Workflow Exception Patterns*

Nick Russell', Wil M.P. van der Aalst?!, and Arthur H.M. ter Hofstede!

1 School of Information Systems, Queensland University of Technology
GPO Box 2434, Brisbane QLD 4001, Australia.
{n.russell,a.terhofstede}@qut.edu.au
2 Department of Technology Management, Eindhoven University of Technology
PO Box 513, NL-5600 MB, Eindhoven, The Netherlands.
w.m.p.v.d.aalst@tm.tue.nl

Abstract. This paper presents a classification framework for workflow
exception handling in the form of patterns. This framework is indepen-
dent of specific modelling approaches or technologies and as such provides
an objective means of delineating the exception-handling capabilities of
specific workflow systems. It is subsequently used to assess the level of
exceptions support provided by eight commercial workflow systems and
business process modelling and execution languages. On the basis of
these investigations, we propose a graphical, tool-independent language
for defining exception handling strategies in workflows.

1 Introduction

Business process management continues to receive widespread focus by tech-
nology-enabled organisations offering them a means of optimising their current
organisational business processes in a way that aligns with top-level business
objectives. In many cases, workflow systems serve as the enabling technology
for mission-critical business processes. They offer a means of streamlining such
processes by mapping out the key activities, decision points and work distribu-
tion directives and then automating much of the overhead that is often associated
with managing the various activities which form part of a business process.
Workflow systems are generally based on a comprehensive process model
(often depicted in graphical form) that maps out all of the possible execution
paths associated with a business process. This ensures that the work activities
which comprise each of the likely execution scenarios are fully described. Whilst
this approach to specifying business process works well for well-behaved cases of
a process i.e. those that conform to one of the expected execution paths, it is
less successful in dealing with unexpected events encountered during execution.
Deviations from normal execution arising during a business process are often
termed exceptions in line with the notion of exceptions which is widely used in

* This work was partially supported by the Dutch research school BETA as part of the
PATINT program and the Australian Research Council under the Discovery Grant
Ezxpressiveness Comparison and Interchange Facilitation between Business Process
Ezecution Languages.

the software engineering community. Because it is difficult to characterise all of
the unanticipated situations that may arise during the execution of a program,
the notion of exceptions was developed where unexpected events are grouped
into classes which are related by similarities that they possess in terms of the
conditions under which they might arise. Exception handlers can then be defined
in the form of programmatic procedures to resolve the effects of specific events as
they are detected. At the lowest level, exceptions can be defined for events such
as divide by zero errors and appropriate handling routines can be defined. For
business processes, this level of detail is too fine-grained and it is more effective
to define exceptions at a higher level, typically in terms of the business process
to which they relate.

In this paper, we investigate the range of issues that may lead to excep-
tions during workflow execution and the various ways in which they can be
addressed. This provides the basis for a classification framework for workflow
exception handling which we subsequently define in the form of patterns. The
patterns-based approach to exception classification is a continuation of previ-
ous research conducted as part of the Workflow Patterns Initiative which has
identified “generic, recurring constructs” in the control-flow [22], data [18] and
resource [19] perspectives of workflow systems. These patterns have proven to
be extremely intuitive to both practitioners and researchers alike and have been
widely utilised for a variety of purposes including tool evaluation and selection,
business process modelling, workflow design and education3. They also provide
the conceptual foundations for the YAWL system [21], an open-source reference
implementation of a workflow system.

In line with the broader Workflow Patterns Initiative, the motivation for this
paper is to provide a conceptual framework for classifying the exception han-
dling capabilities of workflow systems and process-aware information systems
more generally in a manner that is independent of specific modelling approaches
or technologies. This approach is distinguished from other research activities in
this area which seek to extend specific process modelling formalisms and work-
flow enactment technologies to provide support for expected and unexpected
events by incorporating exception detection and handling capabilities. Instead
of directly proposing a concrete implementation, we first provide an overview of
relevant exception patterns, then we evaluate existing products and languages on
the basis of these, and finally we propose a graphical, tool-independent language
for exception handling.

2 Related Work

The need for reliable, resilient and consistent workflow operation has long been
recognised. Early work in the area [8,24] was essentially a logical continuation
of database transaction theory and focussed on developing extensions to the
classic ACID transaction model that would be applicable in application areas

3 Further details are available at www.workflowpatterns.com.

requiring the use of long duration and more flexible transactions. As the field
of workflow technology matured, the applicability of exceptions to this prob-
lem was also recognised [20] and [7] presented the first significant discussion on
workflow recovery which incorporated exceptions. It classified them into four
types: basic failures, application failures, expected exceptions and unexpected
exceptions. Subsequent research efforts have mainly concentrated on the last two
of these classes. Investigations into expected exceptions have focussed previous
work on transactional workflow into mechanisms for introducing exception han-
dling frameworks into workflow systems. Research into unexpected exceptions
has established the areas of adaptive workflow and workflow evolution [17].

