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Abstract: The semantics of the OR-join have been discussed for some time, in the
context of EPCs, but also in the context of other business process modeling languages
like YAWL. In this paper, we show that the existing solutions are not satisfactory from
the intuition of the modeler. Furthermore, we present a novel approach towards the
definition of EPC semantics based on state and context. The approach uses two types
of annotations for arcs. Like in some of the other approaches, arcs are annotated with
positive and negative tokens. Moreover, each arc has a context status denoting whether
a positive token may still arrive. Using a four-phase approach tokens and statuses are
propagated thus yielding a new kind of semantics which overcomes some of the well-
known problems related to OR-joins in EPCs.

1 Introduction

The Event-driven Process Chain (EPC) is a business process modeling language for the
represention of temporal and logical dependencies of activities in a business process (see
[KNS92]). EPCs offer function type elements to capture the activities of a process and
event type elements describing pre- and post-conditions of functions. Some EPC defini-
tions also include process interface type elements. A process interface is a syntax element
that links two consecutive EPCs: at the end of the first EPC, a process interface points to
the second EPC, and the at beginning of the second, there is a process interface represent-
ing the preceding EPC. Furthermore, there are three kinds of connector types (i.e. AND,
OR, and XOR) for the definition of complex routing rules. Connectors have either multiple
incoming and one outgoing arc (join connectors) or one incoming and multiple outgoing
arcs (split connectors). As a syntax rule, functions and events have to alternate, either di-
rectly or indirectly when they are linked via one or more connectors. Moreover, OR- and
XOR-splits after events are not allowed, since events cannot make decisions. Control flow
arcs are used to link elements.

The informal (or intended) semantics of an EPC can be described as follows. The AND-
split activates all subsequent branches in a concurrent fashion. The XOR-split represents
a choice between one of alternative branches. The OR-split triggers one, two or up to
all of multiple branches based on conditions. In both cases of the XOR- and OR-split,
the activation conditions are given in events subsequent to the connector. Accordingly,
event-function-splits are forbidden with XOR and OR to avoid the situation where the
activation conditions do not become clear in the model. The AND-join waits for all in-



coming branches to complete, then it propagates control to the subsequent EPC element.
The XOR-join merges alternative branches. The OR-join synchronizes all active incom-
ing branches, i.e., it needs to know whether the incoming branches may receive tokens in
the future. This feature is called non-locality since the state of all (transitive) predecessor
nodes has to be considered.

Several formal approaches were presented for the definition of EPC semantics. A partic-
ular problem of these semantics is that refining a function of an EPC with a structured
OR-block can yield unexpected behavior. We will illustrate this problem by the help of
an example. Against this background, we present a concept for the definition of EPC se-
mantics based on state and context. The remainder of the paper is structured as follows.
Section 2 provides a definition of EPC syntax. Section 3 discusses problems of exist-
ing EPC formalizations and an approach to formalize EPCs based on state and context.
Section 4 concludes the paper and gives an outlook on future research.

2 EPC Syntax

There is not only one, but there are several approaches towards the formalization of EPC
syntax. A reason for that is that the original EPC paper introduces them only in an informal
way (see [KNS92]). The subsequent syntax definition of flat EPCs essentially follows
the presentation in [NR02] and [MN03]. If it is clear from the context that a flat EPC is
discussed, the term EPC will be used instead for brevity. Please note that an initial marking
as proposed in [Rum99, NR02] is not included in the syntax definition, but discussed in
the context of soundness in Section 3.6.

Definition 1 (Flat EPC). A flat EPC = (E, F, P, C, l, A) consists of four pairwise dis-
joint and finite sets E,F, C, P , a mapping l : C → {and, or, xor}, and a binary relation
A ⊆ (E ∪ F ∪ P ∪ C) × (E ∪ F ∪ P ∪ C) such that

– An element of E is called event. E 6= ∅.
– An element of F is called function. F 6= ∅.
– An element of P is called process interface.
– An element of C is called connector.
– The mapping l specifies the type of a connector c ∈ C as and, or, or xor.
– A defines the control flow as a coherent, directed graph. An element of A is called

an arc. An element of the union N = E ∪ F ∪ P ∪ C is called a node.

In order to allow for a more concise characterization of EPCs, notations are introduced
for preset and postset nodes, incoming and outgoing arcs, paths, transitive closure, corona,
and several subsets.

Definition 2 (Preset and Postset of Nodes). Let N be a set of nodes and A ⊆ N × N a
binary relation over N defining the arcs. For each node n ∈ N , we define its preset •n =
{x ∈ N |(x, n) ∈ A}, and its postset n• = {x ∈ N |(n, x) ∈ A}.

Definition 3 (Incoming and Outgoing Arcs). Let N be a set of nodes and A ⊆ N × N
a binary relation over N defining the arcs. For each node n ∈ N , we define the set



of incoming arcs nin = {(x, n)|x ∈ N ∧ (x, n) ∈ A}, and the set of outgoing arcs
nout = {(n, y)|y ∈ N ∧ (n, y) ∈ A}.

Definition 4 (Paths, Connector Chains, and Transitive Closure). Let a, b ∈ N be two
nodes of an EPC. A path a ↪→ b refers to a sequence of nodes n1, . . . , nk ∈ N with a = n1

and b = nk such that for all i ∈ 1, . . . , k holds: (n1, n2), . . . , (ni, ni+1), . . . , (nk−1, nk) ∈
A. This includes the empty path of length zero, i.e., for any node a : a ↪→ a. If a, b ∈ N

and n2, . . . , nk−1 ∈ C, the path a
c

↪→ b is called connector chain. This includes the
empty connector chain, i.e., a

c
↪→ b if (a, b) ∈ A. a, b. The transitive closure A∗ contains

(n1, n2) if there is a non-empty path from n1 to n2, i.e., there is a a non-empty set of
arcs of A leading from n1 to n2. For each node n ∈ N , we define its transitive preset
∗n = {x ∈ N |(x, n) ∈ A∗}, and its transitive postset n∗ = {x ∈ N |(n, x) ∈ A∗}.

