
From Task Descriptions via Coloured Petri Nets
Towards an Implementation of a New Electronic

Patient Record

Jens Bæk Jørgensen1, Kristian Bisgaard Lassen1, and Wil M. P. van der Aalst2

1 Department of Computer Science, University of Aarhus,
IT-parken, Aabogade 34, DK-8200 Aarhus N, Denmark

{jbj,k.b.lassen}@daimi.au.dk
2 Department of Technology Management, Eindhoven University of Technology

P.O. Box 513, NL-5600 MB, Eindhoven, The Netherlands.
w.m.p.v.d.aalst@tm.tue.nl

Abstract. We consider a given specification of functional requirements
for a new electronic patient record system for Fyn County, Denmark.
The requirements are expressed as task descriptions, which are informal
descriptions of work processes to be supported. We describe how these
task descriptions are used as a basis to construct two executable mod-
els in the formal modeling language Colored Petri Nets (CPNs). The
first CPN model is used as an execution engine for a graphical anima-
tion, which constitutes an Executable Use Case (EUC). The EUC is a
prototype-like representation of the task descriptions that can help to
validate and elicit requirements. The second CPN model is a Colored
Workflow Net (CWN). The CWN is derived from the EUC. Together,
the EUC and the CWN are used to close the gap between the given re-
quirements specification and the realization of these requirements with
the help of an IT system. We demonstrate how the CWN can be trans-
lated into the YAWL workflow language, thus resulting in an operational
IT system.

Keywords: Workflow Management, Executable Use Cases, Colored Petri Nets, YAWL.

1 Introduction

In this paper, we consider how to come from a specification of user requirements
to a realization of these requirements with the help of an IT system.

Our starting point is a requirements specification for a new Electronic Pa-
tient Record (EPR) system for Fyn County [10]. Fyn County is one of the 13
counties in Denmark and is responsible for all hospitals and other health-care or-
ganizations in its county. We focus on functional requirements for the new EPR
system for Fyn County; specifically, we look at seven work processes that must
be supported. The work processes cover what can happen from the moment a
patient is considered for treatment at a hospital until the patient is eventually
dismissed or dead.

In the requirements specification, these work processes are presented in terms
of task descriptions [18, 19], in the sense of Søren Lauesen. A task description is
an informal, prose description. An essential characteristic of a task description
is that it specifies what users and IT system do together. In contrast to a use
case [9], the split of work between users and IT system is not determined at this
stage. Task descriptions are meant to be used at an early stage in requirements
engineering and software development projects.

This means that there is a natural and large gap between a task description
and its actual support by an IT system. To help bridging this gap, we propose to
use Colored Petri Nets (CPNs) [14, 17] models. CPNs provide a well-established
and well-proven language suitable for describing the behavior of systems with
characteristics like concurrency, resource sharing, and synchronization. CPN are
well-suited for modeling of workflows or work processes [4]. The CPN language
is supported by CPN Tools [27], which has been used to create, simulate, and
analyze the CPN models that we will present in this paper.

Figure 1 outlines the overall approach to be presented in this paper.

informal description

Task Descriptions

implementation

YAWL

insights
insights

insights

description of the problem devising the solution

requirements model

Executable Use Cases (EUCs)
(CPN + animation)

specification model

Colored Workflow Net (CWN)

Fig. 1. Overall approach.

The boxes in the figure present the artifacts that we will consider in this
paper. A solid arrow between two nodes means that the artifact represented by
the source node is used as basis to construct the artifact represented by the
destination node.

The leftmost node represents the given task descriptions. Going from left to
right, the next node represents an Executable Use Case (EUC) [16], which is a
CPN model augmented with a graphical animation. EUCs are formal and exe-
cutable representations of work processes to be supported by a new IT system,
and can be used in a prototyping fashion to specify, validate, and elicit require-
ments. The node Colored Workflow Net (CWN) represents a CPN model, derived
from the EUC CPN, that is closer to an implementation of the given require-
ments. The rightmost node represents the realization of the IT system itself.
In this case study, a prototype has been developed using the YAWL workflow
management system [1].

The vertical line in the middle of the figure marks a significant division be-
tween “analysis artifacts” to the left and “design and implementation artifacts”

2

to the right. The analysis artifacts represent descriptions of the problems to be
solved, in the form of specifying the core work processes that must be supported
by the new IT system. To the left of the line, the focus is on describing the prob-
lems, not on devising solutions to these problems. In particular, to the left of
the line, it is not specified exactly what we want the new IT system itself to do.
The arrow between the nodes Executable Use Cases and Colored Workflow Nets
represents the transition from analysis, in the form of describing the problem,
to design, in the form of devising the solution.