Although it is not possible to comprehensively survey these research areas in
the confines of this paper, it is worthwhile identifying some of the major contri-
butions in these areas that have influenced subsequent research efforts and have
a bearing on this research initiative. Significant attempts to include advanced
transactional concepts and exception handling capabilities in workflow systems
include WAMO [6] which provided the ability to specify transactional proper-
ties for tasks which identified how failures should be dealt with, ConTracts [16]
which proposed a coordinated, nested transaction model for workflow execution
allowing for forward, backward and partial recovery in the event of failure and
Exotica [2] which provided a mechanism for incorporating Sagas and Flexible
transactions in the commercial FlowMark workflow product. OPERA [10] was
one of the first initiatives to incorporate language primitives for exception han-
dling into a workflow system and it also allowed exception handling strategies
to be modelled in the same notation as that used for representing workflow
processes. TREX [23] proposed a transaction model that involves treating all
types of workflow failures as exceptions. A series of exception types were delin-
eated and the exception handler utilised in a given situation was determined by
a combination of the task and the exception experienced. WIDE [4] developed
a comprehensive language — Chimera-Exc — for specifying exception handling
strategies in the form of Event-Condition-Action (ECA) rules.

Other important contributions include [13] which identified the concepts of
compensation spheres and atomicity spheres and their applicability to workflow
systems, [3] which proposed modelling workflow systems as a set of reified objects
with associated constraints and conceptualising exceptions as violations of those
constraints which are capable of being detected and managed and [15] which first
identified the pivot, retriable and compensation transaction concepts widely used
in subsequent research.

Identifying potential exceptions and suitable handling strategies is a signif-
icant problem for large, complex workflows. Recent attempts [9,11] to address
this have centred on mining execution logs to gain an understanding of previ-
ous exceptions and using this knowledge to establish suitable handling strategies.
[12] proposes a knowledge-based solution based on the establishment of a shared,
generic and reusable taxonomy of exceptions. [14] uses a case-based reasoning
approach to match exception occurrences with suitable handling strategies.

Until recently the area of unexpected exceptions has mainly been investigated
in the context of adaptive or evolutionary workflow [17] which centre on dynamic
change of the process model. A detailed review of this area is beyond the scope
of this paper, however two recent initiatives which offer the potential to address
both expected and unexpected exceptions simultaneously are ADOME-WFMS
[5] which provides an adaptive workflow execution model in which exception
handlers are specified generically using ECA rules providing the opportunity for
reuse in multiple scenarios and user-guided adaptation where they need refine-
ment, and [1] which describes a combination of “worklets” and “ripple-down
rules” as a means of dynamic workflow evolution and exception handling.

3 A Framework for Workflow Exception Handling

In this section we consider the notion of a workflow exception in a general sense
and the various ways in which they can be triggered and handled. The assump-
tion is that an exception is a distinct, identifiable event which occurs at a specific
point in time during the execution of a workflow and relates to a unique work
item*. The occurrence of the exception is assumed to be immediately detectable
as is the type of the exception. The manner in which the exception is handled
will depend on the type of exception that has been detected. There are a range
of possible ways in which an exception may be dealt with but in general, the
specific handling strategy centres on three main considerations:

— how the work item will be handled;
— how the other work items in the case will be handled; and
— what recovery action will be taken to resolve the effects of the exception.

We discuss the range of possible exception types and the options for handling
them in the following sections.

3.1 Exception Types

It is only possible to specify handlers for expected types of exception. With this
constraint in mind, we undertook a comprehensive review of the workflow liter-
ature and current commercial workflow systems and business process modelling
and execution languages in order to determine the range of exception events that
are capable of being detected and provide a useful basis for recovery handling.
These events can be classified into five distinct groups.

Work Item Failure: Work item failure during the execution of a workflow
process is generally characterised by the inability of the work item to progress
any further. This may manifest itself in a number of possible forms including a

4 We recognise that exceptions may also be bound to groups of tasks, blocks or even
entire cases, and in these situations we assume that the same handling considerations
apply to all of the encompassed tasks.

user-initiated abort of the executing program which implements the work item,
the failure of a hardware, software or network component associated with the
work item or the user to whom the work item is assigned signalling failure to
the workflow engine. Where the reason for this failure is not captured and dealt
within the process model, it needs to be handled elsewhere in order to ensure that
both later work items and the process as a whole continue to behave correctly.

Deadline Expiry: It is common to specify a deadline for a work item in a
workflow process model. Usually the deadline indicates when the work item
should be completed, although deadlines for commencement are also possible.
In general with a deadline, it is also useful to specify at design time what should
be done if the deadline is reached and the work item has not been completed.