Definition 5 (Upper Corona, Lower Corona). For a node n ∈ N of an EPC, its upper
corona is defined as

c∗n= {v ∈ (E ∪ F ∪ P )|v c
↪→ n}. It includes those non-connector

nodes of the transitive preset that reach n via a connector chain. In analogy, its lower
corona is defined as n

c∗= {w ∈ (E ∪ F ∪ P )|n c
↪→ w}.

Definition 6 (Subsets). For an EPC, we define the following subsets of its nodes and
arcs:

– Es = {e ∈ E | |•e| = 0} being the set of start-events,
Eint = {e ∈ E | |•e| = 1 ∧ |e•| = 1} being the set of intermediate-events, and
Ee = {e ∈ E | |e•| = 0} being the set of end-events.

– Ps = {p ∈ P | |•p| = 0} being the set of start-process-interfaces and
Pe = {p ∈ P | |p•| = 0} being the set of end-process-interfaces.

– J = {c ∈ C | |•c| > 1 and |c•| = 1} as the set of join- and
S = {c ∈ C | |•c| = 1 and |c•| > 1} as the set of split-connectors.

– Cand = {c ∈ C | (c, and) ∈ l} being the set of and-connectors,
Cxor = {c ∈ C | (c, xor) ∈ l} being the set of xor-connectors, and
Cor = {c ∈ C | (c, or) ∈ l} being the set of or-connectors.

– Jand = {c ∈ J | (c, and) ∈ l} being the set of and-join-connectors,
Jxor = {c ∈ J | (c, xor) ∈ l} being the set of xor-join-connectors,
Jor = {c ∈ J | (c, or) ∈ l} being the set of or-join-connectors,

– Sand = {c ∈ S | (c, and) ∈ l} being the set of and-split-connectors,
Sxor = {c ∈ S | (c, xor) ∈ l} being the set of xor-split-connectors, and
Sor = {c ∈ S | (c, or) ∈ l} being the set of or-split-connectors.

– CEF = {c ∈ C | c∗c ⊆ E ∧ c
c∗⊆ (F ∪ P )} as the set of event-function-connectors

(ef-connectors) and
CFE = {c ∈ C | c∗c ⊆ (F ∪ P ) ∧ c

c∗⊆ E} as the set of function-event-connectors
(fe-connectors).

– AEF ⊆ (E ∪ CEF )× (F ∪ P ∪ CEF ) as the set of event-function-arcs and
AFE ⊆ (F ∪ P ∪ CFE)× (E ∪ CFE) as the set of function-event-arcs.

– As ⊆ {(x, y) ∈ A | x ∈ Es} as the set of start-arcs,
Aint ⊆ {(x, y) ∈ A | x /∈ Es ∧ y /∈ Ee} as the set of intermediate-arcs, and
Ae ⊆ {(x, y) ∈ A | y ∈ Ee} as the set of end-arcs.
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Figure 1: An EPC (a) with labelled nodes and (b) its nodes related to the subsets of Definition 6.

Figure 1 illustrates the different subsets of an EPC. Consider for example the connector
AND3. It is an event-function-connector since its upper corona, i.e. those non-connector
nodes from which there is a connector chain to AND3, contains only events and its lower
corona contains functions only, in this case exactly one function. Furthermore, the arc
from AND1 to AND3 is an event-function-arc since it connects two event-function-
connectors. Note that arcs from events to event-function-connectors and arcs from event-
function-connectors to functions are event-function-arcs, too.

In the remainder we assume an EPC to satisfy the following requirements.

Definition 7 (Syntactically Correct EPC). An EPC = (E,F, P,C, l, A) is called syntac-
tically correct, if it fulfills the requirements:

1. EPC is a simple, directed, coherent, and antisymmetric graph.
2. There are no connector cycles, i.e. ∀a, b ∈ C : if a 6= b and a

c
↪→ b, then @b c

↪→ a.
3. |E| ≥ 2. There are at least two events in an EPC.
4. |F | ≥ 1. There is at least one function in an EPC.
5. Events have at most one incoming and one outgoing arc.
∀e ∈ E : |•e| ≤ 1 ∧ |e•| ≤ 1.

6. Functions have exactly one incoming and one outgoing arcs.
∀f ∈ F : |•f | = 1 ∧ |f•| = 1.

7. Process interfaces have one incoming or one outgoing arcs.
∀p ∈ P : (|•p| = 1 ∧ |p•| = 0) ∨ (|•p| = 0 ∧ |p•| = 1).

8. Connectors have one incoming and multiple outgoing arcs or multiple incoming and
one outgoing arc. ∀c ∈ C : (|•c| = 1 ∧ |c•| > 1) ∨ (|•c| > 1 ∧ |c•| = 1).

9. Events must have function, process interface, and fe-connector nodes in the preset,
and function, process interface and ef-connector nodes in the postset.
∀e ∈ E : •e ⊆ (F ∪ P ∪ CFE) ∧ e• ⊆ (F ∪ P ∪ CEF ).

10. Functions must have events and ef-connectors in the preset and events and fe-connectors
in the postset.
∀f ∈ F : •f ⊆ (E ∪ CEF ) ∧ f• ⊆ (E ∪ CFE).

11. Process interfaces are connected to events only.
∀p ∈ P : •p ⊆ E ∧ p• ⊆ E.



12. Connectors must have either functions, process interfaces, and fe-connectors in the
preset and functions, process interfaces, and ef-connectors in the postset or events
and ef-connectors in the preset and events and fe-connectors in the postset.
∀c ∈ C : (•c ⊆ (F ∪ P ∪ CFE)) ∧ c• ⊆ (F ∪ P ∪ CEF )∨
(•c ⊆ (E ∪ CEF ) ∧ c• ⊆ (E ∪ CFE)).

