
Configurable Reference
Modeling Languages

Jan Recker1), Michael Rosemann1), Wil van der Aalst1,2), Monique Jansen-Vullers2), Alexander

Dreiling3)

1) Faculty of Information Technology
Queensland University of Technology

126 Margaret Street, Brisbane QLD 4000, Australia
Phone: +61 7 3864 9473, Fax: +61 7 3864 9390

{j.recker, m.rosemann, w.vanderaalst}@qut.edu.au
2) Eindhoven University of Technology

P.O. Box 513, 5600 MB Eindhoven, The Netherlands
Phone: +31 40 247 4295, Fax: +31 40 243 2612

{w.m.p.v.d.aalst, m.h.jansen-vullers}@tm.tue.nl
3) SAP Research CEC Brisbane, SAP Australia Pty Ltd

133 Mary Street, Brisbane QLD 4000, Australia
Phone: +61 7 3259 9512, Fax: +61 7 3259 9599

alexander.dreiling@sap.com

Configurable
Reference Modeling Languages

ABSTRACT

This chapter discusses reference modeling languages for business systems analysis and design.
In particular, it reports on reference models in the context of the design-for/by-reuse paradigm,
explains how traditional modeling techniques fail to provide adequate conceptual expressiveness
to allow for easy model reuse by configuration or adaptation, and elaborates on the need for
reference modeling languages to be configurable. We discuss requirements for and the
development of reference modeling languages that reflect the need for configurability.
Exemplarily we report on the development, definition and configuration of Configurable Event-
driven Process Chains. We further outline how configurable reference modeling languages and
the corresponding design principles can be used in future scenarios such as process mining and
data modeling.
Keywords

IS Models, Systems Development Techniques, Conceptual Design, Process Design
INTRODUCTION

Business systems have evolved as computer-based information systems that present themselves
as comprehensive commercial packages for the support of business requirements. Being IT-
supported software solutions, they presumptively support and enhance organizations in all their
business operations. First attempts towards such corporate-wide integrated information systems
were developed in the 1960s (Beer, 1966). The huge success of this idea has led to the
proliferation of comprehensive business information systems such as Enterprise Resource
Planning (ERP) systems or Enterprise Systems (ES), the current generation of which is known
under the label of process-aware information systems (Dumas, van der Aalst, & ter Hofstede,
2005). This label has emerged from an act of “silent revolution” that has embraced the IS
discipline over the last decades and which has started to shift the focus of attention from a data
perspective towards a process perspective. As a result, an increasing number of business
processes are now conducted under the governance of process-aware information systems, with
the intention of bridging not only business and IT but also people and software through process-
based technology.
The successful implementation of process-aware business systems is, however, dependent on a
seamless alignment between the system capabilities and the organizational requirements of the
enterprise. The process of aligning organizational requirements and system functionality
(Rosemann, Vessey, & Weber, 2004) is known as configuration and rests on the assumption of
similarity between enterprises, in the sense that generic business system functionality, with some
customization, is assumed to be applicable to all enterprises in a given industry sector. Following
the idea of process-orientation, business system vendors often offer their solutions in the form of
pre-defined generic business processes for a set of industry sectors. Oracle, for example, offers
system-supported business process solutions that cover 19 industrial sectors (Oracle, 2006) while

Copyright © 2006 by Idea Group Inc. 2

SAP offers business process solutions for 24 industrial sectors (SAP, 2006). These industry-
specific process “templates” are introduced to organizations to offer a final implementation of
the business system in the form of a configured, enterprise-specific set of business processes that
are enabled, enacted and supported by the system.
Yet, the act of aligning generic industry-specific to enterprise-specific business processes that
reflect organizational requirements has been shown to imply extensive configuration efforts and
may lead to significant implementation costs that exceed the price of software licenses by factor
five to ten (Davenport, 2000). Some instances even indicate that a misalignment may result in
severe business failure if conducted badly. Consider the example of FoxMeyer, once a $5 billion
wholesale drug distributor, which filed for bankruptcy in 1996 after Andersen Consulting
concluded that the insufficiently aligned SAP installation crippled the firm's distribution (Stein,
1998). Other examples include Mobil Europe and Dow Chemical (Davenport, 1998).
Business systems vendors are aware of these problems and try to increase the manageability of
the configuration process of their software solutions. One respective measure is to deliver the
products along with extensive documentation and specific implementation and configuration
support tools. Conceptual models play a central role within such documentation. They describe
functionality and structure of the business systems on a semi-formal level and have become
popular under the notion of reference models. Though such reference models for business
systems exist in the form of function, data, system organization, object and process models, the
latter is by far the most popular model type (Rosemann, 2000) and often forms a constituent part
of the documentation of software packages.
While the existence of such reference models as part of the system documentation in general is
valuable in software implementation projects (Kesari, Chang, & Seddon, 2003), traditional
reference models offer little or no support for configuration (Daneva, 2000) This is mainly due to
a lack of conceptual support in the form of a configurable modeling language underlying the
reference models (Rosemann & van der Aalst, In Press).
Nevertheless, the business system configuration process can significantly benefit from the usage
of reference models, for instance in terms of consistency, completeness, adaptability and
communicability. Since most business information systems are quite extensively depicted in their
reference models, it motivates the idea of utilizing these reference models for the configuration
task. However, the language that is used to formulate reference models for the task of system
configuration needs to be configurable to support this delicate task. A configurable reference
process model should, for instance, provide rules defining how a generic reference process
model can be adapted to suit a specific organizational context.
This chapter provides an introduction to configurable reference modeling languages and their
role in the configuration process of business information systems. It covers discussions of current
shortcomings of reference modeling languages, the need for configurable reference models, and
the different stages towards the development and application of configurable reference modeling
languages, particularly in the context of business information systems. While we will, during the
course of this chapter, address multiple perspectives using the examples of process and data
models, our foremost focus lies on the process perspective. We will explicate our argumentations
using the example of a configurable reference process modeling language called Configurable
EPCs (Rosemann & van der Aalst, In Press).
Forthcoming from this introduction we will first discuss traditional reference modeling
languages. Then, we will present and discuss design principles for the design of configurable
reference modeling languages and then apply the principles in the development of EPCs. Next,

Copyright © 2006 by Idea Group Inc. 3

we will briefly outline future scenarios for configurable reference modeling languages and their
design principles. We close this chapter by discussing some conclusions from our work.