Resource Unavailability: It is often the case that a work item requires access
to one or more data resources during its execution. If these are not available to
the work item at initiation, then it is usually not possible for the work item to
proceed. Similarly, workflow systems are premised on the fact that work items
are usually allocated to resources (typically human) who execute them. Problems
with work item allocation can arise if: (1) at distribution time, no resource can
be found which meets the specified allocation criteria for the work item or (2) at
some time after allocation, the resource is no longer able to undertake or complete
the work item. Although the occurrence of these issues can be automatically
detected, they often cannot be resolved within the context of the executing
process and may involve some form of escalation or manual intervention. For
this reason, they are ideally suited to resolution via exception handling.

External Trigger: Triggers from sources external to a work item are often used
as a means of signalling the occurrence of an event that impacts on the work item
and requires some form of handling. These triggers are typically initiated by non-
linked work items (i.e. work items that are not directly linked to the work item in
question by a control edge) elsewhere within the process model or even in other
process models or alternatively from processes in the operational environment in
which the workflow system resides. Although a work item can anticipate events
such as triggers and provision for dealing with them can be included at design-
time, it is not predictable if or when such events will occur. For this reason, the
issue of dealing with them is not suited to normal processing within the work
item implementation and is better dealt with via exception handling. Generally
signals or some other form of processing interrupt indicate that an out-of-bound
condition has arisen and needs to be dealt with. A general consequence of this
is that the current work item needs to be halted, possibly undone and some
alternative action taken.

Constraint Violation: Constraints in the context of a workflow system are
invariants over elements in the control-flow, data or resource perspectives that
need to be maintained to ensure the integrity and operational consistency of
the workflow process is preserved. Ongoing monitoring is generally required to
ensure that they are enforced. The implementation of routines to identify and
handle constraint violations detected within the context of a workflow is similar

to the issue of dealing with external triggers. Typically the construct that will
detect and need to deal with the violation is a work item although there is no
reason why the constraint could not be specified and handled at block or process
level. As constraints may be specified over data, resources or other work items
within a process model, the approach chosen for handling them needs to be as
generic as possible to ensure that it has broadest applicability.

3.2 Exception Handling at Work Item Level

In general an exception will relate to a specific work item in a case. There
are a multitude of ways in which the exception can be handled although the
specific details will depend on the current state of execution of the work item.
Before looking at these options, we first review the execution lifecycle for a work
item. Figure 1 illustrates as solid arrows the states through which a work item
progresses during normal execution. It is initially offered to one or more resources
for execution. A resource issues an allocate command to indicate that it wishes
to execute the work item at some future time, the work item is then allocated to
that resource. Typically this involves adding the work item to the resource’s work
queue and removing any references to the work item that other resources may
have received, either on their work queues or via other means. When the resource
wishes to commence the work item, it issues a start command and the state of
the work item changes to started. Finally, once the work item is finished, the
resource issues a complete command and the state of the work item is changed
to completed. Note that there are two possible variations to this course of events
shown as dotted arcs in Figure 1: (1) where a work item offered to a resource
is selected by another resource, it is withdrawn from the first resource’s worklist
and (2) where an executing work item is detected as having failed, its state is
changed accordingly. This lifecycle map also provides the basis for determining
what options exist for handling a work item in a given state when an exception
is detected.

force-fail-o

_- reofier—s force—fail-a S~

- ~ ~ N
. ~ ~
- ~ N
s . ~ 4 ~

, , R e ~. N
N ~
continue—offer ,/ . “continue-allocation ~_ 7 continue-execution
s o N £
7N ’ ’ 2 N N force—fail _y i
. \ A , \ AN ’ \ P failed
I) ’ ’ (\ ’ N | ! ’ .
, 3 N s
' | 2R
.+ fail
offered
N

< -
=~ _reoffer-a
VTN S 4 ot A
\ ! withdraw™ ~ \) D \ I complete
N , withdraw ~ o N , S N , completed
N_7 J~ N_7 SO N
reoffer . ~ ~ reallocate AN restart -7
withdrawn S o S~ Y
S~ force-complete-a _-7 -
~< - force-complete-o

~ _force-complete

Fig. 1. Work item lifecycle

Figure 1 illustrates fifteen strategies as dashed arcs from one work item state

to another. There are subtle differences between each of these transitions, and
in order to distinguish between them, we briefly describe each of them:

10.

11.

12.

13.