It should be noted that we are not advocating any particular kind of devel-
opment process in this paper. Figure 1 should not be read to imply that we are
proposing waterfall development. There will often be iterations back and forth
between the artifacts in consideration, as is indicated by the dashed arrows.

The case-study presented in this paper is used to illustrate Figure 1. It has
been taken from the medical domain. As pointed out in [22, 23] “careflow sys-
tems” pose particular requirements on workflow technology, e.g., in terms of
flexibility. Classical workflow-based approaches typically result in systems that
restrict users. As will be shown in this paper, task descriptions aim at avoiding
such restrictions. Moreover, the state-based nature of CPNs and YAWL allows
for more flexibility than conventional event-based systems, e.g., using the de-
ferred choice pattern [2], choices can be resolved implicitly by the health-care
workers (rather than an explicit decision by the system).

This paper is related to one of our previous publications [3] where we also
apply CPN Tools to model EUCs and CWNs. However, in the earlier work,
we considered a different domain, namely banking, we did not consider task
descriptions, and we used BPEL as target language instead of YAWL.

This paper is structured as follows: Section 2 is about task descriptions, both
in general and about the specific task description we will use as case study. Sec-
tion 3, in a similar fashion, is about Executable Use Cases (EUCs). In Section 4,
we describe the Colored Workflow Net (CWN). Section 5 considers the realisa-
tion of the system. Related work is discussed in Section 6 and the conclusions
are drawn in Section 7.

2 Task Descriptions

In this section, we first present task descriptions in general and then we introduce
the specific task description related to Fyn County’s Electronic Patient Record
(EPR) that we will focus on in this paper. Finally, we motivate why we move from
task descriptions only to EUCs rather than directly implementing the system.

2.1 Task Descriptions in General

In this context, a task is a unit of work that must be accomplished by users
and an IT system together. A task forms a unit in the sense that after having
completed a task, it will feel natural for the user to take a break. Tasks may be
split into subtasks. An example of a subtask is “register patient”.

3

The descriptions of subtasks in a task description are on the left side of the
dividing line in Figure 1. However, a task description may also contain proposals
about how to support the given subtasks. Solution proposals constitute descrip-
tions, which are to the right of the split line in Figure 1. The explicit division
into subtasks and solution proposals enforces a strict split between describing a
problem and proposing a solution. With solution proposals, the description then
properly changes name to a Task and Support description. A solution proposal
for the subtask “register patient” could be “transfer data electronically from
own doctor”.

Variants in task description are used to specify special cases in a subtask.
Instead of writing a complex subtasks, [19] suggests to extract the special cases
in variants, making the subtasks and variants easier to read.

2.2 Task Descriptions for Fyn County’s EPR

The task descriptions for Fyn County’s EPR that we consider are the following:

1. Request before patient arrives
2. Patient arrives without prior appointment
3. Reception according to appointment
4. Mobile clinical session
5. Stationary clinical session
6. Terminate course of events
7. Patient dies

Task descriptions for each of these seven work processes are given in [10]
(in Danish). In this paper, we will use the task description for “Request before
patient arrives” to illustrate our approach. This task description is translated
into English and presented in Table 1. As can be seen, it is a task and support
description. Except from the translation from Danish to English, the task de-
scription is presented here unchanged (which explains the presence of question
marks and other peculiarities).

4

Table 1: Task description: Request before patient arrives

Task 1: Request before patient arrives
Establish episode of care or continue the establishment process if it had been
parked or transferred. The request can involve a clinical session where the episode
of care is refined before the patient arrives.
Start Request from the patient’s practitioner, specialist doctor, other hospi-

tal, or authority. Request can also be supplementary information that were
missing previously, or when the task was transferred to another person (e.g.
from the secretary to the doctor).

End When the episode of care is established/adjusted and the patient called
in or added to the waiting list.

Frequency Per user: ??. For the whole hospital: ??.
Critical situations
Users The secretary is the immediate user, but the task can be transferred to

others.

Subtask
and
variant
number

Subtask Solution proposal

1. Register patient. (See data description) Transfer data electroni-
cally from the patients
doctor, etc. (Medcom)

1a. Patient exist in system. Update data
1b. Healthy partner must be enrolled ??
1c. Personal security ?? ??
2. Establish episode of care and register data, i.e.,

the preliminary diagnosis. (See data description,
including support in use of SKS classification.)

Transfer data electroni-
cally from own doctor,
etc. (Medcom)

2p. Problem: Diverging code systems and structures
in the electronic messages.

Support the manual
transfer of data from
the electronic data form
to the system form.

2a. Episode of care is already established. Data may
need to be adjusted, e.g., date of patient ap-
pointment.

