Mining Configurable Enterprise Information
Systems

M.H. Jansen-Vullers *W.M.P. van der Aalst®M. Rosemann "
&Department of Technology Management, Eindhoven University of Technology, P.O. Box
513, NL-5600 MB, Eindhoven, The Netherlands

b Faculty of Information Technology, Queensland University of Technology, 126 Margaret
Street Brisbane Qld 4000, Australia

Abstract

Process mining is the extraction of a process model from system logs. These logs have
to meet minimum requirements, i.e. each event should refer to a case and a task. Many
system logs do not meet these requirements, and therefore it is not possible to use process
mining for process optimization or delta analysis. This paper shows an alternative process
mining procedure for logs containing data on the frequency that process steps have been
executed. To be able to mine such logs we apply Configurable Event-driven Process Chains
(C-EPCs). If a C-EPC is available, we propose a method to mine the process. If only a
classical reference model (i.e. an EPC) is available, we propose a method to first derive
the C-EPC through mining and then analyse the process. This approach enables us to do
process mining in the context of ERP systems such as the SAP solutions.

Key words: Data and Process Re-engineering, Data Mining, Knowledge Discovery,
Reference Models, Enterprise Information Systems

1 Introduction

Many organizations are confronted with problems resulting from badly implemented
enterprise information systems like workflow management systems, case-handling
systems or Enterprise Resource Planning Systems. They observe that the system
frustrates the normal way of handling processes. Maybe the system is not able to
support the process as it should be carried out, or maybe the business process as

Email addresses: m.h. jansen-vullers@tm.tue.nl (M.H. Jansen-Vullers),
w.m.p.v.d.aalst@tm.tue.nl (W.M.P. van der Aalst),
m.rosemann@qut .edu.au (M. Rosemann).

Preprint submitted to Elsevier Science 27 January 2005

implemented in the enterprise information system is not known or accepted by the
employees [34]. As a result, the actual business process may diverge from the pro-
cesses as implemented in the enterprise information system. To improve such a
situation, it would be helpful to know the actual steps when carrying out a partic-
ular process. Process mining can do this as the actual process is taken as a starting
point [6].

Other areas where process mining might contribute are reconfiguration or upgrades
of configurable systems. When implementing a system, configuration enables an
organization to map functionality of the system onto the business processes. How-
ever, when an enterprise information system is in use for some time, typically quite
a number of updates and extensions have been added to the system. Documenta-
tion, if present at all, is outdated. Furthermore, the business process might have
been changed as well. When mining the actual processes from the old system, the
result can be used to implement the new system, without requiring too much effort
from scarce resources [32]. Apart from finding the actual process or making a delta
analysis, process mining allows for performance analysis by explicitly defining the
executed processes.

Process mining is well-described in the scientific literature, see e.g. [6,8,11,17—
19,28,29,40-42,46-48]. The goal of process mining is to extract information about
processes from transaction logs [6]. Process mining requires logs from enterprise
information systems such as workflow management systems, case-handling sys-
tems and Enterprise Resource Planning Systems. These logs may record several
attributes, e.g. the case that is being handled, the task and event types, the user that
carried out the task etc. It is not necessary that all information is available in the
log, but the reference to both cases and tasks is required.

We first describe a number of case studies that we carried out in the area of process
mining (Section 1.1), which leads us to the research statement of this paper (Section
1.2).

1.1 Case studies

We have successfully applied our mining techniques in several organizations. In
this section, we briefly show some results for these organizations.

The first application is based on the log of a workflow system, supporting the pro-
cesses of a Dutch governmental institution responsible for fine-collection [2].1 A
case (process instance) is a fine that has to be paid. There may be more fines related

1 The name of the organization is not given for reasons of confidentiality. We want to thank
L. Maruster, R. Dorenbos, H.J. de Vries, H. Reijers, and A. in ’t Veld for their valuable
support.

Case_id[Date_def
1877402[13-10-201

Order[act_code]Planned date

Exec_date[Trigger date
30-09-1992 07-10-1992| 15121992

1 2 1T/ P
AB7T702[4340-200 2 6] 16121992 23421892 06024893 1/
6883732710 20m 1 2| 20.01.1393 27.011393 06041393 \ ///
8774021031020 3 33| 06-0219930602-1993] 11024 991‘ /
w720 m 4 52| 11021993 15021993] 24021993
1677021310200 5 53| 2402199322021993] 19.051993] é]
2688375[27-10-2001 2 6| 06041853 14.04-1893| 29.054 asj
1877302131020 6 73| 19.05-199319.05.-1993| 27.051933 \
1770230200 7 7| 27.05-1993 27.05-1933] 11.05-1933] \
26a6373l27-10-2001 3 7| 29-051993 0506-1293|_20.071993| iy
16774021310-2001 8 12| 11-06-19931206-1993] 13071933
1877902131020 9 7| 13.07-19931307-1993] 13.071993]
18774021310-2001 10 12| 13.07-19931307-1993| 03081993
2686373271020 4 12| 20.07-19932107-1983| 26074 393‘
2688375[27-10-201 5 26-07-1993 26-07-1993] 27-07-1993
266837327-10-20m & 33 27-07-1993 27-07-1993]_28-07-1993
WERITIET D00 T 52| 28.071963 05.05-1993] 18.081 953 \
1877402/13-10-2001 11 99| 03.08199303081993] 28121993
26E837IET 02000 & 53] 18.0519631005-1593] 14.071658] < =
4645624201020 1 2| 08-11-19331511-1993] 26011994 5 -
4638702201020 1 2| 01.12133306121983] 16-021394
187790213-10.20m 12 16| 26121993 2612.1993] 04011994
1877402[13-10-2001 13 2| 0401199412.01-1994] 23.034994 o sy
4545624[20-10-20m 2 6] 26.01-1994 02402-1994] 19-03-1994 5| | A B DEEO G | Evbor | Elsna. | @rodo. | o2 Wik, | #ivap. | Blose | Sy [[EEWT
5368503 zn 102001 1 2| 15021854 22021854 05051954

W c]lb_prncess ps - GSview
Eile Edit Options Wiew Crientation Media Help

EERRECONCIOE I E

1

Page: "1" 1of1

(E’l‘lﬁ

File: cjib_process.ps

Fig. 1. A fragment of the log of a Dutch governmental institution responsible for
fine-collection and the corresponding process mining result.

with the same person. However, each fine corresponds to an independent case. This
process has the particularity that as soon as the fine is paid, the process stops. In
total there are 99 distinct activities which can be either manually or automatically
executed. We selected the fines information for 130136 cases. We constructed the
process log and we applied to this log our process discovery method that can handle
noisy data [7,27].

Figure 1 (top-left) shows a fragment of the log containing 130136 cases. This log
is generated by an information system specifically constructed for the Dutch gov-
ernmental institution. The top-right screen shows a screenshot of our mining tool
EMIiT while analyzing the log. The bottom screenshot shows the whole process ob-
tained through application of the process mining techniques. The discovered mod-
els have been inspected by the domain experts. They concluded that our discovered
models were able to grasp the important aspects of the process. Moreover, the dis-
covered models revealed aspects that are often questioned when discussing the pro-
cess model. These experiences showed that process discovery can provide useful
insights into the current practice of a process and highlight difference between the
actual process and the prescriptive/descriptive model [27].

The second application of our mining techniques is based on a log coming from a
case handling system, i.e. FLOWer (the workflow product of Pallas Athena). This

600

500

400

300 \
200

100 —s\
0 T T T 1
0 5000 10000 15000 20000

Fig. 2. Throughput time Medical cases in ‘objections on the Disablement Insurance Act’

system is used to support business processes of the Employee Insurance Implement-
ing Body (Uitvoering Werknemersverzekeringen, or UVW) in the Netherlands. In
this project we made a download of the relevant FLOWer tables and converted
them to the common XML format [24]. Note that in FLOWer, the emphasis is on
the data-elements in stead of on the control flow. For the conversion, this results in
restrictions on the capacity of tools and systems, but also on the data that can be
mined. We adapted our tools, first developed to mine workflow systems, in such a
way that we were able to mine case handling systems as well.

The UWYV project showed that process mining in a case handling system added
value to the business processes. We analyzed several throughput times of the busi-
ness process ‘objections’. Using the FLOWer downloads and the PROM frame-
work, we extracted, amongst others, Figure 2. The throughput time in days is on
the vertical axis, the number of cases on the horizontal axis. The majority of cases
has a throughput time of less than 100 days, the horizontal line shows the legal
deadline after which a case can be adjourned. Apart from the number of cases that
is finished before/after the deadline, also the shape of the curve is of interest: before
the deadline the curve is round (many cases are finished just before the deadline),
after the deadline the curve is hollow (only a few cases are finished just after the
deadline). It shows the type of management control, i.c. the percentage ‘in time’
is measured, but also that employees are able to influence the workflow. We made
such analyzes for a number of processes, each time resulting in different aspects of
the workflow.

In addition to implementations of systems based on a predefined process model,
several other types of systems exist which can be classified as ‘Process Aware
Information Systems (PAIS)’. An important type of such systems are Enterprise
Resource Planning Systems (ERP), such as SAP solutions, SSA Global |y or Peo-
plesoft. On the one hand, these systems record a lot of data related to cases and
activities, and on the other hand the additional value of obtaining a process model
can have much more impact given the fact that no explicit process model is avail-
able yet.

An example of a SAP R/3 project is one for financial processes of the shared ser-

vice center of a large Dutch industrial company 2. This company aimed to discover
their processes to use it as an input for configuration of their new SAP release.
This project was based on the ERP-ReDocHRW Solution, a commercial tool for
re-documentation of SAP solutions [32]. At first, we extracted data from the SAP
system: frequency of transaction execution, custom adjustments and organizational
functions with the help of ABAP reports. In the second step, we analyzed the data
with the Reverse Business Engineer (RBE). In the third step the process structure
has been generated with the help of the ASAP Question and Answer Database. In
the last step, the data has been transferred from ASAP into the SAP R/3 reference
model of ARIS. As a result, those parts of the reference model that are actually
in use were activated. This information is used as an input for the upgrade of the
financial information system, and secondly, it has been used to improve their busi-
ness processes. It turned out that several ’old’ transactions were frequently used,
whereas several 'new’ transactions were hardly used. It clearly demonstrated that
the new way of working that had been implemented some time ago, has not been
adopted by workers at the shop floor. The project lasted for about 4 weeks and
required about 15 working days for consulting.

These case studies show that in many situations there is a discrepancy between the
predefined process (i.e., a descriptive or prescriptive process model) and the real
process (i.e., the process model obtained through mining). From the viewpoint of
business alignment these discrepancies are of particular interest since they may in-
dicate a misfit between the information system (based on an unrealistic or incorrect
descriptive or prescriptive process model) and the real business process. What is
lacking at this point in time, is a process mining approach for ERP systems that
doesn’t require customer and consultant involvement as was required for the SAP
project described above, which is less dependent of the actual information system
and which is more or less comparable to the effort in the mining process for work-
flow and case handling systems.

1.2 Research statement

To apply our current process mining techniques, we need a reference to both a case
and a task. Our first mining efforts in SAP showed that this requirement is not
necessarily met when dealing with ERP systems. The last case study in section 1.1
uses a tool based on the ASAP Question and Answer database, thus avoiding this
problem.

This paper focuses on mining actual processes from incomplete logs, this is without
both case and task reference. An example of such an incomplete log is a frequency

2 We kindly thank Karel Bastiaanssen for sharing his valuable ideas and practical input on
process mining in ERP environments. He was responsible for this project, as well as several
other RBE projects in the manufacturing and process industry.

Task | frequency] - conf,=ON -
A 100 conf ,=XOR
B 40 conf ,=XOR
D 100

Frequency profile and C-EPC configuration and process model

Fig. 3. Process mining based on a frequency profile and an EPC (for elaboration of this
example we refer to Section 4)

profile, based on the frequency a transaction has been executed, e.g. task A has
been carried out 100 times and task B 40 times (see left-hand side of Figure 3). As
a result, pure process mining, this is without any prior information about the pro-
cess structure, is not possible. We need some additional information in the form of
process models such as best practices or reference models [43,44]. We discuss how
reference models (especially C-EPCs [36]) can contribute to mine actual processes.
In Figure 3 this process is illustrated for a frequency profile and a reference model
represented by a C-EPC.

In practice, configurable reference models are not available yet. ERP systems such
as SAP R/3 are based on a set of configurable business processes. However, the
reference models in which these are organized are merely a general repository in
stead of a configurable process model. To bridge the gap between configurable
processes represented by non-configurable process models towards a situation in
which configurable process are represented by configurable process models, we
make use of the configurable variant of EPCs: C-EPCs. Therefore, we include more
general reference models, such as EPCs. Together with the frequency profile, a
C-EPC and the actual process model can be determined. It should be taken into
account that the derived C-EPC is merely based on one particular log and might
differ from C-EPCs based on other logs. In Figure 3 this process is illustrated for a
frequency profile and a reference model represented by an EPC.

An extension of the previous approach is to take n logs, resulting in a set of n C-
EPCs. Subsequently, this set of C-EPCs can be consolidated into a more general
and more accurate C-EPC. The C-EPC can be improved by rules, e.g. a particular
configuration setting in one part of the model implies a particular setting in another
part of the model.

Ultimately, the C-EPC can be extended by guidelines. Apart from the reference

model and n logs, additional meta data is required, such as cost and performance
data of the process, size of the company or the industry sector. Another extension
can be the use of additional data in the log (time and resource of each event is
known).