14.

continue-offer (OCO) — the work item has been offered to one or more
resources and there is no change in its state as a consequence of the exception;

. reoffer (ORO) — the work item has been offered to one or more resources

and as a consequence of the exception, these offers are withdrawn and the
work item is once again offered to one or more resources (these resources may
not necessarily be the same as those to which it was offered previously);
force-fail-o (OFF) — the work item has been offered to one or more re-
sources, these offers are withdrawn and the state of the work item is changed
to failed. No subsequent work items on this path are triggered;
force-complete-o (OFC) — the work item has been offered to one or more
resources, these offers are withdrawn and the state of the work item is
changed to completed. All subsequent work items are triggered;
continue-allocation (ACA) — the work item has been allocated to a spe-
cific resource that will execute it at some future time and there is no change
in its state as a consequence of the exception;

reallocate (ARA) — the work item has been allocated to a resource, this
allocation is withdrawn and the work item is allocated to a different resource;
reoffer-a (ARO) — the work item has been allocated to a resource, this
allocation is withdrawn and the work item is offered to one or more re-
sources (this group may not necessarily include the resource to which it was
previously allocated);

force-fail-a (AFF) — the work item has been allocated to a resource, this
allocation is withdrawn and the state of the work item is changed to failed.
No subsequent work items are triggered;

force-complete-a (AFC) — the work item has been allocated to a resource,
this allocation is withdrawn and the state of the work item is changed to
completed. All subsequent work items are triggered;

continue-execution (SCE) — the work item has been started and there is
no change in its state as a consequence of the exception;

restart (SRS) — the work item has been started, progress on the current ex-
ecution instance is halted and the work item is restarted from the beginning
by the same resource that was executing it previously;

reallocate-s (SRA) — the work item has been started, progress on the
current execution instance is halted and the work item is reallocated to a
different resource for later execution;

reoffer-s (SRO) — the work item has been started, progress on the current
execution instance is halted and it is offered to one or more resources (this
group may not necessarily include the resource that was executing it);
force-fail (SFF) — the work item is being executed, any further progress
on it is halted and its state is changed to failed. No subsequent work items
are triggered; and

15. force-complete (SFC) — the work item is being executed, and further
progress on it is halted and its state is changed to completed. All subsequent
work items are triggered.

3.3 Exception Handling at Case Level

Exceptions always occur in the context of one or more cases that are in the
process of being executed. In addition to dealing with the specific work item to
which the exception relates, there is also the issue of how the case should be
dealt with in an overall sense, particularly in regard to other work items that
may currently be executing or will run at some future time. There are three
alternatives for handling workflow cases:

1. continue workflow case (CWC) — the workflow case can be continued,
with no intervention occurring in the execution of any other work items;

2. remove current case (RCC) - selected or all remaining work items in the
case can be removed (including those currently executing); or

3. remove all cases (RAC) — selected or all remaining work items in all cases
which correspond to the same process model can be removed.

In the latter two scenarios, a selection of work items to be removed can be
specified using both static design time information relating to the corresponding
task definition (e.g. original role allocation) as well as relevant runtime informa-
tion (e.g. actual resource allocated to, start time).

3.4 Recovery Action

The final consideration in regard to exception handling is what action will be
taken to remedy the effects of the situation that has been detected. There are
three alternate courses of action:

1. no action (NIL) — do nothing;
2. rollback (RBK) — rollback the effects of the exception; or
3. compensate (COM) — compensate for the effects of the exception.

Rollback and compensation are analogous to their usual definitions (e.g. [15]).
When specifying a rollback action, the point in the process (i.e. the task) to
which the process should be undone can also be stated. By default this is just
the current work item. Similarly with compensation actions, the corresponding
compensation task(s) must also be identified.

3.5 Characterising Exception Handling Strategies

The actual recovery response to any given class of exception can be specified
as a pattern which succinctly describes the form of recovery that will be at-
tempted. Specific exception patterns may apply in multiple situations in a given
process model (i.e. for several distinct constructs), possibly for different types of
exception. Exception patterns take the form of tuples comprising the following
elements:

Table 1. Exceptions patterns support by exception type

‘Work Item
Failure

‘Work Item
Deadline

Resource
Unavailable

External
Trigger

Constraint
Violation

OFF-CWC-NIL
OFF-CWC-COM
OFC-CWC-NIL
OFC-CWC-COM
AFF-CWC-NIL
AFF-CWC-COM
AFC-CWC-NIL
AFC-CWC-COM
SRS-CWC-NIL
SRS-CWC-COM
SRS-CWC-RBK
SFF-CWC-NIL
SFF-CWC-COM
SFF-CWC-RBK
SFF-RCC-NIL
SFF-RCC-COM
SFF-RCC-RBK
SFC-CWC-NIL
SFC-CWC-COM
SFC-CWC-RBK

OCO-CWC-NIL
ORO-CWC-NIL
OFF-CWC-NIL
OFF-RCC-NIL
OFC-CWC-NIL
ACA-CWC-NIL
ARA-CWC-NIL
ARO-CWC-NIL
AFF-CWC-NIL
AFF-RCC-NIL
AFC-CWC-NIL
SCE-CWC-NIL
SCE-CWC-COM
SRS-CWC-NIL
SRS-CWC-COM
SRS-CWC-RBK
SRA-CWC-NIL
SRA-CWC-COM
SRA-CWC-RBK
SRO-CWC-NIL
SRO-CWC-COM
SRO-CWC-RBK
SFF-CWC-NIL
SFF-CWC-COM
SFF-CWC-RBK
SFF-RCC-NIL
SFF-RCC-COM
SFF-RCC-RBK
SFC-CWC-NIL