REFERENCE MODELING LANGUAGES
Reference models are generic conceptual models that formalize recommended practices for a
certain domain (Fettke & Loos, 2003; Misic & Zhao, 2000). Often labeled with the term 'best
practice' reference models claim to capture reusable state-of-the-art practices (Silverston, 2001a,
2001b). The depicted domains can be very different and range from selected functional areas
such as financial accounting or Customer Relationship Management to the scope of an entire
industry sector, e.g., higher education.
The main objective of reference models is to streamline the design of enterprise-individual
(particular) models by providing a generic solution (Rosemann, 2000). The application of
reference models is motivated by the ‘design-for/by-reuse’ paradigm, postulating that they
should accelerate the modeling process by providing a repository of potentially relevant business
processes and structures, ideally in an easy ‘plug & play’ modus. Thus, reference modeling is
closely related to the reuse of information models (Wisse, 2000) by providing a generic model
solution that can be adapted to a specific model reflecting individual requirements.
Reference models are often used for describing the structure and functionality of business
systems. In these cases, a reference model can be interpreted as a structured semi-formal
description of a particular application. Such application reference models correspond to an
existing off-the-shelf-solution that supports the functionality and structure described in the model
(Rosemann, 2002). They can for example be used for a better understanding and evaluation of
the appropriateness of the software.
One of the most comprehensive models is the SAP reference model (Curran, Keller, & Ladd,
1997). In its version 4.6 its data model includes more than 4,000 entity types and the reference
process models cover more than 1,000 system processes and inter-organizational business
scenarios. Most of the other market leading business systems vendors have alternative or similar
approaches towards such reference models.
Foundational conceptual work for the SAP reference model had been conducted by SAP AG and
the IDS Scheer AG in a collaborative research project in the years 1990-1992 (Keller, Nüttgens,
& Scheer, 1992). The outcome of this project was the process modeling language Event-Driven
Process Chains (EPCs) (Keller et al., 1992; Scheer, 2000), which has been used for the design of
the reference process models in SAP. EPCs have become one of the most popular reference
modeling languages overall and has for instance been used for the design of many SAP-
independent reference models (e.g., Siebel CRM, ITIL, eTOM, or PMBOK).
EPCs basically denote directed graphs, which visualize the control flow and consist of events,
functions and connectors. Each EPC starts with at least one event and ends with at least one
event. An event triggers a function, which leads to a new event. Three types of connectors
(logical AND ∧, logical exclusive OR XOR, logical OR ∨) can be used to specify the logical
links that exist between sequences of events and functions in process chains. They model control
flow splits and joins. An AND-split activates all outgoing branches in concurrency while an
AND-join waits for all incoming branches to synchronize before propagating control to the
following EPC element. An OR-split activates one, two or up to all outgoing branches based on
certain conditions while an OR-join synchronizes all incoming branches that are active and then
propagates control to the following EPC element. An XOR-split activates one of multiple

Copyright © 2006 by Idea Group Inc. 4

outgoing branches based on certain conditions while an OR-join propagates control to the
following EPC element when the first active incoming branch arrives.
Figure 1 gives an example for an EPC as it potentially can be found as part of a reference model.
This model shows an extract of a procurement process. The EPC contains 8 events, 6 functions,
and 3 connectors. The events can be seen as pre- and/or post-conditions of functions. For
example, the function Verify Invoice can be executed if event Invoice posted is received and the
completion of this function will trigger the event Payment to be effected. There are two functions
triggering event Invoice arrived. The XOR-connector in the lower half of the diagram shows that
there is no need to synchronize these two functions, e.g., the completion of Store Goods directly
triggers event Invoice posted. The XOR-connector in the upper half of the diagram splits the
control flow in accordance to the condition whether the purchase performed relates to goods (left
branch) or services (right branch). The remaining connector denotes an AND-join, meaning that
both input events need to be triggered in order to enable function Create Purchase Order.

Copyright © 2006 by Idea Group Inc. 5

Figure 1. An example for a potential reference model in EPC notation

Demand
exists

Create
Purchase

Order

Purchase
approved

Perform
Purchase

Evaluate
Goods
Receipt

Record
Service

Goods arrived
Services

to be
recorded

Invoice posted

Verify Invoice

Payment to be
effected

Store Goods

Goods to be
stored

V

Funding exists

X

X

An event represents a
state that influences or

controls the further flow of
one or more business

processes. Events trigger
functions and are results

of functions.

A function is a task or activity
performed on an object in
order to support one or
several business objectives.
A function is triggered by an
event and results in one or
more events.

Logical operators allow
specifying the logical links
that exist between events and
functions in process chains.
Splits activate one or more
outgoing branches based on
certain conditions while Joins
synchronize one or more
active incoming branches to
propagate control to a
following EPC element.

Directed arcs are used to
connect EPC elements

and depict the time-logical
flow of the process.

As can be observed from Figure 1, regular EPCs do not contain any configuration information.
Therefore, valuable information is lacking. For example, it is not shown that Record Service, i.e.,
the scenario in which procured services need to be audited during execution, is only of interest
for a subset of all procurement scenarios, namely those where services are being procured
instead of goods. There are cases imaginable where enterprises only enact a procurement process
for goods but not services. In these cases the accordant part of the reference model is not
applicable to the organization and should be eliminated from the enterprise-specific process

Copyright © 2006 by Idea Group Inc. 6

model. This implies that the XOR connector may be a choice made for the whole process rather
than for an individual process instance. Consider a second example. The EPC shown in Figure 1
neither shows that Store Goods is only relevant if Evaluate Goods Receipt is conducted. If
organizations opt never to procure goods but only services there is no need to implement
functionality for goods storage. Also, the model neither gives any insights into the necessity or
criticality of potential configurations nor into possible inter-dependencies between configuration
decisions. Thus, the model expressive power is limited and cannot guide the configuration of a
corresponding business system. Hence, a reference model designed using a traditional reference
modeling language is only of limited use for the configuration process due to lacking support on
a conceptual level.

DESIGN OF CONFIGURABLE REFERENCE MODELING

LANGUAGES

Design principles for a configurable reference modeling language

Following the elaborations in the preceding section and following the idea of reference
modeling, i.e., the streamlined development of individual models through “design-for/by-reuse”,
we postulate that reference modeling languages ought to be configurable. We can reason our
argumentation by introducing a simple reference model lifecycle that depicts the different stages
of a reference model, ranging from model design to execution (see Figure 2).
Figure 2. Reference Model Lifecycle

The lifecycle is initiated by ES vendors who depict the functionality of their software packages
in reference models (design time). Such a reference model typically not includes merely one
proposed alternative for conducting business in a certain domain but a range of often mutually
exclusive alternatives It denotes an ‘upper-bound’ of business system models that may possibly
be implemented in a particular enterprise. An organization might merely favor one of the
depicted alternatives and thus only to a subset of system functionality to be implemented.
Accordingly they only refer to a subset of the reference model. Figure 2 demonstrates this
problem in a simple example. The upper-bound reference model depicts two mutually exclusive
alternatives of conducting business, either the sequence A-B-C or A-B-D. A particular enterprise
has to select one of these two substitutive alternatives of conducting business under the