2q. Problem: The patient can concurrently be in-
volved in other episodes of care and be enrolled
more places and in more departments. It can be
hard to get an overview of who has the nursing
responsibility and who is providing a bed. Also,
there may be a need to see previous episode of
care, given that the patient agrees.

5

3. Possible clinical session to plan the episode of
care (e.g. if the establishment process is trans-
ferred to a doctor).

4. Print patient call-up (or other form of call-up).
4a. Patient is transferred to the waiting list
4b. Information is missing and the task is parked

with time monitoring
4c. The case is transferred to another, perhaps with

time monitoring.
4d. The request is possibly denied.
5. Request interpreter for the time of admission.

2.3 From Task Descriptions to Executable Use Cases

One of the main motivations behind task descriptions is to alleviate some prob-
lems related to use cases. A use case describes an interaction between a computer
system and one or more external actors. In the sense of Sommerville [25], use
cases are effective to capture “interaction viewpoints”, but not adequate for “do-
main requirements”. A task description typically has a broader perspective than
a use case, and, as such, is a means to address domain requirements as well.

In a use case description, the split of work between users and system is
determined. In contrast, in a task description, this split of work is not fixed.
A task description describes what the user and the system must do together.
Deciding who does what is done at a later stage. Thus, a task description can
help to avoid making premature (and sometimes arbitrary) design decisions. In
other words, a task description is a means to help users to keep focus on their
domain and the problems to be solved, instead of drifting into designing solutions
of sometimes ill-defined and badly understood problems.

On the other hand, use cases and task descriptions share the salient charac-
teristics that they are static descriptions: They are mainly prose text (may be
structured or semi-structured) possibly supplemented with some drawings, e.g.,
containing ellipses, boxes, stick men, and arrows as in UML use case diagrams.
Both task descriptions and use cases may be read, inspected, and discussed, and
in this way, they may be improved. However, both use cases and task descriptions
lack the ability to “talk back to the user”. Even though they describe behavior, the
descriptions themselves are not dynamic and cannot be made subject for experi-
ments and investigations in a trial-and-error fashion. In comparison, prototypes
have these properties.

A traditional prototype, though, tends to focus on an IT system itself, in
particular on that system’s GUI, more than explicitly on the work processes
to be supported by the new IT systems. This has been a main motivation to
introduce EUCs as a means to be used in requirements engineering; to provide
executable descriptions of new work processes and possibly of their intended
computer support, and in this way, be able to talk back to the user — facilitating
discussions about both work processes and IT systems support.

6

3 Executable Use Cases (EUCs)

In this section, we first present EUCs in general and then we introduce the
specific EUC related to Fyn County’s EPR that we will focus on in this paper.
We also consider how to come from EUCs to CWNs.

3.1 Executable Use Cases in General

An EUC consists of three tiers, as indicated in Figure 2.

Tier 3 - Animation

Tier 2 - Formal

Tier 1 - Informal

Domain analysis

Insights

Insights

User
responses

Insights

Fig. 2. Executable Use Cases.

Each tier represents the considered work processes that must be supported
by a new system. The tiers use different representations: Tier 1 (the informal
tier) is an informal description; Tier 2 (the formal tier) is a formal, executable
model; Tier 3 (the animation tier) is a graphical animation of Tier 2, which uses
only concepts and terminology that are familiar to and understandable for the
future users of the new system.

As indicated by Figure 2, the three tiers of an EUC should be created and
executed in an iterative fashion. The first version of Tier 1 is based on domain
analysis, and the first version of tiers 2 and 3, respectively, is based on the tier
immediately below.

The formal tier of an EUC may in general be created in a number of formal
modeling languages. We have chosen CPN because we have good experience
with this language and its tool support, but other researchers and practitioners
may have other preferences, e.g., other options could be statecharts [12] or UML
activity diagrams [20].

As was mentioned in Section 2.3, EUCs have notable similarities with tradi-
tional high-fidelity prototypes of IT systems; this comparison is made in more
detail in [8]. In [15], it is described how an EUC can be used to link and en-
sure consistency between, in the sense of Jackson [13], user-level requirements

7

and technical software specifications. Jackson’s division into requirements and
specifications resembles the division into subtasks and solution proposals in task
descriptions. User-level requirements and subtasks lie to the left of the dividing
line in Figure 1; technical software specifications and solution proposals lie to
the right.

Like a task description, an EUC can have a broader scope than a traditional
use case. The latter is a description of a sequence of interactions between external
actors and a system that happens at the interface of the system. An EUC can go
further into the environment of the system and also describe potentially relevant
behavior in the environment that does not happen at the interface. Moreover,
an EUC does not necessarily fully specify which parts of the considered work
processes will remain manual, which will be supported by the new system, and
which will be entirely automated by the new system. An EUC can be similar to,
indeed, a task description. Therefore, Executable Use Cases do not necessarily
have the most suitable name. The name “executable use cases” was originally
chosen to make it easy to explain the main idea of our approach to people, who
were already familiar with traditional prose use cases.

