
Mining Activity Clusters
From Low-level Event Logs

Christian W. G̈unther and Wil M.P. van der Aalst

Department of Technology Management, Eindhoven University of Technology
P.O. Box 513, NL-5600 MB, Eindhoven, The Netherlands
{c.w.gunther, w.m.p.v.d.aalst }@tm.tue.nl

Abstract. Process mining techniques have proven to be a valuable tool for ana-
lyzing the execution of business processes. They rely on logs that identify events
at an activity level, i.e., most process mining techniques assume that the infor-
mation system explicitly supports the notion of activities/tasks. This is often not
the case and only low-level events are being supported and logged. For example,
users may provide different pieces of data which together constitute a single ac-
tivity. The technique introduced in this paper uses clustering algorithms to derive
activity logs from lower-level data modification logs, as produced by virtually
every information system. This approach was implemented in the context of the
ProM framework and its goal is to widen the scope of processes that can be ana-
lyzed using existing process mining techniques.

1 Introduction

Business Process Management(BPM) technology [2, 16, 17, 19] has become an integral
part of the IT infrastructure of modern businesses, most notably in knowledge-intensive
fields (e.g. public administration or the financial sector). The potential to create digital
copies of a document, allowing multiple persons to work with these simultaneously,
can greatly improve the performance of process execution.Process-Aware Information
Systems(PAISs) make it possible to control this distribution of work, based on a process
definition. This process definition containsactivities, i.e. self-contained partitions of
the work to be done, between which causal relationships are defined. Once a process is
started, the PAIS creates a process instance, assigns activated tasks to appropriate users,
and controls the activation of subsequent tasks based on the process definition.

In contrast to an industrial process, where one can literally follow the product
through all stages of its manufacturing process, monitoring and evaluating the execution
of an informational process is a complex endeavor. In recent years, several techniques
to this end have been proposed, subsumed under the termBusiness Process Intelligence
(BPI).

A subset of these methods belongs to the field ofprocess mining[4, 8, 5], which
deals with the analysis of process execution logs. From these logs, process mining
techniques aim to derive knowledge in severaldimensions, including the process model
applied, the organizational structure, and the social network. This information about the
actual situation can then be compared to the intended process definition and the orga-
nizational guidelines. Discovered discrepancies between the process definition and the



2

real situation can be used to better align process and organization, to remedy perfor-
mance bottlenecks and to enforce security guidelines.

One of the drawbacks current Process Mining techniques [6, 13, 3, 4] face is that
their requirements towards execution logs to be mined are satisfied only by PAIS. These
are designed around the idea of having a defined process model, comprising of atomic
activities. However, a large number of BPM systems exists which do not enforce a
strictly prescribed process model, but rather provide users with a generic environment
to collectivelymanipulate and exchange information. An example of such unstructured
BPM systems are most Enterprise Resource Planning (ERP) systems (e.g. SAP R/3).

Although some ERP systems include a workflow management component which
enables the implementation of a PAIS, its use is not enforced. Thus, ERP logs typically
do not contain events referring to the execution of activities, rather they refer tolow-
level modifications of atomic data objectsin the system. However, this does not imply
that the concept of an activity does not exist in an ERP system. Although they are
not explicitly defined and logged, users tend to modify semantically related data within
one logical step. Theformmetaphor, which is implemented in almost every information
system, allowing users to fill in a number of data fields combined on one screen, strongly
supports this paradigm.

It is highly desirable, and often necessary, to make these tacit activity patterns ex-
plicit, in order to analyse aspects of process execution on a more abstract level. The
technique presented in this article uses clustering techniques to discover these “im-
plicit” activities in low-level logs. It is based on the notion ofproximitybetween low-
level events, deriving from that measure a semantical relationship between modified
data objects.

The fundamental idea of this approach is that an activity is a recurring pattern of
low-level events, modifying the same set of data types in a system. Clusters of data
modification events from an initial scan are subsequently aggregated to higher-level
clusters, which are finally filtered to yield the patterns most likely to represent activities.
By abstracting from the very low level of data modification logs to the activity level,
this technique has the potential to substantially extend the field of systems that can be
analyzed with Process Mining techniques.

This paper is organized as follows. The following section investigates the semantic
and structural relationships between high- and low-level logs, followed by the introduc-
tion of a lifecycle model for data objects in Section 3. Section 4 introduces the basic
notion of an event log and describes the pieces of information typically contained in
a log. The subsequent three sections describe the three stages of the actual algorithm:
the initial scan, theaggregation passand thefinal selectionof the most fit candidates.
Section 8 describes implementation-specific aspects, followed by an overview on appli-
cations in Section 9. The article closes by linking to related work in Section 10, and a
concluding discussion in Section 11.

2 Relationships Between High- and Low-level Logs

A business process describes the handling of a given case, where the case is the primary
object to be manufactured, e.g. a car insurance claim. From atop-downperspective this



3

can be interpreted as breaking down the high-level goal (“Assess whether we pay for
the damage caused”) into a set of lower-level sub-goals (e.g., “Review client history”,
“Investigate the accident“), and establishing suitable ordering relations between them.
Executing thetasks, i.e. accomplishing these sub-goals, in the specified order will then
yield the accomplishment of the high-level goal, i.e. finishing the case.

Process modeling can, however, also be interpreted as abottom-updesign process
when approached from a different perspective. Especially in knowledge-intensive do-
mains, e.g. administration, a business process is essentially a structured way of creating,
modifying and processing large amounts of data. In the above example, a large set of
atomic data objects (e.g., name and address of the client, and a detailed description of
the accident) need to be collected. By successively processing and combining these ob-
jects into higher-level data (e.g., whether the accident has been caused by the client),
the desired end product (e.g. “$2,500 will be paid”) is eventually created.

The relation between the manufactured low-level data types and the higher-level
tasks (i.e., sub-goals) of the business process can be described as follows:A task groups
a set of data-modifying operations that are closely semantically related, and which
typically occur together. For example, the task “record client data” will typically always
consist of the modifications of data types “Name”, “Street”, “Customer number”, and
so forth.

open form

set ‘A’ set ‘B’ set ‘N’redo

close form

redo redo

Fig. 1. Activity data modification model

Most user-centered PAISs use the concept of forms, which are interface masks con-
taining an input field for each data type required. When a user executes a task he will
be presented with the respective form, on which he can fill out the information for this
task. While the ordering of tasks is controlled and enforced by the PAIS, the order in
which to provide the low-level data is usually up to the user (i.e., he can freely navigate
within the form). This concept is shown in Figure 1 in terms of a Petri net. Notice that,
in addition to the concurrency of data modification operations, there is also the possi-
bility that data objects are (potentially repeatedly) deleted and set to a different value
within a task (e.g., when correcting a misspelled name).

This relationship of the higher-level task incorporating lower-level data modifica-
tion operations on a semantic level is likewise exhibited on a temporal level, as shown
in Figure 2. Data modification events occur within the realm of their high-level tasks,



4

A
B

C

D

A B C D

a1 a2 a3 b5 b4 b6 c7 c8 c9 c8 d10 d11 d12

process 
definition

task log

data mod. 
log

t

t

Fig. 2. Relations between multiple levels of abstraction

i.e. between their start and end events. In a system like FLOWer (Pallas Athena, [11]),
a case handling system [1, 7] which can create logs on both the task and the data object
level, this obvious property can be easily observed. Each execution of a task leaves a
distinctive trace in the data modification log, i.e. a typical set of events referring to mod-
ifications of the set of data types accessible in this task. This typical set of data types
modified by an activity shall be referred to as the activity’sfootprint.