Copyright © 2006 by Idea Group Inc. 7

governance of the respective business system. The XOR split in this case represents a decision
point that is of relevance during configuration time. Note that a model in this phase cannot
necessarily be executed. It rather captures different alternatives for a domain and thus needs to be
configured before it can serve as the actual build time model, a template for implementing and
executing process instances at run time.
These types of decision cannot be reflected in traditional reference models due to lacking
conceptual support of the underlying reference modeling language. Existing reference modeling
techniques do not support the highlighting and selection of different alternatives. The resulting
lack of expressiveness denotes a major issue for model users, as (a) it does not become obvious
what configuration alternatives exist during system implementation, and (b) the models do not
provide any decision support towards the selection of different alternatives.
Contemplating the reference model lifecycle and the shortcomings of traditional reference
modeling languages, we have identified the following design principles for a configurable
reference modeling language:

(a) A configurable modeling language is characterized by its capability to support decisions
for the transformation of reference models from configuration time to build time, i.e., the
model user can individualize the model by selecting from alternative options before
instances will be derived from it. Such configuration decisions on a type level have to be
clearly differentiated from decisions on an instance level and can be highlighted as
variation points in a model (Halmans & Pohl, 2003) that should capture a decision point
together with the related possible choices.

(b) A configurable modeling language has to support configurations of business systems
regarding processes, functions, control flow and data. In terms of processes,
configuration should address the active parts of process models, i.e., functionality
(functions, tasks, transitions, and the like) and control flow. As events (or states) as more
passive parts of processes cannot actively be influenced by an organization, these should
not be covered by a configurable reference process modeling language.

(c) It should be possible to differentiate configuration decisions into mandatory and optional
decisions. Mandatory decisions have to be made before the very first instance can be
derived from this model. Optional decisions can initially be neglected. It should be
possible to maintain defaults for optional configuration decisions. This allows the
instantiation of the model even without explicitly making all possible decisions.

(d) Configuration should be differentiated into global and local decisions. Global decisions
are based on the general context, including factors such as industry, country, size etc. The
relevant context factors have to be maintained for every variation point. As soon as
information regarding the relevant context has been provided, a first (hidden or
background) configuration of the reference model can take place, which would lead to
“context-aware models”. Local configurations require an explicit study of the relevant
reference model as the related decisions may be based on local or individual factors such
as available budget, risk profile, time etc.

(e) Configuration decisions should be differentiated into critical and non-critical decisions.
Critical decisions have significant impact on the use of the system and other business
processes, can often not be re-done and should be made by the project team. Non-critical
decisions are of minor importance, can be made by individual team members and change
over time.

Copyright © 2006 by Idea Group Inc. 8

(f) Configuration decisions can have interrelationships. Such pre-requisites for a
configuration decision should be clearly highlighted. This can include other decisions that
have to be made before. Moreover, any impact of one decision on other decisions has to
be depicted. This means, a logical order between configuration decisions has to be
considered. This includes interrelationships within one model, between two process
models, or even interrelationships between reference process and related data models
(Rosemann & Shanks, 2001).

(g) Variation points should refer to further related information within the part of the business
system it depicts. This may include the system online help and the system configuration
module, such as the SAP Implementation Guide (IMG) (Bancroft, Seip, & Sprengel,
1997). Such information can provide valuable support for the decision maker.

(h) The entire configuration process should be guided by recommendations in the form of
guidelines. Such information could come as benchmarking data from the outside of the
system if a critical mass of system users is willing to provide such data. It may include
information such as the processing time of a given process path, the number of times a
decision has been made in the same industry or the required investments and
implementation time for a certain configuration. Such recommendations may as well
assist reference model users in assessing the compliance of their configuration to industry
best practices.

(i) Reference models can be very comprehensive. Any extension of the underlying modeling
languages has to carefully consider the impact on the perceived model complexity. It is
advisable to extend existing reference modeling languages rather than developing new
ones.

In the following we will apply these design principles in the development of a configurable
reference modeling language. As process modeling is key to acquiring, communicating and
validating business requirements (Daneva, 2004; Welti, 1999) we will focus the process
perspective, i.e., the alignment of IT functionality to the actual business processes of an
organization. The following section introduces Configurable EPCs as the representation
language of a reference process modeling approach that considers the configurable nature of a
business system and reflects the design principles for configurable modeling techniques.
Configurable Event-Driven Process Chains

This section introduces the notion of a Configurable EPC (C-EPC).We start our elaborations by
referring back to the procurement example given before. Figure 1 shows a potential reference
model for the process of procurement in form of a classical EPC. Following this diagram,
procurement starts with the creation of a purchase order (function Create Purchase Order) when
a demand for services or goods exists (event Demand exists) and (logical AND-connector
∧) when sufficient funding for the procurement exists (event Funding exists). Once the created
purchase order has been approved, the procurement can be conducted. The process succeeds with
either reception and storage of the arrived goods, or recording of the enactment of the requested
service. In either case, an invoice will arrive at some point in time demanding payment for the
delivery of goods or services. Then, the invoice needs to be verified, which in turn triggers the
effectuation of payment, which ends the process.
However, not all organizations implement procurement the same way. For example, not only
goods may be purchased but also services, with the former being in a need for appropriate

Copyright © 2006 by Idea Group Inc. 9

storage while the latter need to be audited during enactment. A particular organization may only
want to implement procurement functionality of a business system for either services or goods.
Furthermore, for illustration purposes let us assume that a purchase may or may not be related to
a purchase order. Similarly, the verification of invoices may or may not be essential for the
effectuation of payment, for example in cases where long term contracts to trusted vendors or
sophisticated support exists, e.g., in form of Evaluated Receipt Settlement functionality. None of
these potential configuration decisions can be visualized using the traditional EPC reference
modeling language. In particular, the model does not express possible configuration alternatives
and scenarios with respect to the process it represents.
This section introduces Configurable EPCs as an approach to depict variation points in a
reference process model as well as further configuration information (Rosemann & van der
Aalst, In Press).
Adhering to design principle (b) we seek to make the active parts of processes configurable, i.e.,
functionality and control flow. Accordingly, in a C-EPC, functions and connectors can be
configured. As an example, Figure 3 shows the procurement reference process model introduced
in the preceding section depicted in C-EPC notation. We will use this example model throughout
the remainder of this section to introduce the notion of C-EPCs.
Figure 3. Potential Configurable Reference Model for the Procurement Process, depicted in C-
EPC notation

Copyright © 2006 by Idea Group Inc. 10

Adhering to design principle (i) C-EPCs extend regular EPCs with the specification of variation
points (configurable functions and connectors), configuration requirements and configuration
guidelines.
Configurable functions may be included (ON), excluded (OFF), or conditionally skipped (OPT).
To be more specific, a decision has to be made whether to perform such a function in every
process instance during run time (ON), whether to exclude this function permanently, i.e., it will
not be executed in any process instance (OFF), or whether to defer this decision to run time, i.e.,
for each process instance it has to be decided whether or not to execute the function (OPT).