The paper is structured as follows. In the next section we present the background
of the research: process mining, its applicability to configurable enterprise infor-
mation systems and the role reference models might play mining these systems.
In our approach, we make extensive use of reference models, and especially EPCs
and C-EPCs. The semantics of these modelling languages should be defined unam-
biguously, therefore EPCs and C-EPCs are formally described in Section 3. Readers
already familiar with this material could skip this section.

In Section 4 we elaborate the first research question: taking a C-EPC and a fre-
quency profile as a starting point we derive the configuration and the actual pro-
cess model. We show how to apply existing software packages to support solving
our mining problems; these software packages are based on Integer Programming
techniques. In Section 5 we reformulate our approach in such a way that it indeed
corresponds to an Integer Programming problem. In Section 6 we take an EPC and
a frequency profile as a starting point, taking into account that configurable process
models are not yet available in practice yet. We derive the configuration and the
actual process model, and as a side-effect we also derive the configurable process
model. We show that the solution here is a variant of the solution of the first research
question. This paper concludes with a section on related work, a brief summary and
future work.

2 Background

2.1 Process Mining

During the last decade explicit process concepts (e.g. workflow models) have been
applied in many enterprise information systems [4,14,22,26]. Workflow Manage-
ment (WFM) Systems such as Staffware, IBM MQ-Series, COSA, etc. offer generic
modelling and enactment capabilities for structured business processes. By mak-
ing graphical process definitions, i.e. models describing the life-cycle of a partic-
ular case (process instance) in isolation, one can configure these systems to sup-
port business processes. Many other systems make use of explicit process models.
Consider for example Enterprise Resource Planning systems (e.g. SAP, Peoplesoft,
Baan and Oracle) or Customer Relationship Management software (Siebel), etc. As
pointed out in the introduction, collection of runtime data from such Enterpise In-
formation Systems may contribute to diagnoses, design and redesign of Enterpise
Information Systems and business processes. The collection of runtime data and

the analysis of these data is called process mining.

For this mining process, the data logs of an enterprise information system are pro-
cessed by a mining tool, e.g. EMiT, Little Thumb, Process Miner, etc. [6]. The
mining tools are generic, i.e. can be applied to all kinds of business processes and
all kinds of enterprise information systems. These tools require a common XML
format for storing and exchanging the logs. We have developed such a format,
which is described by a document type definition (DTD). Both can be downloaded
from www.processmining.org. Figure 4 shows that the XML-format connects the
transactional systems such as workflow systems, ERP systems, CRM systems etc.
The XML-format is then used as input for the mining tools. The goal of using a
single format is to reduce the implementation effort and to promote the use of the
mining concepts in multiple contexts.

workflow management systems case handling / CRM systems ERP systems
Staffware FLOWer SAP R/3
InConcert Vectus BaaN
MQ Series Siebel Peoplesoft

| | |
common XML format for storing/
exchanging workflow logs

Little Exper- INWOLVE Process

EMIT Thumb DiTo Miner

mining tools

Fig. 4. The XML-format as solver/system independent medium (available from
WWW.processmining.org)

Application of the mining tools require logs in the specified format. Furthermore,
we assume that (1) each event refers to a task or well-defined step, (2) each event
refers to a case or instance and (3) events are totally ordered. If this is available,
mining algorithms can be used to derive models describing the underlying process.
The minimum information (i.e. task and case) may be complemented by resource,
time, event type etc., thus allowing for the discovery of organizational structures,
social networks and performance indicators.

Figure 5 shows an example log of a process from the workflow management system
Staffware. This log contains the required data case-id and task-id, and additionally
the event type (the task is scheduled, processed or released), the user and a time
stamp.

However, for many types of systems the logs may look differently. Although from
a pure mining view such a log is incomplete, other data may be available to help
mining the actual process model. In the next subsection, we elaborate two alterna-
tive approaches to show which information in configurable enterprise information
systems might contribute to process mining.

2.2 Alternative approaches

When mining processes in enterprise information systems, the mining process is
straightforward if business process management data is available, e.g. like in Fig-
ure 5. If this type of information is not available, other data might help. We consider
two types of registrations: (1) transaction data stored in the tables and (2) process
registrations primarily used and intended for the measurement of database perfor-
mance.

Enterprise information systems make extensive use of the database that supports the
system: each business transaction results in a system transaction that is recorded in
the database. The data that is recorded are documents that are created or updated,
such as purchase requisitions, purchase orders or scheduling agreements. In rela-
tion to these documents all other detailed transaction data is stored in the database.
Making use of these data is promising in the context of process mining: the docu-

Case 3
Step description Event User yyyy/mm/dd hh:mm
Start mhjansen@staffw_ 2004/5/6 15:22
A Processed To mhjansen@staffw_ 2004/5/6 15:22
A Released By mhjansen@staffw_ 2004/5/6 15:22
(¢} Processed To mhjansen@staffw_ 2004/5/6 15:22
C Released By mhjansen@staffw_ 2004/5/6 15:22
D Processed To mhjansen@staffw_ 2004/5/6 15:22
D Released By mhjansen@staffw_ 2004/5/6 15:23
Terminated 2004/5/6 15:24
Case 1
Step description Event User yyyy/mm/dd hh:mm
Start mhjansen@staffw_ 2004/5/6 15:22
A Processed To mhjansen@staffw_ 2004/5/6 15:22
A Released By mhjansen@staffw_ 2004/5/6 15:22
B Processed To mhjansen@staffw_ 2004/5/6 15:22
B Released By mhjansen@staffw_ 2004/5/6 15:22
D Processed To mhjansen@staffw_ 2004/5/6 15:22
D Released By mhjansen@staffw_ 2004/5/6 15:23
Terminated 2004/5/6 15:28
Case 2
Step description Event User yyyy/mm/dd hh:mm
Start mhjansen@staffw_ 2004/5/6 15:22
A Processed To mhjansen@staffw_ 2004/5/6 15:22
A Released By mhjansen@staffw_ 2004/5/6 15:22
B Processed To mhjansen@staffw_ 2004/5/6 15:22
B Released By mhjansen@staffw_ 2004/5/6 15:23
D Processed To mhjansen@staffw_ 2004/5/6 15:23
D Released By mhjansen@staffw_ 2004/5/6 15:24
Terminated 2004/5/6 15:28

Fig. 5. Example log (based on the EPC in Figure 6)

ment numbers can be considered as case-id. The derivation of the tasks that have
been executed to create or update these documents is less straightforward, but may
be possible. This approach is used in tools such as ARIS Process Performance
Manager (PPM) when analyzing process performance of business processes.

A disadvantage of this approach is that it is time consuming and very specific.
For each particular process and variant of a process, it is necessary to find the
relevant tables and table fields, since the actual configuration of the system may
influence the use of tables and fields. To be able to pinpoint the exact table fields
that are affected by a particular process, it is necessary to examine whether these
fields may differ for particular configurations. Eventually, this may even lead to a
mining approach in which the actual process should be known completely before
mining the process. In PPM for example, we see that application of the software
first requires customization of PPM [21]. In this manual step a consultant discusses
the actual process with the process owner, which is input for PPM and thus the
performance analysis. The quality of the output of the performance analysis is,
amongst others, dependent on the quality of the model and the configuration of
PPM.

Another approach originates from the fact that enterprise information systems such
as the SAP solutions log data to be able to analyze the database. For such an anal-
ysis, the processor workload caused by each transaction carried out in the system
is stored. The workload analysis of a particular period summarizes which transac-
tions have been carried out, by whom and how much computing time it consumed.
Tools like the SAP Reverse Business Engineer (RBE) make use of this feature and
are able to report the transaction frequencies [32,38]. We can apply this approach
for process mining when deriving the frequencies of the execution of transactions.
Unfortunately, there is no link between case-ids (document numbers) and these
frequencies. In this context reference models may contribute. A well-known ex-
ample of such reference models are Event Driven Process chains (EPC’s) which
have been developed in a collaborative research project conducted by SAP AG and
the IDS Scheer AG [23,39] and which form the basis of the SAP reference models
[12]. Also other ERP systems make use of similar reference models, e.g. Baan/SSA
Global [45] or Intentia [15]. In this paper, we elaborate on this second approach.
Therefore, in the next subsection we focus on the application of reference models
for process mining.

2.3 Reference models

Business process management frequently uses models, e.g. for modelling the en-
terprise, for information system specification or end-user training [9,16,35]. These
models may be descriptive or prescriptive. A typical example are reference models
in the context of Enterprise Resource Planning systems such as from SAP. The SAP

10

k FP-A FP-B FP-C recc)re?\?erd

100 100 140 C>
100 0 100

0 100 40 Check order
100 100 140

o|o|m|>|8

Product C
required

Product B
required

Manufacture o Manufacture

product B product C

Product B Pr\?d”uilc
available avaflaole

Deliver order

Order
delivered

Fig. 6. Example EPC

reference models are expressed in so-called Event-driven Process Chains (EPCs).
Figure 6 shows an example of an EPC for internal order handling.

It should be taken into account that reference models for ERP systems such as the
SAP solutions are extremely complex because of the complexity of the business
processes at one hand, and the fact that these systems are configurable at the other
hand. In fact, such a reference model (represented by an EPC) is an ‘upperbound’
of process models that may possibly be implemented in a particular enterprise.
Consider for example an ERP system that allows configuration of the purchasing
process with respect to the quotation process. The related reference model consists
of two branches (procurement with respectively without quotations). Some com-
panies might not implement quotations and it is clear which part of the process
model is relevant. Other companies however, might implement the quotation func-
tionality, though leaving implicit whether quotations are required (one branch of
the process model is applicable) or quotations may be used which may dependent
on some criteria (both branches of the process model are applicable). Because such
implicit decisions cannot be derived from such reference models, we call these ‘up-
perbound’ or ‘maximum’ reference models (for example EPC-Max). Further com-
plexity drivers are the number of (sub)models and the interrelationships between
these models.

To handle the complexity that is caused by the possibility to configure a system, a
new approach has been developed that intuitively reflects the configurable nature of
an ERP system. The representation of this reference modelling language is called
configurable EPC (C-EPC) [36]. In this paper we will look at this specific class

11

of reference models. In a C-EPC, there is an explicit distinction between choices
made at runtime and choices made at configuration time. The following example
illustrates the difference between these two types of decisions.

The left-hand side of Figure 7 shows an example of a C-EPC for transmitting pur-
chase orders. The configurable XOR-connector is used to state that at configuration
time it should be decided whether executing both the left and the right branch, i.e.
purchasing with or without scheduling agreements, is allowed for a particular com-
pany. In the C-EPC this is modelled as configurable XOR-connector, which can
be set XOR (i.e. choice at runtime); this is depicted in the middle part of Figure
7 (variant 1). In practice one may also find companies that do not allow purchase
order processing based on scheduling agreements. In that case only one path can be
selected (i.e. choice made at configuration time); this is depicted in the right-hand
part of Figure 7 (variant 2). This example is taken from [36] and is based on the
SAP Reference Model Purchasing, version 4.6¢c. For more details on the C-EPC
approach we refer to Section 3.

PuUrchase
requisition
released for
PO

Purchase
requisition
released for
PO

Purchase
requisition
released for
PO

Requisition
released
for SA

Requisition
released
for SA

Purchase
order
Creation

Purchase
order
Creation

Purchase
order
Creation

Scheduling
Agreement
Delivery

Scheduling
Agreement
Delivery

SA release Purchase SA release Purchase Purchase
created order created order order
created created created

Release of
purchase
order

Release of
purchase
order

Release of
purchase
order

Purchasing
document
released

Purchasing
document
released

Purchasing
document
released

A 4

Scheduling
Agreement
Delivery

Purchase
order
Processing

Purchase
order
Processing

Purchase
order
Processing

Scheduling
Agreement
Delivery

Purchasing
order
ansmitted

C-EPC Variant 1 Variant 2

Fig. 7. Example of a C-EPC with XOR-join (SA-scheduling agreement, PO - purchase
order)

12

3 Formalization of EPCs and C-EPCs

3.1 Event-driven Process Chains

An Event-driven Process Chain (EPC) consists of events, functions and connectors.
However, not every diagram composed of events, functions and connectors is a
correct EPC. For example, it is not allowed to connect two events to each other (cf.
[23]). Unfortunately, a formal syntax for event-driven process chains is missing.
In this section, we give a formal definition of an event-driven process chain. This
definition is based on the restrictions described in [23] and imposed by tools such
as ARIS and SAP. This way we are able to specify the requirements an event-driven
process chain should satisfy.

Definition 1 (Event-driven process chain (1)) An event-driven process chain is a
five-tuple (E, F,C|1, A):

- Eis a finite set of events,

- F'is a finite set of functions,

- C'is a finite set of logical connectors,

- 1€ C — {A, XOR,V} is a function which maps each connector onto a connec-
tor type,

-AC(EXF)U(FXE)UEXC)U(CXE)U(FxC)U(CxF)U(CxO)

is a set of arcs.

An event-driven process chain is composed of three types of nodes: events (F),
functions (F') and connectors (C'). The type of each connector is given by the func-
tion [: [(c) is the type (A, XOR, or V) of a connector ¢ € C'. Relation A specifies
the set of arcs connecting functions, events and connectors. Definition 1 shows that
it is not allowed to have an arc connecting two functions or two events. There are
many more requirements an event-driven process chain should satisfy, e.g., only
connectors are allowed to branch, there is at least one start event, there is at least
one final event, and there are several limitations with respect to the use of connec-
tors. To formalize these requirements we need to define some additional concepts
and introduce some notation.

