.45
50 || 1.30 | 1.68 | 2.40 3.26
100 1.29 | 1.66 | 2.35 3.17
oo || 1.28 | 1.64 | 2.33 3.09

Table 4: The critical values for a Student’s t-distribution with v degrees
of freedom.

Contrary to the method discussed earlier, we can determine the confi-
dence interval in the way shown above if a limited number of subruns
(say 10) is at our disposal. If we have a larger number of subruns at our
disposal, it is better to apply the (1 — «) confidence interval mentioned
earlier, even if we are convinced that the subrun results are normally
distributed. For large n the confidence interval based on ¢,_(§) is more
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accurate than the one based on z(§); only the latter depends upon the

central limit theorem concerning the number of subruns.

For any assertion concerning the reliability of Z, based on the results in
table 2 we will find for e« = 0.100 the following confidence interval:

0.02485 0.100 0.02485 0.100
0.9408 — t ,0.9408 + t
50 29 5 ) &N 29 ( 5 )

As t99(0.050) = 1.699 this yields the interval [0.9331,0.9485]. This inter-
val and the 0.90 confidence interval we deduced earlier are approximately
the same. Keep in mind that we can only use the confidence interval
based on the ¢ distribution, if we are convinced that the average occupa-
tion rate per subrun is approximately normally distributed. Especially
with a small number of subruns, this condition is extremely important!

4.4 Variance reduction

Using the techniques described above, we can analyze simulation results.
Reliable assertions often require long simulation runs, which may turn
out cost prohibitive. However, some advanced techniques allow reliable
assertions from shorter simulation runs. As we have just seen, there is
a linear connection between the size of the confidence interval and the
standard deviation of the results measured per subrun. If the standard
deviation is doubled, the size of the corresponding confidence interval is
also doubled. In order to allow assertions with the same reliability, the
number of subruns has to increase fourfold! So by decreasing the standard
deviation between the subrun results the reliability will increase or the
number of subruns needed will decrease. The standard deviation is the
square root of the variance, so decreasing the variance and the standard
deviation goes hand in hand. The techniques that focus on decreasing
the variance are called variance reducing techniques Some well-known
techniques are:

antithetic variates

e common random numbers
e control variates

e conditioning

e stratified sampling

e importance sampling



Antithetic variates

Common random
numbers

Sensitivity

We will not explain all of these techniques at length and only summarize
the first two.

In a simulation experiment random numbers are constantly being used
and assigned to random variables. A good random generator will gen-
erate numbers that are independent of each other. It is, however, not
necessary to generate a new set of random numbers for each subrun. If
T1,Tg, ...,y are random numbers, so are (1 — 1), (1 — ), ..., (1 —ry)!
These numbers are called antithetic. If we generate new random num-
bers for each odd subrun and we use antithetic random numbers for each
even subrun, we only need half of the random numbers (if the total num-
ber of subruns is even). There is another bonus. The results for subrun
2k — 1 and subrun 2k will probably be negatively correlated. If e.g. sub-
run 2k — 1 is characterized by frequent arrivals (e.g. caused by sampling
small random numbers), the arrivals in subrun 2k will be infrequent since
antithetic, thus large numbers will be sampled. If x9;_; and x9 represent
the results of two consecutive subruns, in all probability Cov|xa_1, o]
will be smaller than zero. This leads to a decrease in the variance of the
mean of xo;,_1 and g, as:

X+Y
2

1
Var| | = Z(Var[X] + Var[Y'] + 2Cov[X, Y])
The total sample variance will then also decrease, narrowing down the
confidence interval.

If one wants to compare two alternatives, it is intuitively obvious that
the circumstances should be as similar as possible. This means that
the samples taken in the simulation runs of either alternative should
correspond maximally. When simulating different arrangements of the
post office, the alternatives may use the same random numbers for interim
arrival times and service times. In this way the variance of the difference
between both alternatives may be substantially reduced.

There are various advanced techniques for increasing the information
obtained through simulation. These techniques have to be used with
great care. More details can be found in [2, 12, 13].