Table 1.Example excerpt of a low-level event log

# Timestamp PID Event Originator
423 12.07.05;14:24:03 37 custfirstnamep37 Brian
424 12.07.05;14:26:22 37 custlastnamep37 Brian
425 12.07.05;14:26:33 34 complaintcustomeridp34 Stewie
426 12.07.05;14:26:55 37 custstreetp37 Brian
427 12.07.05;14:27:20 34 complaintorderidp34 Stewie
428 12.07.05;14:27:52 37 custcity p37 Brian
429 12.07.05;14:28:23 37 custzip p37 Brian
430 12.07.05;14:28:44 34 complaintvaluep34 Stewie
431 12.07.05;14:29:34 34 complaintstatusp34 Stewie
432 12.07.05;14:29:34 34 complainthandleridp34 Stewie
433 12.07.05;15:44:06 38 custlastnamep38 Brian
434 12.07.05;15:44:33 38 custfirstnamep38 Brian
435 12.07.05;15:45:52 38 custstreetp38 Brian
436 12.07.05;15:47:04 34 servicedatep38 Peter
437 12.07.05;15:47:15 38 custzip p38 Brian
438 12.07.05;15:48:34 38 custcity p38 Brian
439 12.07.05;15:55:36 34 servicetechnidp38 Peter
440 12.07.05;16:01:01 34 servicesysidp38 Peter
441 12.07.05;16:03:22 34 serviceresult p38 Peter



5

An example excerpt of a low-level log is given in Table 1. Each line represents one
event, with its sequence number, time of occurrence, process instance id, name, and
originator1 information. Judging from a first glimpse, the log appears to be confusing
and scattered. A great number of cryptic events occur during a relatively short time, and
their relation is not clear.

After taking a closer look at Table 1 there are several hints about the relationships
between the single events. It appears to be a commonplace pattern that events within
the same process instance, triggered by the same originator, occur within a relatively
small time frame. For example, it seems that Stewie has triggered all events whose
names start with “complaint”, and these have all occurred within roughly three minutes.
Earlier in the log, there are some events triggered by Brian, each starting with “cust”
and also exhibiting similar characteristics (limited time span, same process id), partly
interleaved with Stewie’s events. Notice that the same set of event names occurs again
later on, also triggered by Brian but in a different order.

From all we have seen, this looks very much like a low-level log which has resulted
from the execution of higher-level processes. Brian’s and Stewie’s events at the begin-
ning of the log seem to have resulted from their concurrent execution of two higher-
level activities. In order to analyze what has been going on in a more abstract fashion,
and to rediscover the underlying, higher-level process model, it is crucial to reconstruct
task-level events from these low-level patterns.

The subsequent two sections discuss the specific properties of data objects in a
business process, and their associated low-level logs. Based on these properties and
their typical relations to higher-level logs and processes, an algorithm for the discovery
of activity patterns is introduced in Sections 5, 6, and 7. After introducing the algo-
rithm we describe the implementation in the ProM framework [14] and discuss possible
applications.

3 Data Object Lifecycle

The incentive for using a PAIS is usually that in an organization a standard set of busi-
ness processes exist, which are repeatedly executed in a large volume. Therefore,pro-
cess definitionsare created which describe all the potential paths that the execution of
one typeof process can follow. When such a process is being executed, aprocess in-
stanceis created, which binds the abstract process definition to an actual set of resources
and data for the specific case.

This relationship is depicted in Figure 3. The<<instanceof>> relation, which
describes the connection between the type and instance level, is also apparent for the
elements of a process definition: Abstract tasks defined in the process definition, once
instantiated and bound to an executing resource, spawn activities. Data types, like the
fields of a customer address defined in a process definition, are also instantiated to
objects for each process instance.

Thedata typesdefined in a process definition are not actual data objects, but rather
templates that describe the potential values of their instantiations (e.g., in programming

1 The originator refers to the person, or resource, having caused the respective event (e.g. an
employee filling out a form).



6

Process Definition

Activity

Task Data Type

Data Object

ProcessInstance

<<instanceof>>

<<instanceof>> <<instanceof>>

ActivityEvent DataEvent

ActivityAuditTrail DataAuditTrail

<yields>

<yields> <yields>

HighLevelLog LowLevelLog

<modifies>

<modifies>

1

1

1..n

1 1

1

1

1

1

1 1

1 1

1..n 0..n
1..n 0..n

0..n

1..n
0..n0..n

0..n 0..n

0..n 0..n1..n 1..n

1..n 0..n

0..10..1

Fig. 3. Type-instance relationships on process, task and data level (UML 2.0 class diagram)

languages, defining a variable as “Integer” does not describe its value, but rather its
nature and range). When a process is started, for each of these data types correspond-
ing data objectsare instantiated, which are subsequently set to actual values during
execution.

The UML diagram shown in Figure 3 further describes the relationship between the
task and data dimensions of a process, and their respective log events. Activities, being
singular executions of tasks, always refer to exactly one task-level event in the log.
Data instances, on the other hand, can be modified repeatedly, with transitions in their
lifecycle resulting in data-level log events. Both on the task and data level, audit trails
group all events having occurred within one process instance. Logs can be interpreted as
containers for audit trails: they can contain multiple audit trails for the same process or
even audit trails for multiple processes, as they are often capturing all events occurring
in one information system.

The lifecycle of data objects during the execution of a process instance is described
in the state-transition system shown in Figure 4.

Each transition in this model, i.e.define(DEF), delete(DEL), update(UPD), roll-
back(RBK), andconfirm(CNF), is associated with a respectiveeventoccurring within
the system. These events, referring to either a change in value or validity of the data
object, are the elements of a low-level log.

The subsequent section introduces these low-level logs, and the pieces of informa-
tion contained in each event, in more detail.

4 Low-level Logs

Log files were originally introduced as a means for administrators to monitor system
operation and to trace back errors. These logs are essentially sequences of significant



7

undefined confirmed

unconfirmed
invalid

define

rollback
confirm
 / define

updatedelete
{initial}

Fig. 4. Generic state-transition system for data objects

events which have occurred in the system so far, listed in chronological order. The
notion of an event log can be formalized as follows.

Definition 1 (Sequence, non-repeating sequence).LetA be a set. A finite sequence on
A is a mappingσ ∈ {1, . . . , n} → A wheren is the length of the sequence.len(σ) = n
denotes the length andσ(i) the ith element (for1 ≤ i ≤ len(σ)). ε denotes the empty
sequence, i.e.,len(ε) = 0 anddom(ε) = ∅.

A sequenceσ ∈ {1, . . . , n} → A can be denoted by〈σ1, σ2, . . . , σn 〉 whereσi =
σ(i) for 1 ≤ i ≤ n. set(σ) = {σ(i) | i ∈ dom(σ)} is the set of all elements. As a short
cut we can writea ∈ σ to denotea ∈ set(σ) for somea ∈ A.

A sequenceσ ∈ {1, . . . , n} → A is a non-repeating sequence if and only if
∀1≤i<j≤nσ(i) 6= σ(j).

For any non-repeating sequenceσ ∈ {1, . . . , n} → A anda ∈ A, pos(σ, a) pro-
vides the sequence number ofa in σ, i.e.,σ(pos(σ, a)) = a.

In a non-repeating sequence the elements are totally ordered, i.e., for anya1, a2 ∈
σ: a1 <σ a2 if and only ifpos(σ, a1) < pos(σ, a2).

Definition 2 (Event, log).LetE be aset of log events. l is a log overE if and only ifl
is a non-repeating sequence onE.

As has been stated in the above definition, the fundamental property of a log is
the requirement of being a strictly ordered sequence of events. All events contained
in a log are unique, which is expressed by the sequence being non-repeating. What
differentiates several kinds of logs is mainly the typical set of event attributes, i.e. data
which is provided for every event in the particular log. In this article we focus on low-
level logs, in particular fine-grained logs which describe the ordered modification of a
set of data objects in a distributed environment (i.e. executed by multiple resources or
persons). In these logs, the following attributes can typically be found for each event.

Definition 3 (Attributes of an event). Let e ∈ E be an event. An event may have the
following attributes:

– tp ∈ E 6→ {DEF,DEL,UPD, RBK,CNF} provides the event type,2

2 Note thatf ∈ A 6→ B is a partial function, i.e.,dom(f) ⊆ A. If a ∈ A \ dom(f), then
f(a) = ⊥ denotes thata is not in the domain. For any functionf : f(⊥) = ⊥.



8

– o ∈ E 6→ O provides the originator of each event, whereO is the set of originators
(i.e., the set of possible resources),

– ts ∈ E 6→ IR+
0 provides the timestamp of each event,

– p ∈ E 6→ P provides the process instance of each event, whereP is the set of
process instances,

– dt ∈ E 6→ Dt provides the data type of each event, whereDt is the set of data
types, and

– di ∈ E 6→ Di provides the data object of each event, whereDi is the set of data
objects.