13. Arcs either connect events and ef-connectors with functions, process interfaces, and
ef-connectors or functions, process interfaces, and fe-connectors with events and fe-
connectors.
∀a ∈ A : (a ∈ (E∪CEF )×(F ∪P ∪CEF ))∨(a ∈ (F ∪P ∪CFE)×(E∪CFE)).

3 EPC Semantics

In addition to related work on the syntax of EPCs, there are several contributions towards
the formalization of EPC semantics. This section first illustrates the semantical prob-
lems related to the OR join using an illustrative set of examples, then it gives a historical
overview of semantical definitions described in literature, and provides a formalization for
EPCs that is used throughout this thesis.

3.1 Informal Semantics as a Starting Point

Before discussing EPC formalization problems, we need to establish an informal under-
standing of state representation and state changes of an EPCs. Although we provide a
formal definition not before Section 3.4, the informal declaration of state concepts helps
to discuss formalization issues in this section. The state, or marking, of an EPC is defined
by assigning a number of tokens (or process folders) to its arcs.1 The formal semantics of
an EPC define which state changes are possible for a given marking. These state changes
are formalized by a transition relation. A node is called enabled if there are enough to-
kens on its incoming arcs that it can fire, i.e., a state change defined by a transition can be
applied. This process is also called firing. A firing of a node n consumes tokens from its
input arcs nin and produces tokens at its output arcs nout. The formalization of whether
an OR-join is enabled is a non-trivial issue since not only the incoming arcs have to be
considered. The sequence τ = n1n2...nm is called a firing sequence if it is possible to
execute a sequence of steps, i.e., after firing n1 it is possible to fire n2, etc. Through a
sequence of firings the EPC moves from one reachable state to the next. The reachability
graph of an EPC represents how states can be reached from each other. A state that is not
a final state, but from which no other state can be reached is called a deadlock. The notion
of a final state will be formally defined in Section 3.6.

1This state representation based on arcs reflects the formalization of Kindler [Kin06] and can be related to
arcs between tasks in YAWL that are interpreted as implicit conditions [AH05]. Other approaches assign tokens
to the nodes of an EPC, e.g., [Rum99].



3.2 EPC Formalization Problems

We have briefly stated that the OR-join synchronizes all active incoming branches. This
bears a non-trivial problem: if there is a token on one incoming arc, does the OR-join
have to wait or not? Following the informal semantics of EPCs, it is only allowed to fire
if it is not possible that a token might arrive at the other incoming arcs (see [NR02]). In
the following subsection, we will show what the formal implications of these intended
semantics are. Before that, we introduce some example EPCs. The discussion of them
raises some questions that are not answered yet. Instead, we revisit them afterwards to
illustrate the characteristics of the different formalization approaches.
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Figure 2: EPCs (a) with one OR-join and (b) with two OR-joins on the loop

Figure 2(a) shows an EPC with an OR-join on a loop. There is a token on arc a2 from
function f1 to the OR-join c1. The question is whether c1 can fire. If it could fire, then it
would be possible that a token may arrive at arc a9 from f3 to the join. This would imply
that it should wait and not fire. On the other hand, if it must wait, it is not possible that a
token might arrive at a9. Figure 2(b) depicts an EPC with two OR-joins, c3 and c5, on a
loop which are both enabled (cf. [ADK02]). Here, the question is whether both can fire
or none of them. Since the situation is symmetric it seems not reasonable that only one
should be allowed to fire.

The situation might be even more complicated as Figure 3 illustrates (cf. [Kin06]). This
EPC includes a loop with three OR-joins: c1, c3, and c5. All of them are enabled. Follow-
ing the informal semantics the first OR-join c1 is allowed to fire if it is not possible for a
token to arrive on arc a21 from the AND-split c6. To put it differently, if c1 is allowed to
fire, it is possible for a token to arrive on arc a7 that leads to the OR-join c3. Furthermore,
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Figure 3: EPCs with three OR-joins on the loop

the OR-join c5 could eventually fire. Finally, the first OR-join c1 would have to wait for
that token before firing. In short, if c1 could fire, it would have to wait. One can show
that this holds also the other way around: if it could not fire, it would not have to wait.
Furthermore, this observation also holds for the two other OR-joins. In the subsequent
section, we will discuss whether this problem can be resolved.

Refinement is another issue related to OR-joins. Figure 4 shows two versions of an EPC
process model. In Figure 4(a) there is a token on a7. The subsequent OR-join c2 must
wait for this token and synchronize it with the second token on a5 before firing. In Figure
4(b) the sequence e3-a7-f3 is refined with a block of two branches between an OR-split
c3a and an OR-join c3b. The OR-join c2 is enabled and should wait for the token on a7f .
The question here is whether such a refinement might change the behavior of an OR-join.
Figure 4 is just one simple example. The answer to this question may be less obvious if
the refinement is introduced in a loop that already contains an OR-join. Figure 5 shows a
respective case of an OR-join c1 on a loop that is refined with an OR-Block c3a-c3b. One
would expect that the EPC of Figure 4(a) exhibits the same behavior as the one in (b). In
the following subsection, we will discuss these questions from the perspective of different
formalization approaches.

3.3 Approaches to EPC Semantics Formalization

The transformation to Petri nets plays an important role in early formalizations of EPC
semantics. In Chen and Scheer [CS94] the authors define a mapping to colored Petri nets
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and address the non-local synchronization behavior of OR-joins. This formalization builds
on the assumption that an OR-split always matches a corresponding OR-join. The colored
token that is propagated from the OR-split to the corresponding OR-join signals which
combination of branches is enabled. Furthermore, the authors describe the state space of
some example EPCs by giving reachability graphs. Yet, this first Petri net semantics for
EPCs has mainly two weaknesses. First, a formal algorithm to calculate the state space
is missing. Second, the approach is restricted to EPCs with matching OR-split and -join
pairs. Therefore, this approach does not provide semantics for the EPCs shown in figures
2 and 3. Even though the approach is not formalized in all its details, it should be able to
handle the refined EPC of Figure 4(b) and the inner OR-join c3b in Figure 4(b).