4.5 Sensitivity analysis

Given a certain model, one can give well-founded estimates for the ex-
pected waiting times, occupation rates, fault frequencies etc., by using
subruns and calculating confidence intervals. Since these results are
based on a specific situation, it is unclear how sensitive they are. If
we find an estimated average waiting time of 10 minutes for an arrival



Model parameters

Sensitivity analysis

process with an average interarrival time of 5 minutes, what would the
average waiting time be if the interarrival time is not 5 but 6 minutes?
In general a model has a number of parameters; adjustable quantities,
like average interarrival time, average service time and average response
time. For a simulation experiment each of these quantities is given a cer-
tain value. This value is often estimated, as the exact value is unknown.
Also the probability distribution chosen will only approximate the true
distribution of values. It is therefore of the utmost importance to know
how sensitive the results are to variations in the model parameters.

A sensitivity analysis is carried out to assess dependencies between the
model parameters and the results. To test the sensitivity, a number of
experiments are conducted with slight variations in parameter settings.
These experiments indicate the extent to which slight variations can in-
fluence the final result. Adjusting the setting of a certain parameter will
often only mildly influence on the final result. Sometimes, however, a
slight adjustment of a parameter will lead to completely different results.
A resource with a high occupation rate will be more sensitive to fluctua-
tions in its arrival process than a resource with a lower occupation rate.
We also use the term robustness. A model is robust if slight deviations
in parameter settings barely influence the final result.



Possible error
sources

5 Pitfalls

As already indicated in the introduction, simulation is often used to sup-
port critical strategic decisions, where errors are very expensive. How-
ever, errors are manifold and often easily introduced when conducting a
simulation study, so one has to be on the alert constantly. We will look at
the phases in the life-cycle of a simulation study and identify the dangers
in each specific phase. Figure 14 shows the phases of a simulation study
and the possible sources of errors.

| _____.------| vaguedefinition
problem definition with contradictions

=

. \\ conceptual
modeling - model
errorsin
mapping during
modeling
e executable
-~ realising model
errorsin
implementation .
L validated
verifiying and modd
model validating
insufficiently
validated
simulation

subruns too short experi menti ng results
too few subruns
hidden dependencies \‘

wrong . answers
interpretation interpreting solutions

Figure 14: The dangers per phase in a simulation study.

The problem definition can be inconsistent (contradictory) or incomplete
(vague). A conceptual model is developed by a systems analyst and not
by the user himself, so various mapping errors can creep in during mod-
eling. Implementing the conceptual model in a simulation language can
also introduce errors. If validation is performed by the wrong persons or
without the proper care, errors made earlier are not eliminated. There-
fore, preferably the model should be validated by the user. During ex-
perimentation, errors can arise from too short or too few subruns or from
hidden dependencies between the subruns. Also, the initial run can be
too short. Errors during experimentation lead to incorrect results. Even
if all the previous traps have been avoided, things can still go wrong
during interpretation, if faulty conclusions are drawn from the results
gathered.



Rule of thumb

Characteristics of a
good level of detail

We list ten typical errors (pitfalls) frequently made. Anyone involved in
a simulation study should be aware of them and avoid them and their
likes.

Error 1: One-sided problem definition

A simulation study gets off on the wrong foot if the problem definition
is drawn up exclusively by either the user or the systems analyst. The
user may possess extensive knowledge of the problem area, but lacks
the experience needed for defining his problem. The systems analyst
on the other hand, fully knows the elements which should be present in
a problem definition, but lacks the background of the specific problem.
The systems analyst is also aware of the possibilities and impossibilities
of simulation. The user on the other hand, generally knowing little about
simulation, is barely informed on this issue. Therefore, for a simulation
study to be successful, it is important that both parties closely cooperate
in setting up the problem definition. The problem definition serves as
a ‘contract’ between the user and the builder of the model. A rule of
thumb for this situation is:

“Do not start a simulation study until it is clear to both
user(s) and analyst(s) which questions need to be answered!”