A low-level data modification log describes the lifecycle of data objects in the mod-
ified set, with events corresponding to transitions in the lifecycle model presented in
Section 3. The type of state transition (e.g. DEF) an event refers to is stored in the
attributeevent type. A PAIS, which is supposed to be the source of logs in question,
typically allows for multiple resources (e.g. workers) to be involved in handling one
process instance. Each modification of a data object was initiated by a particular re-
source, whose identification is stored in theoriginator attribute. Thetimestampattribute
stores the exact time at which an event occurred. Every event occurs within the realm
of one specific case, referenced by theprocess instanceattribute.

In the example log given in Table 1, each row corresponds to one evente. The value
in the first column denotes the event sequence number, i.e.pos(σ, e). The timestamp
given in the second column would correspond tots(e), the process ID in column three
corresponds top(e), and the originator in the fifth column denotes the value foro(e).
From looking at the values in the fourth column, it can be seen that they correspond to
data objects (i.e. instances), as the given strings have the process ID appended. Thus,
the values in this column correspond todi(e).

Note that the functionstp, o, dt, di, p andts are partial. This indicates that not all
attributes need to be present, e.g.,ts(e) = ⊥ if no timestamp is given.

Definition 4 (Mapping between data type and instance attribute).Let Dt be a set
of data types andDi be the set of data objects.c ∈ Di → Dt maps each instance
on its corresponding type. Note that for every evente ∈ E the following should hold:
dt(e) 6= ⊥ ∧ di(e) 6= ⊥ =⇒ dt(e) = c(di(e)).

The data objects whose modifications are recorded in logs are inherentlyinstances.
Each event holds the identification of the modified data object in the attributedata
object. However, in order to compare and relate events of different process instances,
it is also necessary to know thetype of the modified data object, which is stored in
attributedata type. The distinction between data object and type is mainly important
on a conceptual level, which is why most systems do not explicitly record both. In a
system recording only the data type identifier, several instances can be distinguished
by the respective process instance of the event in question. Other systems will only
record data object identifiers, such as “cnamep12” and “cnamep65”. In most of these
cases one can relate instances to their given types without too much effort (in the given
example, it can be assumed that both identifiers refer to instances of the same data type
“cname”).



9

5 Modification Cluster Scanning

As discussed in Section 2, the hypothesis is that for every low-level log there exists an
associated high-level process, with its enactment having resulted in this log. It is, gener-
ally speaking, rather irrelevant if this higher-level process actually exists in an explicit
form. Procedural execution of activities does not necessarily result from an explicit
process prescription. It can just as well result from practical restrictions or guidelines
enforcing a certain process, from standard behavior, or just daily routine.

The basic assumption of modification cluster scanning is that, based on the fun-
damental relations between the distinct levels, it is possible to re-discover higher-level
activity executions in a low-level log. In order to determine which low-level events con-
stitute one execution of the same activity, this technique makes use of the following
hypotheses:

– Each activity and its resulting low-level events occur within thesame process in-
stance.

– All low-level events having resulted from the same, higher-level activity have the
same originator.

– Each execution of an activity typically involves modification of thesame set of data
types, i.e. the resulting footprints are (largely) identical.

– The execution of an activity takes place in a comparablyshort time span. Thus, all
resulting low-level events occur in each other’sproximity.

– In hierarchical transactional systems, all low-level events of a higher-level activity
have thesame event type. That is, if the higher-level activity was a roll-back task
then all resulting lower-level events should also be of type “roll-back”. Note that
this is an optional requirement which should only be imposed in systems with a
hierarchical transactional semantics.

These assumptions appear to be natural and valid in almost any given setting. They
directly follow the common perception of an activity: being performed in a process in-
stance context, being performed by one person, involving a fixed set of artifacts, having
occurred during a limited amount of time. Notice further that in a PAIS, the time a case
spends waiting to be executed usually exceeds the time spent on actually executing ac-
tivities. Thus, it can be safely assumed that in a typical log there are large voids between
comparably short bursts of activity.

In order to use proximity as a means to decide whether low-level events belong to a
certain activity, it is necessary to define a suitable metric for it.

Definition 5 (Proximity Function). Let l be alog overE. A functionp is a proximity
function ifp ∈ E × E → IR+

0

Depending on the information contained in a specific log, the metric for proximity
can rely on different pieces of information; i.e., it is possible to use different proximity
functions, either based on real time (i.e. using timestamp information), or using a logical
clock based on the discrete distance between events:

– p(e1, e2) = |ts(e1)− ts(e2)| (assuminge1, e2 ∈ dom(ts)),



10

– p(e1, e2) = |pos(σ, e1)− pos(σ, e2)|.

Based on the definition of a proximity function, the decision whether two given
events are in each other’s proximity can be made based on an appropriately chosen
parameterprange , denoting the maximal proximity of two related events.

Definition 6 (Proximity). Let l be alog overE, p some proximity function (p ∈ E ×
E → IR+

0 ), andprange ∈ IR+
0 the maximum proximity. Two eventse1, e2 ∈ l are in each

other’s proximity ifp(e1, e2) ≤ prange .

The first pass of the algorithm scans the log for an initial set of clusters, each com-
posed of low-level events which are likely to have resulted from an activity execution. It
is assumed that the majority of activities have been executed withinprange , e.g. within
a certain time span, so that all low-level events of each activity are in each others’ prox-
imity. The basic idea of the algorithm is to create an event cluster for each evente in
the log, where thereference evente is the first event in the cluster. All clustershaving
occurred aftere, and which arestill in e’s proximity, are also potentially contained in
the cluster.

Thus, the definition of proximity is an example of aclustering function, grouping
events from a log into potentially related subsets. In fact, the requirement of proximity
is the most integral part of a clustering function used for activity mining, as it limits the
set of potentially related events to a smaller neighborhood.

A scan window of lengthprange is aligned to the first evente1 in the log, i.e. the
scan window contains evente1 plus all subsequent events in the proximity ofe1. From
the set of events visible in the scan window, a relevant subset can be selected by fur-
ther requirements of the employed clustering function. The result of this operation is a
cluster of potentially related low-level events.

Repeating this procedure for every event in the log, the result is a set of initial event
clusters, exactly one for each event in the log. Each cluster has a different reference
evente, which is the first3 element of the cluster, and which is used to define the re-
quirements of this cluster.

Figure 5 shows a step-by-step procedure of applying the algorithm to an example
log. The original low-level log is shown in the leftmost table. Assuming a scan window
sizeprange of 10 minutes, the cluster for event1 would comprise events 1, 2, 3, and
4, based on their proximity to event1. For event number 2, the cluster contains events
2, 3, 4, 5, 6 and 7, and so on. Note that Figure 5 lists clusters which are smaller than
the examples given here, which is due to the fact that the initial clustering function can
contain further requirements extending mere proximity.

Relying solely on proximity in scanning clusters does not fully take advantage of the
hypothesized properties of low-level events stated above. In order to filter out irrelevant
events from this set, the cluster can be restricted further, e.g. to enforce equality of
originator or process id within a cluster. The combination of all requirements to be
enforced is specified with a suitableclustering function.

3 Referring to the order of appearance in the log.



11

Conflict resolution, using a=0.5, yields 
the minimal conflict-free set. When 

ordered by their value, the desired 
clusters appear at the top of the list.

Aggregation of the initial 
clusters, using the 

tolerant aggregation 
method.

Initial clustering pass with a 
scan window size of 10 

minutes, enforcing 
equality of originator and 

process instance.

A1
A2
A3

D1
D2
D3

B1
B2
B3

C1
C2
C3

Task_A

Task_B

Task_C

Task_D

# Time-
stamp

PID Data 
Inst.