SFC-CWC-COM

ORO-CWC-NIL
OFF-CWC-NIL
OFF-RCC-NIL
OFC-CWC-NIL
ARO-CWC-NIL
ARA-CWC-NIL
AFF-CWC-NIL
AFF-RCC-NIL
AFC-CWC-NIL
SRA-CWC-NIL
SRA-CWC-COM
SRA-CWC-RBK
SRO-CWC-NIL
SRO-CWC-COM
SRO-CWC-RBK
SFF-CWC-NIL
SFF-CWC-COM
SFF-CWC-RBK
SFF-RCC-NIL
SFF-RCC-COM
SFF-RCC-RBK
SFF-RAC-NIL
SFC-CWC-NIL
SFC-CWC-COM

OCO-CWC-NIL
OFF-CWC-NIL
OFF-RCC-NIL
OFC-CWC-NIL
ACA-CWC-NIL
AFF-CWC-NIL
AFF-RCC-NIL
AFC-CWC-NIL
SCE-CWC-NIL
SRS-CWC-NIL
SRS-CWC-COM
SRS-CWC-RBK
SFF-CWC-NIL
SFF-CWC-COM
SFF-CWC-RBK
SFF-RCC-NIL
SFF-RCC-COM
SFF-RCC-RBK
SFF-RAC-NIL
SFC-CWC-NIL
SFC-CWC-COM

SCE-CWC-NIL
SRS-CWC-NIL
SRS-CWC-COM
SRS-CWC-RBK
SFF-CWC-NIL
SFF-CWC-COM
SFF-CWC-RBK
SFF-RCC-NIL
SFF-RCC-COM
SFF-RCC-RBK
SFF-RAC-NIL
SFC-CWC-NIL
SFC-CWC-COM

— how the task on which the exception is based should be handled;

— how the case and other related cases in the process model in which the

exception is raised should be handled; and
— what recovery action (if any) is to be undertaken.

For example, the pattern SFF-CWC-COM specified for a work item failure
exception indicates that if a failure of a work item is detected after it has started,
then the work item should be terminated, have its state changed to failed and
the nominated compensation task should be invoked. No action should be taken
with other work items in the same case. From the various alternatives identified
for each of these elements in Sections 3.2 — 3.4, there are 135 possible patterns.
Not all patterns apply to a given exception type however, and Table 1 identifies
those which apply to each of the exception types identified in Section 3.1.

4 Workflow Exception Handling in Practice

The exception patterns identified in Section 3 were used to assess the exception
handling capabilities of eight workflow systems and business process modelling

Table 2. Support for exception patterns in commercial offerings

Exceptions

Process Suite v9

ACA-CWC-COM
OFF-CWC-COM
AFF-CWC-COM
SCE-CWC-COM

ACA-CWC-NIL
SCE-CWC-NIL
SCE-CWC-COM

Offering Work Item Work Item FExternal Constraint
Failure Deadline Trigger Violation
OCO-CWC-COM |OCO-CWC-NIL
Staffware

WebSphere MQ

OCO-CWC-NIL
ACA-CWC-NIL

(Pallas Athena)

3.4 (IBM) SCE-CWC-NIL
AFC-CWC-NIL AFC-CWC-NIL
FLOWer 3.1 SFC-CWC-NIL SFC-CWC-NIL

AFC-CWC-COM
SFC-CWC-COM

COSA 5.1
(Transflow)

SFF-CWC-RBK

OCO-CWC-COM
ACA-CWC-COM
SCE-CWC-COM

OCO-CWC-COM
ACA-CWC-COM
SCE-CWC-COM

iPlanet Integ.
Server 3.1 (Sun)

(OFF[OFC[AFF[A
(CWC|RCC)-(NIL|

FC|SRS|SFC|SFF)-
COM)