Copyright © 2006 by Idea Group Inc. 11

Referring to the example given in Figure 3, it is for instance possible to configure the
procurement process in a way that Create Purchase Order and Verify Invoice are not to be
implemented; therefore they are to be excluded from the enterprise-individual process model.
Reflecting this decision in the configurable reference process model, the accordant configurable
functions can be switched OFF.
Configurable connectors subsume possible build time connectors that are less or equally
expressive. Hence, a configurable connector can only be mapped to a connector type that
restricts its behavior. A configurable OR-connector may be mapped to a regular OR-, XOR-, or
AND-connector. Or, the OR-connector may be mapped to a single sequence of events and
functions (indicated by SEQn for some process path starting with node n). That is, out of the
incoming/outgoing branches of a configurable OR-connector, a single branch is chosen that is to
be included in the individual model while the remaining branches are to be excluded from the
model. A configurable AND-connector may only be mapped to a regular AND-connector with a
decision being made as to how many of n available process paths are to be executed in
synchronization. A configurable XOR-connector may be mapped to a regular XOR-connector, or
the XOR-connector may be mapped to a single process sequence SEQn. Table 1 summarizes
these mapping constraints.
Table 1. Constraints for the configuration of connectors

Referring back to the example given in Figure 3, consider the decision that a particular enterprise
does not want to implement procurement for both goods and services but instead only for goods.
The assessment and recording of services would then be deemed unnecessary. In the reference
process model, such a decision can be reflected by mapping the configurable XOR-connector to
a single sequence SEQGoods arrived specifying the process branch containing the handling of
received goods.
In order to depict inter-dependencies between configurable EPC nodes, configuration
requirements can be introduced to limit the configuration possibilities between inter-related
configurable nodes. These constraints are best defined via logical expressions in the form of If-
Then-statements and denote predicates for a set of configurable nodes that must hold true for a
valid configuration. Consider again the example given in Figure 3. If the goods receipt sub-
process is deemed unnecessary, there is no need for the storage of goods, as services cannot be
physically stored. A configuration constraint could be that if Evaluate Goods Receipt is switched
OFF, so must be function Store Goods.
In order to provide input in terms of recommendations and proposed best practices, configuration
guidelines may be depicted (also in the form of logical expressions) to guide the configuration
process semantically. They, too, may be expressed in the form of If-Then-statements. They
denote logical predicates for a set of configurable nodes that may but not need hold true for a
given configuration. Again, consider Figure 3. Verify invoice may be an unnecessary task if long-
term procurement contracts with trusted vendors or advanced Evaluated Receipt Settlement

Copyright © 2006 by Idea Group Inc. 12

functionality exists that automatically settles invoices based on goods issues. For these scenarios
a configuration guideline suggests switching Verify Invoice OFF.
In summation, the notion of a C-EPC potentially facilitates a selection and modification of
process flows and process activities within a reference process model. As can be seen from
Figure 3, configurable nodes are denoted as usual EPC nodes shaped by thick circles, while both
configuration requirements and guidelines are depicted as notes-like boxes attached to a number
of configurable nodes.
Configuration using Configurable EPCs

According to the reference model lifecycle (see Figure 2), at configuration time a configurable
reference process model can be configured in the sense that configuration alternatives within the
model are selected in a way that a configuration scenario is created which is deemed desirable
for the particular organization. Such a configuration maps all configurable nodes to concrete
values, i.e., regular EPC nodes, while adhering to configuration requirements (and possibly also
configuration guidelines). Figure 4 shows two possible regular EPCs resulting from a
configuration of the C-EPC shown in Figure 3. Consider the EPC depicted in the left part of
Figure 4: In this case, the particular enterprise decided to relate purchase requests to purchase
orders, hence, the function Create Purchase Order is included. Similarly, as the organization
only purchases from long-known, trusted vendors, an extra invoice verification activity was
deemed unnecessary. Hence, the accordant function Verify Invoice was excluded from the model.
Furthermore, procurement in this case has to cater for either physical goods or services. Hence,
the configurable XOR-connector has been mapped to a regular XOR-connector, allowing at run
time for the procurement of either services or goods, for both of which accordant activities have
been included as well. In the left part of Figure 4, Configuration (a) shows the process model
resulting from the configuration {(Create Purchase Order,ON),(XOR,XOR),(Evaluate Goods
Receipt,ON),(Store Goods,ON),(Record Service,ON),(XOR,XOR),(Verify Invoice,OFF)}.

Figure 4. Two possible configurations of the C-EPC shown in Figure 3

Copyright © 2006 by Idea Group Inc. 13

Demand
exists

Perform
Purchase

Record
Service

Services
to be

recorded

Invoice posted

Verify Invoice

Payment to be
effected

V

Funding and
Purchase
approved

Demand
exists

Create
Purchase

Order

Purchase
approved

Perform
Purchase

Evaluate
Goods
Receipt

Record
Service

Goods arrived
Services

to be
recorded

Invoice posted
and to be

settled

Store Goods

Goods to be
stored

V

Funding exists

X

X

Configuration (a) Configuration (b)

Configuration (b) shows an EPC resulting from the configuration {(Create Purchase
Order,OFF),(XOR,SEQServices to be recorded),(Goods Receipt,OFF),(Storage,OFF),(Service
recording,ON),(XOR,SEQServices to be recorded),(Verify Invoice,ON)}. As both EPC models do not
conflict against the configuration requirements depicted in Figure 3, both configurations are
valid. Note here that a valid configuration is also suitable if it further satisfies all configuration
guidelines.
Strictly speaking, deriving a correct build time EPC from a configured C-EPC involves three
kinds of tasks: (a) derivation of a partial EPC model for each configured function, (b) derivation
of a partial EPC model for each configured connector, and (c) recalculation of the complete EPC
process graph by excluding unnecessary paths. The calculation of the build time EPC should be
governed by the minimality criterion: if elements have to be added by configuration, add as few
elements as possible; if elements have to be removed by configuration, remove as many as

Copyright © 2006 by Idea Group Inc. 14

possible, and optimize the graph so as to include no unnecessary paths (Mendling, Recker,
Rosemann, & van der Aalst, in press; Recker, Rosemann, van der Aalst, & Mendling, 2006).
Theoretically, there are four constellations in which a configured function may appear in a C-
EPC (Dreiling, Chiang, Rosemann, & van der Aalst, 2005; Recker, Rosemann et al., 2006): (a)
between two events, (b) between a connector and an event, (c) between an event and a connector,
and (d) between two connectors. Figure 5 illustrates the derivation rules for these four cases
(connectors labeled with any indicate that any connector type is allowed to make the rule
applicable). In case (a) a configurable function mapped to OPT generates two additional XOR-
connectors. This mapping is proposed in accordance to the minimality criterion as it introduces a
minimal set of additional elements. In case (b) the configurable function mapped to OPT
generates an additional function and two XOR-connectors. This additional function allows for
the XOR-split decision, otherwise there would have been a split connector subsequent to a join
connector, which is not lawful. Case (c) is similar to case (a) – instead of the succeeding event a
successor split connector (any) is given. In Case (d) the configurable function mapped to OFF
may not simply be excluded. As the any join may be the last connector in a chain of several
connectors, the exclusion of the configurable function may not be possible in every case (if the
connector chain is composed of join connectors only, events preceding the connector chain can
be eliminated together with the function. If the connector chain also includes split connectors,
there are further functions at the end of the chain that require the events in order to comply with
the EPC alternation rule). The optional function follows a similar idea as applied in case (b). All
of these derivation rules preserve the correctness of the model.
Figure 5. Derivation rules for configured functions