The transformation approach by Langner, Schneider, and Wehler [LSW98] maps EPCs to
Boolean nets in order to define formal semantics. Boolean nets are a variant of colored
Petri nets whose token colors are 0 (negative token) and 1 (positive token). Connectors
propagate both negative and positive tokens according to its logical type. This mechanism
is able to capture the non-local synchronization semantics of the OR-join similar to dead-
path elimination in workflow systems (see [LA94]). The XOR-join only fires if there
is one positive token on incoming branches and a negative token on all other incoming
branches. Otherwise it blocks. A drawback of this semantics definition is that the EPC
syntax has to be restricted: arbitrary structures are not allowed. If there is a loop it must
have an XOR-join as entry point and an XOR-split as exit point. This pair of connectors in
a cyclic structure is mapped to one place in the resulting Boolean net. As a consequence,
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this approach does not provide semantics for the EPCs in Figures 2 and 3. Yet, it is able
to deal with any kind of OR-join that is not an entry or an exit to a loop. Accordingly, the
Boolean nets define the expected semantics of the refined EPC of Figure 4(b) and of the
inner OR-Block introduced as a refinement in Figure 4(b).

Van der Aalst [Aal99] presents an approach to derive Petri nets from EPCs, but he does not
give a mapping for OR-connectors because of the semantical problems illustrated in Sec-
tion 3.2. This mapping provides clear semantics for XOR- and AND-connectors as well as
for the OR-split, but since the OR-join is not formalized the approach does not provide se-
mantics for the EPCs of Figures 2 to 5. Dehnert presents an extension of this approach by
mapping the OR-join to a Petri net block [DA04]. Since the resulting Petri net block may
or may not necessarily synchronize multiple tokens at runtime (i.e., a non-deterministic
choice), its state space is larger than the actual state space with synchronization. Based
on the so-called relaxed soundness criterion it is possible to check whether a join should
synchronize (cf. [DA04]).

In [Rit00] Rittgen discusses the OR-join. He proposes to distinguish three types of OR-
joins already on the syntactic level: every-time, first-come, and wait-for-all. The every-
time OR-join basically reflects XOR-join behavior; the first-come OR-join passes the first
incoming token and blocks afterwards; and the wait-for-all OR-join depends on a matching
split similar to the approach of Chen and Scheer. This proposal could provide a semantics
for the example EPCs of Figures 2 to 5. If we assume an every-time semantics, all OR-
joins of the example EPCs could fire. While the loops would not block in this case, there



would be no synchronization at all which contradicts the intended OR-join semantics. If
the OR-joins behave according to the first-come semantics, all OR-joins could fire. Yet,
there would also be no synchronization and the loops could be run only once. If the OR-
joins had wait-for-all semantics, we would have the same problems as before with the
loops. Altogether, the proposal by Rittgen does not provide a satisfactory solution to the
formalization problem.

Nüttgens and Rump [NR02] define a transition relation for EPCs that addresses also the
non-local semantics of the OR-join, yet with a problem: the transition relation for the
OR-join refers to itself under negation. Van der Aalst, Desel, and Kindler show, that a
fixed point for this transition relation does not always exist [ADK02]. They present an
example to prove the opposite: an EPC with two OR-joins on a circle that wait for each
other as depicted in Figure 2(b). This vicious circle is the starting point for the work of
Kindler towards a sound mathematical framework for the definition of non-local seman-
tics for EPCs. In a series of papers [Kin06], Kindler elaborates on this problem in detail.
The technical problem is that for the OR-join transition relation R depends upon R itself
in negation. Instead of defining one transition relation, he considers a pair of transition
relations (P,Q) on the state space Σ of an EPC and a monotonously decreasing function
R : 2Σ×N×Σ → 2Σ×N×Σ. Then, a function ϕ((P, Q)) = (R(Q), R(P )) has a least fixed
point and a greatest fixed point. P is called pessimistic transition relation and Q optimistic
transition relation. An EPC is called clean, if P = Q. For most EPCs, this is the case.
Some EPCs such as the vicious circle EPC are unclean since the pessimistic and the op-
timistic semantics do not coincide. Moreover, Cuntz provides an example of a clean EPC
which is refined with another clean EPC and becomes unclean [Cun04, p.45]. Kindler also
shows that there are even acyclic EPCs that are unclean (see [Kin06, p.38]). Furthermore,
Cuntz and Kindler present optimizations for an efficient calculation of the state space of
an EPC and a respective prototype implementation called EPC Tools [CK05]. EPC Tools
also offers a precise answer to the questions about the example EPCs of Figures 2 to 5.

• Figure 2(a): For the EPC with one OR-join on a loop, there is a fixed point and the
connector is allowed to fire.

• Figure 2(b): The EPC with two OR-joins on a loop is not clean. Therefore, it is not
clear whether the optimistic or the pessimistic semantics should be considered.

• Figure 3: The EPC with three OR-joins is also not clean, i.e., the pessimistic deviates
from the optimistic semantics.

• Figure 4(a): The OR-join c2 must wait for the second token on a7.
• Figure 4(b): The OR-join c2 must wait for the second token on a7f .
• Figure 5(a): The OR-join c1 must wait for the second token on a7.
• Figure 5(b): The OR-join c1 is allowed to fire, the second OR-join c2 in the OR-

block must wait.

Even though the approach by Kindler provides semantics for a large subclass of EPCs,
i.e. clean EPCs, there are some cases like the EPCs of Figure 2(b) and 3 that do not
have semantics. The theorem by Kindler proves that it is not possible to give these EPCs
semantics as long as the transition relation is defined with a self-reference under negation.
Furthermore, such a semantics definition may imply some unexpected results, e.g. if an



EPC such as that of Figure 5(a) behaves differently than its refinement as given in Figure
5(b).