SFF-CWC-COM

SCE-CWC-COM

SFF-CWC-COM

SFF-CWC-COM

SFC-CWC-NIL
SRS-CWC-COM
SRS-CWC-NIL
SFF-RCC-COM
SFF-RCC-NIL

SFC-CWC-NIL
SRS-CWC-COM
SRS-CWC-NIL
SFF-RCC-COM

SFF-RCC-NIL

SFC-CWC-NIL
SRS-CWC-COM
SRS-CWC-NIL
SFF-RCC-COM
SFF-RCC-NIL

XPDL 2.0 SFF-CWC-NIL SCE-CWC-NIL SFF-CWC-NIL SFF-CWC-NIL
(WEMC) SFF-RCC-COM |SFF-CWC-COM |SFF-RCC-COM |SFF-RCC-COM
SFF-RCC-NIL SFF-CWC-NIL SFF-RCC-NIL SFF-RCC-NIL
SFF-RCC-COM
SFF-RCC-NIL
SFF-CWC-COM |SCE-CWC-COM [SCE-CWC-COM
BPEL 1.1 SFF-CWC-NIL SCE-CWC-NIL SCE-CWC-NIL
SFF-RCC-COM |SFF-CWC-COM |SFF-CWC-COM
SFF-RCC-NIL SFF-CWC-NIL SFF-CWC-NIL
SFF-RCC-COM |SFF-RCC-COM
SFF-RCC-NIL SFF-RCC-NIL
SFF-CWC-COM |SFF-CWC-COM [SFF-CWC-COM [SFF-CWC-COM
BPMN 1.0 SFF-CWC-NIL SFF-CWC-NIL SFF-CWC-NIL SFF-CWC-NIL
(BPMI) SFC-CWC-COM |SFC-CWC-COM |[SFC-CWC-COM |SFC-CWC-COM

SFC-CWC-NIL
SRS-CWC-COM
SRS-CWC-NIL
SFF-RCC-COM
SFF-RCC-NIL

languages. The results of this survey®:® are captured in Table 2. They provide
a salient insight into how little of the research into exception handling has been
implemented in commercial offerings. Only deadline expiry enjoys widespread
support although its overall flexibility is limited in many tools. Only two of the
workflow systems examined provide support for handling work items failures —
generally via user-initiated aborts. There was also minimal support for external
triggers and constraint violation management amongst the workflow tools with
only Staffware and COSA, and FLOWer respectively supporting these exception
classes. The business process languages (XPDL, BPEL and BPMN) provide
better support across most areas although only for active work items. None
of the offerings examined provided exception support for managing resource

® Full evaluation details are contained in report BPM-06-04 at www.BPMcenter .org

5 Combinations of patterns are written as regular expressions e.g. (SFF|SFC)-CWC-

COM represents the two patterns SFF-CWC-COM and SFC-CWC-COM.

unavailability (and as a consequence this column has been omitted from Table 2
— this reflects other research findings [19] on the lack of support for the resource
perspective in current commercial products.

5 Considerations for a Workflow Exception Language

The insights gained in the previous sections in relation to the identification and
handling of workflow exceptions provide the basis for a general workflow ex-
ception handling language. In this section, we propose a set of primitives for
addressing exceptions that might arise during workflow execution and present a
mechanism for integrating these primitives with the process model more gener-
ally. We then demonstrate the applicability of this approach to exception han-
dling through a working example.

The conceptual model presented in Section 3 identified three key dimensions
to handling an exception. These dimensions provide the basis for the primitives
in the graphical exception language illustrated in Figure 2. Symbols 1-4, 8 and
12—-14 are derived from the actions for dealing with the current work item from
Figure 1, symbols 5-7 and 9-11 are derived from the options for dealing with
other work items currently active in the same and other cases and symbols 15
and 16 correspond to the two forms of recovery action that can be undertaken.
These primitives can be assembled into sequences of actions that define exception
handling strategies. These sequences can also contain standard YAWL constructs
[21] although we do not illustrate this capability here.

T e —

n u u s

1. Remove current work item 5. Remove selected/all work 9. Remove selected/all work 13, Reallocate current work item
Items in current case itemsin all cases
— '_I:

NNNRNNE

2. Suspend current work item 6. Su ed/all work 10. Sue%end ﬁected/all work 14. Reoffer current work item
itemsin current case itemsin cases

— | V]

ARNLA NN

3. Continue current work item 7. Continue selected/all work ~ 11. C?ntinue ected/all work 15. Compensation task
or thread itemsin current case itemsin al cases

“« » = :

4. Restart current work item 8. Force complete current work item 12. Force fail current work item 16. Rollback task

Fig. 2. Exception handling primitives

exception handling definition
workitem failure @ u
deadline expin
<deadl “E>p Y E u
constraint violation E@
<constraint >

process definition

complete order

produceinvoice

print picking slip pick order update account

Fig. 3. Exception handling in relation to workflow processes

The interlinkage of exception handling strategies based on these primitives
and the overall process model is illustrated in Figure 3. A clear distinction is
drawn between the process model and the exception handling strategies. This is
based on the premise that the process model should depict the normal sequence
of activities associated with a business process and should aim to present these
activities precisely without becoming overburdened by excessive consideration of
unexpected events that might arise during execution. Exception handling strate-
gies are able to be bound to one of five distinct workflow constructs: individual
tasks, a scope (i.e. a group of tasks), a block, a process (i.e. all of the tasks in
a process model) and a workflow (i.e. all of the process models in a given work-
flow environment). The binding is specific to one particular type of exception
e.g. work item failure or constraint violation. It may also be further specialised
using conditions based on elements from the data perspective e.g. there may be
two exception handling strategies for a task, one for work items concerned with
financial limits below $1000, the other with limits above that figure.