Copyright © 2006 by Idea Group Inc. 15

Configured connectors can mostly be derived in a straight-forward manner. If a configurable
connector is not configured to a sequence, only its label has to be adopted. If a connector is
configured to a sequence SEQn, those succeeding paths that are not to be included in the build
time model have to be eliminated. This means that all subsequent elements are to be excluded
from the model until a join connector is reached. If there are no more paths to be eliminated, it
must further be checked whether there are join connectors in the model that do not link to any
incoming arc. Paths starting with these joins have to be eliminated, too, and the check must be
repeated. This procedure is iterated until there are no more connectors without incoming arcs.
Figure 6 illustrates this procedure by presenting the case of a split connector whose outgoing
paths are eliminated. Following our argumentation this connector and its successor path must be
eliminated until a join connector is reached. Again, these derivation rules preserve the
correctness of the model.
Figure 6. Example: Connector configured to SEQ2

Copyright © 2006 by Idea Group Inc. 16

After deriving configured functions and configured connectors, the resulting EPC may still
include unnecessary process graph structures. Functions that are switched OFF and connectors
that are configured to SEQn may lead to empty paths or connectors with only one incoming and
one outgoing arc (for instance the XOR connector in the resulting model shown in Figure 6). In
order to comply with the minimality criterion, certain graph reduction rules have to be applied.
Figure 7 gives five reduction rules that are sufficient to derive EPCs that comply with the
minimality criterion. Rule (a) eliminates arcs a from an AND-split to an AND-join if there is a
path from the split to the join that does not pass a. Rule (b) deletes a path of concurrency if that
path only includes an event and no function. Rule (c) eliminates connectors that only have one
incoming and one outgoing arc. Rule (d) deletes an arc between an OR split or an XOR split and
a join connector if there is another arc between them. Rule (e) merges two events if they both are
successors of an OR split or an XOR split and predecessor of the same join connector. These
reduction rules preserve a minimal process graph structure that represents the control flow of the
configured process flow variant.
Figure 7. Reduction rules to derive minimal EPCs

Copyright © 2006 by Idea Group Inc. 17

The previous derivation rules can be summarized in the definition of a respective derivation
algorithm. The algorithm includes the steps 1-4 for connector configuration, 5-6 for graph
reduction, 7 for function configuration, and 8-9 for graph reduction. We start with the
configuration of connectors as sequence configurations might already reduce the model; in
particular, it may lead to the exclusion of configurable functions. Furthermore, connector
configuration may result in unnecessary connectors. The graph is reduced in steps 5-6, as the
removal of unnecessary connectors before handling configurable functions allows applying the
derivation rules (a) and (c) of Figure 7, which in turn result in a smaller graph than rules (b) and
(d). Still, function configuration may also result in unnecessary connectors that have to be
removed in steps 8-9.

1. Map configured connectors to regular connectors in adherence to the configuration value.
2. If the configuration value is SEQn eliminate paths (including all nodes) i ≠ n, until a join

connector or an end node is reached.
3. Check whether there is a connector c without any incoming arcs. If yes, goto 4. If no,

goto 5.
4. Eliminate all paths starting with connector c until a join connector or an end node is

reached. Goto 3.
5. Check whether one of the reduction rules shown in Figure 7 is applicable. If yes, goto 6.

If no, goto 7.
6. Apply one reduction rule and goto 5.
7. Configure functions according to the rules shown in Figure 5.
8. Check whether one of the reduction rules shown in Figure 7 is applicable. If yes, goto 9.

If no, end.
9. Apply one reduction rule and goto 7.

Copyright © 2006 by Idea Group Inc. 18

Steps 1 to 9 ensure that all configurable nodes in a C-EPC are either deleted from the model or
mapped to regular EPC counterparts. At this stage, we can ensure that the resulting process graph
does neither contain semantically ambiguous process paths nor unnecessary ones. What we
cannot ensure is a formal semantics of the resulting EPC (Kindler, 2005; van der Aalst, 1999).
Yet, our extension (and the respective reduction) approach allows for the application of existing
formalization approaches, e.g., (Kindler, 2005; van der Aalst, 1999) as a semantic foundation for
(derived) EPCs.
The algorithm as shown here rests on the specification of C-EPCs in XML (Mendling, Recker,
Rosemann, & van der Aalst, 2005; Recker, Rosemann et al., 2006) using the interchange format
EPML (Mendling & Nüttgens, in press) and can be implemented using the object-oriented
scripting language XOTcl (Neumann & Zdun, 2000) (the prototype program and the EPML
specifications can be downloaded from http://wi.wu-wien.ac.at/~mendling/EPML).

FUTURE TRENDS

Mining Configurable Reference Models

Most of the work reported in this chapter discusses the use of configurable process models as a
way to actually configure an ES, i.e., the model is used to realize the system. However,
configurable process models (e.g., C-EPCs) can also be used as a way to analyze the processes
supported by the system and to “discover” the actual system configuration. As a starting point for
such types of analysis one can use audit trails (also known as event or transaction logs) and apply
process mining techniques.
The goal of process mining is to extract information about processes from event logs (van der
Aalst et al., 2003). Process mining techniques such as the alpha algorithm (van der Aalst,
Weijters, & Maruster, 2004) typically assume that it is possible to sequentially record events
such that (a) each event refers to an activity (i.e., a well-defined step in the process) and (b) each
event refers to a case (i.e., a process instance). Moreover, there are other techniques explicitly
using additional information such as (c) the performer also referred to as originator of the event
(i.e., the person/resource executing or initiating the activity), (d) the timestamp of the event, or
(e) data elements recorded with the event (e.g., the size of an order). This information can be
used to automatically construct process models. For example, the Multi-Phase Mining approach
(van Dongen & van der Aalst, 2004) can be used to construct an EPC describing the behavior
observed in the log. There are mature tools such as the ProM framework (van Dongen, Alves de
Medeiros, Verbeek, Weijters, & van der Aalst, 2005) available to construct different types of
models based on process executions.
Figure 8: The relation between reference models and process mining