Van der Aalst and Ter Hofstede defined a workflow language called YAWL [AH05] which
also offers an OR-join with non-local semantics. As Mendling, Moser, and Neumann
propose a transformation semantics for EPCs based on YAWL [MMN06], we discuss in
the following paragraph how the OR-join behavior is formalized in YAWL. In [AH05], the
authors propose a definition of the transition relation R(P ) with a reference to a second
transition relation P that ignores all OR-joins. A similar semantics that is calculated on
history-logs of the process is proposed by Van Hee, Oanea, Serebrenik, Sidorova, and
Voorhoeve in [HOS+06]. The consequence of this definition can be illustrated using the
example EPCs.

• Figure 2(a): The single OR-join on the loop can fire.
• Figure 2(b): The two OR-joins on the loop can fire.
• Figure 3: The three OR-joins on the loop can fire.
• Figure 4(a): The OR-join c2 must wait for the second token between e3 and f3.
• Figure 4(b): Both OR-joins can fire.
• Figure 5(a): The OR-join c1 must wait for the second token between e3 and f3.
• Figure 5(b): Both OR-joins can fire.

Kindler criticizes that each choice for defining P “appears to be arbitrary or ad hoc in
some way” [Kin06] and uses the pair (P, Q) instead. The example EPCs illustrate that
the original YAWL semantics provide for a limited degree of synchronization. Consider
for example the vicious circle EPC with three OR-joins: all are allowed to fire, but if
one does so, the subsequent OR-join has to wait. Furthermore, the refined EPCs exhibit
different behavior than their unrefined counterparts since OR-joins are ignored, i.e., they
are considered to be not able to fire.

Wynn, Edmond, van der Aalst, and ter Hofstede illustrate that these OR-join semantics
in YAWL exhibit some non-intuitive behavior when OR-join depend upon each other
[WEAH05]. Therefore, they present a novel approach based on a mapping to Reset nets.
If an OR-join can fire (i.e. R(P )) is decided depending on (a) a corresponding Reset net
(i.e. P ) that treats all OR-joins as XOR-joins2 and (b) a predicate called superM that hin-
ders firing if an OR-join is on a directed path from another enabled OR-join. In particular,
the Reset net is evaluated using backward search techniques that grant coverability to be
decidable (see e.g. [FS01]). A respective verification approach for YAWL nets is presented
in [WAHE06]. Using these semantics, the example EPCs behave as follows:

• Figure 2(a): The single OR-join on the loop can fire since superM evaluates to false
and hence no more tokens can arrive at c1.

• Figure 2(b): The two OR-joins are not enabled since superM evaluates to true be-
cause if the respectively other OR-join is replaced by an XOR-join an additional
token may arrive.

2In fact, [WEAH05] proposes two alternative treatments for the “other OR-joins” when evaluating an OR-
joins: treat them either as XOR-joins (optimistic) or as AND-joins (pessimistic). However, the authors select
the optimistic variant because the XOR-join treatment of other OR-joins matches more closely the informal
semantics of the OR-join.



• Figure 3: The three OR-joins are not enabled because if one OR-join assumes the
other two to be XOR-joins then this OR-join has to wait.

• Figure 4(a): The OR-join c2 must wait for the second token on a7.
• Figure 4(b): The OR-join c2 must wait for the second token on a7f.
• Figure 5(a): The OR-join c1 must wait for the token on a7.
• Figure 5(b): The OR-join c1 must wait because if c3b is assumed to be an XOR-

join a token may arrive via a3. The OR-join c3b must also wait because if c1 is an
XOR-join another token may move to a7c.

The novel approach based on Reset nets provides interesting semantics but in some cases
also leads to deadlocks.

OR-join semantics Limitations
[CS94] OR-join must match OR-split
[LSW98] Joins as loop entry undefined
[Rit00] every-time missing synchronization
[Rit00] first-come OR-join can block
[Rit00] wait-for-all OR-join as loop entry undefined
[Kin06] EPC can be unclean
[AH05] limited synchronization
[WAHE06] OR-join may block

Table 1: Overview of EPC semantics and their limitations

Table 1 summarizes existing work on the formalization of the OR-join. Several early
approaches define syntactical restrictions such as OR-splits to match corresponding OR-
joins or models to be acyclic (see [CS94, LSW98, Rit00]). Newer approaches impose little
or even no restrictions (see [Kin06, AH05, WAHE06]), but exhibit unexpected behavior for
OR-block refinements on loops with further OR-joins on it. The solution based on Reset
nets seems to be most promising from the intuition of its behavior. Yet, it requires extensive
calculation effort since it depends upon backward search to decide coverability (Note that
reachability is undecidable for reset nets illustrating the computational complexity of the
OR-join in the presence of advanced routing constructs). In the following subsection,
we propose a novel approach that addresses the refinement problems of the Reset nets
semantics and that provides a more efficient solution since all OR-join decisions can be
taken with local knowledge.

3.4 A Novel Approach towards EPC Semantics

In this subsection, we introduce a novel formalization of the EPC semantics. The prin-
cipal idea of these semantics lends some concepts from Langner, Schneider, and Wehler
[LSW98] and adapts the idea of Boolean nets with true and false tokens in an appropri-
ate manner. Furthermore, we utilize the notations of Kindler [Kin06] whenever possible
and modify them where needed. The transition relation that we will formalize afterwards
depends on the state and the context of an EPC. The state of an EPC is basically an assign-



ment of positive and negative tokens to the arcs. Positive tokens signal which functions
have to be carried out in the process, negative tokens indicate which functions are to be
ignored. The transition rules of AND- and OR-connectors are adopted from the Boolean
nets formalization which facilitates synchronization of OR-joins in structured blocks. In
order to allow for a more flexible utilization of XOR-connectors in cyclic structure, we
modify and extend the approach of Boolean nets in three ways:

1. XOR-splits produce positive tokens on their output arcs, but no negative tokens.
XOR-joins fire each time there is a positive token on an incoming arc. This mech-
anism provides the expected behavior in both structured XOR-loops and structured
XOR-blocks.