3.2 Executable Use Case for Fyn County’s EPR

We have made an EUC that covers all seven task descriptions listed in the
beginning of Section 2.2. The EUC lies strictly on the left-hand side of the
dividing line in Figure 1, i.e., the EUC does not include solution proposals.

In this section, we will present the part of the EUC that corresponds to the
task description of Table 1. The informal tier of the EUC is the task description
itself.

An extract of the formal tier is shown in Figure 3; this figure presents the
CPN model that corresponds to the task description from Table 1. Note that
this is only one of the seven task descriptions for Fyn County’s EPR.

Thick lines denote the path that the user and system has to complete to
solve the task; i.e. to go from the place Ready to make appointment to Patient
ready for arrival. Solid lines denote subtasks and variants of subtasks. Dashed
lines denote added structure to the model to assert that desired interleavings of
subtasks/variants are possible.

In Figure 4, we outline how the formal and animation tiers are related. At
the bottom, we see the formal tier executing in CPN Tools. Please note that
the shown module of the CPN model contains seven transitions (the rectangles),
and that each of these transitions corresponds to one of the considered tasks
(cf. the list in the beginning of Section 2.2). At the top is the animation tier in
BRITNeY, the new animation facility of CPN Tools. The two tiers are connected
by adding animation drawing primitives to transitions in the CPN model. These
primitives update the animation.

The animation tier is a view on the state of, and actions in the formal tier.
When a transition occurs in the formal model it is reflected by updates to the
animation tier. Therefore, the behaviors of the two tiers remain synchronized.

8

patient

patient

patient

patient

patient

patient

patient

patient

patient

patient

patient

patient

patient

patient

patient

patient

patient

patient

patient

patient

patient
patient

patient

patient

patient

patient

patient

Request
interpreter

(5)

Deny request
(4d)

Transfer case
(4c)

Park task
(4b)

Transfer to
waiting list

(4a)

Go
back 2

Print
notification

(4)

Appointment
made

Go
back 1

Continue 2

Possible clinical
session

(3)

Consilidate plans
(2q)

Adjust data
(2a)

Transfer
iincompatiable data

(2p)

Establish
episode of care

(2)

Continue 1

Security
(1c)

Add companion
(1b)

Patient exists
(1a)

Register patient
(1)

Intake

Finalize
request

PATIENT

Establishing
episode of

care
PATIENT

Ready to make
appointment

In

PATIENT

Patient
ready for
arrival

Out

PATIENT

Registering
patient

PATIENT

Out

In

Fig. 3. Task 1 modeled in CPN

Using the animation tier the user can interact with each of the seven tasks.
Within the animation of each task, subtasks can be selected and executed. When
a subtasks is chosen for execution, the animation user can see visually what is
happening and see which entities that are involved in completing the subtask.
In the snapshot shown in Figure 4, the animation visualizes Task 1. It shows
that the animation user has chosen to execute subtasks 1, 3, 4, and is about
to execute Subtask 4a. We also see that Subtask 4a involves a computer and a
secretary.

9

Subtask 1 Subtask 3 Subtask 4 Subtask 4a

Fig. 4. Connection between animation and formal layer

In the task description in Table 1, it was not mentioned, who does what. It is
us, the creators of the EUC (software people), who have interpreted the subtasks
in this way, i.e., described who does what and what a normal execution of a task
is. When showing this animation to the staff at a hospital in Fyns County, we

10

are likely to get more feedback on our interpretations of their daily work than
we could get with the static task descriptions only.

3.3 From Executable Use Cases to Colored Workflow Nets

The EUC we have presented above describes real-world work processes at a
hospital. When these work processes are to be supported by a new IT system,
of course, what goes on inside that system is highly related to what goes on in
the real world.

In the approach of this paper (cf. Figure 1), we make separate models of
real-world work processes at a hospital (the EUC) and the IT system that must
support these work processes (the CWN). This is done to clearly distinguish
between the real world, on one hand, and the software, on the other hand. This
distinction is advocated by a number of software experts, see, e.g., [13]. Not
making this distinction may cause serious confusion.

In this way, the CWN we will now present describes the IT system, and, as
we will see, can be used to automatically generate parts of that system.