Copyright © 2006 by Idea Group Inc. 19

There are several ways to use event logs in the context of configurable reference models (see
Figure 8). Reference models can be descriptive or prescriptive, i.e., they are used to describe a
process or control respectively guide the system. The SAP reference models are expressed in
terms of EPCs describing how people should/could use the SAP system. In reality, however, the
real process may deviate from the modeled process, e.g., the implementation is not consistent
with the specification, or people use a SAP solution in a way not modeled in any of the EPCs.
Even if reference models are more of a prescriptive nature, it is still interesting to investigate
how people really use the system.
Figure 8 shows that reference models can be used to configure an information system
(prescriptive) or to merely model the desired process (descriptive). Independent of the way the
reference model is used; most information systems log events in the form of audit trails or
transaction logs. The information can be used for process discovery and conformance testing.
Process discovery aims at the construction of models based on the logs without explicitly using
some a-priori reference model. This approach is used to construct models that can be used for
comparison with existing reference models, or to generate input for the construction of new
reference models. Conformance testing can be used to compare real processes with some a-
priory knowledge represented in the form of a reference model. It may be used to see if some
descriptive reference model is actually followed in reality. Note that system users may deviate
from the procedure prescribed in the reference models. Such information can be used for
auditing or process improvement. Moreover, the configuration itself can be investigated, e.g.,
which configuration is used, what is the effect of using a specific configuration, etc.
Process mining is far from trivial. Knowledge of the many ways in which a system may be used,
can assist process mining techniques, as illustrated by Jansen-Vullers, van der Aalst, &
Rosemann (2006). Based on inspecting the event logs it is relatively easy to discover the
particular configuration being used. Moreover, event logs can be used to “diagnose” a

Copyright © 2006 by Idea Group Inc. 20

configuration. For example, using process mining it is possible to automatically locate the
bottlenecks and present them in the context of the configurable process model (e.g., a function in
the C-EPC). This may assist the reconfiguration of the system. Furthermore, process mining
techniques can be used to compare different configurations and their effects on the performance
of the resulting process, which supports an “evidence-based” approach towards business process
management.
Configurable Data Modeling Languages

So far we have covered the configurability of reference process models. Yet, given that reference
models are often used in the context of business systems, there are more perspectives to consider.
Business systems are not only popular since they provide process-oriented support for typical
functional areas such as Procurement or Materials Management but also since they provide
integrated data repositories across the whole enterprise. Accordingly, available reference models
not only depict business processes but also the data structure of business systems. As an
example, the SAP reference data model covers in the version 4.6 more than 230 business objects
clustering more than 4,000 entity types. A configuration approach needs to place emphasis on the
configuration of reference data models as well. Consider an organizational perspective:
Reference data models are of particular importance to the configuration of system organizational
units as they precisely depict the given opportunities of a business system. A subset of the SAP
reference data model (approx. 30-40 entity types) allows for a complete description of the
interrelations between system organizational units such as company, factory, or distribution
channel, which facilitates configuration decisions as to the system organizational structure.
Similar to the process perspective, current reference data models are typically based on
traditional modeling techniques such as the Entity-Relationship Modeling (ERM) notation
(Chen, 1976). Entity types are used to group and depict distinct subjects of interest, e.g.,
customers, organizations, sales order items etc. These entities may possess various attributes for
further specification. Relationships between such elements of interest are depicted using
relationship types that specify the type of association between distinct entities. Cardinalities can
further be used to specify the extent of dependency between associated entity types.
Classical data modeling techniques do not allow for the depiction of configuration information
such as variation points or configuration requirements (Rosemann & Shanks, 2001). In the
following we discuss some configuration decisions that can be made and how they could be
depicted in reference data models. Extracts of the SAP reference data model are used as an
example. The structure of this analysis follows the main constructs of Entity-Relationship-
Models, i.e., entity types and relationship types (Chen, 1976). Note that the variant used here is
called SAP-Structured ERM, refer, for instance, to (Seubert, Schäfer, Schorr, & Wagner, 1994).
Transparent examples for model configurations related to optional entity types can be found in
Enterprise Systems in the definition of system organizational structures. The Sales &
Distribution solution in SAP, for example, requires for a decision whether shipping points of an
enterprise are to be subdivided into loading points. The IMG (Bancroft et al., 1997) marks this
decision as optional. This variation point, however, cannot be reflected in the available reference
data model (see Figure 9) as the data structure is statically fixed.
Figure 9. Configuration of reference data models – Entity types

Copyright © 2006 by Idea Group Inc. 21

Traditional reference data model Configurable reference data model

Potential data configurations

Shipping point H Loading point

Shipping point H Loading point Shipping point

Configuration (b)Configuration (a)

An entity type is a
collection of things

that can be
distinctively

identified.

A relationship type is an
association among entity
types and hold true for
each entity of the
associated entity types.

A configurable entity type is a
variation point in a data model

concerning a regular entity
type. It can included in the

model (ON) or excluded from
the model (OFF).

In a configurable reference data model, optional entity types such as Loading Point could be
highlighted with a dotted line, thereby indicating that such organizational structure may (a) or
may not be implemented (b).
The configuration of optional relationship types includes two decisions. First, if the relationship
type is required at all. If the relationship is required, a second decision is related to what
cardinalities the relationship should have. Again, consider an organizational perspective: The
IMG allows for the decision whether or not to assign a purchasing organization to a company
code, i.e., whether procurement may be effectuated company-specific for all plants assigned to
that company (Figure 10, configuration (a)), or whether procurement may be effectuated plant-
specific for all the plants assigned to the purchasing organization (Figure 10, configuration (b)),
irrespective of the super-ordinate company code. Again, the available reference data model
cannot reflect this decision as the relationship between the entity types Company Code and
Purchasing Organization is fixed.
Figure 10. Configuration of reference data models – Relationship types

Copyright © 2006 by Idea Group Inc. 22

Configurable reference data model

Potential data configurations

Configuration (b)Configuration (a)

Purchasing
organization

Company code

Material valuation
area

Plant

Purchasing
organization -

Plant - assignment

R

R

R

Traditional reference data model

Purchasing
organization

Company code

Material valuation
area

Plant

Purchasing
organization -

Plant - assignment

R

R

Purchasing
organization

Company code

Material valuation
area

Plant

Purchasing
organization -

Plant - assignment

R

R

A configurable
relationship type is a
variation point in a data
model concerning a
regular relationship
type. It can included in
the model (ON) or
excluded from the
model (OFF).

A

A

A

A

R

A

A

A configurable reference data model could highlight this variation point by using a dotted line
for the connection between these entity types.
There is a need to further explore configurability of reference data models. We only presented a
brief outline of a proposed conceptual extension to existing reference data modeling techniques.
Our short discussion revealed that, following the idea of configurable reference process
modeling, the design principles that led to the development of C-EPCs may also be used to
extend or refine other reference modeling techniques towards configurability (leading for
example to C-ERMs). Exemplarily we elaborated on the conceptual development of a
configurable data modeling technique that allows for the modeling of optional entity types and
optional relationship types. Clearly, this has to be considered work-in-progress but nevertheless
denotes an important and interesting research facet in the future of (configurable) reference
modeling.