2. In order to signal OR-joins that it is not possible to have a positive token on an
incoming branch, we define the context of an EPC. The context assigns a status of
wait or dead to each arc of an EPC. A wait context indicates that it is still possible
that a positive token might arrive; a dead context status means that no positive token
can arrive anymore. For example, XOR-splits produce a dead context on those
output branches that are not taken and a wait context on the output branch that
receives a positive token. A dead context at an input arc is then used by an OR-join
to determine whether it has to synchronize with further positive tokens or not.

3. The propagation of context status and state tokens is arranged in a four phase cy-
cle: (a) dead context, (b) wait context, (c) negative token, and (d) positive token
propagation.

(a) In this phase, all dead context information is propagated in the EPC until no
new dead context can be derived.

(b) Then, all wait context information is propagated until no new wait context
can be derived. It is necessary to have two phases (i.e., first the dead context
propagation and then the wait context propagation) in order to avoid infinite
cycles of context changes (details below).

(c) After that, all negative tokens are propagated until no negative token can be
propagated anymore. This phase can neither run into an endless loop (details
below).

(d) Finally, one of the enabled nodes is selected and propagates positive tokens
leading to a new iteration of the four phase cycle.

In the following subsection, we first give an example to illustrate the behavior of the EPC
semantics before defining state, context, and the transition relation. Then, we define the
initialization of an EPC. After that, we present the transition relations for the two phases
of dead context and wait context propagation. Then, we discuss the termination of these
phases and why a separation in dead context and wait context propagation is necessary.
Subsequently, we define the transition relation for the phase of negative token propagation
and its termination. Finally, the positive token propagation is presented.

Revisiting the cyclic EPC refined with an OR-block Figure 6 revisits the example of
the cyclic EPC refined with an OR-block that we introduced as Figure 5 in Section 3.2.



In Figure 6(a) there are two positive tokens on the arcs a2 and a12. The context status
is indicated by a letter next to the arc: w for wait and d for dead. In (a) all arcs are in
a wait context status which implies that the OR-join c1 is not allowed to fire, but has to
synchronize with positive and negative tokens that might arrive on arc a3. The XOR-join
is allowed to fire without considering the second arc a10. In (b) the OR-split c3a has
fired (following the execution of c3) and happened to produce a positive token on a7a
and a negative token on a7d. Accordingly, the context of a7d is changed to dead. This
dead context is propagated down to arc a7f . The rest of the context remains unchanged.
The state shown in (b) is followed by (c) where the positive and the negative tokens are
synchronized at the connector c3b and one positive token is produced on the output arc a8.
Please note that the OR-join c3b does not synchronize with the other OR-join c1 that is
also on the loop. In the Kindler and the Reset nets semantics, c3b would have to wait for
the token from a2. Here, the wait context propagation is blocked by the negative token. In
(d) the XOR-split c2 produces a positive token on a9 and a dead context on a5. This dead
context is propagated to a3 in the dead context propagation phase, but not further. In the
wait context propagation phase, this dead context is changed to wait which is propagated
from c2. As a consequence, the OR-join c1 is not enabled. This example permits two
observations. First, the context propagation blocks OR-joins that are entry points to a loop
in a wait position since the self-reference is not resolved. Second, the XOR-split produces
a dead context, but not a negative token. The disadvantage of producing negative tokens
would be that the EPC was flooded with negative tokens if an XOR-split was used as an
exit of a loop. These tokens would give downstream joins the wrong information about
the state of the loop since it would be still live. An OR-join could then synchronize with
a negative token while a positive token was still in the loop. In contrast to that, the XOR-
split as a loop exit produces a dead context. Since there is a positive token in the loop, it
is overwritten in the wait context propagation phase. Downstream OR-joins then have the
correct information that there are still tokens to wait for.

Definition of State and Context We define both state and context as an assignment
to the arcs. The EPC transition relation defines which state and/or context changes are
allowed for a given state/context. We will first illustrate this before defining state and
context formally. As we define the EPC semantics as a transition system based on state
and context, we refer to it as a state-context-system.

Definition 8 (State and Context). For an EPC = (E,F, C, l, A) the mapping σ : A →
{−1, 0, +1} is called a state (or marking) of an EPC. The positive token captures the
state as it is observed from outside the process. It is represented by a black circle. The
negative token depicted by a white circle with a minus on it has a similar semantics as the
negative token in the Boolean nets formalization. Arcs with no state tokens on them have
no circle depicted. Furthermore, the mapping κ : A → {wait, dead} is called a context of
an EPC. A wait context is represented by a w and a dead context by a d next to the arc.

Initial and Final State The initial state is the starting point for applying an iteration of
the four phase cycle. In [Rum99] the initial state of an EPC is specified as a marking that
assigns tokens to one, some, or all start events. While such a definition contains enough
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information for verification purposes, e.g. by the bundling of start and end events with OR-
connectors as proposed in [MMN06], it does not provide executable semantics according
to the original definition of EPCs. As pointed out in [Rit00], it is not possible to equate the
triggering of a single start event with the instantiation of a new process. This is because
EPC start events do not only capture alternative instantiation, but also external events that
influence the execution of a running EPC (cf. [CS94]). In our approach, we assume that
state and context is known for each of the start arcs. A respective formalization of initial
and final state is given in Definitions 11 and 12. In the following, we describe the transition
relations of each node n ∈ E∪F ∪C in the phases of dead context, wait context, negative
and positive token propagation.