Error 2: Choice of a wrong level of detail

In making a simulation model, one chooses a certain level of detail. In
a simulation model for a manufacturing department, a machine may be
modeled as an object with serving time as its only parameter. Alter-
natively, it can be modeled in detail, taking into account aspects such
as set-up times, faults, tool-loading, maintenance intervals etc. Many
simulation studies are aborted because a wrong level of detail was cho-
sen initially. Too much detail causes the model to become unnecessarily
complex and introduces extra parameters that need to be assessed (with
all the risks involved). A lack of adequate detail can lead to a simula-
tion model that leaves the essential questions of the problem definition
unanswered. The right level of detail is chosen if:

(1) information is present that allows experiments with the model,

(2) the important questions from the problem definition are addressed
by the model and

(3) the complexity of the model is still manageable for all parties con-
cerned.



If it is impossible to choose a level of detail that meets this condition,
the problem definition will have to be adjusted.

Error 3: Hidden assumptions

During the modeling and the realization of a simulation model, many
assumptions must be made. Assumptions are made to fill gaps in an
incomplete problem definition or because of a conscious decision to keep
the simulation model simple. Often these assumptions are documented
poorly if documented at all, which earns them the name ‘hidden assump-
tions’. Hidden assumptions may lead to the rejection of the simulation
model (with or without simulation results) during validation or later.
Therefore assumptions must be documented and regularly discussed with
the user. In this way future surprises are avoided.

Error 4: Validation by the wrong people

Sometimes, due to time pressure or indifference of the user, the simulation
model is only validated by its maker(s). Discrepancies between the model
and the ideas of the user may thus be discovered too late, if at all.
Therefore, the user should be involved in the validation of the simulation
model before any experiments are conducted.

Error 5: Forcing the model to fit

Frequently, in the validation phase, the results of the simulation model
do not match the observed or recorded actual data. One is then tempted
to make the model ‘fit’ by changing certain parameter values. One fiddles
around with the parameter settings until a match is found. This, however,
is very dangerous, since this match with reality is most likely caused by
sheer luck and not by a model that adequately reflects reality. Parameters
should be adjusted only after having understood why the model deviates
from reality. This prevents the conscious or unconscious obscuring of
errors in the model.

Error 6: Underexposure of the sensitivity of the model

Certain model parameters (e.g. the intensity of the arrival process) are
often set at one specific value. This chosen setting should be justified
statistically. However, even if this is the case, small variations in the
arrival process can make all assumptions about it invalid. Therefore, the
sensitivity of the model to minor adjustments of the parameters should
be seriously accounted for.

Error 7: No subruns

Some people say: “A sufficiently long simulation yields correct results!”



They execute a simulation run for a night or weekend and then blindly
trust e.g. the mean waiting time measured. This is a very risky practice,
as it disallows any assertions about the reliability of the result found.
Others derive a confidence interval from the mean variance measured.
This is also wrong because the mean variance of the waiting time mea-
sured is not connected to the reliability of the estimated mean waiting
time, as there exist dependencies between the waiting times of consecu-
tive customers. The only way to derive independent measurements is by
a division into subruns!

Error 8: Careless presentation of the results

Interpreting the results of a simulation study may require complex sta-
tistical analysis. This is often a source of errors. Translating the results
from statistics into language a user can understand, can be very tricky
indeed. In Darrel Huff’s book “How to lie with statistics” ([4]), there
are numerous examples of sloppy and misleading presentations. As an
example, suppose the final report of a simulation study contains the fol-
lowing conclusion “Waiting times will be reduced by 10 percent”. This
conclusion is very incomplete, as it contains no reference whatsoever to
its reliability. It is good practice to give a confidence interval. The same
conclusion suggests that waiting times will be reduced by 10 percent
for each customer. This, however, may not be the case. The average
waiting time may be reduced by 10 percent while it increases for certain
customers and is reduced somewhat more for others.

Error 9: Dangers of animation

Modern simulation tools allow a pretty presentation of results and pos-
sess animation facilities. This improves communication with the user.
However, there is a large inherent danger in animation. As animation
only shows the tangible aspects of the simulation model, the user may
develop an unfounded faith in the model. The choice of parameters or
decision making rules deeply influence the simulation results, yet are
barely visible in an animation. Also, pretty pictures do not replace a
sound statistical analysis.