Definition 2 (Directed path and elementary path) Let EPC be an event-driven
process chain. A directed path p from a node n, to a node ny, is sequence (ny,ng, . . .,
ng) such that (n;,;n;.1) € A for1 < i < k — 1. p is elementary iff for any two
nodes n; andn;onp, i #j = n; # n,.

The definition of directed path will be used to limit the set of routing constructs
that may be used. It also allows for the definition of C'gr (the set of connectors on
a path from an event to a function) and C'rg (the set of connectors on a path from
a function to an event). C'gr and C'rg partition the set of connectors C'. Based on

13

the function [we also partition C' into C',, C\,, and C'xpg. The sets C'; and C's are
used to classify connectors into join connectors and split connectors.

Definition 3 (V, C/\, C\/, CXOR, o, CJ, CS, CEF, Crg) Let EPC = (E, F7 C, l, A)
be an event-driven process chain.

N = FE U F UC is the set of nodes of EPC.

Cr={ceC|l(c) =N}

Cy={ceC|l(c)=V}

Cxor = {C eC ’ Z(C) = XOR}

Forn € N:

on = {m | (m,n) € A} is the set of input nodes, and

ne = {m | (n,m) € A} is the set of output nodes.

Cy={ceC||ec| > 2} isthe set of join connectors.

Cs ={ce C||ce| > 2} is the set of split connectors.

Cgr C C such that c € Cgr if and only if there is a path p = (ny,ng, ..., ng_1,
ng) such thatny € E, ny, ... ,ng_1 € C,ng € F,and ¢ € {ng, ..., np_1}.
Crg C C such that ¢ € Cpg if and only if there is a path p = (ny,ng, ..., ng_1,
ng) such thatny € F,ny, ... ,ng_1 € C,ny € E,and c € {ng, ..., np_1}.

These notations allow for the completion of the definition of an event-driven pro-
cess chain.

Definition 4 (Event-driven process chain (2)) An event-driven process chain EPC

(E, F,C,l, A) satisfies the following requirements:

The sets E, F, and C are pairwise disjoint, i.e, ENEF =0, ENC = (), and
FnC=0.

Foreache € E: |ee| <land|ee| <1

There is at least one event e € F such that | @ e| = 0 (i.e. a start event).

There is at least one event e € F such that |e e | = 0 (i.e. a final event).
Foreach f € F:|e fl=1and|fe|=1.

Foreachce C:|ec|>1or|ce|>1.

C; and Cs partition C, i.e., C;NCqg =0 and C;UCgs = C.

Cgr and Crg partition C,ie, CgrpNCpg = 0 and CgrUCrg =C.

The first requirement states that each component has a unique identifier (name).
Note that connector names are omitted in the diagram of an event-driven process
chain. The other requirements correspond to restrictions on the relation A. Events
cannot have multiple input arcs and there is at least one start event and one final
event. Each function has exactly one input arc and one output arc. A connector c is
either a join connector (|ce | = 1 and | @ ¢| > 2) or a split connector (| ® ¢/ = 1 and
|c @ | > 2). The last requirement states that a connector ¢ is either on a path from
an event to a function or on a path from a function to an event. In the remainder of
this paper we assume all event-driven process chains to be syntactically correct.

14

Note that {C;,Cs}, {Cgr,Crg}, and {Cy, Cxor, C\} partition C, i.e., C; and
Cg are disjoint and C' = C'; U Cs, Cpp and Crp are disjoint and C' = C'gp U Cpp,
and C, C'xor and O, are pair-wise disjoint and C' = C', UCxpr UC\,. In principle
there are 2 x 2 x 3 = 12 kinds of connectors! In [23] two of these 12 constructs
are not allowed: a split connector of type C'gr cannot be of type XOR or V, i.e.,
CsNCrrNCxor = 0 and CsNCrrNC,, = 0. As aresult of this restriction, there
are no choices between functions sharing the same input event. A choice is resolved
after the execution of a function, not before. In this paper, we will not impose this
restriction.

The semantics of EPCs have often been debated in literature. Here we do not con-
tribute to this discussion but simply refer to [1,3,13,25,33,37].

3.2 Configurable EPCs

This section introduces the notion of a configurable event-driven process chain
(C-EPC). In a C-EPC functions and connectors can be configurable. Configurable
functions may be included (ON), skipped (OF'F') or conditionally skipped (OPT).
Configurable connectors may be restricted at configuration time, e.g., a config-
urable connector of type VV may be mapped onto a A connector. Local configuration
choices like skipping a function may be limited by configuration requirements. For
example, if one configurable connector of type V is mapped onto A connector, then
another configurable function needs to be included. This configuration requirement
may be denoted by the logical expression ¢ = A = f = ON. To guide the configu-
ration process there is also a partial order which suggests the order of configuration.
Moreover, besides the configuration requirements there may also be configuration
guidelines. One can think of configuration requirements as hard constraints and
interpret configuration guidelines as soft constraints.

Definition 5 (Configurable event-driven process chain) A configurable event-
driven process chain (C-EPC) is a five-tuple (E, F,C,1, A, F¢ C° ,0%):

- E, F, C, 1, and A are as specified in Definition 1 satisfying the constraints men-
tioned in Definition 4,

- FC C F is the set of configurable functions,

- O% C C is the set of configurable connectors,

- OY C(FPuCY) x (FCUCC) is a partial order over the configurable nodes
suggesting the order of configuration,

Configurable nodes are denoted by thick circles (for configurable connectors) or
thick rectangles (for configurable functions).

A configurable function may be configured as included (ON), skipped (OF'F') or
conditionally skipped (OPT'). Configurable connectors are mapped onto a concrete

15

Fig. 8. Example of a configurable EPC

choice for the split or join considered. Clearly, a configurable connector of type A
may not be mapped onto a concrete connector of type connector of type V. The
concrete connector should always represent a behavior allowed by the configurable
connector, i.e., the configuration process only restricts the possible execution se-
quences. In case of a configurable connector of type XOR or V, also only one of
the options may be selected, e.g., if a split connector ¢ has an output function f,
then ¢ = SE(Q); denotes that function f is always selected.

In Figure 8 there are three configurable functions: A, E, and F. Each of these three
functions can be configured as included (ON), skipped (OFF) or conditionally
skipped (OPT). The other three functions cannot be configured, i.e., are always
”ON”. There are four connectors and only the XOR connector is configurable. The
configurable XOR connector can be set XOR (i.e., a choice at runtime), or select
one of the two paths (i.e., at configuration time the left-hand side or right-hand side
is selected).

We have to be aware of the interrelationship between (configurable) functions and

(configurable) connectors: In Figure 8 the configuration of function A is related to
the first AND-split connector. Because of this effect, derivation of the implemented

16

model from a C-EPC is a two stage process. First, the relevant sub-path is identified,
second unnecessary branches are cleaned up. In case of the example of Figure 8, if
function A is OFF, the left path would be empty (first step). The second step would
be to delete the entire left path incl. the connector.

The partial order < is used to specify which concrete connector type may be used
for a given connector type, i.e., x <¢ y if and only if a connector of type y may be
configured to x (e.g., A < V but not V <¢ A). The partial order of configurable
nodes OY is not shown in Figure 8.

Definition 6 (Partial ordering <¢, CT, CTS) < defines a partial order on C'T
= {A, XOR,V} U CTS where CTS = {SEQ, |n € EUF UC}. <%=
{(N,N), (XOR, XOR),(V,V), (XOR,V),(A,V)} U{(n,XOR) | n € CTS} U
{(n,V)|ne CTS}U{(n,n)|ne CTS}.

Note that <= {(n,n) |n € CT}U (XOR,V) U {(n1,n2) | n1 € CTS A ny €
{XOR,V}}.

This partial order is motivated by the fact that the configurable connector has to
subsume the behavior of the concrete connector. Table 1 illustrates the configura-
tion rules for connectors. This table only describes the overall constraints. Each
row corresponds to a configurable connector type (OR®, XOR®, AND?), e.g., an
OR® may be mapped onto an OR (V), XOR (x), AND (M), or SEQ (SEQ,, for some
node n).

OR | XOR | AND | SEQ

OR¢ X X X X

XORC X X

AND? X

Table 1
Constraints for the configuration of connectors

A configuration maps all configurable nodes onto concrete values like ON, OFF,
and OPT for functions and A, XOR, V, and SE(),, for connectors.

Definition 7 (Configuration) Ler CEPC = (E,F,C,l,A, F°,C% 0O%) be a C-
EPC. I € (F¢ — {ON,OFF,0OPT}) U (CY — CT) is a configuration of
CEPC if for each c € C°:

- 19c) <% ()

- ifl%(c) € CTS and c € C}, then there exists ann € ec such that 1°(c) = SEQ,,
- ifl%(c) € CTS and c € Cs, then there exists ann € ce such that [(c) = SEQ,,
Function [¢ maps configurable functions onto values like ON, OFF, and OPT, i.e.,

I°(f) € ON, OFF, OPT for f € F. Configurable connectors are mapped onto

17

the set CT, i.e., [“(c) € CT for c € C°. Clearly this mapping should be consistent
with Table 1 and the partial order <% Moreover, if lc(c) = SEQ,, then n should
be in the preset (for a join connector) or postset (for a split connector) of c.

Definition 8 (Valid/suitable configuration) Let CEPC = (E,F,C,1, A, F°,C°,
O%) be a C-EPC and 1€ a configuration of CEPC. 1€ is a valid configuration if
it satisfies all configuration requirements, i.e., it satisfies all logical expressions in
RC. 19 is a suitable configuration if is valid and it satisfies all configuration guide-
lines, i.e., it satisfies all logical expressions in GC.

Definition 9 (Satisfiable) Let CEPC = (E, F,C,l, A, F¢, 0, O°) be a C-EPC.
CEPC is satisfiable if and only if there is valid configuration.

Up to now we assumed a complete configuration, i.e., [“ is a complete function
mapping each configurable node onto a concrete value. However, the configuration
process may go through several stages and therefore we also add the notion of
a partial configuration. One can think of a C-EPC with a partial configuration as
another C-EPC.

Definition 10 (Partial configuration) Let CEPC = (E,F,C,l, A, F°,C% 0°)
be a C-EPC. I € (F¢ /4 {ON,OFF,0OPT}) U (C° 4 CT)? is a partial
configuration of CEPC if for each ¢ € C° N dom(1°):

- 19c) <% ()
- ifl9(c) € CTS and c € Cy, then there exists ann € ec such that [(c) = SEQ,,
- ifl9(c) € CTS and c € Cs, then there exists ann € ce such that [(c) = SEQ,,

4 Mining C-EPC’s: From C-EPC to EPC

Mining configurable enterprise information systems is hindered by the fact that logs
from these systems do not meet the requirements of traditional process mining, e.g.
of workflow systems and case handling systems. On the other hand, the advantages
of process mining as shown in Section 1.1 are equally applicable to ERP systems as
these are to WFM and case handling systems. An alternative approach for process
mining in enterprise information systems is to use frequency profiles and reference
models, in this particular case represented by C-EPCs.

Problem 1 Consider a frequency profile FP € (F — N) and a C-EPC CEPC =
(E,F,Cl,A FC ,C% 0°). Find configurations | € F© — (ON, OFF, OPT)U
(CY — CT) and such that the frequency profile and the C-EPC match.

3 Note that f € X /4 Y denotes a partial function whose domain dom(f) C X.

18

We first elaborate an example C-EPC and a number of frequency profiles and show
that several alternatives for the resulting configuration and EPC may exist. Next
we define a function to show whether a C-EPC, configuration and frequency pro-
file match and we define a function to determine the best configuration out of the
matching alternatives. We conclude that a generalized approach to find the best
matching EPC may include Integer Programming techniques.

4.1 Searching for configurations

An EPC consists of events, functions and connectors. A C-EPC may additionally
contain configurable functions and three different types of configurable connectors
(AND®, XOR® and OR®). In this subsection we elaborate an example consisting
of a C-EPC (with two configurable OR-connectors and one configurable function
as represented in Figure 9) and three frequency profiles, represented in Table 2.
Note that we assume complete cases at this point in time.

Fig. 9. Example of a configurable EPC

Frequency profile A shows that in this particular case function D and the leftmost
branch of the C-EPC have not been executed. Function D may have been configured
OFF or OPT: (¢ € {(D, OFF), (D, OPT)}. In the latter case, D has not been per-
formed at runtime. The explanation why the leftmost branch has not been executed
is a bit more complex:

e during configuration time the configurable connectors ¢, and c3 have been con-
figured SE(Q) ., and at runtime function B could not be performed (EPC variant
1 in Figure 10): ¢ = ((OR.,, SEQ.), (OR.,, SEQ)) .

19

frequency | frequency | frequency

function | profile A profile B profile C

A 100 100 100
B 0 100 80
C 100 100 60
D 0 100 70

Table 2
Three frequency profiles for the C-EPC in Figure 9

e during configuration time the configurable connectors ¢, and c3 have been con-
figured XOR, and at runtime function B has not been performed (EPC variant 2
in Figure 10): (¢ = ((OR.,, XOR), (OR.,, XOR)).

e during configuration time the configurable connectors ¢, and c3 have been con-
figured OR, and at runtime function B has not been performed (EPC variant 3 in
Figure 10): ¢ = ((OR.,, OR), (OR,,, OR)).