CONCLUSIONS
This chapter discussed and introduced extensions to conceptual modeling languages in order to
facilitate the configuration of reference models. These modeling languages have been developed
in light of a number of critical design principles which are of relevance following the paradigm
of information model reuse. We used an extension of the Event-driven Process Chain to
demonstrate the design of a configurable reference process modeling language. Furthermore, we
gave first insights into how configurable models can be derived via process mining from

Copyright © 2006 by Idea Group Inc. 23

executed business system-supported processes. In principle, other modeling languages could be
extended in similar ways. It has been discussed how the idea of configuring process models can
be applied to other views, such as the data perspective. We briefly reported on the development
of a configurable data modeling language as an example.
We expect research on configurable reference modeling to give a stimulating input to both
academic and practical work around reference models in the future. The development of generic,
configurable languages such as the C-EPC and the establishment of tool-neutral interchange
formats such as EPML (Mendling & Nüttgens, in press) or the XML Metadata Interchange
(XMI) format (OMG, 2005) provide promising prototype examples that strive for practical
adoption in the form of commercial solutions. Configurable reference models may be used to
facilitate a model-driven implementation process of business systems (Recker, Mendling, van
der Aalst, & Rosemann, 2006). Or, the usage of configurable reference models can lead to the
cross-organizational consolidation of previous process configurations, thereby accumulating an
evidence-based body of knowledge as to the configuration and enactment of business processes
across multiple industry sectors, regions and cultures. These are just a few ideas but they already
indicate that reference modeling and model configurability continue to emerge as a vibrant and
influential research discipline in the future.

REFERENCES
Bancroft, N. H., Seip, H., & Sprengel, A. (1997). Implementing Sap R/3: How to Introduce a

Large System into a Large Organization (2nd ed.). Englewood Cliffs, New Jersey:
Prentice Hall.

Beer, S. (1966). Decision and Control: The Meaning of Operational Research and Management
Cybernetics. London, UK: John Wiley & Sons.

Chen, P. P.-S. (1976). The Entity Relationship Model - Toward a Unified View of Data. ACM
Transactions on Database Systems, 1(1), 9-36.

Curran, T., Keller, G., & Ladd, A. (1997). SAP R/3 Business Blueprint: Understanding the
Business Process Reference Model. Upper Saddle River, New Jersey: Prentice Hall.

Daneva, M. (2000). Practical Reuse Measurement in ERP Requirements Engineering. In B.
Wangler & L. Bergmann (Eds.), Advanced Information Systems Engineering: 12th
International Conference (Vol. 1789, pp. 309-324). Stockholm, Sweden: Springer.

Daneva, M. (2004). ERP Requirements Engineering Practice: Lessons Learned. IEEE Software,
21(2), 26-33.

Davenport, T. H. (1998). Putting the Enterprise into the Enterprise System. Harvard Business
Review, 76(4), 121-131.

Davenport, T. H. (2000). Mission Critical: Realizing the Promise of Enterprise Systems. Boston,
Massachusetts: Harvard Business School Press.

Dreiling, A., Chiang, M., Rosemann, M., & van der Aalst, W. M. P. (2005). Towards an
Understanding of Model-Driven Process Configuration and its Support at Large. In N. C.
Romano (Ed.), 2005 Americas Conference on Information Systems (pp. 2084-2092).
Omaha, Nebraska: Association for Information Systems.

Dumas, M., van der Aalst, W. M. P., & ter Hofstede, A. H. M. (Eds.). (2005). Process Aware
Information Systems: Bridging People and Software Through Process Technology.
Hoboken, New Jersey: John Wiley & Sons.

Fettke, P., & Loos, P. (2003). Classification of Reference Models - a Methodology and its
Application. Information Systems and e-Business Management, 1(1), 35-53.

Copyright © 2006 by Idea Group Inc. 24

Halmans, G., & Pohl, K. (2003). Communicating the Variability of a Software-Product Family to
Customers. Software and System Modeling, 2(1), 15-36.

Jansen-Vullers, M. H., van der Aalst, W. M. P., & Rosemann, M. (2006). Mining Configurable
Enterprise Information Systems. Data & Knowledge Engineering, 56(3), 195-244.

Keller, G., Nüttgens, M., & Scheer, A.-W. (1992). Semantische Prozessmodellierung auf der
Grundlage "Ereignisgesteuerter Prozessketten (EPK)" (Working Paper No. 89).
Saarbrücken, Germany: Institut für Wirtschaftsinformatik, Universität Saarbrücken (in
German).

Kesari, M., Chang, S., & Seddon, P. B. (2003). A Content-Analytic Study of the Advantages and
Disadvantages of Process Modelling. In J. Ang & S.-A. Knight (Eds.), 14th Australasian
Conference on Information Systems. Perth, Australia: School of Management Information
Systems.

Kindler, E. (2005). On the Semantics of EPCs: Resolving the Vicious Circle. Data & Knowledge
Engineering, 56(1), 23-40.

Mendling, J., & Nüttgens, M. (in press). EPC Markup Language (EPML) - An XML-Based
Interchange Format for Event-Driven Process Chains (EPC). Information Systems and e-
Business Management.

Mendling, J., Recker, J., Rosemann, M., & van der Aalst, W. M. P. (2005). Towards the
Interchange of Configurable EPCs: An XML-based Approach for Reference Model
Configuration. In U. Frank & J. Desel (Eds.), Enterprise Modelling and Information
Systems Architectures 2005 (Vol. P-75, pp. 8-21). Klagenfurt, Germany: German
Computer Society.

Mendling, J., Recker, J., Rosemann, M., & van der Aalst, W. M. P. (in press). Generating
Correct EPCs from Configured CEPCs. In 21th Annual ACM Symposium on Applied
Computing. Dijon, France: ACM.

Misic, V. B., & Zhao, J. L. (2000). Evaluating the Quality of Reference Models. In A. H. F.
Laender, S. W. Liddle & V. C. Storey (Eds.), Conceptual Modeling - ER 2000 (Vol.
1920, pp. 484-498). Salt Lake City, Utah: Springer.

Neumann, G., & Zdun, U. (2000). XOTcl, an Object-Oriented Scripting Language. In 7th
USENIX Tcl/Tk Conference (pp. 163-174). Austin, Texas.

OMG. (2005). MOF 2.0/XMI Mapping Specification, v2.1. Retrieved January 17, 2006, from
http://www.omg.org/docs/formal/05-09-01.pdf

Oracle. (2006). Oracle Consulting Business Solutions. Retrieved January 13, 2006, from
http://www.oracle.com/consulting/solutions/index.html

Recker, J., Mendling, J., van der Aalst, W. M. P., & Rosemann, M. (2006). Model-driven
Enterprise Systems Configuration. In E. Dubois & K. Pohl (Eds.), Advanced Information
Systems Engineering - CAiSE 2006 (pp. forthcoming). Luxembourg, Grand-Duchy of
Luxembourg: Springer.