Phase 1: Transition Relation for Dead Context Propagation The transition relation
for dead context propagation defines rules for deriving a dead context if one or more input
arcs of a node have a dead context status. Figure 7 gives an illustration of the transition
relation. Please note that the figure does not depict the fact that the the rules for dead con-
text propagation can only be applied if the respective output arc does not hold a positive or
a negative token. Concrete tokens override context information, e.g., an arc with a positive
token will always have a wait context. Rules (a) and (b) indicate that if an input arc of
a function or an event is dead, then also the output arc has to have a dead context status.
Rule (c) represents that each split-connector propagates a dead context to its output arcs.
These transition relations formalize the observation that if an input arc cannot be reached
anymore, also its output arcs cannot be reached anymore (unless they already hold positive
of negative tokens). The AND-join requires only one dead context status at its input arcs
to replicate it at its output arc, see (d). XOR- and OR-joins propagate a dead context if all
input arcs are dead, see (e) and (f). It is important to note that a dead context is propagated
until it reaches a node where one of the output arcs holds a token or an (X)OR-join where
one of the inputs has a wait context.

Phase 2: Transition Relation for Wait Context Propagation The transition relation
for wait context propagation defines rules for deriving a wait context if one or more input
arcs of a node have a wait context status. Figure 8 gives an illustration of the transition
relation. All transitions can only be applied if the respective output arc does not hold a
positive or a negative token. Rules (a) and (b) show that if an input arc of a function or
an event has a wait context, then also the output arc has to have a wait context status.
Rule (c) represents that each split-connector propagates a wait context to its output arcs.
The AND-join requires all inputs to have a wait context status in order to reproduce it at
its output arc, see (d). XOR- and OR-joins propagate a wait context if one of their input
arcs has a wait context, see (e) and (f). Similar to the dead context propagation, the wait
context is propagated until it reaches a node where one of the output arcs holds a token or
an AND-join where one of the inputs has a dead context.

Observations on Context Propagation The transition relations of context propagation
permit the following observations:
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Figure 7: Transition relation for dead context propagation

• Context changes terminate: It is intuitive that context propagation cannot run into
an infinite loop. It is easy to verify that the first two phases indeed stop. The propa-
gation of dead context stops because the number of arcs is finite, i.e., the number of
arcs is an upper bound for the number of times the rules in Figure 7 can be applied.
A similar argument applies to the propagation of wait context. As a consequence,
the context change phase will always terminate and enable the consideration of new
state changes in the subsequent phase.

• State tokens block context propagation: The transition relations for context propa-
gation require that the output arcs to be changed do not hold any state token, i.e.,
arcs with a positive token always have a wait context and arcs with a negative token
always have a dead context.

• Context propagating elements: Functions, events, and split nodes reproduce the
context that they receive at their input arcs.

• OR- and XOR-joins: Both these connectors produce a wait context if at least one of
the input arcs has a wait context. A dead context is produced if all inputs are dead.

• AND-joins: AND-joins produce wait context status only if all inputs are wait.
Otherwise, the output context is set to dead.

Figure 9 illustrates the need to perform context propagation in two separate phases and not
together in one phase. If there are context changes (a) at i1 to and i2 the current context
enables the firing of the transition rules for both connectors producing a dead context
status in a1 and a wait context status in a3. This leads to a new context in (b) with an
additional dead context status in a2 and a new wait context status in a4. Since both arcs
from outside the loop to the connectors are marked in such a way that incoming context
changes on the other arc is simply propagated, there is a new context in (c) with a wait
status in a1 and a dead context status in a3. Note that this new context can be propagated
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and this way the initial situation is reached. This can be repeated again and again. Without
a sequence of two phases the transitions may continue infinitely and the result may be
non-defined.
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Figure 9: Situation of unstable context changes without two phases

Phase 3: Transition Relation for Negative Token Propagation Negative tokens can
result from branches that are not executed after OR-joins or start events. The transition
relation for negative token propagation includes four firing rules that consume and produce
negative tokens. Furthermore, the output arcs are set to a dead context. Figure 10 gives an
illustration of the transition relation. All transitions can only be applied if all input arcs
hold negative tokens and if there is no positive token on the output arc.

The propagation of negative tokens for an EPC terminates. First, we have to note that the
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Figure 10: Transition Relation for Negative Token Propagation

number of negative and positive tokens on an arc is limited to one. It is a prerequisite for
an infinite propagation that there is a cyclic structure in the process in which the negative
token runs into an infinite loop. To this loop there must be an entry point, i.e. a join
connector that has an input arc from outside the cycle. According to the transition relation
of negative tokens, this join can only produce a negative token on its output arc if it has
negative tokens on all inputs. Since there is one arc from an acyclic structure, there is a
finite number a of arcs from one or multiple start arcs to this arc limiting the number of
negative tokens that can arrive to the number of arcs leading to the join. Therefore, the
negative token in the cyclic structure cannot pass the join more than a times.

Phase 4: Transition Relation for Positive Token Propagation The transition relation
for positive token propagation specifies firing rules that consume negative and positive
tokens from the input arcs of a node to produce positive tokens on its output arcs. Figure 11
gives an respective illustration. Rules (a) and (b) show that functions and events consume
positive tokens from the input arc and propagate them to the output arc. Furthermore, and
this holds for all rules, consuming a positive token from an arc implies setting this arc to
a dead context status. Rules (c) and (d) illustrate that AND-splits consume one positive
token and produce one on each output arc while AND-joins synchronize positive tokens
on all input arcs to produce one on the output arc. Rule (e) depict the fact that XOR-
splits forward positive tokens to one of their output arcs. In contrast to the Boolean net
formalization, they do not produce negative tokens, but a dead context on the output arcs
that do not receive the token. Correspondingly, XOR-joins (f) propagate each incoming
positive token to the output arc, no matter what the context or the state of the other input
arcs is. The OR-split (g) produces positive tokens on those output arcs that have to be
executed and negative tokens on those that are ignored. Note that the OR-join is the only
construct that may introduce negative tokens (apart from start events without an initial
token). Rule (h) shows that on OR-join can only fire either if it has full information about
the state of its input arcs, i.e., each input has a positive or a negative token, or all arcs that
do not hold a token are in a dead context. Finally, each output arc that receives a negative
token is set to a dead context and each that gets a positive token is set to a wait context.