(1 (2 ®

Fig. 10. Resulting EPCs based on the C-EPC in Figure 9 and frequency profiles FP-A, FP-B
and FP-C

Frequency profile B shows that functions A and D have been performed the same
number of times, which implies that function D should be configured ON or OPT:
1 € {(D, OFF), (D, OPT)}. In the latter case, D has been performed each time
at runtime. Furthermore, functions B and C have been performed the same number

20

of times. This can be because:

e during configuration time the configurable connectors ¢, and c3 have been con-
figured AND: [= ((OR,,, AND), (OR.,, AND)).

e during configuration time the configurable connectors ¢, and c3 have been con-
figured OR and coincidentally A, B and C have been performed the same number
of times: (¢ = ((OR,,, OR), (OR.,, OR)).

Frequency profile C finally, does not leave any freedom for configuration. Since D
has been performed, but less than A, it should be configured OPT: [¢ = (D, OPT).
Note that we assume that the log consists of complete cases without any noise
which, in practice, is not necessarily the case. Furthermore, c5 and c3 can only be
configured OR: I° = ((OR.,, OR), (OR,,, OR)).

From these examples, we conclude that deriving a configuration based on a C-EPC
and a frequency profile is not unambiguous. The remainder of this section is used to
show when a particular configuration is allowed and if more than one configuration
is allowed, which configuration fits best.

4.2 Matching

Combining a particular C-EPC and frequency profile results in a configuration and
related EPC. However, in general, this process may result in a number of config-
urations and thus several different EPCs. In this subsection we define the function
match to show whether a C-EPC, configuration and frequency profile do match, in
the next subsection we define a function to determine the best configuration out of
the matching alternatives.

A C-EPC can be considered a set of concrete EPCs; a particular EPC is deter-
mined by its configuration as defined in Definition 7. An EPC/C-EPC is a graph
consisting of different nodes. Each node and each arc have a frequency. Through
the frequency profile we only know the frequency of functions and not of the other
nodes. Assume that the frequency of each node n is given by a variable z,, and let f,,
be the frequency in the profile if # is a function. Consider the following system of
equations: Vn € F': x,, = f, and the set of equations generated by arcs. The exact
formulation of the set of equations is dependent on (i) the structure of the model,
(i1) whether a function is configurable or not (and if applicable its configuration),
and (iii) whether a connector is configurable or not (and if applicable its configura-
tion). For all nodes in the model, the applicable equations should be selected from
the list below:

e Related to functions:
- An arc ending in a function has a frequency that is equal to the frequency of
the arc starting from that function.

21

- All arcs starting or ending in a non-configurable function or event have a fre-
quency that equals the frequency of that function or event.

- All arcs starting or ending in a configurable function that has been configured
ON, have a frequency that equals the frequency of that function.

- All arcs starting or ending in a configurable function that has been configured
OPT, have a frequency that is greater than or equal to the frequency of that
function.

- A configurable function that has been configured OFF, has a frequency 0.

e Related to AND-nodes (connectors or configurations):
- An AND-node has a frequency that equals the frequency of each of the arcs
starting from that AND-node.
- An AND-node has a frequency that is less than or equal to the frequency of
each of the arcs ending in that AND-node, and equals the frequency of at least
one of the arcs ending in that AND-node.

e Related to XOR-nodes (connectors or configurations):
- A XOR-node has a frequency that equals the sum of the frequencies of all arcs
starting from that XOR-node.
- A XOR-node has a frequency that equals the sum of the frequencies of all arcs
ending in that XOR-node.

e Related to OR-nodes (connectors or configurations)

- An OR-node has a frequency that is less than or equal to the sum of the fre-
quencies of each of the arcs ending in that OR-node.

- An OR-node has a frequency that is greater than or equal to the frequency of
each of the arcs ending in that OR-node.

- An OR-node has a frequency that is less than or equal to the sum of the fre-
quencies of each of the arcs starting from that OR-node.

- An OR-node has a frequency that is greater than or equal to the frequency of
each of the arcs starting from that OR-node.

e Related to SEQ,-configurations (split)
- A connector that has been configured SEQ,, has a frequency that is equal to
the frequency of the arc starting from that connector and ending in node x.
- An arc starting from a connector that has been configured SEQ, and ending in
any other node than x has a frequency 0.
- An arc starting from a connector that has been configured SEQ, and ending in
any node has a frequency equal to the frequency of that connector.

e Related to SEQ,-configurations (join)
- An arc starting from any node and ending in a connector that has been config-
ured SEQ, has a frequency equal to the frequency of that connector.
- A connector that has been configured SEQ,, has a frequency that is equal to
the frequency of the arc starting from node x and ending in that connector.

22

- An arc ending in a connector that has been configured SEQ,. and starting from
any other node than x has a frequency 0.

We have defined now a C-EPC and a frequency profile, and we are able to define
the set of equations that describe this situation. We are ready to define when a
configuration matches with a C-EPC and a given frequency profile.

Definition 11 (Match) Let CEPC = (E,F,C,l, A, F¢,C% O%) bea C-EPC, I €
(F¢ — {ON,OFF,OPT}) U (CY — CT) a configuration of C-EPC and FP
€ (F — N) a frequency profile of C-EPC. match:(C-EPC, 1¢, F P) — boolean.
If there is a solution to the ‘system of equations’, match(C-EPC, 1€, FP)= true; if
there is no solution match(C-EPC, 1€, FP)= false.

In other words, the function match is true iff FP is a possible frequency profile for
the EPC that results from C-EPC and /. Note that we still have to formalize the
system of equations, see Section 5. Consider the example in Figure 9 and frequency
profile A. We mentioned three alternative configurations:

(1) lC ((OR627SEQC)7(ORCmSEQC)a(D7 OFF))
(2) I€ = ((OR.,, XOR), (OR.,, XOR), (D, OFF))
3) 1 = ((OR,,, OR), (OR.,, OR), (D, OFF))

It is easy to verify that the configurations in Section 4.1 match, because the system
of equations can be solved for all three configurations and thus match(C-EPC of
Figure 9, 1€, FP-A) = true.

4.3 Objective function

In the previous subsection we have defined the function match to be able to de-
cide whether a C-EPC, a configuration and a frequency profile actually match. The
result of this step is a set of matching configurations. The next step is to decide
which of the matching configurations fits best. To be able to do so, we define the
objective function of a configuration and minimize this function to find the ‘best
configuration’. The basic idea is that an EPC should be as specific as possible, still
meeting the requirements of the C-EPC. Furthermore, we prefer the configuration
of connectors over the configuration of functions.

To define the objective function we refer to the partial ordering in Definition 6 and
visualized in the left-hand part of Figure 11. The basic idea for the configuration
of connectors is that the concrete connector should be selected conform the partial
ordering and that the selected node is as low as possible in the ordering tree. The
resulting objective function is depicted in the right-hand part of Figure 11.

The basic idea for configurable functions is that all functions should be configured

23

() (),
() o) T (o), ()
1 1

ORC oNe)

Fig. 11. Objective function for the configuration of connectors

ON, unless this is in conflict with the frequency profile. Furthermore, functions
should not be configured OPT unless absolutely necessary, because this configura-
tion is not discriminative at all. In Figure 12 the resulting objective function for the
configuration of functions is depicted.

1

Fig. 12. Objective function for the configuration of functions

The objective function can now be formulated as: minimize the sum of the objective
function due to the configuration of all configurable connectors and the objective
function due to the configuration of all configurable functions.

For the example in subsection 4.1 we conclude that variant 1 (both connectors con-
figured SEQ)) and function D configured OFF is the best configuration, see Table
3.

1¢ 1€(c2) 19 (¢3) 1(D) Objective function
1 SEQq SEQ . OFF = | 0+0+1=1
2 XOR XOR OFF | = | 1+1+1=3
3 OR OR OFF = | 24+2+1=5

Table 3
Configurations for the C-EPC in Figure 9 and frequency profile FP-A

4.4 Conclusion

In this section we have defined the function match to be able to decide whether a C-
EPC, a configuration and a frequency profile actually match. The result of this step

24

is a set of matching configurations. The next step is to decide which of the matching
configurations fits best. To be able to do so, we defined an objective function of a
configuration. Summarizing, if we want to determine an EPC based on a C-EPC
and a frequency profile, we go through the following steps:

(1) find all matching configurations
(2) minimize the objective function

The approach that we followed in Section 4.2 (find all solutions of a system of equa-
tions) and Section 4.3 (minimize a particular objective function) can be performed
in one step by making use of Integer Programming techniques. This has an addi-
tional advantage since standard software for solving Integer Programming prob-
lems is generally available. In the next section we reformulate the above described
approach in such a way that integer programming can be applied. Subsequently we
will discuss the required variables, the constraints and the objective function.

5 Formulating the Integer Programming problem

In Section 4 we elaborated process mining based on incomplete logs, i.e. based on a
frequency profile. We showed that the concept of process mining is applicable, pro-
vided that a configurable reference model (an C-EPC) is available. The approach
we developed is a so-called optimization approach: find the optimal solution, given
a set of constraints. Many books on operations research focus on such optimiza-
tion problems. In [30] for example, Murty shows how to solve transportation and
production planning problems, making use of linear programming. Solving a lin-
ear programming problem requires definition of the set of decision variables, the
constraints and the objective function. The constraints are represented by a system
of equations, expressed in the previously defined variables. In general, this system
of equations has a number of solutions, i.e. each solution assigns a value to the set
of variables. Finally, the objective function selects that set of values that fulfills the
objective function best.

In linear programming the variables may have any value (integer or real), however
in practice real values not necessarily have a meaning. For example, when optimiz-
ing the company’s profit (objective function) based on the number of production
machines (one of the decision variables), the solution ‘number of production ma-
chines equals 5,4 makes no sense. Production management decides either to invest
in 5 machines or in 6 machines. This subclass of linear programming is called In-
teger Programming.

In this section we apply the Integer programming technique to support process
mining based on frequency profiles. We first define the decision variables, then
we elaborate the definition of the set of equations and the objective function. The

25

section concludes with an example for a particular C-EPC and frequency profile.

Let CEPC = (E,F,C,l,F° ,C° 0% R, G°) be a C-EPC and FP € (F 4 N)
be a frequency profile. A (C-)EPC is a graph consisting of different nodes. Each
node and each arc have a frequency. The frequency profile records the frequency
of functions and not of the other node types * . Consider the following Integer Pro-
gramming problem.

5.1 Variables

We consider two types of variables: variables to describe the model elements and
variables to describe the configuration settings, which are our decision variables.
These decision variables are related to the configuration of functions and the con-
figuration of connectors.

All elements in the C-EPC have a frequency.

Vee FEUFUCUA: freq, € N (1)

A configurable function can be configured ON, OFF or OPT.

Vf e F®:conf; € {ON, OFF, OPT} 2)

All configurable connectors can be mapped onto a concrete connector within CT,
provided that the concrete connector is more specific than the configurable connec-
tor (cf. partial ordering in Definition 6). Moreover, if [“(c) = SEQ,,, then n should
be in the preset (for join connectors) or in the postset (for split connectors).

Ve e CY: conf, € {x € CT|x <% I(c) A 3)
if1°(c) € CTS and ¢ € C, there exists an n € oc such that t = SEQ,, A
if1(c) € CTS and ¢ € Cg, there exists ann € c @ such that x = SEQ,}

4 We assume that the EPCs are sound, i.e. meet the following three requirements: (i) for
each case that is represented in the start event, one and only one representation exists (even-
tually) in the end event, (ii) when the representation of a case appears in the end event, there
is no other representation of this case present in the EPC, and (iii) for each function in the
EPC it is possible to move from the start event to a situation in which this function can be
executed. Furthermore we assume that the frequency profiles represent complete cases, i.e.
the frequency profile does not contain any noise.

26

5.2 Constraints

We consider several groups of constraints: constraints related to functions, con-
straints related to concrete, non-configurable connectors (AND, OR and XOR)
and to configurable nodes that have been configured (SEQ-, AND-, OR- or XOR-
configurations). In this subsection, we show the constraints related to functions and
we show how we derived the constraints related to XOR-connectors and XOR-
configurations. A complete overview of constraints can be found in appendix A.

5.2.1 Constraints related to functions

All configurable and non-configurable functions have a frequency as recorded in
the frequency profile FP.

Vf € dom(FP): freq; = FP(f) 4)

An arc ending in a function has a frequency that is equal to the frequency of the arc
starting from that function.

Ve FY(x,um), (22,y2) € A, (11 =22 = f) L frequy gy = freQay ey ()

(X,,Y,) (X5 Ys)

Fig. 13. Illustration of equation 5

All arcs starting or ending in a non-configurable function or event have a frequency
that equals the frequency of that function or event.

Vo € (F\FO)UEY(y.2) € A,z € {y.7) : freqq, ., = frea, ®)

Fig. 14. Two illustrations of equation 6

All arcs starting or ending in a configurable function that has been configured ON,
have a frequency that equals the frequency of that function.

Vfe FOV(z,y) € A, f € {z,y}: conf ; = ON = freq,) = freq; (7

27

All arcs starting or ending in a configurable function that has been configured OPT,
have a frequency that is greater than or equal to the frequency of that function.

Vfe FOV(x,y) € A f € {x,y}: conf y = OPT = freq,) > freq; (8)

A configurable function that has been configured OFF, has a frequency 0.

VfGFC:conff:OFFéfreqf:0 9)

= =

Fig. 15. Two illustrations of equations 7, 8 and 9

5.2.2 Constraints related to concrete XOR-connectors

A non-configurable XOR-connector has a frequency that equals the sum of the
frequencies of all arcs staring from that XOR-connector.