4 Colored Workflow Nets

A Colored Workflow Net (CWN) [3] is a CPN as defined in [17]. Although both
the CWN and the formal tier of the EUC use the same language, there are
some notable differences. First of all, the scope of the CWN is limited to the
IT system, i.e., only those activities that are supported by the system appear in
the model. Second, the CWN covers the control-flow perspective, the resource
perspective, and the data/case perspective [4]. In the case study of this paper,
the EUC covered the control-flow perspective only, but as we move to the right
in Figure 1, it is necessary to include the other perspectives as well (if they
have not already been included). Finally, CWNs are restricted to a subset of
the CPN language, i.e., CWNs need to satisfy some syntactical and semantical
requirements to allow for the automatic configuration of a workflow management
system [3].

Although a CWN covers the control-flow, resource, and data/case perspec-
tives, it abstracts from implementation details and language/application specific
issues. A CWN should be a CPN with only places of type Case or Resource.
These types are as defined in Table 2.

A token in a place of type Case refers to a case and some or all of its at-
tributes. Each case has an ID and a list of attributes. Each attribute has a name
and a value. Tokens in a place of type Resource represent resources. Each re-
source has an ID and a list of roles and organizational units. The distribution
of resources over roles and organizational units can be used in the allocation of
resources. For more details on CWNs, we refer to [3].

Figure 5 shows the CWN for the task Request before patient arrives.
When comparing this CWN with the EUC CPN shown in Figure 3, several
differences can be observed. First of all, some subtasks shown in the EUC CPN

11

Table 2. Places in a CWN need to be of type Case or Resource

colset CaseID = union C:INT;

colset AttName = string;

colset AttValue = string;

colset Attribute = product AttName * AttValue;

colset Attributes = list Attribute;

colset Case = product CaseID * Attributes timed;

colset ResourceID = union R:INT;

colset Role = string;

colset Roles = list Role;

colset OrgUnit = string;

colset OrgUnits = list OrgUnit;

colset Resource = product ResourceID * Roles * OrgUnits timed;

are not included in the CWN because they will not be supported by the IT
system. Subtask 1b (Add companion) and Subtask 2q (Consolidate plans) are
not included because of this reason. Secondly, Figure 5 includes more explicit
references to the resource and data/case perspectives. Note that Figure 5 shows
three resource places of type Resource defined in Table 2. These resource places
hold information on the availability and capabilities of people. Using the concept
of a fusion place [14, 27], these places together form one logical entity. Places
of type Case hold information on cases. Cases have several attributes such as
patient name, patient id, address, birth date, preliminary diagnosis,
etc. In Figure 5, the relevant attributes are only shown for the task Register
patient, but, for the sake of readability, not shown for all other tasks.

One of the advantages of using Petri nets is the availability of a wide variety
of analysis techniques. In CPN Tools it is possible to simulate models and to do
state-space analysis. We have used both facilities. For the state-space analysis we
have abstracted from time and color to asses soundness [4]. Initially, we discov-
ered a minor error (a deadlock because we did not connect Subtask 4d properly).
However, after repairing this, the CWN was sound. Note that reachability graph
of the CWN shown in Figure 5 for one patient has only 14 nodes and 29 arcs,
so it is easy to verify its correctness by hand. However, for more complicated
CWNs, automated state-space analysis of CPN Tools is indispensable to asses
correctness before implementation.

5 Realization of the System Using YAWL

In [3], it was shown that for some CWNs it is possible to automatically gen-
erate BPEL template code [7]. The Business Process Execution Language for
Web Services (BPEL4WS or short BPEL) [7] is a textual XML based language
that has been developed to form the “glue” between webservices. Although it is
an expressive language, it tends to result in models that are difficult to under-

12

c_out
c_in

r

r

r

r

r

r

r

r

r

r

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

Deny request
(4d)

[has_role(r,"Secretary")]

Transfer case
(4c)

[has_role(r,"Secretary")]

Transfer to
waiting list

(4a)

[has_role(r,"Secretary")]

Print
notification

(4)

[has_role(r,"Secretary")]

Appointment
made

Go
back 1

Continue 2

Clinical session
(3)

Adjust data
(2a)

Transfer
incompatiable data

(2p)

Establish
episode of care

(2)

Continue 1

Patient exists
(1a)

[has_role(r,"Secretary")]

Register patient
(1)

[has_role(r,"Secretary")]

input (c_in);
output (c_out);
action
let val c_out = set_att(c_in,"Patient Name")
 val c_out = set_att(c_out,"Address")
 val c_out = set_att(c_out,"Patient Id")
 val c_out = set_att(c_out,"Zipcode")
 val c_out = set_att(c_out,"City")
in c_out
end;

Intake

Resource 3

Resource

Resource

Resource

Resource 1

Resource

Resource

Finalize
request

Case

Establishing
episode of care

Case

Ready to make
appointment

In

Case

Patient
ready for
arrival

Out

Case

Registering
patient

Case

Out

In

Resource

Resource

resources

[has_role(r,"Secretary")]

[has_role(r,"Secretary")]

[has_role(r,"Doctor")]

[has_role(r,"Secretary")]

c

c

Go
back 2

c

c

Resource 2

ResourceResource

resources

resources

Fig. 5. CWN for the task Request before patient arrives

stand and maintain. For example, it is not possible to show BPEL code to end
users (e.g., to visualize management information or to allow for dynamic change
[24]). Moreover, BPEL offers little flexibility and no support for the resource
perspective.3 Therefore, we decided to use YAWL [1] rather than BPEL.