Origin-
ator

Data 
Type

1 14:00:00 1 A1_1 BarneyA1

2 14:06:22 1 A2_1 BarneyA2

3 14:06:28 2 A1_2 HomerA1

4 14:08:55 1 A3_1 BarneyA3

5 14:10:12 2 A3_2 HomerA3

6 3 A1_3 LennyA1

7 2 A2_2 HomerA2

8 3 A3_3 LennyA3

9 3 A2_3 LennyA2

10 3 C1_3 HomerC1

11 3 C2_3 HomerC2

12 1 C2_1 LennyC2

13 3 C3_3 HomerC3

14 3 B1_3 HomerB1

15 1 C1_1 LennyC1

16 3 B2_3 HomerB2

17 1 C3_1 LennyC3

18 2 B1_2 BarneyB1

19 3 B3_3 HomerB3

20 2 C1_2 HomerC1

21 2 B2_2 BarneyB2

22 2 B3_2 BarneyB3

23 2 B2_2 BarneyB2

24 2 C2_2 HomerC2

25 2 C3_2 HomerC3

26 1 C3_1 LennyC3

27 2 C2_2 HomerC2

28 1 B1_1 HomerB1

29 3 D1_3 LennyD1

30 1 B2_1 HomerB2

31 3 D3_3 LennyD3

32 1 B3_1 HomerB3

33 1 D1_1 HomerD1

34 3 D2_3 LennyD2

35 2 D1_2 BarneyD1

36 1 D2_1 HomerD2

37 1 D3_1 HomerD3

38 2 D3_2 BarneyD3

39 1 D3_1 HomerD3

40 2 D2_2 BarneyD2

1, 2, 4

2, 4

#

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

A1, A2, A3

A2, A3

Events in 
cluster

Footprint

3, 5, 7

4

A1, A2, A3

A3

5, 7 A3, A2

A1, A3, A2

A2, C1

A3, A2

A2, C2

C1, C2, C3

C2, C3

C2, C1, C3

C3, B1, B2

B1, B2, B3, C1

C1, C3

B2, B3, C1

C3

B1, B2, B3

B3, C1

C1, C2, C3

B2, B3

B3, B2

B2

C2, C3

C3, C2

C3

C2, B1

B1, B2, B3

D1, D3

B2, B3, D1

D3

B3, D1

D1, D2, D3

D2

D1, D3, D2

D2, D3

D3

D3, D2

D3

D2

Low-level log:

6, 8, 9

7, 10

8, 9

9, 12

10, 11, 13

11, 13

12, 15, 17

13, 14, 16

14, 16, 19, 20

15, 17

16, 19, 20

17

18, 21, 22, 23

19, 20, 24, 25

20, 24, 25, 27

21, 22, 23

22, 23

23

24, 25, 27

25, 27

26

27, 28

28, 30, 32

29, 31

30, 32, 33

31

32, 33

33, 36, 37

34

35, 38, 40

36, 37, 39

37, 39

38, 40

39

40

14:14:23

14:15:47

14:18:14

14:23:57

14:24:04

14:27:22

14:32:40

14:32:43

14:39:45

14:40:10

14:42:04

14:42:10

14:43:02

14:44:43

14:48:50

14:49:00

14:50:23

14:52:55

14:53:45

14:54:02

14:57:14

14:58:00

15:04:43

15:10:22

15:12:19

15:13:10

15:14:42

15:22:05

15:28:02

15:28:04

15:28:05

15:31:45

15:35:15

15:36:00

15:37:22

Initial clusters:

A1, A2, ,A3

A2, A3

#

1

2

3

1, 3, 6

2, 5, 8

ClustersFootprint

A3 4

Aggregated clusters:

A2, C1

A2, C2

4

5

6

7

7

9

C1, C2, C3

C2, C3

10, 12, 20

11, 24, 25

B1, B2, C3

B1, B2, B3, C1

8

9

10

11

13

14

C1, C3

B2, B3, C1

15

16

C3

B1, B2, B3

12

13

14

15

17, 26

18, 28

B3, C1

B2, B3

19

21, 22

B2

B1, C2

16

17

18

19

23

27

D1, D3

B2, B3, D1

29

30

D3

B3, D1

20

21

22

23

31, 37, 39

32

D1, D2, D3

D2

33, 35

34, 40

2, 3, 4, 5

1, 3, 4, 5

Conflicting

1, 2

1, 2, 6

1, 2, 6

4,5,7,9,10,
11,12,14,17

6, 8, 14, 17

6, 7, 9, 11

6, 8, 11, 14

6, 12

6, 8, 9, 14

6, 10

15, 16, 17, 19, 
21

6, 7, 9, 11

13, 16

13, 15

6, 7, 13

20

11, 21, 22

18, 22, 24

13, 19, 22

19, 20, 21, 23,  
24

22, 24

2, 4

1, 4

Conflicting

5, 7

1, 2

3, 7

8, 9

3, 5, 10

6, 9

6, 8, 12

7, 11, 12

10, 13

9, 15, 17

10, 11, 14, 16

13, 16, 19, 20

12, 17

13, 14, 19, 20

12, 15

21, 22, 23

14,16,20,24,25

14,16,19,24,25,27

18, 22, 23

18, 21, 23

18, 21, 22

19, 20, 25, 27

20, 24, 27

--

20, 24, 25, 28

27, 30, 32

31

28, 32, 33

29

28, 30, 33

30, 32, 36, 37

--

38, 40

33, 37, 39

33, 36, 39

35, 40

36, 37

35, 38

3.0

2.5

val 
(a=0.5)

1.0

1.5

1.5

3.0

2.5

2.0

2.5

1.5

2.0

1.5

2.5

1.5

2.0

1.0

1.5

1.5

2.0

2.0

1.5

2.5

1.5

24 D2, D3 36, 38 20, 22, 23 2.0

A1, A2, ,A3

#

1 1, 3, 6

ClustersFootprint

Minimal conflict-free set:

6 C1, C2, C3 10, 12, 20

B1, B2, C38 13

3.0

val 
(a=0.5)

3.0

2.0

B1, B2, B313 18, 28 2.5

18 D1, D3 29 1.5

22 D1, D2, D3 33, 35 2.5

= victim of conflict resolution.

Executed three times, by 
three resources.

}

d
es

ir
ed

 r
es

u
lt

Data 
types:

Data 
types:

Data 
types:

Data 
types:

Fig. 5. All phases of the algorithm, applied to an example log



12

Definition 7 (Cluster). Let l be a log overE. A clusterC is a set of events inl, i.e.,
C ⊆ set(l). A clustering function is a functioncf mappingl onto a set of clusters, i.e.,
cf (l) ⊆ IP(set(l)).4

The clustering function to be used in scanning the initial set of clusters can be tai-
lored to the specific application and type of log. Examples of such clustering functions
include:

– cf (l) = {prox (e) | e ∈ l}, whereprox (e1) = {e2 ∈ E | |ts(e1) − ts(e2)| ≤
prange ∧ pos(l, e1) < pos(l, e2)}
(all events having occurred within a maximal time span ofprange after the reference
evente1; introducing the requirement of proximity),

– cf (l) = {prox (e) | e ∈ l}, whereprox (e1) = {e2 ∈ E | |pos(l, e1)−pos(l, e2)| ≤
prange ∧ tp(e1) = tp(e2) ∧ pos(l, e1) < pos(l, e2)}
(logical clock based proximity limit; limits the events contained to those of the
same type ase1; for logs from hierarchical transactional systems),

– cf (l) = {prox (e) | e ∈ l}, whereprox (e1) = {e2 ∈ E | |ts(e1) − ts(e2)| ≤
prange ∧ o(e1) = o(e2) ∧ pos(l, e1) < pos(l, e2)}
(timestamp-based proximity; replaces the requirement for event type equality with
requiring the same originator),

– cf (l) = {prox (e) | e ∈ l}, whereprox (e1) = {e2 ∈ E | |ts(e1) − ts(e2)| ≤
prange ∧ pos(l, e1) < pos(l, e2) ∧ o(e1) = o(e2) ∧ p(e1) = p(e2)}
(timestamp-based proximity limit, enforcing the same originator and process in-
stance for all events in one cluster),

– cf (l) = {{e} | e ∈ l}
(every cluster is a singleton),

– etc.

In the example shown in Figure 5 the third proximity function listed above has
been chosen (time-based proximity limit of 10 minutes, equality of originator enforced
within clusters). It cuts the set of events contained in each scan window down further,
including only those with an originator and process ID identical to the reference event.
Thus, the cluster aligned to event 1 contains events 1, 2 and 4; the 2nd cluster contains
events 2 and 4. These clusters, created for each event in the log, constitute the initial set
of clusters, which is shown in its entirety in the middle table in Figure 5.

The optimal scan window sizeprange is the maximal proximity between the first
and last event of all activities recorded in the log. Ifprange is set too small, activities
with a longer duration (or a larger number of low-level events) cannot be captured
completely. On the other hand, a too large scan window will lead to events from distinct
activities being comprised in one cluster (when the scan window size exceeds the mean
idle time a process spends between activities). The clustering function has to be chosen
with respect to the system having produced the log under consideration (e.g., enforcing
uniform event types within clusters will only work in transactional systems, otherwise
it will distort the results).