Error 10: Unneccesary use of simulation

Simulation is a flexible and varied analysis tool. Some people therefore
are inclined to use it regardless of the circumstances. Often, however, a
simple mathematical model (e.g. a queuing model) or a simple spread-
sheet calculation is sufficient. In such cases simulation is ‘overkill’. It
should only be used if and when the situation requires it. Simulation is
a means and not a goal!



6 Closing remarks

In spite of the many caveats in this handbook, simulation is a varied,
flexible and dependable analysis tool if applied properly.

We recommend the following books for further reading. A classic book
on simulation is the book by Naylor et al. [11]. Other standard works
about simulation are: Bratley, Fox and Schrage [2], Law and Kelton [9],
Ross [13] and Shannon [14]. In particular the books of Ross ([13]) and
Bratley, Fox and Schrage ([2]) are recommended for further study. Books
on simulation in Dutch are Kleijnen and Groenendaal [6] and Kerbosch
and Sierenberg [5].
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A Elementary properties

In this appendix we treat some elementary properties of random vari-
ables. X and Y are random variables with respectively expectation px
and variance 0%, and expectation py and variance o

Concerning addition and multiplication of variates, the following univer-
sal properties apply:

EX+Y] = px+py
ElaX +b] = aux+b

The variance of a random variable X (Var[X] = 0% ) can be expressed in
terms of the expectation of X and X?2.

VarlX] = E[(X - ux)?) = E[X?] - 1
For the variance the following property is important:

Var[aX +b] = d’ox

The covariance of X and Y (Cov[X, Y]) is also denoted as %
Cov[X, Y] = E[(X — pux)(Y — py)] = E[XY] — pxpy

If X and Y are independent, then C[X,Y] = 0.
There is also a relation between variance and covariance:

Var[X +Y] = o% + 02 +2Cov[X,Y]

So if X and Y are independent, Var[X + Y] = 0% + o%.

A.1 Markov’s inequality

If a random variable X only takes on non-negative values, then for each
a>0:
EX]

P[X >a] <
a

A.2 Chebyshev’s inequality

Given a random variable X with mean p and variance o2, then for each
k> 0:

1
PlX —p| > ko] < 2



A.3 Central limit theorem

For a set X, X,,..., X, of independent uniformly distributed random
variables with expectation ;i and variance o2, the random variable

(Xi+Xo+...+X,) —np
ov/n

converges for n — oo to a standard normal distribution.

Thus, the sum of a large number of independent random variables is ap-
proximately normally distributed. In interpreting simulation results we
can assume (for n > 10) that the sum of n independent random vari-
ables X; with expectation p and variance o2, is approximately normally
distributed with expectation ny and variance no?. A similar statement
holds for the mean of the Xj;.

A.4 The extent of the normal distribution

The central limit theorem above shows the importance of the normal
distribution for the interpretation of simulation results. Given a normal
distribution with parameters p (expectation) and o (standard deviation),
the probability of a sample lying between y—o and p+o is approximately
0.683. The following table shows for a number of intervals surrounding
i the probability of a draw from a normal distribution with parameters
i and o in this interval.

interval probability
w—%,n+3] ]0.383

[u— o, pu+ o] 0.683
[ — 20, p+ 20] | 0.954
[t — 30, 1+ 30] | 0.997

So, the probability that a certain draw is between p — 30 and p + 30 is
approximately 0.997.



B Summary random distributions

B.1 Discrete random distributions

| distribution | domain | P[X = k] | E[X] | Var[X]
Bernoulli
1—p k=0
<p< _
0<p<l1 ke {0,1} {p L1 p p(1—p)
homogeneous
a<b ke {a,... b} (bii)ﬂ ath (bfa)((ll’;“)“)
binomial
0<p<1 ke{0,1,...,n} (Z)p'“(l—p)”'“ np | np(1—p)
ne{l,2,...}
geometric
_ p)k-1 1 1-p
0<p<1 ke{l,2,...} (1—=p)'p - =
Poisson
A>0 ke{0,1,...} Al A A
B.2 Continuous random distributions
distribution | domain | fy(x) E[X] Var[X]
uniform
1 b (b—a)?
a<b a<z<b| atd =
exponential
A>0 x>0 e A i )\—12
normal
1 SR 9
peR reR s € 1 o
o>0
gamma
A >0 x>0 A(”);E:) e - 13
Erlang
A>0 z >0 e r 5
re{l,2,...}
2 see gamma
ve{l,2,...} |z>0 r=%and =2 |v 20
beta
1 D(r+s) rs(b—a)?
a<b CL<IL‘§b EF(TF(S) , a—i—(b—a)r’ﬁ m
r—a r—1 b—g s—1
r,S >0 (Ta) (m)