YAWL (Yet Another Workflow Language) [1] is based on the well-known
workflow patterns (www.workflowpatterns.com, [2]) and is more expressive than
any of the other languages available today. Because of its native and unrestricted
support of the deferred choice pattern [2], it is possible to leave the selection of

3 Note that only recently people started to investigate adding the resource perspec-
tive to BPEL, cf. the WS-BPEL Extension for People (BPEL4People) initiative
http://www-128.ibm.com/developerworks/webservices/library/specification/ws-
bpel4people/.

13

the next task to the user. This offers more flexibility than BPEL, because it is
possible to define for each state what tasks are possible without selecting one (in
BPEL this is restricted to the inside of a pick activity [7]). Moreover, YAWL
also supports the resource perspective (in addition to the control-flow and data
perspectives). The language YAWL is also supported by an open source workflow
management system that can be downloaded from www.yawl-system.com.

Fig. 6. Screenshot of YAWL editor

Given the fact that YAWL can be seen as a superset of CWNs, it was easy to
translate the running example from CPN in YAWL. Figure 6 shows the top-level
workflow and the composite task Request before patient arrives. Although
both models look quite different, a fairly direct mapping was possible from the
CWN shown in Figure 5 to the YAWL model shown in Figure 6. All places of
type Case in Figure 5 are mapped onto conditions in YAWL and transitions in
Figure 5 are mapped onto YAWL tasks.4

After mapping the CWNs onto a YAWL specification, it is possible to enact
the associated workflows. Figure 7 shows a work-list and a form generated by
YAWL. The left-hand side of the figure shows the work-list of the secretary with
user code secretary4. It shows work-items associated to three cases. Each of
these three cases is in the state registering where three tasks are enabled.
Therefore, there are 3*3=9 possible work-items. After selecting a work-item
related to task register patient, three work-items disappear from the work-

4 Note that subtasks in Task Descriptions correspond to transitions in CWNs and
tasks in YAWL.

14

Secretary 4 selects a

 work-item from her

worklist and start filling

out information of

patient Anne Jansen

Fig. 7. Screenshot of the YAWL worklist and the form associated to task register

patient

15

list (the competing tasks become disabled for this patient) and secretary4 can
fill out a form with patient data. After completing the form there are again nine
work-items, etc.

The realization of the workflow process in YAWL completes the overall ap-
proach shown in Figure 1, i.e., we moved from informal task descriptions, then
to EUCs, after that to CWNs, and finally realized the task descriptions in terms
of YAWL. Note that, given the availability of a running YAWL system and a
CWN, it is possible to construct a running system in a very short period, e.g., in
a few hours it is possible to make the process shown in Figure 6 operational. This
does include the generation of user forms as shown in Figure 7 but does not in-
clude system integration or the development of dedicated applications. The task
of mapping a CWN onto YAWL can be partly automated by using the auto-
matic translation provided by ProM (cf. www.processmining.org). ProM is able
to automatically map Petri nets in PNML format onto various other formats,
including YAWL. However, this translation does not take data and resources
into account, so some manual work remains to be done. Nevertheless, it shows
that the overall process shown in Figure 1 is feasible. Moreover, we would like to
argue that initially more time is spent on the requirements, but considerably less
time is spent on the actual realization and testing. The intermediate steps (i.e.,
EUCs and CWNs) enable an efficient implementation. Moreover, less time needs
to be spent on testing the system because its design has been validated and
verified earlier. Also, the system is more likely to be accepted by the end-users.

6 Related Work

This paper builds on the work presented in [3], where we also apply CPN Tools
to model EUCs and CWNs. However, in [3], EUCs are not linked to task descrip-
tions and we used BPEL as target language instead of YAWL. The extension
with task descriptions was inspired by the work of Lauesen [18, 19]. Compared
to existing approaches for requirements engineering and use case design [9, 11,
13, 25], our approach puts more emphasis on the two intermediate steps. First
of all, we make EUCs with both an animation and formal tier. Second, we use
CWNs to link these EUCs to concrete implementations.