4 IP(A) is the powerset ofA, i.e., IP(A) = {B | B ⊆ A}.



13

6 Cluster Aggregation

The initial set of clusters contains a great share of clusters which do not correspond
to actual activity executions. Moving the scan window over an actual cluster that has
resulted from one activity, which e.g. comprises six lower-level events, will yield at
least six scanned clusters (as the scan window is being moved event-wise). One of
these clusters is correct, i.e. where the scan window covered all events derived from the
activity. The remaining clusters have captured only a subset of the involved events. The
latter kind of clusters, having resulted from an incorrect scan window position, shall be
denoted asfragmentary clusters.

Another problem is the sheer amount of clusters yielded by the initial scan pass, as
each event in the log will result in exactly one cluster. It is highly desirable to group
similar clusters intometa-clusters, which constitutes the second pass of the presented
algorithm. With each occurrence of a similar cluster found in the initial set, the proba-
bility that this cluster corresponds to the execution of an activity increases.

In order to group, oraggregate, the initial clusters, it is necessary to have a means
for determining their similarity. The essence of what defines a cluster is thefootprint,
i.e. the set of data objects modified by its contained events.

Definition 8 (Footprint). Let l be a log overE, C a cluster ofl, and for anye ∈ l:
dt(e) 6= ⊥ (i.e., a data type is defined for each event in the log).fp(C) = {dt(e) | e ∈
C}.

Using the footprint for evaluating the similarity of two clusters is consistent with
the activity model presented in Section 2. Multiple events having resulted from setting
and clearing one data object repeatedly do not affect the footprint, and thus equality
between two different executions of the same activity is being preserved.

The aggregation pass combines sets of initial clusters with a compatible footprint
to meta-clusters, which are identified by this very footprint. It can be characterized as
grouping syntactically related patterns, assuming that these are related on a semantic
level as well. From a set of initial clusters, the aggregation pass results in a set of aggre-
gated meta-clusters. The decision whether two footprints are compatible, i.e. whether
the associated clusters are to be aggregated, is performed by anaggregation method.

Definition 9 (Aggregation Method). Let l be a log overE andcf (l) be a clustering
function over this log. Anaggregation methodag(l) groups the clusters ofcf (l) to sets
of similar elements, based on their footprints.ag(l) ∈ IP(IP(Dt) × IP(cf (l)))

Note that if (F,CS) ∈ ag(l), thenCS is a set of initial clusters that somehow
belong together based on a set of data typesF (e.g. , all clusters inCS have an identical
footprint). Which specific aggregation method to choose depends, once again, largely
on the specific log under consideration. Based on many experiments, the following
aggregation methods have been found most suitable.

Definition 10 (Tolerant Aggregation).
ag(l) = {(F, CS) ∈ IP(Dt) × IP(cf (l)) | ∃ Ci ∈ CS : fp(Ci) = F ∧ CS = {Cj ∈
cf (l) | fp(Cj) = F}}



14

The tolerant aggregation method groups sets of clusters which have exactly the
same footprint, i.e. the set of modified data types is identical for each element of a
meta-cluster. This common footprint is also used to describe the resulting aggregated
meta-cluster.

Definition 11 (Strict Aggregation).
ag(l) = {(F, CS) ∈ IP(Dt) × IP(cf (l)) | ∃ Ci ∈ CS : fp(Ci) = F ∧ CS = {Cj ∈
cf (l) | fp(Cj) = F} ∧ ∀ Ck, Cl ∈ CS : (Ck ∩ Cl = ∅ ∨ Ck = Cl)}

The strict aggregation method also enforces the identity of footprints among all
clusters within an aggregated meta-cluster. On top of this, it further includes a conflict-
resolution requirement. The issue of conflicts will be explained in detail in the next
section

Definition 12 (Greedy Aggregation).
ag(l) = {(F,CS) ∈ IP(Dt) × IP(cf (l)) | CS 6= ∅ ∧ ∀ Ci, Cj ∈ CS : fp(Ci) ⊆
fp(Cj) ⊆ F ∨ fp(Cj) ⊆ fp(Ci) ⊆ F}

Although the first two aggregation methods make no effort to filter out fragmentary
clusters, the resulting meta-clusters are very precise. Greedy aggregation, on the other
hand, only requires the footprint of all contained clusters to share a certain subset. It
is up to the specific implementation of this aggregation method to define a minimal
overlap for the contained clusters’ footprints, as well as the method to determine the
footprint of meta-clusters. Greedy aggregation is quite sensitive to these peculiarities,
however, it can improve results in very diverse, or scattered, event logs (i.e., logs which
do not exhibit a lot of exactly recurring patterns).

The result of the aggregation pass in the example is shown in the upper right table
of Figure 5. As thetolerant aggregationfunction has been used in this example, the set
of aggregated meta-clusters still contains a considerable number of elements which do
not correspond to actual data modification patterns of activities, e.g. aggregated cluster
number 8, containing a mixture of low-level events resulted from the execution of tasks
B andC.

Nevertheless it is clear to see that the footprint is indeed a valid criteria for com-
paring initial clusters. For example, initial clusters 10, 12 and 20 have been aggregated
to meta-cluster 6 according to their common footprint (C1, C2, C3), although initial
cluster 20 contains one superfluous event. Still, the aggregated set also contains a large
number of meta-clusters which represent fragmentary clusters.

The tables for initial and aggregated clusters in Figure 5 each include a column
denoted “Conflicting”, which lists the (meta-) clusters the current cluster is in conflict
with. The next section introduces the concept of conflicts and the last pass of the algo-
rithm, which is able to pick from the aggregated set the subset most likely to represent
actual activity execution patterns.

7 Maximal Conflict-free Set of Clusters

It is easy to see that each event in a low-level log must have resulted from exactly
one higher-level activity. However, the problem of fragmentary clusters introduced in



15

the previous section already shows that events will be included in multiple clusters.
The aggregation pass can successfully decrease the number of fragmentary clusters,
given the fact that a suitable aggregation method (e.g. greedy aggregation) is chosen.
However, fragmentary clusters can potentially still result in multiple aggregated meta-
clusters, thus distorting the result.

The very core of the problem can be defined as two clusters containing the same
event. If this is the case, these clusters arein conflict.

Definition 13 (Conflict between Clusters).Let l be alog overE andCi, Cj two clus-
ters ofl. Ci andCj are in conflict iffCi ∩ Cj 6= ∅.

This definition of conflict can be extended onto aggregated meta-clusters in a straight-
forward manner. Two meta-clusters are in conflict, if any of their aggregated initial
clusters are in conflict.

Definition 14 (Conflict between Meta-Clusters).Let(F1, CS1), (F2, CS2) ∈ IP(Dt)×
IP(cf (l)) be two aggregated meta-clusters.(F1, CS1) and (F2, CS2) are in conflict if
at least two initial clustersCi ∈ CS1 andCj ∈ CS2 are in conflict, i.e.Ci ∩ Cj 6= ∅.

The nature of conflicts between initial clusters and their propagation into the aggre-
gated set is also illustrated in the example in Figure 5: Clusters 1 and 2 from the initial
set are in conflict, because they share events 2 and 4. As initial cluster 1 is aggregated
into meta-cluster 1, and initial cluster 2 becomes part of meta-cluster 2, these two re-
sulting meta-clusters are effectively in conflict as well. This “inheritance” of conflicts
from the initial clusters leads to a great number of conflicts between meta-clusters of
the aggregated set.

The strict aggregation method introduced in Section 6 ensures that each aggregated
meta-cluster contains a conflict-free set of initial clusters. However, this has no influ-
ence on the existence of conflicts between meta-clusters. Thus, the purpose of the third
pass of the presented algorithm is to resolve these conflicts, i.e. cut down the set of
aggregated clusters to a maximal, conflict-free subset.

This step is of utmost importance with respect to the intended goal, i.e. discovering
activity patterns. Given the fact that the scan window size and clustering functions are
suitable for the analyzed log, and that a correct aggregation method has been chosen,
all footprints referring to actual activity executions must be represented in the set of
aggregated meta-clusters. As these correct meta-clusters must contain all events of the
log, they will be in conflict with the illegal meta-clusters (as they have to share events
then). If conflict resolution is performed correctly, the maximal set of conflict-free meta-
clusters should equal the set of activity occurrences in the observed process.