Exception handling strategies defined for more specific constructs take prece-
dence over those defined at a higher level e.g. where a task has a work item failure
exception strategy defined and there is also a strategy defined at the process-level
for the same exception type, then the task-level definition is utilised should it
experience such an exception. In order to illustrate the application of these con-
cepts, we present an example based on the order fulfillment process illustrated
in Figure 4 using the YAWL process modelling notation. In this process, orders
are taken from customers, and a picking slip for the required items is prepared
and subsequently used to select them from the warehouse. At the same time,
the customer’s credit is checked and shipping is organised for the order. When
all of these tasks are complete an invoice is prepared for the customer and the
goods are then packed and despatched whilst the customers account is updated
with the outstanding amount. The order details are then finalised and filed.

/ \
@_» / check credit organise shi p;b\ despatch order @
\ %):od uce invoi c& /:o

take order mplete order

e

print picking dlip ~ pick order update account

Fig. 4. Order despatch process

Figure 5(A) illustrates two alternate exception handling strategies for the
check credit work item. If the credit required is less than $100, the current work
item is suspended and the next work item is started. Where it is $100 or more,
the current work item is suspended, the execution point is rewound to the begin-
ning of the work item and it is recommenced. Figure 5(B) shows the exception
handling strategy for the pick order work item where its completion deadline
is not met. Recovery involves suspending the current work item, reassigning it
to another resource, running a compensation task that determines if the order
can be despatched within 48 hours (and if not applies a small credit to the ac-
count), then the pick order work item is restarted with the new resource. Figure
5(C) illustrates the resource unavailable handling strategy. Where the required
resource is a data resource, this involves stopping the current work item and
restarting it from the beginning. This strategy is bound to the process model
i.e. by default, it applies to all work items. Where the unavailable resource is a
human resource (i.e. the person undertaking the work item), the recovery action
involves suspending the work item, reassigning it to another person and then
restarting it from the beginning. Figure 5(D) indicates the approach to handling
an account frozen trigger received by one of the tasks in the current process.

A. Work item failure — check credit task B. Deadline expiry - pick order task

credit required < $100
) RIS
c

credit required >= $100

D. Trigger received — order despatch process
| ™ « ™ } ““account_frozen trigger !
C. Resource unavailable - order despatch process. R

data resource unavailable

« } E. Constraint violation — take order task
; constraintiorder value < customer credit limit — current account balg

human resource unavailable .
it \Inl;

Fig. 5. Exception handling strategies — order despatch process

In this situation, the recovery action is to stop all work items in the case and
to undertake a rollback action undoing all changes made since the case started.
In other words, any work that has been undertaken on despatching goods to
the customer is completely undone. Finally, Figure 5(E) illustrates the recovery
action that is taken when the order value constraint is exceeded for the take
order task. This involves stopping all work items associated with the process.

6 Conclusions

This paper has presented a patterns-based classification framework for char-
acterising exception handling in workflow systems. The framework has been
used to examine the capabilities of eight workflow systems and business process
modelling and execution languages and has revealed the limited support for ex-
ception management in these offerings. As a consequence of the insights gained
from these investigations, we have proposed a graphical, technology-independent
language for defining exception handling strategies in workflows. This language
offers the potential to assist in defining and managing deviations from normal
process execution and will be the subject of further research in the context of
exception handling in the YAWL reference implementation.

References

1. M. Adams, A.H.M. ter Hofstede, D. Edmond, and W.M.P. van der Aalst. Facili-
tating flexibility and dynamic exception handling in workflows through worklets.
In O. Belo, J. Eder, O. Pastor, and J. Falcao é Cunha, editors, Proceedings of
the CAiSE’05 Forum, volume 161 of CEUR Workshop Proceedings, pages 45-50,
Porto, Portugal, 2005. FEUP.

2. G. Alonso, D. Agrawal, A. El Abbadi, M. Kamath, G. Gunthor, and C. Mohan.
Advanced transaction models in workflow contexts. In Proceedings of the 12th
International Conference on Data Engineering, pages 574-581, New Orleans, USA,
1996.

3. A. Borgida and T. Murata. Tolerating exceptions in workflows: A unified frame-
work for data and processes. In D. Georgakopoulos, W. Prinz, and A.L. Wolf,
editors, Proceedings of the International Joint Conference on Work Activities Co-
ordination and Collaboration (WACC’99), pages 59-68, San Francisco, USA, 1999.

4. F. Casati, S. Ceri, S. Paraboschi, and G. Pozzi. Specification and implementation
of exceptions in workflow management systems. ACM Transactions on Database
Systems, 24(3):405-451, 1999.