Ve € C’\C’C, l(c) = XOR : Z freq ..y = freq. (10)

(z,y)€EA

r=c

A non-configurable XOR-connector has a frequency that equals the sum of the
frequencies of all arcs ending in that XOR-connector.

Ve € {C\C®|l(c) = XOR} : > freq .., = freq. (11)

(z,y)€EA
y=c

Fig. 16. Illustrations of equation 10 (left) and equation 11 (right)

5.2.3 Constraints related to XOR-configurations

Consider a configurable connector. If this connector has been configured a concrete
XOR, this connector has a frequency that equals the sum of the frequencies of each
of the arcs starting from that connector.

Ve e C° - conf, = XOR = Z Jreq g,y = freq. (12)

(z,y)€A
Tr=c

28

Consider a configurable connector. If this connector has been configured a concrete
XOR, this connector has a frequency that equals the sum of the frequencies of each
of the arcs ending in that connector.

Vee C°: conf,. = XOR = Z freq g,y = freq. (13)
(z,y)€EA
y=c
(x.y) (x.y)
Confc =XOR — \/’@ ConfC=XOR
c T~ -7 c

Fig. 17. Illustrations of equation 12 (left) and equation 13 (right)

5.3 Objective function

Up to now, we have formulated the system variables and the decision variables,
which enabled us to formulate the constraints of our Integer Programming problem.
In this subsection, we define the objective function.

As outlined in Section 4.3, the resulting EPC should be as specific as possible, still
meeting the requirements of the C-EPC and the frequency profile. Furthermore,
if possible, we prefer configuration of connectors over configuration of functions.
The objective function can now be formulated as: minimize the sum of the objective
function due to the configuration of all configurable connectors and the objective
function due to the configuration of all configurable functions. Based on the ideas of
Section 4.3 for the configuration of functions and connectors, the resulting objective
function is formulated as follows:

Minimize:
2 (conf, = OR)
100 (conf; = OPT)

1 (conf,= AND)

> 1 (conf; =OFF) + > (14)

fere cecc | 1 (conf.= XOR)

0 (conf; = ON)

0 (otherwise)

Note that to avoid the configuration of functions to OPT as much as possible, we
assigned a weight of 100. In situations with a trade-off between configurations with
OR/ON combinations at one hand and configurations with AND/OPT combinations
on the other hand, we enforce the first combination.

29

5.4 Further steps to define the IP-problem

In the previous subsections, we made some steps to show that finding the best
configuration for a given C-EPC and frequency profile can be considered an Integer
Programming problem. To be able to use Integer Programming software, we need
a number of additional variables. This is necessary because we used three types of
constructs that are not allowed in Integer Programming:

(1) J-constructions (for AND-connectors and AND-configurations);
(2) =--constructions (for configurable nodes);
(3) {-constructions (in the objective function).

However, with the help of additional variables, each of these constructs can be
reformulated into allowed IP-constructions [30]. Such a translation is rather verbose
and mechanical; therefore we omit this step.

5.5 Example

In the previous subsections we formulated the derivation of a configuration based
on a C-EPC and frequency profile in such a way that it can be considered an Inte-
ger Programming problem. In this subsection, we show this approach for a concrete
example. Consider the C-EPC shown in Figure 9 and frequency profile FP(f4) =
100, FP(fg) = 40, FP(fc) = 60 and F' P(fp = 80). The C-EPC consists of three
functions, of which f3 is configurable, and of 4 connectors, of which c; and c3 are
configurable. The corresponding Integer Programming problem is defined as fol-
lows (for explanation of the variables and constraints in this example, see appendix
B).

conf.= OR)
100 (conf; = OPT)

2 (
| 1 (conf.= AND)
1 = OFF) +
min fGZFC (conf ¢) CGEC:C 1 (conf, = XOR)
0(conff=0N) 0 (

otherwise)

JreQeg.sa) = Jred (s, 00)
Jreq ey 1) = Jred sy c)
Jred ey 1) = Jréd o es)

30

fT’GQ(CLfD) - freq(fD,Cél)

freqe, = freqey 1)

freq(eoafA) - frequ

frequ - freq(fA,el)

freq(fAvel) - freqq

freqe, = freqe, o)

freq(c%fs) - frequ

frequ - freq(fBﬁB)

freq(%fc) - freqfc

freqfc = freq(fcﬁs)

Jreq e, ep) = freqe,)

conf s, = OFF = freqs, =0

conf;, = OPT = freq; < freq(%fD)
conf;, = ON = freq;, = freq, s,
freqe, ey = freqe,

fT’GQ(el,cl) = f7“€qc1

freqe, = freqc, ey

freq., = fTGQ(cl,fD)

Jreqpy ey 2 freqe, N Jreq e, o) = frege,
Jreqes ey = frede, V freq gy o) = Jreqe,
conf., = SEQ, = freq(c%fB) = freq,,
conf ., = SEQ;, = fTGQ(cQ,fC) = freq.,
conf ., = SEQ, = freq(%fc)

conf., = SEQj. = freq(%fB) =
conf., = SEQ, = freq(qm) = freq(c%fB)
conf ., = SEQs. = freqc, cp) = 1€ (cs. 50

conf o, = SEQsy, = [freq s, cs) = JT€0(cy.04)

conf o, = SEQs. = freq(se, co) = T (cq 0

conf., = AND = freq., t,) = freq., N freq., 1) 7 frede,
conf,, = AND = freq;, o) > frequ, A freq s o > frede,
conf ., = AND = freq(fB,Q) = freq., V freq s, o) = freq.,
conf., = XOR = freq(c%fB) +freq(cz7fc) = freq,,

conf ., = XOR = freq s, cp) + 14 co) = JT€Q 3

conf ., = OR = freq, sy + [T€Q(cy 100 = JTEQ,,

conf ., = SEQ, = freq(vacg) = freq.,
confc3 =SEQs. = freq(fc,%) = freqC3
conf ., = SEQsy = freq g, ;) =0
conf o, = SEQf. = freq sy cq) =0

)

)

31

conf ., = OR = freq s, ooy T IT€0 (100 = Jfreq.,
conf., = OR = freq(CLfB) < freq,, /\freq(%fc) < freq.,
conf., = OR = freq(f&cg) < freq,, /\freq(fc,cg,) < freq,,

In this example, the solution of the system of equations is conf ;, = OPT, conf ., €
{OR, XOR} and conf., € {OR, XOR}. Itis easy to verify that conf;, = OPT,
conf., = XOR and conf., = XOR is the solution of this Integer Programming
problem.

6 Mining C-EPCs: From EPC-Max to C-EPC

Process mining from incomplete logs appears to be within reach, as we have shown
in the previous sections, provided that a reference model is available. In our ap-
proach, we took configurable reference models as a starting point because the sys-
tem it is representing is configurable as well. From a conceptual viewpoint refer-
ence models of configurable ERP systems should indeed be configurable. In prac-
tice, these models are not configurable yet and can still be characterized as upper
bound or maximal process models. The second step in our process mining research
takes this traditional reference model, an EPC-Max, as a starting point. Addition-
ally we have one particular log, i.e. a frequency profile that shows the frequency
that particular process steps have been executed. This process results in a config-
urable EPC and a configuration that fits the log (see Section 6.1). It is evident that
the resulting C-EPC and configuration depend on this only log and probably are
different when based on another log or multiple logs. This step is elaborated in
Section 6.2.

6.1 Deriving ‘a’ C-EPC

Although the application of non-configurable reference models representing con-
figurable systems is current practice, this is not an ideal situation. In this section,
we show an approach to mine a system based on an incomplete log and a non-
configurable reference model. The result is, of course, the actual process model.
As an intermediary step we use the notion of configurable process models, which
additionally results in a useful spin-off: the configurable reference model.

Problem 2 Consider a frequency profile FP € (F' — N) and an EPC EPC=
(E,F,C,L,A). Find a C-EPC CEPC = (E,F,C,l,A,F°,C° O R® G°) and a
configuration I° € (F¢ — ON, OFF, OPT) U (C® — CT) such that the fre-
quency profile, the C-EPC and the configuration match.

32

6.1.1 Approach

When mining a process model from an EPC-Max, we start with an intermediary
step to find the C-EPC. This may seem to be a step backwards, however, we will
demonstrate that the approach developed in Section 4 is also applicable for this
type of process mining. Furthermore, we can use the derived configurable reference
model as well because it better represents the configurable system than the other
reference model did.

We first define the term flexible EPC, this is a C-EPC that resembles the EPC com-
pletely, however, all concrete connectors are mapped onto their configurable coun-
terparts and all functions are changed into configurable ones.

Definition 12 (flexible EPC) Let EPC=(E,F.C,lA). Then flex(EPC) = (E', ', (",
U A FC CC 0% withE' = E,F' = F,C' =C,l' = ,A' = A, F° = F,C° =
C,0¢ = 0.

We use flexible EPCs as an intermediary result for our mining approach. Recall that
this approach included two steps: the matching function and the objective function.
The function match is used to decide whether a particular configuration, C-EPC
(in this case flex(EPC)) and frequency profile match and the objective function to
decide for all matching configurations which configuration fits best.

6.1.2 Example

In Figure 18, a simple EPC-Max containing a XOR connector and three frequency
profiles are depicted. Frequency profile A is a log of an enterprise that only man-
ufactured product B, frequency profile B is a log of an enterprise that only man-
ufactured product C, whereas frequency profile C is a log of an enterprise that
manufactured product B and C, but not in the same production order.

The first step is transform this EPC-Max (left-hand side of Figure 19) into a flexible
EPC (right-hand side of Figure 19).

The second step is to find all matching configurations. With reference to Definition
6, the XOR-connector can be configured XOR, or SEQ. Since we departed from
a XOR-connector in the EPC-Max, at this point we choose to stick to [“(c;) =
(XOR, XOR) and [°(c;) = (XOR, XOR) and we come back on this in the next
subsection.

With respect to the functions, we see the following alternatives:
e For frequency profile A, functions A, B and D can be non-configurable, and

if configurable these may be configured ON or OPT. Function C may also be
configured OFF.

33

Task | FPA | FPB | FPC @recc"e?vee' .
A 100 100 140
B 100 0 100
C 0 100 40 Check order
B 100 100 140

Product B Product C
required - required
Manufacture Manufacture
product B product C
Product B Prodyct C
available available

Deliver order

Order
delivered

Fig. 18. Example of an EPC-Max reference model and three alternative frequency profiles

e For frequency profile B, functions A, C and D can be non-configurable, and

if configurable these may be configured ON or OPT. Function B may also be
configured OFF.

e For frequency profile C, all functions can be non-configurable, and if config-
urable these may be configured ON or OPT.

X

(8) —
4

X0 €9
(o) (D)
(8 (8

concrete EPC flexible EPC

Fig. 19. From EPC to flexible C-EPC

34

It is easy to verify that match(flex(EPC),I® ,FP-A) = true for the configurations in

Table 4.

1€ [190A) | 1% 1) [19(B) | 19(0) | 1%(eo) | 19(D) Objective function

1 |ON |XOR |ON |ON |XOR |ON = | O0+1+0+0+1+0=2

2 |ON |XOR |ON |ON |XOR |OPT |= | 0+1+0+0+1+100=102
3 |ON |XOR |ON |OPT |XOR | ON = | 0+14+0+100+1+0=102
4 |ON |XOR |ON |OPT |XOR | OPT |=| O0+1+0+100+1+100=202
5 |ON |XOR |ON | OFF |XOR |ON = | O+1+0+1+1+0=3

6 |ON |XOR |ON |OFF |XOR |OPT |= | 0+1+0+1+1+100=103
7 |ON | XOR |OPT |ON |XOR | ON = | 0+1+100+0+1+0=102
8 |ON |XOR |OPT |ON |XOR |OPT | = | 0+1+100+0+1+100=202
9 |ON |XOR |OPT |OPT |XOR | ON = | 0+1+100+100+1+0=202
10 ON | XOR | OPT | OPT | XOR | OPT | = | O+1+100+100+1+100=302
11 |ON | XOR | OPT | OFF |XOR | ON = | O0+1+100+1+1+0=103
12| ON | XOR | OPT | OFF |XOR | OPT | = | O+1+100+1+1+100=203
13| OPT | XOR |[ON |ON |XOR | ON = | 0+1+0+0+1+0=102

14| OPT | XOR |ON |ON |XOR | OPT |=| O0+1+0+0+1+100=202
15| OPT | XOR |ON | OPT |XOR | ON = | 0+14+0+100+1+0=202
16 | OPT | XOR | ON | OPT | XOR | OPT | = | O+1+0+100+1+100=302
17 | OPT | XOR | ON | OFF |XOR | ON = | O+1+0+1+1+0=103

18| OPT | XOR | ON | OFF |XOR | OPT |= | O+1+0+1+1+100=203
19| OPT | XOR | OPT |ON |XOR | ON = | 0+1+100+0+1+0=202
20 | OPT | XOR | OPT |ON | XOR | OPT | = | 0+1+100+0+1+100=302
21 | OPT | XOR | OPT | OPT | XOR | ON = | 0+1+100+100+1+0=302
22 | OPT | XOR | OPT | OPT | XOR | OPT | = | 0+1+100+100+1+100=402
23 | OPT | XOR | OPT | OFF | XOR | ON = | O0+1+100+1+1+0=203
24 | OPT | XOR | OPT | OFF | XOR | OPT | = | 0+1+100+1+1+100=303

Table 4

Configurations for the flex(EPC) in Figure 19 and frequency profile FP-A

The third step is to calculate the objective function. The results for frequency profile
A are summarized in the rightmost column of Table 4, for frequency profiles B and

35

C this can be done in the same way. For all frequency profiles we see that the
(XOR, XOR) configuration with all functions configured ON fits best.