For each two conflicting meta-clusters, the algorithm has to select one to be pro-
moted to the maximal conflict-free set; the other one is discarded. To this end, a conflict
evaluation function is used, which is defined as follows.

Definition 15 (Conflict Evaluation). Let (F, CS) ∈ ag(l) be an aggregated cluster
of the logl. The evaluation functionval(F,CS) determines the relevance of an ag-
gregated cluster for the maximal conflict-free set of clusters, when it conflicts with an-
other aggregated cluster.val ∈ IP(Dt) × IP(cf (l)) → IR. The weighed evaluation



16

val(F, CS) = α · |F |+ (1− α) · |CS| uses the factorα ∈ [0, 1] to derive the value of
an aggregated cluster from its footprint size and the number of aggregated clusters.

The conflict evaluation function used takes into account both the size of the aggre-
gated cluster’s footprint, as well as the number of contained initial clusters, weighed
by a parameterα. Settingα to 1 will make the algorithm choose the aggregated cluster
with the largest footprint. Conversely, a value of0 for α will give preference to the meta-
cluster having aggregated the most initial clusters. As a rule of thumb, the best results
have generally been achieved by choosing a value of0.6 – 0.8 for α, as an expressed
preference for larger footprints effectively eliminates a large share of fragmentary clus-
ters.

The derivation of the maximal conflict-free set of aggregated clusters can be defined
as follows.

Definition 16 (Maximal Conflict-Free Set). Let l be a log over E and ag(l) be an
aggregation method over this log. The functionmcf (l) selects the maximal subset of
conflict-free aggregated clusters fromag(l). mcf (l) = {(Fi, CSi) ∈ ag(l) | ∀ (Fk, CSk) ∈
ag(l) : ∀ Cm ∈ CSi, Cn ∈ CSk : Cm ∩ Cn 6= ∅ ⇒ val(Fi, CSi) > val(Fk, CSk)}

Each meta-cluster contained in the maximal conflict-free set should ideally corre-
spond to one activity in the (envisioned) higher-level process. Aggregated clusters are
characterized by their footprint, describing the set of data objects modified by the re-
spective activity. From this point on, one can use the set of initial clusters aggregated in
each element of the maximal conflict-free set in order to determine the occurrences of
the described activity in the log. The boundaries of each activity occurrence are spec-
ified by the timestamps (or, respectively, the log indices) of the first and last low-level
event contained in the respective initial cluster.

In the example shown in Figure 5, conflict evaluation has been performed with a
weight ofα = 0.5, i.e. giving equal preference to the number of contained clusters and
footprint size. This evaluation is where fragmentary clusters show, because they both
have a lower chance of being repeatedly represented in the log, and their footprint is
usually smaller than footprints of “correct” clusters. The conflict evaluation values are
shown in the rightmost column of the table representing the set of aggregated clusters.
A black dot marks those meta-clusters which have been victim to conflict evaluation,
i.e. they are in conflict with another meta-cluster that scores a higher value in the eval-
uation.

The resulting minimal conflict-free set of meta-clusters is shown in the bottom right
table of Figure 5. It looks a little disappointing at first sight, as 33% of the set’s elements
are clearly not corresponding to actual activity executions: Meta-cluster 18 is obviously
a fragmentary cluster, while meta-cluster 8 seems to cover low-level events from the
overlap of two activity executions.

However, the algorithm actually performed better than one might have thought. On
the one hand, the “correct” meta-clusters have scored better in the evaluation, which
supports the accuracy of the evaluation function. When the maximal conflict-free set
is thus sorted by the conflict evaluation value of contained meta-clusters, the accurate
results will reside on the top of the scale. Note that the algorithm has discovered the
correct results even without taking into account the process ID information. Further, it



17

has to be noted that the low-level log used in this example does not satisfy our initial
assumptions at all: The time spent on executing the activities is not much shorter than
the time spent idle between activities within a process instance (sometimes even consid-
erably longer!). Hence, the scan window size could not be chosen in an optimal fashion.
The algorithm has thus performed remarkably well, considering this problematic log as
a starting point.

Constructing a high-level log from the minimal conflict-free set is fairly straightfor-
ward. Regarding the example, one would start with the meta-cluster having scored the
highest evaluation value, i.e. meta-cluster 1. The envisioned task which this cluster rep-
resents could be called “A1A2A3”, based on the footprint. As it has been mentioned,
one can now use the aggregated initial clusters to reproduce the occurrences of this
task, i.e. activities, as events in the higher-level log. Meta-cluster 1 contains the initial
clusters 1, 3, and 6, so the initial cluster 1 would be the first occurrence of activity
“A1A2A3” in the higher-level log to be created. From the first and last event contained
in initial cluster 1, the start and end of this event can be derived: The activity has started
at 14:00:00 (cf. event 1) and ended at 14:08:55 (cf. event 4), so this constitutes our first
event in the higher-level log. This process is then repeated for each initial cluster in this
meta-cluster, and then accordingly for all meta-clusters which are considered “valid”
activities.

When the minimal conflict-free set stil contains “invalid” meta-clusters, it would be
appropriate to set a limit for the evaluation value a meta-cluster has to score, in order
to be included in the high-level log. In the given example, one would want to set this
limit to val(F, CS) ≥ 2.5. This is, however, a matter of fine-tuning, and one cannot
give a general rule of thumb on how to set this limit. Given this limit, the resulting
high-level log from the example would have correctly reconstructed two out of three
process instances.

8 Implementation

As a proof of concept, and to allow experimentation with the concepts presented, the
modification cluster scanning algorithm presented in the previous sections has been
implemented as a plugin for ProM [14].

Figure 6 shows the configuration pane of the plugin. Rather than choosing a pre-
defined clustering function, the user can configure each aspect of the initial clustering
pass separately: The proximity threshold for initial clusters can be provided both in real
time and as a logical number of events—the algorithm will then dynamically choose
the more restrictive setting. Enforcing the equality of originator and event type fields
within a cluster can be toggled independently.

A great share of systems do not log the name of the data type per event, but rather
record only the data object, i.e. instance, identifier. As it is necessary to compare low-
level events on a type level, the user can choose an equivalence relation for the specific
log type under consideration. Equivalence relations are simple modules which can take
any two data objects and decide, whether they are derived from the same data type or
not. In the aggregation pass, the algorithm will rely on the chosen equivalence relation
to compare footprints on a type level, rather than on an instance level.



18

Fig. 6. Configuration pane of the Activity Miner plugin for ProM

Further options include the choice of an aggregation method to be used, and setting
the weighing factorα for conflict evaluation.

Fig. 7. Result visualization of the Activity Miner plugin for ProM

After all three passes of the algorithm have been performed successfully, the plugin
will display its results, as shown in Figure 7. The lower part of the result dialog is
the “Cluster Browser”: Aggregated meta-clusters are displayed in the leftmost column.
The user can choose whether to display elements of the aggregated set (ADMC) or only



19

the subset contained in the maximal conflict-free set (MDMC). When one or multiple
meta-clusters are selected, the middle column displays the contained initial clusters.
The rightmost column shows the current footprint, either of an aggregated or initial
cluster (depending on the current selection). In Figure 7, the meta-cluster “ADMC.1”
from the maximal conflict-free set has been selected, which contains five initial clusters
and has a footprint of three data objects.

The upper left part of the result dialog shows the log as a linear ribbon, advanc-
ing to the right. On this pane the clusters currently selected in the browser are displayed
with their temporal position in the log. When one or multiplemeta-clusters are selected,
this view will display all contained initial clusters, for they can be interpreted as occur-
rences. In Figure 7, the five initial clusters aggregated in “ADMC.1” are displayed on
the log pane. Although their temporal positions are overlapping, the “handles” on top
show their distinct, median positions.

9 Applications

The presented clustering algorithm has shown to be able to successfully rediscover a set
of high-level activity patterns from a low-level log in the previous sections. This section
investigates potential fields of application for the algorithm and shows that it can also
be employed successfully within scopes which transcend the original intent.