5. D.K.W. Chiu, Q. Li, and K. Karlapalem. ADOME-WFMS: Towards cooperative
handling of workflow exceptions. In Advances in Exception Handling Techniques,
pages 271-288. Springer-Verlag, New York, NY, USA, 2001.

6. J. Eder and W. Liebhart. The workflow activity model (WAMO). In S. Laufmann,
S. Spaccapietra, and T. Yokoi, editors, Proceedings of the Third International Con-
ference on Cooperative Information Systems (CooplS-95), pages 87-98, Vienna,
Austria, 1995.

7. J. Eder and W. Liebhart. Workflow recovery. In Proceedings of the First IFCIS
International Conference on Cooperative Information Systems (CooplS’96), pages
124-134, Brussels, Belgium, 1996. IEEE Computer Society.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

A. Elmagarmid, editor. Database Transaction Models for Advanced Applications.
Morgan Kaufmann, San Mateo, CA, USA.

D. Grigori, F. Casati, U. Dayal, and M.C. Shan. Improving business process qual-
ity through exception understanding, prediction, and prevention. In P. Apers,
P. Atzeni, S. Ceri, S. Paraboschi, K. Ramamohanarao, and R. Snodgrass, edi-
tors, Proceedings of the 27th International Conference on Very Large Data Bases
(VLDB’01), pages 159-168, Rome, Italy, 2001. Morgan Kaufmann.

C. Hagen and G. Alonso. Exception handling in workflow management systems.
IEEE Transactions on Software Engineering, 26(10):943-958, 2000.

S.Y. Hwang and J. Tang. Consulting past exceptions to facilitate workflow excep-
tion handling. Decision Support Systems, 37(1):49-69, 2004.

M. Klein and C. Dellarocas. A knowledge-based approach to handling exceptions
in workflow systems. Journal of Computer-Supported Collaborative Work, 9(3-
4):399-412, 2000.

F. Leymann and D. Roller. Workflow-based applications. IBM Systems Journal,
36(1):102-123, 1997.

Z. Luo, A. Sheth, K. Kochut, and J. Miller. Exception handling in workflow
systems. Applied Intelligence, 13(2):125-147, 2000.

S. Mehrotra, R. Rastogi, H.F. Korth, and A Silberschatz. A transaction model
for multidatabase systems. In Proceedings of the 12th International Conference
on Distributed Computing Systems (ICDCS’92), pages 56—63, Yokohama, Japan,
1992. IEEE Computer Society.

A. Reuter and F. Schwenkreis. ConTracts — a low-level mechanism for build-
ing general-purpose workflow management-systems. Data Engineering Bulletin,
18(1):4-10, 1995.

S. Rinderle, M. Reichert, and P. Dadam. Correctness criteria for dynamic changes
in workflow systems — a survey. Data and Knowledge Engineering, 50:9-34, 2004.
N. Russell, A.H.M. ter Hofstede, D. Edmond, and W.M.P. van der Aalst. Workflow
data patterns: Identification, representation and tool support. In L. Delcambre,
C. Kop, H.C. Mayr, J. Mylopoulos, and O. Pastor, editors, Proceedings of the
24th International Conference on Conceptual Modeling (ER 2005), volume 3716 of
LNCS, pages 353—-368, Klagenfurt, Austria, 2005. Springer.

N. Russell, W.M.P. van der Aalst, A.H.M. ter Hofstede, and D. Edmond. Workflow
resource patterns: Identification, representation and tool support. In O. Pastor
and J. Falcao é Cunha, editors, Proceedings of the 17th Conference on Advanced
Information Systems Engineering (CAiSE’05), volume 3520 of Lecture Notes in
Computer Science, pages 216-232, Porto, Portugal, 2005. Springer.

D.M. Strong and S.M. Miller. Exceptions and exception handling in computerized
information processes. ACM Transactions on Information Systems, 13(2):206-233,
1995.

W.M.P. van der Aalst and A.H.M. ter Hofstede. YAWL: Yet another workflow
language. Information Systems, 30(4):245-275, 2005.

W.M.P. van der Aalst, A.H.M. ter Hofstede, B. Kiepuszewski, and A.P. Barros.
Workflow patterns. Distributed and Parallel Databases, 14(3):5-51, 2003.

R. van Stiphout, T.D. Meijler, A. Aerts, D. Hammer, and R. Le Comte. TREX:
Workflow transaction by means of exceptions. In H.-J. Schek, F. Saltor, I. Ramos,
and G. Alonso, editors, Proceedings of the Sixth International Conference on Fx-
tending Database Technology (EDBT’98), pages 21-26, Valencia, Spain, 1998.

D. Worah and A.P. Sheth. Transactions in transactional workflows. In S. Jajodia
and L. Kerschberg, editors, Advanced Transaction Models and Architectures, pages
3-34. Kluwer Academic Publishers, 1997.