Our last step in deriving a definitive C-EPC is to consider whether configurable
nodes should remain configurable; i.e. configurable functions that are always ON
become normal functions and connectors that are mapped onto their identity con-
nector become concrete connectors. All other nodes need to be configurable. Since
only one frequency profile is available, after this step indeed no configurable con-
nectors exist.

6.1.3 Further restriction of the C-EPC

The above outlined approach is applicable for decisions that are made at runtime,
or at least for frequency profiles from which we cannot conclude that a decision
is made at runtime or at configuration time. However, there is an important class
of frequency profiles that shows that the decision appears to be made at configu-
ration time. In case a frequency profile is (co-incidently?) more specific than the
concrete connector in the EPC-max required (in our example in case of frequency
profile A), it is possible to further restrict the flex(EPC) to determine a C-EPC,
while still preserving the match condition. This is called ‘overfitting’. This step in-
troduces two questions: (1) what is the scope of the EPC-max, the reference model
we started from, and (2) what is de scope of the C-EPC, the reference model that
we are deriving. The answer on the first question can very well be a broad scope,
e.g., all organizations that might use a SAP solution. The answer on the second
question very much depends on the scope of our modelling domain, e.g. a particu-
lar branch of industry or only all business units in our company. It is clear that this
step requires additional information and cannot be performed automatically.

If we decide to allow further restrictions as described above, we have to pay special
attention to (partial) C-EPCs that might include SE(),, solutions, because SEQ,, is
merely a configuration setting instead of a connector type. Basically we have three
alternatives:

e The node remains configurable (XOR®) and the configuration setting is SEQ,,;

e Although SEQ,, is a configuration instead of a connector type, we admit concrete
SEQ,, connectors;

e [f possible, the connector is removed and the graph structure might change.

We use alternative 1 in our approach, because alternative 2 introduces a new node
type which is not necessary and alternative 3 complicates the derivation of C-EPCs
based on multiple logs. Consequently, this approach may result in one configurable
connector (XOR®) which is configured SEQ,,.

36

6.1.4 Summary

If we want to determine a C-EPC and configuration based on an EPC-max and a
frequency profile, we go through the following steps:

(1) transform the EPC-max into a flexible C-EPC
(2) find all matching configurations

(3) minimize the objective function

(4) restrict the resulting C-EPC if possible

6.2 From EPC-Max to ‘the’ C-EPC

The mining process can very well be based on a single log; in practice, however,
also a number of logs may be available. These logs may come from the same com-
pany but covering another period of time, or these may come from other business
units or even from competing businesses. The scope of the configurable reference
model being developed is dependent on the origin of the set of logs. In case of
multiple logs of one particular company, the accuracy of the reference model will
increase, in case of multiple logs of competitors, the scope of the reference model
will be enlarged.

Problem 3 Consider a set of frequency profiles and an EPC EPC=(E,F,C,LA).
Find a C-EPC CEPC = (E,F,C,l,A, F°,C% 0 RY G°) and a configuration
1€ € (F® — ON,OFF,OPT) U (C® — CT) such that the frequency profiles,
the C-EPC and the configurations match.

The third step in our research also takes the traditional reference model, an EPC-
Max, as a starting point. Additionally we have a set of logs, i.e. frequency profiles.
This process results in a configurable EPC and a configuration that fits all logs.
It is evident that the resulting EPC and configuration depend on this set of logs.
Although it is more likely to be the correct C-EPC than when based on one par-
ticular log, the result may be different when based on another class of logs. For
example, the set of logs may originate from a number of business units within an
enterprise, but also from a number of enterprises within a particular industry sector
(e.g. utilities, automotive, etc.) or across industry sectors.

6.2.1 Searching for the C-EPC

Starting from an EPC-Max containing a (concrete) XOR connector and two logs
(frequency profiles), we are constructing a C-EPC that fits both logs. Consider the
EPC and frequency profiles A and B of Figure 18. In Section 6.1 we have shown
that FP-A results in the C-EPC at the left part of Figure 20 and for FP-B at the
middle part of Figure 20. Intuitively this results in a combined C-EPC that is shown

37

at the right part of Figure 20.

EPC based EPC based EPC based on
on FP-A on FP-B FP-A and FP-B

Fig. 20. Aggregation of C-EPCs

6.2.2 Approach to derive ‘the’ C-EPC

To derive a C-EPC that fits n logs, we use the approach for 1 log (see Section 6.1)
and apply this n times. The result is a set of C-EPCs that can be analyzed with
respect to differences in configuration settings. In case of a difference between two
C-EPCs, the least common multiple is chosen. Again we start with connectors, and
within the configuration of connectors we configure the functions. Note that we
assume that the C-EPCs have the same graph structure.

The least common multiple for two connectors is based on the idea it should be
as specific as possible on the one hand, and cover the scope of both connectors
on the other hand. For example, for two OR-nodes this results in a new OR-node;
a XOR-node and a SEQ-node result in a XOR -node, and an AND-node and a
XOR-node result in a OR®-node. Note that if we combine a XOR and a SEQ, you
want to keep the information that other SEQ(s) may never be an option

The least common multiple for functions is defined the same way. If two func-
tions have the same configurations, the common multiple is equal to this. If the
configuration of two functions is different, the least common multiple is F with
I°(F) € {ON, OPT, OFF}. The least common multiple for connectors and func-
tions is depicted in Figure 21.

38

Fig. 21. Least common multiple for connectors and functions

6.2.3 Summary

Summarizing, if we want to determine a C-EPC based on an EPC and n frequency
profiles FP,-FP,,, we apply the approach for one log n times, and merge the results
by calculating the least common multiple for the resulting C-EPCs and configura-
tions. This results in the following approach:

(1) transform the EPC in a flexible C-EPC
(2) for each FP:
e find all matching configurations
e minimize the objective function
e restrict the resulting C-EPC
(3) determine the least common multiple for the set of C-EPCs

7 Related work

The work described in this paper has been inspired by process mining from event
logs [6,8,11,17-20,28,29,40-42,46—48]. The basic idea was to test the process min-
ing techniques developed in workflow and case-handling environments in a more
general enterprise information systems environment. We found that in general not
all requirements for process mining were met, i.e. (i) each event refers to an activ-
ity, (ii) each event refers to a case, and (iii) events are totally ordered. Apart from
process mining tools and techniques, we considered Social Network Analysis [10]
and its implications for mining Social Networks from event logs [5]. This approach
is based on the same requirements as process mining, and additionally requires that
each event refers to a performer. For the same reasons, this approach is a good
source for inspiration, but in its current form not generally applicable for mining
enterprise information systems.

We have high expectations of mining enterprise information systems from a busi-
ness perspective since it may contribute to (re)configuration and upgrades of such
systems at one hand, and it allows for process performance analysis on the other

39

hand.

In the area of (re)configuration and upgrading of ERP systems, a lot work has
been done with respect to reference models in general [12] and related to partic-
ular ERP systems [15,45]. Furthermore, we already addressed the requirements to
have more intuitive, executable and configurable business process models as de-
scribed in [36,31,35]. Such reference models are very helpful to mine Enteprise
Systems in case event logs as described before are not available.

In the area of performance analysis, two types of analysis should be distinguished:
analysis based on descriptive models and analysis based on how processes are ac-
tually executed. Analysis based on descriptive models can be done, e.g., by making
use of mathematical models or simulation models. However, any approach based
on descriptive models lack sufficient feedback from real life. On the latter subject
we already discussed two tools: Reverse Business Engineer [38,32] and ARIS Pro-
cess Performance Manager [21]. Both tools have limitations with respect to process
mining: these tools still require process knowledge prior to application of the tool,
whereas our approach only requires existence of standard reference models. To the
knowledge of the authors, no academic publications in this area are available yet.

8 Conclusions and further research

8.1 Conclusions

This paper proposes a solution for process mining from incomplete system logs.
Existing mining approaches can be applied when an event log is composed of at
least a combination of case-ids and task-ids. In this paper, we discussed how pro-
cess mining can be applied if this combination of case-ids and task-ids is not avail-
able.

The approach that we followed is based on the frequency that a particular transac-
tion has been executed, recorded in a frequency log. Additionally we make use of
existing reference models, especially Event-driven Process Chains (EPCs) and the
configurable couterpart (C-EPCs).

First we elaborated the idea to derive a configuration of the reference model based
on a C-EPC and a frequency profile. To be able to do so, we defined the function
match to decide whether a C-EPC, a configuration and a frequency profile match,
and we defined the objective function to decide which of the matching configura-
tions fits best.

In the approach to decide whether C-EPC, configuration and frequency profile

40

match, the (C)-EPC is considered to be a graph consisting of different nodes; each
node and each arc have a frequency. Subsequently we consider a system of equa-
tions generated by the arcs, making use of the characteristics of nodes (e.g. ‘an arc
ending in a function has a frequency that is equal to the frequency of the arc start-
ing from that function” or ‘a XOR-node has a frequency that equals the sum of the
frequencies of all arcs staring from that XOR-node’).

The function match can be applied on the (finite) set of possible configurations and
results in the set of configurations that match with the particular frequency profile.
The objective function yields the configuration that matches the frequency profile
best.

The approach that we followed (find all solutions of a system of equations and then
minimize a particular objective function) can be performed in one step by making
use of Integer Programming techniques. This has an additional advantage since
standard software for solving Integer Programming problems is generally available.

From a conceptual viewpoint reference models of configurable systems should be
configurable. In practice, these models are not configurable yet and can be char-
acterized as upper bound or maximal process model. Therefore, the second step in
our research takes a frequency profile and a traditional reference model as a starting
point.

We showed that we can re-use our approach to find the best matching configura-
tion based on the function match, the objective function and Integer Programming
techniques. To be able to do so, we need one step in advance, to transform the EPC
into a C-EPC. This step results in a configuration, from which we can derive the
process model. Additionally we should restrict the C-EPC as much as possible, to
be able to reuse the C-EPC as a configurable reference model.

To improve the quality of the derived reference model, the derivation should be
based on a number of frequency profiles, in stead of the one log that we used up
to now. If we take this into account, we can follow the same approach for each of
the frequency profiles, and then determine the least common multiple for the set of
C-EPCs.

8.2 Further research

Dependent on the type of system subject to study and the way a particular system
has been designed and structured, the approach how to mine the system, may dif-
fer. This is caused by the fact that different system designs may lead to different
ways to store data. And relevant for process mining, this may or may not allow for
the derivation of relations between these data. In this paper we elaborated mining

41

from incomplete logs, making use of configurable reference models. In general, the
following phases can be distinguished:

(1) Traditional form of mining assuming a log with case id-s rather than function
frequencies. (M1)

(2) Mining based on an EPC-Max and a log allowing for the derivation of function
frequencies, resulting in an EPC augmented with frequencies (i.e., functions
with frequency zero are greyed out). (M2)

(3) Mining based on an EPC-Max and a log allowing for the derivation of function
frequencies, resulting in a C-EPC and a configuration which fits the log. (M3)

(4) Mining based on an EPC-Max and several logs allowing for the derivation of
function frequencies, resulting in a C-EPC and a configuration for each log.
Note that this allows for the derivation of requirements/guidelines. (M4)

(5) Mining based on an EPC-Max and several logs allowing for the derivation of
function frequencies and including meta data, resulting in a C-EPC, a con-
figuration for each log, and requirements/guidelines taking the meta data into
account. (M5)

(6) Mining based on a C-EPC and a log allowing for the derivation of function
frequencies, resulting in a configuration which fits the log. (M6)

Phases M1 and M2 are current practice already. In this paper, we elaborated three
other phases. Section 6.1 contributes to M3, Section 6.2 contributes to M4 and Sec-
tion 4 to M6. Further research should be done to improve the C-EPC by making
use of meta data and resulting in an C-EPC accompanied by guidelines and re-
quirements. Additionally we need further research for process mining in other ERP
systems or other modelling methods. This may require conversion of the developed
approach to the new situation, or may require a completely new approach.

The approach discussed in this paper is working for the examples as illustrated in
Section 5.5 and the appendix. For real-life examples we have to elaborate the Inte-
ger Programming problem in such a way that we can use standard Integer Program-
ming software tools. Therefore, we are building software to convert the following
constructions to the standard Integer Programming constructions:

(1) F-constructions (for AND-connectors and AND-configurations);
(2) =--constructions (for configurable nodes);
(3) {-constructions (in the objective function).

A second issue that we have to tackle when implementing our approach for real-
life examples is the existence of noise: differences in frequencies that cannot be
explained by the number of cases alone. Such differences may occur as an effect
of the measuring period, when some functions are and some functions are not yet
executed for a particular case. Differences may also occur because of noise or con-
tamination in the actual process. To be able to analyze the data in our approach

42

we could introduce a threshold value of say 5%, which means that we consider
a value range [x+5%,x-5%] when we find a frequency x. Further research should
reveal the correct functioning of this method. To be able to do so, we first need to
test our approach on real-life cases and then compare the results with the results of
conventional methods such as interviews and workshops.

To conclude our program of further research, we like to research the type of logs
in current enterprise information systems. In workflow management and case han-
dling systems, we typically found event logs with events referring to both case’s
and tasks, and frequently also referring to performer, task type or time stamp. In
these systems logging on the level of business process allows for business process
management. For the type of logs described in this paper, this is not the case, and
we developed a solution based on the characteristics of these systems. We made
the choice to elaborate on EPCs and CEPCs because we had access to the SAP
reference models which are represented by EPCs, and also because SAP is market
leader for ERP software. However, in the US for example, SAP does not domi-
nate the market and therefore we will extent our research to other ERP software.
We realize that other types of system logs may have different characteristics, and
also that these may change over time. We aim to analyze the underlying business
processes, regardless of the type of system logs.