In order to accurately rediscover low-level event patterns referring to activities on a
higher-level process, the system having generated the low-level logs must satisfy certain
requirements. As the algorithm is based on the notion of proximity, there has to be a
significant gap between the duration of activity executions and the waiting time between
distinct activities within the execution of a process instance. In general, all systems
natively employing the activity metaphor (e.g. using forms) do satisfy this requirement.

Fig. 8. Process and task definition in FLOWer



20

One interesting object for activity mining is the case handling system FLOWer.
Case handling systems are data-driven, i.e. the availability of information determines
the progress within the executed process. Thus, they provide logs both on a high level,
identifying activity executions, as well as on a lower data modification level. Figure 8
shows the process designer of FLOWer. The displayed process model was actually used
to generate the low-level log whose activity mining analysis is shown in Figure 7. In
the window on the lower right of Figure 8 the properties for the first task “TaskA”
are displayed, for whose completion three data objects (listed in the lower half) are
required. These data objects indeed correspond to the footprint of the aggregated meta-
cluster “ADMC.1” in Figure 7.

Case handling provides the end user of a process with a significant amount of free-
dom during execution, including custom deviations from the standard path. Even more
important, the boundary between activities is significantly lowered, as there is no strict
coupling between forms and activities. Activities can be executed only partly, and be
finished later on, potentially by another person. On the other hand, it is also possible
for users to execute multiple activities at once, i.e. by filling out only one form. In such
an environment, activity mining can yield interesting results, by revealing the actual
chunks of work which are frequently executed, in contrast to the ones proposed by the
process definition. This analysis can both be used to gain interesting insights into the
way people perform their work, and it can also serve as a perfect guideline for a redesign
of the process definition.

Another important field of application for activity mining areEnterprise Resource
Management(ERP) systems. In contrast to workflow management, emphasizing the
control flow perspective, these systems are centered around large databases which can
be modified in an application-specific manner. As a consequence of the emphasis on
data, ERP systems usually create event logs on a low-level. Process definitions and
notions of activities are often only existent on an application layer, which is not reflected
in the log. Activity mining can effectively bridge this gap, by providing the necessary
high-level abstraction. However, it has to be noted that there are further problems to
be resolved with respect to logs from ERP systems, e.g. missing references to process
instances, which the presented algorithm does not address.

While ERP systems only feature process orientation on the application layer, there
are also systems which do not support the notion of a defined process at all. Never-
theless, a great share of these systems, e.g. document management systems or expert
systems, are effectively used to support processes. While some organizations prescribe
a process definitionoff-line, e.g. in printed form, others rely on their users’tacit knowl-
edgeto perform the right steps in the correct order.

It is obvious that in such less structured settings, there is even greater demand for
abstraction and analysis. These systems have no notion of a high-level process, hence
they can only produce low-level logs. Transforming these to higher-level logs, using ac-
tivity mining, allows to use sophisticated analysis methods, e.g. process mining, which
are a premise for discovering and monitoring these implicit, tacit processes.

This field of application can be extended ontoEnterprise Application Integration
(EAI) architectures, which are about to become commonplace in modern companies. In
order to connect all kinds of incompatible systems from different vendors (often includ-



21

ing legacy installations), most EAI implementations rely on a centralmessage broker,
or message bus, solution. These central hubs relay and transparently translate messages
between otherwise incompatible components, thus enabling company-wide integration
and workflow. Often, this architecture is supported by meta-processes, e.g. implemented
in BPEL, which are orchestrating smaller processes within component systems. Logs
from such message brokers usually feature singular interactions between component
systems in the form of message events. Clustering these logs can unveil common pat-
terns of interaction, potentially unforeseen by system designers. Based on these discov-
ered patterns, the architecture can be better understood and optimized for performance
and quality.

Apart from business processes, it is important to note that the presented algorithm
is generic enough to provide useful insights from basically any sort of low-level log.
Its application to change logs from source code management systems, like CVS or
Subversion, can yield popular subsets of the repository which are frequently modified
together. This information can subsequently be used to e.g. reorganize the repository
layout for easier navigation. Further, the clustering algorithm has also been successfully
applied to access logs from web servers. In this context, rather small values for the
scan window size can yield clusters containing pages and their associated resources
(e.g. images). On the other hand, increasing the scan window size, such that it spans an
entire visit’s duration, can be used to group visitors according to which subset of the
site they have frequented.

Another interesting application for activity mining is the healthcare domain. In a
great number of hospitals the supporting information systems transmit events related
to patient treatment activities to a central data-warehousing system. Due to the orga-
nization of a hospital, it is usual to concentrate a number of examinations (e.g. blood
tests) or treatments in a short time span, in order to minimize transportation between the
wards involved. This practice leads to event logs containing bursts of events referring to
lower-level activities. Clustering the fine-grained event data from a patient’s treatment
process can provide useful abstraction from single activities, and reveal logical tasks
which describe the logged procedure more adequately.

When the clustering algorithm fails to successfully rediscover activity patterns present
in the process definition, this does not necessarily mean that there is a problem with the
log or the algorithm’s configuration. It can rather be a valuable hint that the process
definition is in fact not in line with the current practices within the organization. If
the algorithm groups low-level events of two distinct activities into one cluster, this is
a strong indication that these activities are frequently executed directly one after an-
other. Such information can provide valuable information for a redesign effort, i.e. in
the above case one would want to combine the affected activities into one.

Finally, it is also possible to apply the presented algorithm to regular high-level
logs. By setting the scan window size to the typical throughput time of a case, the
resulting meta-clusters represent typical sets of activities performed in a process5. The
initial clusters contained in these meta-clusters can correspondingly be interpreted as
cases, or process instances. Thus, if the high-level log does not contain the process ID

5 Note that different execution orders for parallel parts of the process do not confuse the algo-
rithm, as the footprint is considered an unordered set.



22

attribute for events, an activity mining analysis can be of great help in rediscovering
this information.

10 Related Work

The presented work is closely related to the area of process mining, describing a family
of a-posteriori process analysis techniques based on event logs. For example, the alpha
algorithm [6] can construct a Petri net model describing the behavior observed in the
log. The Multi-Phase Mining approach [13] can be used to construct an Event Process
Chain (EPC) based on similar information. In the meantime there are mature tools such
as the ProM framework [14] to construct different types of models based on real process
executions.

Process mining research so far has mainly focussed on issues related to control flow
mining. Different algorithms and advanced mining techniques have been developed and
implemented in this context (e.g., making use of inductive learning techniques or ge-
netic algorithms). Tackled problems include concurrency and loop backs in process
executions, but also issues related to the handling of noise (e.g., exceptions). Further-
more, first work regarding the mining of other model perspectives (e.g., organizational
aspects) and data-driven process support systems (e.g., case handling systems) has been
conducted [3].

Activity mining is different from traditional process mining in various respects. It
does not attempt to derive information about the process definition, organization, or ex-
ecution in general, but rather concentrates on a logical, activity-based abstractionwithin
the realm of event logs. In order to analyze event logs in a meaningful manner, process
mining algorithms require the process instance ID for each event. This requirement does
not hold for activity mining, as it is primarily based on the notion of proximity. While
process mining algorithms are based on analyzing high-level logs, activity mining does
provide this very information as an abstraction from lower-level logs. Thus, activity
mining is a valuable means for preprocessing low-level event logs to higher-level logs,
in order to perform meaningful process mining.

The results obtained from applying process mining techniques on these reconstructed
higher-level logs can provide the most interesting insights, when the system having pro-
duced the initial low-level logs in the first place is not designed to strictly enforce a rigid
process definition. One system which provides outstanding support for flexible changes
of the process model, both on a casual and evolutionary basis, is ADEPT[20]. Also
the case handling approach[7], implemented in the commercial system FLOWer[10],
is especially interesting, as it rather limits the possible execution paths, in contrast to
prescribing a fixed set of paths.

There exists a large amount of similar work also from outside the process mining
field. Most notably there have been numerous approaches from the data mining domain,
which are also focused on clustering sequential event data. Our approach is distinct in
that it takes full advantage of the peculiarities of the sequence and events under consid-
eration, i.e. it is far more closely tailored towards the application domain of business
process event logs.



23

Clustering techniques are commonplace in the area of data mining. However, most
approaches address the problem ofconceptual clustering[15], i.e. they strive not to
derive higher-level entities from the input data but to derive a classification which can
be applied to the initial entities (i.e. events).