Today, workflow technology is used in areas such as radiology [26]. However,
there is no systematic and broader support for workflows in health-care organi-
zations. Vendors and researchers are trying to implement “careflow systems” but
are often confronted with the need for more flexibility [22, 23]. The state concept
in CPN and YAWL (e.g., places with multiple outgoing arcs modeling a choice
which is resolved by the organization rather than the system) allows for more
flexibility than classical workflow systems. We know of one other application
of YAWL in the health-care domain. Giorgio Leonardi, Silvana Quaglini et al.
from the University of Pavia have used YAWL to build a careflow management
system for outpatients. However, they did not use task descriptions, EUCs, and
CWNs. Instead they directly implemented the system in YAWL.

16

7 Conclusions

In this paper, we realized a small careflow system using the four-step approach
depicted in Figure 1 and motivated the added value of each of the three transfor-
mation steps in our approach. Obviously, the system made using YAWL is not
the full EPR for Fyn County. It is just a prototype illustrating the viability of our
approach. To come from an extensive and detailed set of task descriptions — as
the seven task descriptions we have been considering — to their implementation
requires large amounts of work and extensive involvements of the stakeholders. A
weaknesses of the work presented in this paper is the unavailability of stakehold-
ers in coming from the task descriptions to the EUC, the CWN, and the YAWL
implementation (stakeholders have been extensively involved in the writings of
the task descriptions, but this is beyond the scope of this paper).

The language we used both for Executable Use Cases (EUCs) and Colored
Workflow Nets (CWNs) is CPN. For the actual realization of the system we used
YAWL which can be seen as a superset of CPNs (extended with OR-joins and
cancellation sets [1]) dedicated towards the implementation of workflows. The
state-based nature of these modeling languages fits well with task descriptions,
i.e., in a given state it is possible to enable multiple tasks and let the environment
select one of these tasks. This is not possible in many workflow systems because
there the system selects the next step to be executed.

Although CPNs and YAWL allow for more flexibility than classical workflow
management systems, we would like to argue that in the health-care domain
more flexibility is needed than what is provided by YAWL as it has been used in
this paper. Work on computer-interpretable guidelines [21] shows that classical
workflow languages tend to be too restrictive. Health-care workers should be
allowed to deviate and select alternative pathways if needed.

To conclude this paper, we would like to discuss three extensions to allow for
more flexibility.

– Dynamic change. The basic idea of dynamic change is to allow for changes
while cases are being handled [24]. A change may affect one case (e.g., chang-
ing the standard treatment for an individual patient) or many cases (e.g., a
new virus forcing a hospital to deviate from standard procedures). Although
this approach is very flexible, it requires end-users to be able and willing to
change process models.

– Case handling. Case handling [5] comprises a set of concepts to enable
more flexibility without the need for adapting processes. The basic idea is
that there are several mechanisms to deviate from the standard flow, e.g.,
unless explicitly disabled people can skip and roll-back tasks. Moreover, the
control-flow perspective is no longer dominating, i.e., based on the available
data the state is constantly re-evaluated and the collection and visualization
of data is no longer bound to specific tasks.

– Worklets. Worklets [6] allow for the late binding of process fragments, e.g.,
based on the condition of a patient the appropriate treatment is selected.
YAWL supports the uses of worklets, i.e., based on ripple-down rules an

17

appropriate subprocess is selected. The set of ripple-down rules and the
repertoire of worklets can be extended on-the-fly thus allowing for a limited
form or dynamic change.

Each of these approaches can be combined with the four-step approach depicted
in Figure 1. However, further work is needed to develop EUCs and CWNs that
can capture the degree of required flexibility and link this to concrete workflow
languages allowing for more flexibility. Currently, even the most innovative sys-
tems support only one form of flexibility. For example, Adept [24] only supports
dynamic change, FLOWer [5] only supports case handling, and YAWL [6] only
supports worklets. Hence, future work will aim at an analysis of the various
forms of flexibility in the context of the approach presented in this paper.

Acknowledgements We thank Søren Lauesen for permission to use the task
descriptions for the Fyn County EPR as basis for this paper. We also thank
Søren for fruitful discussions and feedback on this paper.

References

1. W.M.P. van der Aalst and A.H.M. ter Hofstede. YAWL: Yet Another Workflow
Language. Information Systems, 30(4):245–275, 2005.

2. W.M.P. van der Aalst, A.H.M. ter Hofstede, B. Kiepuszewski, and A.P. Barros.
Workflow Patterns. Distributed and Parallel Databases, 14(1):5–51, 2003.

3. W.M.P. van der Aalst, J.B. Jørgensen, and K.B. Lassen. Let’s Go All the Way:
From Requirements via Colored Workflow Nets to a BPEL Implementation of a
New Bank System. In Proc. of 13th International Cooperative Information Systems
Conf., volume 3760 of LNCS, pages 22–39, Agia Napa, Cyprus, 2005. Springer.