A Constraints for the Integer Programming problem

In Section 5 we formulated the integer programming problem enabling us to mine
processes from incomplete system logs. First we defined the variables and then de-
fined how to derive the constraints. In this appendix we provide a compete overview
of all constraints: constraints related to functions, constraints related to concrete,
non-configurable connectors (AND, OR and XOR) and to configurable nodes that
have been configured (SEQ-, AND-, OR- or XOR-configurations).

A.1 Constraints related to functions

All configurable and non-configurable functions have a frequency as recorded in
the frequency profile FP.

Vf € dom(FP): freq; = FP(f) (A.1)

43

An arc ending in a function has a frequency that is equal to the frequency of the arc
starting from that function.

V€ FY(r1,u1), (T2, y2) € A, (Y1 = 29 = f) @ freqry,) = freq e,) (A2)

(X,,Y,) (X, Ys)

Fig. A.1. Illustration of equation A.2

All arcs starting or ending in a non-configurable function or event have a frequency
that equals the frequency of that function or event.

Vo € (F\FOYUEVY(y,2) € A,z € {y, 2} : freq, .y = freq, (A.3)

= =

Fig. A.2. Two illustrations of equation A.3

All arcs starting or ending in a configurable function that has been configured ON,
have a frequency that equals the frequency of that function.

Vfe FOVY(x,y) € A, f € {x,y}: conf s = ON = freq,) = freq; (A4)

All arcs starting or ending in a configurable function that has been configured OPT,
have a frequency that is greater than or equal to the frequency of that function.

Ve FOV(x,y) € A fe{xy}: conf y = OPT = freq,) > freq; (A.5)

A configurable function that has been configured OFF, has a frequency 0.

Vf € F:conf; = OFF = freq; =0 (A.6)

Fig. A.3. Two illustrations of equations A.4, A.5 and A.6

A.2 Constraints related to concrete AND-connectors

A non-configurable AND-connector has a frequency that equals the frequency of
each of the arcs starting from that AND-connector.

Ve e C\CY,I(c) = ANDV(z,y) € A,z =c: freq ., = freq, (A7)

44

A non-configurable AND-connector has a frequency that is less than or equal to
the frequency of each of the arcs ending in that AND-connector, and equals the
frequency of at least one of the arcs ending in that AND-connector.

Ve e C\C%,l(c) = AND V(z,y) € A,y =c: freq .y > freq, (A.8)
Ve € C\C,l(c) = AND 3(z,y) € A,y =c: freq) = freq, (A.9)
(x.y)
,,,, o .

Fig. A.4. Illustrations of equation A.7 (left) and equations A.8 and A.9 (right)

A.3 Constraints related to concrete XOR-connectors

A non-configurable XOR-connector has a frequency that equals the sum of the
frequencies of all arcs staring from that XOR-connector.

Ve € C\CY,I(c) = XOR : > freq ..,y = freq. (A.10)

(z,y)€A
r=c

A non-configurable XOR-connector has a frequency that equals the sum of the
frequencies of all arcs ending in that XOR-connector.

Ve € {C\C|l(c) = XOR} : Y freq .., = freq. (A.11)

(z,y)€A
y=c

Fig. A.5. Illustrations of equation A.10 (left) and equation A.11 (right)

A.4 Constraints related to concrete OR-connectors

A non-configurable OR connector has a frequency that is less than or equal to the
sum of the frequencies of each of the arcs ending in, respectively starting from that

45

OR-connector.

Ve € C\C%,I(c) = OR: freq,.,) > freq, (A.12)

(z,y)€EA
ce{z,y}

A non-configurable OR-connector has a frequency that is greater than or equal to
the frequency of each of the arcs ending in, respectively starting from that OR-
connector.

Ve e C\CY,l(c) = ORY(z,y) € A, c € {z,y} : freq) < freq, (A.13)

Fig. A.6. Illustrations of equations A.12 and A.13

A.5 Constraints related to SEQ,-configurations
A connector that has been configured SEQ,, has a frequency that is equal to the
frequency of the arc starting from that connector and ending in node x.

Vee CY 2 € EUFUC,(c,z) € A: conf, = SEQ, = freq freq (A.14)

cx)

An arc starting from a connector that has been configured SEQ, and ending in any
other node than x has a frequency 0.

Vee CY 0 € EUFUC, (c,z) € AVy € ce,y # (A.15)
conf, = SEQ, = freq(.,) =0

An arc starting from any node and ending in a connector that has been configured
SEQ, has a frequency equal to the frequency of that connector.

Vee CY 2 € EUFUC, (c,z) € AVz € oc: (A.16)
conf, = SEQ, = freq, ., = [req,

46

A connector that has been configured SEQ,, has a frequency that is equal to the
frequency of the arc starting from node x and ending in that connector.

Vee CY 2 € EUFUC,(x,¢c) € A: conf, = SEQ, = freq o) = freq (A17)

An arc ending in a connector that has been configured SEQ,, and starting from any
other node than x has a frequency 0.

Vee C% 2 e EUFUCQC, (z,c) € AVy Coc,y# - (A.18)
conf, = SEQ. = freqy . =0

An arc starting from a connector that has been configured SEQ,. and ending in any
node has a frequency equal to the frequency of that connector.

Vee CY% 2 € EUFUC, (z,¢) € AVz € ce: (A.19)
conf, = SEQ., = freq. . = freq.

conf =SEQ,
(z,c)

=
~< -
-~ —
~ -
- -
~

Fig. A.7. lllustrations of equations A.14, A.15 and A.16 (left) and equations A.17, A.18
and A.19 (right)

A.6 Constraints related to AND-configurations

Consider a configurable connector. If this connector has been configured a concrete
AND, this connector has a frequency that equals the frequency of each of the arcs
starting from that connector.

Vee CY, (x,y) € A,x = c: conf, = AND = freq,., = freq, (A.20)

Consider a configurable connector. If this connector has been configured a concrete
AND, this connector has a frequency that less than or equal to the frequency of
each of the arcs ending in that connector.

Ve e CY (z,y) € A,y = c: conf, = AND = freq,,) > freq, (A.21)

Vee CY I(z,y) € A,y =c: conf. = AND = freq .., = freq. (A.22)

47

(xy) (x,y)
C S~ P C

~ -
S -

Fig. A.8. Illustrations of equation A.20 (left) and equations A.21 and A.22 (right)
A.7 Constraints related to XOR-configurations

Consider a configurable connector. If this connector has been configured a concrete
XOR, this connector has a frequency that equals the sum of the frequencies of each
of the arcs starting from that connector.

Ve € CY : conf, = XOR = Z Jreq g,y = freq. (A.23)

(z,y)€A
xr=c

Consider a configurable connector. If this connector has been configured a concrete
XOR, this connector has a frequency that equals the sum of the frequencies of each
of the arcs ending in that connector.

Ve e CY : conf, = XOR = Z Jreq g,y = freq. (A.24)
(z,y)€EA
y=c
(x.y) x.y)
conf =XOR _ \}@ conf =XOR
c T~ -7 c

Fig. A.9. Illustrations of equation A.23 (left) and equation A.24 (right)

A.8 Constraints related to OR-configurations

Consider a configurable connector. If this connector has been configured a concrete
OR, this connector has a frequency that is less than or equal to the sum of the
frequencies of each of the arcs ending in , respectively starting from that connector.

Ve e CY: conf, = OR = Z Jreq g,y 2> freq. (A.25)

(z,y)€EA
ce{z,y}

Consider a configurable connector. If this connector has been configured a concrete
OR, this connector has a frequency that is greater than or equal to the frequency of
each of the arcs ending in , respectively starting from that connector.

Ve e OY (z,y) € A,c € {x,y}: conf, = OR = freqe,) < freq. (A.26)

48

(x.y) (x.y)
S~~~ =TT c

c S~a "

Fig. A.10. Illustrations of equations A.25 and A.26

B Example Integer Programming problem

In Section 5.5 we defined the Integer Programming problem for the C-EPC shown
in Figure 9 and the frequency profile FP(f4) = 100, FP(fg) = 40, FP(f¢) = 60 and
FP(fp = 80). In this appendix we explain which variables and constraints have been
applied, and we define the solution space and the solution. The references refer to
the equations in Section 5.

B.1 Variables

B.1.1 Variables related to frequencies (equation 1)

For events: freq, , freq.,, freq., € N

For functions: freq;,, freq;,, freq;,., freqs, € N

For connectors: freq, , freq.,, freq.,, freq,, € N

For ares: freq ey, p4): fred g,e0)s [reQes.cr)s fred er,ca) Freco, 1) Fel g)
freq(fB,C's)’freq(fcm)’fr@q(03764)’fr€q(017f1))7freq(nyc4)’fTeq(C4,e2)

B.1.2 Variables related to configurations (equations 2 and 3)

e conf; €{ON,OFF,OPT}
e conf., € {OR, XOR, AND,SEQ_, SEQ;_}
e conf., € {OR,XOR, AND,SEQ_, SEQ;_}

B.2 System of equations

B.2.1 Constraints related to the frequency profile (equation 4)

e freq;, = FP(fa) =100
e freqs, = FP(fp) =40
e freq;. = FP(fc) =60
e freqs, = FP(fp) =80

49

B.2.2 Constraints related to non-configurable functions (equation 5)

(e0,fa) — freq(fAyeﬂ
® fre(cs 1m) = JTCA(15,cq)
® freq(es fo) = Jred(secs)
¢ freq(clva) = freq(vaczx)

B.2.3 Constraints related to non-configurable functions and events (equation 6)

o freq., = freqey 1y
° freq(eova) - frequ
o freqy, = freqsy e
o freq s, e = frede,
o freq., = freqe,)
¢ freq(C%fB) - fT@qu
¢ frequ = freq(f&%)
o Jreq(e, so) = Jredy,
o freqs, = fred(so.c,)
® [Teq(cye) = JTE,)

B.2.4 Constraints related to configurable functions (equations 7, 8 and 9)

o conf; = OFF = freq;, =0
o confy, = OPT = freq;, < freqq, s,
o conf;, = ON = freq; = freq, s,

B.2.5 Constraints related to concrete AND-connectors (equations A.7, A.8 and
A.9)

o freqe, ey = Jrege,
o freqe,) = freqe,
o freq., = freq(c, o)
b freqcl :fWQ(cl,fD)
® freqs, cq) = Jrede, NIreqc, o) = freq.,
® freq ey ey = Jreqe, V freqep, oy = freqe,

B.2.6 Constraints related to concrete XOR-connectors (equations 10 and 11)

NA.

50

B.2.7 Constraints related to concrete OR-connectors (equations A.12 and A.13)

NA.

B.2.8 Constraints related to SEQ-configurations, split (equations A.14, A.15 and
A.16)

conf., = SEQ, = freq(027fB) = freq,,
conf., = SEQ;, = freq(c%fc) = freq,,
Conf(:g = SEQfB = freq(cz,fc) -

conf ., = SEQs. = freqc, s, =0

conf o, = SEQj, = freq(chcz) - freq(C%fB)
conf o, = SEQe. = 1oy ey = [10

B.2.9 Constraints related to SEQ.-configurations, join (equations A.17, A.18 and
A.19)

conf ., = SEQs, = freq(vac_g) = freq.,
confC3 = SEQs, = freq(f&CB) = freqc3
conf ., = SEQs, = freq(fc’cg) =

conf ., = SEQ;, = freq(fB’CS) =

conf ., = SEQs, = freq(fBﬁcg) = freq(%%)
COnfc3 - SEQfC = fTGQ(fC,Cg) = freq(cg,&l)

B.2.10 Constraints related to AND-configurations (equations A.20, A.21 and A.22)

e conf. = AND = freq(cg’fB) = freq., /\freq(CQ’fC) # freq.,
o conf. = AND = freq s, ..y > freqe, N freq g,) 2> freqe,

e conf. = AND = freq(va%) = freq., \/freq(fc,%) = freq..,

B.2.11 Constraints related to XOR-configurations (equations 12 and 13)

o conf,, = XOR = freq, ;) + freqc, s.) = Ireq.,
e conf, = XOR = Jreq sy cq) + 17410 c0) = JT€Gc3

B.2.12 Constraints related to OR-configurations (equations A.25 and A.26)

conf ., = OR = freq, sy + IT€0(cy o) = e,
conf ., = OR = freq(s, oy + IT€0 (50 c0) = freq.,
conf o, = OR = freq., sy < freqe, N freqe, 5.y < freqe,
conf., = OR = freq(fB ca) < freq., N freq (fores) < freq,,

51

B.3 Solution of the system of equations

B.3.1 System variables

e For events:

- freq,, = 100
- freq,, = 100
- freq,, = 100
e For functions:
- freq;, =100
- freqy, =40
- freqy., = 60
- freqs, =80
e For connectors:
- freq,, = 100
- freq., = 100
- fregq., = 100
- fregq., = 100
e For arcs:
- Jreqe, 1) = 100
Jreq gy ey = 100

- freq oo fa 40
- freq confa) = 60
=40

B.3.2 Decision variable co

Connector c; is a configurable OR-split. To be able to find possible alternatives for
the configurable OR-connector, we apply the following rule from predicate logic:
A = B is equivalent with - B = = A.

o Checking SEQy, : freq, r,) = 40 # 100 = conf., # SEQy, (equation
A.16)

o Checking SEQy. : freq, s,y = 60 # 100 = conf,, # SEQ;. (equation
A.16)

o Checking XOR: freq(., r,) + freq(c, sy = 40 + 60 = freq,, (equation 12). From

52

the fact that the right part is true, we cannot conclude whether conf .= XOR.
o Checking AND:freq., s,y # freq., N freq, ;) # freq., = conf., # AND
(equation A.20)
e Checking OR:
 Jr€q(cy) t IT€Q 0y 5oy = 40 + 60 > freq,, (equation A.25)
 JT€Q ey 1) < JTEQC, N fTEQ(, £y < frEq,, (equation A.26)
From the fact that the right part is true, we cannot conclude whether conf .= OR.

co,fo

From this overview we conclude conf,, € {OR, XOR}

B.3.3 Decision variable c;

Connector c3 is a configurable OR-join. To be able to find possible alternatives for
the configurable connector c3, we apply the following rule from predicate logic: A
= B is equivalent with - B = = A.

o Checking SEQ, : freq s, o,y = 40 # 100 = conf ., # SEQy, (equation A.17)
e Checking SEQ),, :
Jreq so eq) = 60 # 100 = conf ., # SEQy, (equation A.17)
o Checking XOR: freq s, ..y + /req s, ey = 40+ 60 = freq 5 (equation 13). From
the fact that the right part is true, we cannot conclude whether conf ., = XOR.
o Checking AND: freq s, ..y # [req., N freq s, o) 7 freq., = conf. # AND
(equation A.22)
e Checking OR:
- Jreq sy co) T IT€4(f0 cq) = 40 + 60 > freg,, (equation A.25)
C JTeq(pyep) S JT€QC, N JTEQ (s o) < fTEQ,, (equation A.26)
From the fact that the right part is true, we cannot conclude whether conf .= OR.