Another related field in the data mining domain deals with the discovery of patterns
from sequential data. Agrawal et al. [9] also look at events (transactions) from the same
process instance (customer), however, their observation is global, i.e. items to be com-
pared are not constrained by their temporal distance. While Bettini et al. [12] also use
the idea of focusing on small parts (granules) of the sequence, these do not overlap, and
the “interesting” patterns to be discovered are supposed to be defined a-priori.

These approaches are interested in the (partial) order between elements of a pattern,
as their focus lies on deriving implication rules from sequences of events. This contra-
dicts the basic assumption of our clustering algorithm, namely that the order of events
within an activity cluster is not significant.

Perhaps the approach most related to ours is from Mannila et al. [18], also using
a “time window” to restrict the subset of events under consideration. Although this
work also mainly focuses on the partial ordering of elements, they also consider the
trivial case of an empty partial order, corresponding to our approach. Nevertheless, the
absence of using any event attributes other than name (i.e. modified data type) and
timestamp, and the focus on implication rules, e.g. for the prediction of future events,
poses a significant difference to our approach.

11 Discussion

Activity mining, as it has been motivated and presented in this paper, describes the
process of extracting recurring patterns from event logs, which point to the existence of
common tasks on a higher level of abstraction. The need for activity mining is driven
by multiple use cases.

Process mining techniques have evolved on to a stage where their industrial applica-
tion does not only seem feasible but truly beneficial. However, they interpret log events
as corresponding to the execution of abstract tasks, which conflicts with most real-life
systems’ logging on a far more fine-grained, and thus lower, level. Consequently this
mismatch accounts for overly complex and detailed models which make it hard to derive
meaningful information from.

Conducting process mining in a meaningful manner becomes even more difficult
when the system from which the logs are derived is not process-aware. In most of
these cases it is nevertheless safe to assume the existence of an implicit, higher-level
process, following the hypothesis stated in Section 2. People tend to follow certain
patterns (i.e. implicit processes) when accomplishing recurring tasks, and they usually
also divide them into similarly sized chunks of work (which is our definition of an
activity). This property even extends onto automatically executed processes, as these
are designed by humans unconsciously applying these paradigms.

In such situations activity mining can provide the abstraction necessary to apply
process mining techniques. Once a high-level log has been derived it can be analyzed
with the set of process mining algorithms already available, in order to e.g. discover the



24

tacit high-level process which has generated the log. If, however, the process appears to
make no sense from a semantic point of view, then this is a strong hint that unsuitable
parameters have been used for activity mining. Thus, performing the subsequent process
mining analysis can also be used to verify the correctness of the activity mining pass.

In comparison to these process mining algorithms, activity mining does not rely
solely on the log itself to derive these abstractions. Configuring the algorithm with
appropriate parameters requires domain knowledge, such as the maximal time used to
handle activities, in order to accurately discover the activity clusters. We are currently
working on heuristics to automatically find suitable parameters based on the log, as a
means to aid the user in finding the correct configuration.

The current state of affairs is that a large share of process-aware information systems
do not provide activity-level logs, and are thus not suitable for the application of process
mining. Activity mining has the potential to bridge this gap, bringing both new fields of
application to process mining and, conversely, an ample toolkit of scientifically well-
founded analysis methods to owners of such systems.

We have also shown that this technique can be used in settings different from its
original content. The modular design of the algorithm allows for tailoring it to different
applications, e.g. by using a custom clustering function or aggregation method. We are
thus convinced that there are plenty of applications for this technique even outside of
the intended scope.

12 Acknowledgements

This research is supported by the Technology Foundation STW, applied science division
of NWO and the technology programme of the Dutch Ministry of Economic Affairs.

References

1. W.M.P. van der Aalst and P.J.S. Berens. Beyond Workflow Management: Product-Driven
Case Handling. In S. Ellis, T. Rodden, and I. Zigurs, editors,International ACM SIGGROUP
Conference on Supporting Group Work (GROUP 2001), pages 42–51. ACM Press, New
York, 2001.

2. W.M.P. van der Aalst and K.M. van Hee.Workflow Management: Models, Methods, and
Systems. MIT press, Cambridge, MA, 2002.

3. W.M.P. van der Aalst and M. Song. Mining Social Networks: Uncovering Interaction Pat-
terns in Business Processes. In J. Desel, B. Pernici, and M. Weske, editors,International
Conference on Business Process Management (BPM 2004), volume 3080 ofLecture Notes
in Computer Science, pages 244–260. Springer-Verlag, Berlin, 2004.

4. W.M.P. van der Aalst, B.F. van Dongen, J. Herbst, L. Maruster, G. Schimm, and A.J.M.M.
Weijters. Workflow Mining: A Survey of Issues and Approaches.Data and Knowledge
Engineering, 47(2):237–267, 2003.

5. W.M.P. van der Aalst and A.J.M.M. Weijters, editors.Process Mining, Special Issue of Com-
puters in Industry, Volume 53, Number 3. Elsevier Science Publishers, Amsterdam, 2004.

6. W.M.P. van der Aalst, A.J.M.M. Weijters, and L. Maruster. Workflow Mining: Discovering
Process Models from Event Logs.IEEE Transactions on Knowledge and Data Engineering,
16(9):1128–1142, 2004.



25

7. W.M.P. van der Aalst, M. Weske, and D. Grünbauer. Case Handling: A New Paradigm for
Business Process Support.Data and Knowledge Engineering, 53(2):129–162, 2005.

8. R. Agrawal, D. Gunopulos, and F. Leymann. Mining Process Models from Workflow Logs.
In Sixth International Conference on Extending Database Technology, pages 469–483, 1998.

9. R. Agrawal, T. Imielinski, and A. N. Swami. Mining association rules between sets of items
in large databases. In P. Buneman and S. Jajodia, editors,Proceedings of the 1993 ACM
SIGMOD International Conference on Management of Data, pages 207–216, Washington,
D.C., 26–28 1993.

10. Pallas Athena.Case Handling with FLOWer: Beyond workflow. Pallas Athena BV, Apel-
doorn, The Netherlands, 2002.

11. Pallas Athena.Flower User Manual. Pallas Athena BV, Apeldoorn, The Netherlands, 2002.
12. C. Bettini, X. S. Wang, and S. Jajodia. Mining temporal relationships with multiple granu-

larities in time sequences.Data Engineering Bulletin, 21(1):32–38, 1998.
13. B.F. van Dongen and W.M.P. van der Aalst. Multi-Phase Process Mining: Building Instance

Graphs. In P. Atzeni, W. Chu, H. Lu, S. Zhou, and T.W. Ling, editors,International Con-
ference on Conceptual Modeling (ER 2004), volume 3288 ofLecture Notes in Computer
Science, pages 362–376. Springer-Verlag, Berlin, 2004.

14. B.F. van Dongen, A.K. de Medeiros, H.M.W. Verbeek, A.J.M.M. Weijters, and W.M.P. van
der Aalst. The prom framework: A new era in process mining tool support. In G. Ciardo and
P. Darondeau, editors,Proceedings of the 26th International Conference on Applications and
Theory of Petri Nets (ICATPN 2005), volume 3536 ofLecture Notes in Computer Science,
pages 444–454. Springer-Verlag, Berlin, 2005.

15. D. H. Fisher. Knowledge acquisition via incremental conceptual clustering.Mach. Learn.,
2(2):139–172, 1987.

16. S. Jablonski and C. Bussler.Workflow Management: Modeling Concepts, Architecture, and
Implementation. International Thomson Computer Press, London, UK, 1996.

17. F. Leymann and D. Roller.Production Workflow: Concepts and Techniques. Prentice-Hall
PTR, Upper Saddle River, New Jersey, USA, 1999.

18. H. Mannila, H. Toivonen, and A. I. Verkamo. Discovery of frequent episodes in event se-
quences.Data Mining and Knowledge Discovery, 1(3):259–289, 1997.

19. D.C. Marinescu. Internet-Based Workflow Management: Towards a Semantic Web, vol-
ume 40 ofWiley Series on Parallel and Distributed Computing. Wiley-Interscience, New
York, 2002.

20. M. Reichert and P. Dadam. ADEPTflex: Supporting Dynamic Changes of Workflow without
Loosing Control.Journal of Intelligent Information Systems, 10(2):93–129, 1998.