4. W.M.P. van der Aalst and K. van Hee. Workflow Management: Models, Methods,
and Systems. MIT Press, 2002.

5. W.M.P. van der Aalst, M. Weske, and D. Grünbauer. Case Handling: A New
Paradigm for Business Process Support. Data and Knowledge Engineering,
53(2):129–162, 2005.

6. M. Adams, A.H.M. ter Hofstede, D. Edmond, and W.M.P. van der Aalst. Facil-
itating Flexibility and Dynamic Exception Handling in Workflows. In O. Belo,
J. Eder, O. Pastor, and J. Falcao e Cunha, editors, Proceedings of the CAiSE’05
Forum, pages 45–50. FEUP, Porto, Portugal, 2005.

7. T. Andrews, F. Curbera, H. Dholakia, Y. Goland, J. Klein, F. Leymann, K. Liu,
D. Roller, D. Smith, S. Thatte, I. Trickovic, and S. Weerawarana. Business Process
Execution Language for Web Services, Version 1.1. Standards proposal by BEA
Systems, International Business Machines Corporation, and Microsoft Corpora-
tion, 2003.

8. C. Bossen and J.B. Jørgensen. Context-descriptive Prototypes and Their Applica-
tion to Medicine Administration. In Proc. of Designing Interactive Systems (DIS)
2004, pages 297–306, Cambridge, Massachusetts, 2004. ACM Press.

9. A. Cockburn. Writing Effective Use Cases. Addison-Wesley, 2000.
10. Krav til Fyns Amts EPJ-system (udkast) — Requirements to Fyn County’s EPR

System (Draft). Fyns Amt, 2003.

18

11. P. Grünbacher, A. Egyed, and N. Medvidovic. Reconciling software requirements
and architectures with intermediate models. Software and Systems Modeling,
3(3):235–253, 2004. Springer.

12. D. Harel. Statecharts: A Visual Formalism for Complex Systems. Science of
Computer Programming, 8:231–274, 1987.

13. M. Jackson. Problem Frames — Analyzing and Structuring Software Development
Problems. Addison-Wesley, 2001.

14. K. Jensen. Coloured Petri Nets – Basic Concepts, Analysis Methods and Practical
Use. Vol. 1, Basic Concepts. Monographs in Theoretical Computer Science. An
EATCS Series. Springer, 1992.

15. J.B. Jørgensen and C. Bossen. Executable Use Cases as Links Between Application
Domain Requirements and Machine Specifications. In Proc. of 3rd International
Workshop on Scenarios and State Machines (at ICSE 2004), pages 8–13, Edin-
burgh, Scotland, 2004. IEE.

16. J.B. Jørgensen and C. Bossen. Executable Use Cases: Requirements for a Pervasive
Health Care System. IEEE Software, 21(2):34–41, 2004.

17. L.M. Kristensen, S. Christensen, and K. Jensen. The Practitioner’s Guide to
Coloured Petri Nets. International Journal on Software Tools for Technology
Transfer, 2(2):98–132, 1998.

18. S. Lauesen. Software Requirements — Styles and Techniques. Addison-Wesley,
2002.

19. S. Lauesen. Task Descriptions as Functional Requirements. IEEE Software,
20(2):58–65, 2003.

20. OMG Unified Modeling Language Specification, Version 1.4. Object Management
Group (OMG); UML Revision Taskforce, 2001.

21. M. Peleg and et al. Comparing Computer-interpretable Guideline Models: A
Case-study Approach. Journal of the American Medical Informatics Association,
10(1):52–68, 2003.

22. S. Quaglini, M. Stefanelli, A. Cavallini, G. Micieli, C. Fassino, and C. Mossa.
Guideline-based Careflow Systems. Artificial Intelligence in Medicine, 20(1):5–22,
2000.

23. S. Quaglini, M. Stefanelli, G. Lanzola, V. Caporusso, and S. Panzarasa. Flexi-
ble Guideline-based Patient Careflow Systems. Artificial Intelligence in Medicine,
22(1):65–80, 2001.

24. S. Rinderle, M. Reichert, and P. Dadam. Correctness Criteria For Dynamic
Changes in Workflow Systems: A Survey. Data and Knowledge Engineering,
50(1):9–34, 2004.

25. I. Sommerville. Software Engineering — Seventh Edition. Addison-Wesley, 2004.
26. T. Wendler, K. Meetz, and J Schmidt. Workflow Automation in Radiology. In H.U.

Lemke, editor, Proceedings of Computer Assisted Radiology and Surgery (CAR98),
pages 364–369. Elsevier, 1998.

27. CPN Tools. www.daimi.au.dk/CPNTools.

19