From this overview we conclude conf ., € {OR, XOR}

B.3.4 Decision variable fp

To be able to find possible alternatives for the configuration of function f3, we apply
the following rule from predicate logic: A = B is equivalent with = B = — A.

e conf;, = OFF = freq; = 0. Since freq;, = 80 # 0 this results in conf ,; #
OFF (equation 9).

e conf; = OPT = freq; < freq, s, (equation 9). From the fact that 80 <
100, the right part is true, and we cannot conclude whether conf ; = OPT or
not.

o conf; = ON = freqs, = freq, .- Since freq;, # freq, ;) this results in
conf ;s # ON (equation 7).

53

From this overview we conclude conf ;, = OPT because freq;, = 60Afreq, ;) =
100 = conf s, # OFF A conf; # ON

B.3.5 Solution

The system of equations resulted in a number of possible solutions. The objective
function is used to select the solution that we consider ’best’, see Section 4.3 The
objective function is to minimize the sum of the values due to the configuration of
all configurable functions (i.e. fp) and the values due to the configuration of all
configurable connectors (i.e. ¢ and c3), see equation 14. In this small example it is
easy to verify that the objective function yields conf ; = OPT, conf,, = XOR and
conf ., = XOR.

References

[1] W.M.P. van der Aalst. Formalization and Verification of Event-driven Process Chains.
Information and Software Technology, 41(10):639—-650, 1999.

[2] W.M.P. van der Aalst. Business Alignment: Using Process Mining as a Tool for
Delta Analysis. In J. Grundspenkis and M. Kirikova, editors, Proceedings of the 5th
Workshop on Business Process Modeling, Development and Support (BPMDS’ 04),
volume 2 of Caise’04 Workshops, pages 138—145. Riga Technical University, Latvia,
2004.

[3] W.M.P. van der Aalst, J. Desel, and E. Kindler. On the Semantics of EPCs: A Vicious
Circle. In M. Niittgens and F.J. Rump, editors, Proceedings of the EPK 2002: Business
Process Management using EPCs, pages 71-80, Trier, Germany, November 2002.
Gesellschaft fiir Informatik, Bonn.

[4] WM.P. van der Aalst, J. Desel, and A. Oberweis, editors. Business Process
Management: Models, Techniques, and Empirical Studies, volume 1806 of Lecture
Notes in Computer Science. Springer-Verlag, Berlin, 2000.

[5] W.M.P. van der Aalst and M. Song. Mining Social Networks: Uncovering interaction
patterns in business processes. In M. Weske, B. Pernici, and J. Desel, editors,
International Conference on Business Process Management (BPM 2004), Lecture
Notes in Computer Science, pages ??7—?? Springer-Verlag, Berlin, 2004.

[6] W.M.P. van der Aalst, B.F. van Dongen, J. Herbst, L. Maruster, G. Schimm, and
AJMM. Weijters. Workflow Mining: A Survey of Issues and Approaches. Data
and Knowledge Engineering, 47(2):237-267, 2003.

[71 W.M.P. van der Aalst, A.JM.M. Weijters, and L. Maruster. Workflow Mining:
Discovering Process Models from Event Logs. IEEE Transactions on Knowledge and
Data Engineering, pages 77-77, 2003.

54

[8] R. Agrawal, D. Gunopulos, and F. Leymann. Mining Process Models from Workflow
Logs. In Sixth International Conference on Extending Database Technology, pages
469-483, 1998.

[9] J. Becker, M. Kugeler, and M. Rosemann (eds.). Process Management. Berlin et al.,
2003.

[10] R.S. Burt and M Minor. Applied Network Analysis: A Methodological Introduction.
Sage, Newbury Park CA, 1983.

[11] J.E. Cook and A.L. Wolf. Event-Based Detection of Concurrency. In Proceedings of
the Sixth International Symposium on the Foundations of Software Engineering (FSE-
6), pages 3545, 1998.

[12] T. Curran and G. Keller. SAP R/3 Business Blueprint: Understanding the Business
Process Reference Model. Upper Saddle River, 1997.

[13] J. Dehnert and P. Rittgen. Relaxed Soundness of Business Processes. In K.R.
Dittrich, A. Geppert, and M.C. Norrie, editors, Proceedings of the 13th International
Conference on Advanced Information Systems Engineering (CAiSE’01), volume 2068
of Lecture Notes in Computer Science, pages 157—-170. Springer-Verlag, Berlin, 2001.

[14] L. Fischer, editor. Workflow Handbook 2001, Workflow Management Coalition. Future
Strategies, Lighthouse Point, Florida, 2001.

[15] T. Forsberg and J. Vikstroem G. Roenne. Process modeling in erp projects - a
discussion of potential benefits. Technical report.

[16]J. A. Gulla and T. Brasethvik. On the challenges of business modeling in large
scale reengineering projects. In Proceedings of the 4th International Conference on
Requirements Engineering, Schaumburg, Il11.

[17] J. Herbst. Dealing with Concurrency in Workflow Induction. In U. Baake, R. Zobel,
and M. Al-Akaidi, editors, European Concurrent Engineering Conference. SCS
Europe, 2000.

[18] J. Herbst. Ein induktiver Ansatz zur Akquisition und Adaption von Workflow-
Modellen. PhD thesis, Universitit Ulm, November 2001.

[19]J. Herbst and D. Karagiannis. An Inductive Approach to the Acquisition and
Adaptation of Workflow Models. In M. Ibrahim and B. Drabble, editors, Proceedings
of the IJCAI’99 Workshop on Intelligent Workflow and Process Management: The New
Frontier for Al in Business, pages 52-57, Stockholm, Sweden, August 1999.

[20] J. Herbst and D. Karagiannis. Integrating Machine Learning and Workflow
Management to Support Acquisition and Adaptation of Workflow Models.
International Journal of Intelligent Systems in Accounting, Finance and Management,
9:67-92, 2000.

[21] IDS Scheer. Measure, Analyse and Optimise your Business Process Performance! -
ARIS Process Performance Managemr (ARIS PPM) whitepaper, 2003.

55

[22] S. Jablonski and C. Bussler. Workflow Management: Modeling Concepts, Architecture,
and Implementation. International Thomson Computer Press, London, UK, 1996.

[23] G. Keller, M. Niittgens, and A.W. Scheer. Semantische Processmodellierung auf der
Grundlage Ereignisgesteuerter Processketten (EPK). Veroffentlichungen des Instituts
fiir Wirtschaftsinformatik, Heft 89 (in German), University of Saarland, Saarbriicken,
1992.

[24] W. Kunst. Proefboringen voor Process Mining - Het toepassen van Process Mining
in de praktijk van het UWV (in Dutch). Master’s thesis, Eindhoven University of
Technology, Eindhoven, 2004.

[25] P. Langner, C. Schneider, and J. Wehler. Petri Net Based Certification of Event driven
Process Chains. In J. Desel and M. Silva, editors, Application and Theory of Petri Nets
1998, volume 1420 of Lecture Notes in Computer Science, pages 286-305. Springer-
Verlag, Berlin, 1998.

[26] F. Leymann and D. Roller. Production Workflow: Concepts and Techniques. Prentice-
Hall PTR, Upper Saddle River, New Jersey, USA, 1999.

[27] L. Maruster. A machine learning approach to understand business processes . PhD
thesis, Eindhoven University of Technology, Eindhoven, 2003.

[28] L. Maruster, A.J.M.M. Weijters, W.M.P. van der Aalst, and A. van den Bosch. Process
Mining: Discovering Direct Successors in Process Logs. In Proceedings of the 5th
International Conference on Discovery Science (Discovery Science 2002), volume
2534 of Lecture Notes in Artificial Intelligence, pages 364-373. Springer-Verlag,
Berlin, 2002.

[29] M.K. Maxeiner, K. Kiispert, and F. Leymann. Data Mining von Workflow-
Protokollen zur teilautomatisierten Konstruktion von Prozemodellen. In Proceedings
of Datenbanksysteme in Biiro, Technik und Wissenschaft, pages 75-84. Informatik
Aktuell Springer, Berlin, Germany, 2001.

[30] K.G. Murty. Operations research: deterministic optimization models. Englewood
Cliffs: Prentice Hall, 1995.

[31] P. Fettke and P. Loos. Classification of reference models - a methodology and its
application. Information Systems and e-Business Management, 1(1):35-53, 2003.

[32] Ch. Reiter. SAP ExpertenReport - Modellbasierte Analyse und Redokumentation von
SAP Enterprise Solutions. WCM Online (http://www.newmediasales.com/), 2003.

[33] P. Rittgen. Modified EPCs and their Formal Semantics. Technical report 99/19,
University of Koblenz-Landau, Koblenz, Germany, 1999.

[34] C. Rolland and N. Prakash. Bridging the gap between organisational needs and erp
functionality. Requirements Engineering, 5:180, 2000.

[35] M. Rosemann. Using reference models within the enterprise resource planning
lifecycle. Australian Accounting Review, 10:19, 2000.

56

[36] M. Rosemann and W.M.P. van der Aalst. A Configurable Reference Modelling
Language. QUT Technical report, FIT-TR-2003-05, Queensland University of
Technology, Brisbane, 2003.

[371 F. Rump. Geschdiftsprozessmanagement auf der Basis ereignisgesteuerter
Prozessketten. Reihe Wirtschaftsinformatik, Teubner Verlag, Germany, 1999.

[38] SAP AG. Reverse Business Engineering - training material nr 50046489, 2001.
[39] A.-W. Scheer. Business Process Modelling. 3rd edition, 2000.

[40] G. Schimm. Process Mining elektronischer Geschiftsprozesse. In Proceedings
Elektronische Geschdiftsprozesse, 2001.

[41] G. Schimm. Process Mining linearer Prozessmodelle - Ein Ansatz zur automatisierten
Akquisition von Prozesswissen. In Proceedings 1. Konferenz Professionelles
Wissensmanagement, 2001.

[42] G. Schimm. Process Miner - A Tool for Mining Process Schemes from Event-based
Data. In S. Flesca and G. lanni, editors, Proceedings of the 8th European Conference
on Artificial Intelligence (JELIA), volume 2424 of Lecture Notes in Computer Science,
pages 525-528. Springer-Verlag, Berlin, 2002.

[43] L. Silverston. The Data Model Resource Book, Volume 1, A Library of Universal Data
Models for all Enterprises. revised edition, 2001.

[44] L. Silverston. The Data Model Resource Book, Volume 2, A Library of Data Models
for Specific Industries. revised edition, 2001.

[45] M. Verbeek. On Tools & Models, in: Dynamic Enterprise Innovation - Establishing
Continuous Improvement in Business. Baan Business Innovation, 3rd edition, 1998.

[46] A.J.M.M. Weijters and W.M.P. van der Aalst. Process Mining: Discovering Workflow
Models from Event-Based Data. In B. Krose, M. de Rijke, G. Schreiber, and M.
van Someren, editors, Proceedings of the 13th Belgium-Netherlands Conference on
Artificial Intelligence (BNAIC 2001), pages 283-290, 2001.

[47] A.J.M.M. Weijters and W.M.P. van der Aalst. Rediscovering Workflow Models from
Event-Based Data. In V. Hoste and G. de Pauw, editors, Proceedings of the I 1th Dutch-
Belgian Conference on Machine Learning (Benelearn 2001), pages 93-100, 2001.

[48] A.JM.M. Weijters and W.M.P. van der Aalst. Workflow Mining: Discovering
Workflow Models from Event-Based Data. In C. Dousson, F. Hoppner, and
R. Quiniou, editors, Proceedings of the ECAI Workshop on Knowledge Discovery and
Spatial Data, pages 78—84, 2002.

57