Recker, J., Rosemann, M., van der Aalst, W. M. P., & Mendling, J. (2006). On the Syntax of
Reference Model Configuration. Transforming the C-EPC into Lawful EPC Models. In
C. Bussler & A. Haller (Eds.), Business Process Management Workshops (Vol. 3812, pp.
497-511). Berlin, Germany et al.: Springer.

Rosemann, M. (2000). Using Reference Models within the Enterprise Resource Planning
Lifecycle. Australian Accounting Review, 10(3), 19-30.

Copyright © 2006 by Idea Group Inc. 25

Rosemann, M. (2002). Application Reference Models and Building Blocks for Management and
Control (ERP Systems). In P. Bernus, L. Nemes & G. Schmidt (Eds.), Handbook of
Enterprise Architecture (pp. 595-616). Berlin, Germany: Springer.

Rosemann, M., & Shanks, G. (2001). Extension and Configuration of Reference Models for
Enterprise Resource Planning Systems. In G. Finnie, D. Cecez-Kecmanovic & B. Lo
(Eds.), 12th Australasian Conference on Information Systems (pp. 537-546). Coffs
Harbour, Australia: School of Multimedia and Information Technology.

Rosemann, M., & van der Aalst, W. M. P. (In Press). A Configurable Reference Modelling
Language. Information Systems.

Rosemann, M., Vessey, I., & Weber, R. (2004). Alignment in Enterprise Systems
Implementations: The Role of Ontological Distance. In 25th International Conference on
Information Systems (pp. 439-448). Washington D.C.: Association for Information
Systems.

SAP. (2006). SAP Business Maps: Solution Composer. Retrieved January 13, 2006, from
http://www.sap.com/solutions/businessmaps/composer/

Scheer, A.-W. (2000). ARIS - Business Process Modeling (3rd ed.). Berlin, Germany et al.:
Springer.

Seubert, M., Schäfer, T., Schorr, M., & Wagner, J. (1994). Praxisorientierte Datenmodellierung
mit der SAP-SERM-Methode. EMISA Forum, 4(2), 71-79 (in German).

Silverston, L. (2001a). The Data Model Resource Book, Volume 1: A Library of Universal Data
Models for All Enterprises. New York, New York: John Wiley & Sons.

Silverston, L. (2001b). The Data Model Resource Book, Volume 2: A Library of Data Models for
Specific Industries (2 ed.). New York, New York: John Wiley & Sons.

Stein, T. (1998, August 31). SAP Sued Over R/3. Information Week, p. 134.
van der Aalst, W. M. P. (1999). Formalization and Verification of Event-driven Process Chains.

Information and Software Technology, 41(10), 639-650.
van der Aalst, W. M. P., van Dongen, B. F., Herbst, J., Maruster, L., Schimm, G., & Weijters, A.

J. M. M. (2003). Workflow Mining: A Survey of Issues and Approaches. Data &
Knowledge Engineering, 47(2), 237-267.

van der Aalst, W. M. P., Weijters, A. J. M. M., & Maruster, L. (2004). Workflow Mining:
Discovering Process Models from Event Logs. IEEE Transactions on Knowledge and
Data Engineering, 16(9), 1128-1142.

van Dongen, B. F., Alves de Medeiros, A. K., Verbeek, M., Weijters, A. J. M. M., & van der
Aalst, W. (2005). The ProM framework: A New Era in Process Mining Tool Support. In
G. Ciardo & P. Darondeau (Eds.), Applications and Theory of Petri Nets 2005 (Vol.
3536, pp. 444-454). Berlin et al.: Springer.

van Dongen, B. F., & van der Aalst, W. M. P. (2004). Multi-phase Process Mining: Building
Instance Graphs. In P. Atzeni, W. W. Chu, H. Lu, S. Zhou & T. W. Ling (Eds.),
Conceptual Modeling - ER 2004 (pp. 362-376). Shanghai, China: Springer.

Welti, N. (1999). Successful SAP R/3 Implementation: Practical Management of ERP Projects.
Reading, MA: Addison-Wesley.

Wisse, P. (2000). Metapattern: Context and Time in Information Models. Boston, Massachusetts:
Addison-Wesley.

Mr. Jan Recker (1979) is a PhD student at the Business Process Management research group at
the Faculty of Information Technology at Queensland University of Technology Brisbane,

Copyright © 2006 by Idea Group Inc. 26

Australia. His research interests include Business Process Modeling, Conceptual Model
Evaluation, Process Configuration and Reference Modeling for Enterprise Systems. He is also a
part-time teacher of Business Process Management-related units at the School of Information
Systems at Queensland University of Technology.

Prof. Michael Rosemann, PhD (1967) is a full professor of Information Systems and co-leader
of the Business Process Management Research Group at the Faculty of Information Technology
at Queensland University of Technology. He is also a member of the Australian Research
Council College of Experts. His research interests include business process management,
information systems, process models, workflow management systems, enterprise systems and
ontologies. He is the author and editor of five books and published more than 120 refereed
journal papers, book chapters and conference papers on these topics.

Prof. Wil van der Aalst, PhD (1966) is a full professor of Information Systems and head of the
Information Systems sub-department of the department of Technology Management at
Technische Universiteit Eindhoven. He is also an adjunct professor at the Faculty of Information
Technology of Queensland University of Technology. He directs the Eindhoven Digital
Laboratory for Business Processes (EDL-BP) and is a fellow and management team member of
the research institute BETA. His research interests include business process management,
information systems, simulation, Petri nets, process models, workflow management systems,
process mining, verification techniques, enterprise resource planning systems, computer
supported cooperative work and interorganizational business processes. He published more than
200 books, journal papers, book chapters, conference papers and reports on these topics.

Ass. Prof. Monique Jansen-Vullers, PhD (1969) is an assistant professor at the Department of
Technology Management at Eindhoven University of Technology (TUE), and member of the
BETA research group. Currently she is working on (i) configurable reference models, (ii)
process mining in Enterprise Resource Planning environments and (iii) business process
redesign. She is the author of several academic publications in the mentioned research fields.

Alexander Dreiling, PhD (1975) is a researcher at SAP Research in Brisbane, Australia. Prior to
joining SAP he worked as a research assistant at the European Research Center for Information
Systems (ERCIS) in Münster, Germany and at the Centre for Information Technology
Innovation in Brisbane, Australia. His research interests comprise conceptual data warehouse
modeling, conceptual process modeling, and process configuration. His research so far led to
approx. 25 refereed journal and conference publications.

Copyright © 2006 by Idea Group Inc. 27