This semantics definition based on state and context results in the following behavior for
the examples of Section 3.

• Figure 2(a): The single OR-join on the loop produces a wait context at a9. There-
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fore, it is blocked.
• Figure 2(b): The two OR-joins produce a wait context at a23 and a24. Therefore,

they are both blocked.
• Figure 3: The three OR-joins are blocked due to a wait context at a7, a14, and a21.
• Figure 4(a): The OR-join c2 must wait for the second token on a7.
• Figure 4(b): The OR-join c2 must wait for the second token on a7f.
• Figure 5(a): The OR-join c1 must wait for the token on a7.
• Figure 5(b): The OR-join c1 must wait for the token on a7. The OR-split c3a

produces a negative token on a7c such that c3b can fire.

3.5 Transition Relation of EPCs

We define the transition relation of EPCs based on state and context mappings σ and κ. In
contrast to Petri nets we distinguish the terms marking and state: the term marking refers
to state and context collectively.

Definition 9 (Marking of an EPC). For an EPC the mapping m : A → {−1, 0, +1} ×
{wait, dead} is called a marking. The set of all markings M of an EPC is called marking
space with M ⊆ A× {−1, 0,+1} × {wait, dead}. The projection of a given marking m
to a subset of arcs S ⊆ A is referred to as mS . The marking ma of an arc a can be written
as ma = (κ(a) + σ(a)) · a.

The marking of the arcs a1, a2, a3 ∈ A can then be written as e.g. (d− 1) · a1 + w · a2 +
(w + 1) · a3. Furthermore, we define the transition relation, the initial marking, and the
final marking of an EPC.

Definition 10 (Transition Relation of an EPC). For an EPC the transition relation is
a triple R = M → N × M where M refers to the marking space of the EPC. A single
transition (m,n, m′) ∈ R represents a marking change of an EPC. Furthermore, we define
the following notations:

• m1
n→ m2: node n is enabled in marking m1 and its firing results in m2.

• m1 → m2: there exists a node n such that m1
n→ m2.

• m1
τ→ mq: the firing sequence τ = n1n2...nq produces from marking m1 the new

state mq with m1
n1→ m2, m2

n2→ ...
nq→ mq .

• m1
∗→ mq: there exists a sequence τ such that m1

τ→ mq . In this case mq is called
reachable from m1.

Definition 11 (Initial Marking of an EPC). For an EPC an initial marking i ∈ M is
defined as a state and context mapping that fulfills the following constraints3:

• ∃as ∈ As : σ(as) = +1,

3Note that the state is given in terms of arcs. Intuitively, one can think of start event holding positive or
negative tokens. However, the corresponding arc will formally represent this token.



• ∀as ∈ As: σ(as) ∈ {−1,+1},
• ∀as ∈ As: κ(as) = wait if σ(as) = +1 and

κ(as) = dead if σ(as) = −1, and
• ∀a ∈ Aint ∪Ae : κ(a) = wait and σ(a) = 0.

The set of all initial markings is referred to as I ⊆ M .

Definition 12 (Final Marking of an EPC). For an EPC and a final marking o ∈ M is
defined as a marking that fulfills the following constraints:

• ∃ae ∈ Ae: σ(ae) = +1 and
• ∀a ∈ Aint ∪As : σ(a) ≤ 0.

The set of all final markings is referred to as O ⊆ M .

3.6 Soundness of EPCs

Soundness is an important correctness criterion for business process models first intro-
duced in [Aal97]. The original soundness property is defined for a Workflow net, a Petri
net with one source and one sink, and requires that (i) for every state reachable from the
source, there exists a firing sequence to the sink (option to complete); (ii) the state with a
token in the sink is the only state reachable from the initial state with at least one token in
it (proper completion); and (iii) there are no dead transitions [Aal97]. For EPCs, this def-
inition cannot be used directly since EPCs may have multiple start and end events. Based
on the definitions of the initial and final state of an EPC, we define soundness of an EPC
analogously to soundness of Workflow nets [Aal97].

Definition 13 (Soundness of an EPC). An EPC is sound if there is a set of initial markings
I such that:

(i) For each start-arc as there exists an initial marking i ∈ I where the arc (and hence
the corresponding start event) holds a positive token. Formally:
∀as ∈ As : ∃i ∈ I : σ(as) = +1

(ii) For every marking m reachable from an initial state i ∈ I , there exists a firing
sequence leading from marking m to a final marking o ∈ O. Formally:
∀i ∈ I : ∀m ∈ M (i ∗→ m) ⇒ ∃o ∈ O (m ∗→ o)

(iii) The final markings o ∈ O are the only markings reachable from a marking i ∈ I
such that there is no node that can fire. Formally:
∀m ∈ M : @m′(m → m′) ⇒ m ∈ O

Given this definition, the EPCs of Figures 2 and Figure 3 are not sound since the OR-joins
block each other. Both EPCs of Figure 4 are sound. Finally, both EPCs of Figure 5 are not
sound because if the token at a7 or a7f , resp., exits the loop, the OR-join c1 is blocked.



4 Summary

In this paper, we revisited existing work on formalization of EPCs and OR-joins in general.
We found that one of the disadvantages of these solutions is that introducing an OR-block
in the process might yield unexpected behavior. Against this background, we presented a
concept for the definition of EPC semantics based on state and context. In future research,
we aim to provide formal semantics for the ideas presented in this paper. We also aim to
support it with efficient verification techniques and apply it to a range of real-life EPCs to
see if these semantics match the intuition of the modeler.
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