Queuing models

A/ B/c-notation

Little’s formula

M/M/1 queue

C Queuing models

So-called analytical models can be analyzed directly without simulation.
A well-known class of such models are the so-called queuing models. Here,
we only treat single queue models. Important results have been derived
for networks of queues (see e.g. Baskett et al. [1] and Marsan et al. [10]).

A queue is often characterized by A/B/c where A refers to the arrival
process, B to the distribution of the serving times and ¢ to the number
of parallel identical servers. The letter M is used to indicate a negative
exponential distribution. The letter E, refers to an Erlang distribution.
GG denotes an arbitrary distribution.

One of the simplest queuing models is the M/M/1 queue, i.e. a queue
with a Poisson arrival process (the interarrivals are negative exponentially
distributed), negative exponentially distributed serving times and only 1
server (at most one customer is served at a time).

Before presenting some results, we will state Little’s formula, which ap-
plies to each queue in a stable state without dependencies between the
arrival process and the serving process. The formula is:

L=)\S

where L is the mean number of customers in the system, A the mean
number of customers arriving per time unit and S the mean system time
(i.e. the time that customers stay within the system on average, so the
sum of the waiting time and the serving time).

The M/M/1 queue is specified by two parameters A and p. For the
arrival process the negative exponential distribution with parameter A is
used. The mean interarrival time is thus % For the serving process a
negative exponential distribution with parameter p is used. The mean

serving time is thus % The occupation rate p is:

We can represent the state of the queue by the integer k that represents
the total number of customers in the system. The probability that the
queue is in state k at a given moment, is denoted as py:

e = (1—p)p*

These probabilities are also called the steady-state probabilities. The
mean number of customers in the system is L:



M/E,/1 queue

M/G/1 queue

M/G /> queue

The mean systems time is S:
1
(1—=p)p
The mean waiting time W is the difference between the systems time
and the serving time:
_r
(1—=p)u

S =

w

The M/E,/1 queue is specified by three parameters A, r and p. The
serving time now is distributed Erlang with parameters A and r. For the
occupation rate p, the mean number of customers L, the mean system
time S and the mean waiting time W, we find the following values:

rA

p = —
I

I — Ap(r +1)
2p(1 = p)
pr+1) r

S = —~— 24—
2u(l—=p)  n
p(r+1) +7"—1
2u(1 = p) 0

Less is known about the M/G/1 queue Once again, the arrival process
is specified by the parameter A. The mean serving time is i and the
variance of the serving time is 0. The variance of the serving time C' is
defined as follows: C' = opu. For the occupation rate p, the mean number
of customers L, the mean system time S and the mean waiting time W
we find the following values:

A
p = -
7
p2 CZ)
L = p+4—"——(1+
’ 2(1—p)(
1 P
S = —+—F  _(q+c¢?
[t 2u(1—p)( )
P 2
W= —" _(1+cC
2u(1—p)( )

The first formula is also known as Pollaczek-Khinchin’s formula.

The M /G /oo queue is specified by two parameters A and p. The variance



of the distribution G is not relevant. Because there are always a sufficient
number of free servers in the M /G /oo queue, the occupation rate cannot
be defined (actually, it is 0). We now equate p with the amount of work
arriving per time unit: p = ﬁ The steady-state probabilities p, now are:
k
— P -
For the mean number of customers L, the mean system time S and the
mean waiting time W, we find the following values:

L =
S =

Sx =T

W =

For more information on this subject we refer you to Kleinrock [8] and
Gross and Harris [3].



