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The YAWL (Yet Another Workflow Language) workflow language supports the
most frequent control-flow patterns found in the current workflow practice. As
a result, most workflow languages can be mapped onto YAWL without loss of
control-flow details, even languages allowing for advanced constructs such as
cancellation regions and OR-joins. Hence, a verification approach for YAWL is
desirable, because such an approach could be used for any workflow language that
can be mapped onto YAWL. Unfortunately, cancellation regions and OR-joins
are “non-local” properties, and in general we cannot even decide whether the
desired final state is reachable if both patterns are present. This paper proposes
a verification approach based on (i) an abstraction of the OR-join semantics, (ii)
the relaxed soundness property, and (iii) transition invariants. This approach
is correct (errors reported are really errors), but not necessarily complete (not
every error might get reported). This incompleteness can be explained because
on the one hand the approach abstracts from the OR-join semantics and on the
other hand it may use only transition invariants, which are structural properties.
Nevertheless, our approach can be used to successfully detect errors in YAWL
models. Moreover, the approach can easily be transferred to other workflow
languages allowing for advanced constructs such as cancellations and OR-joins.
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1. INTRODUCTION

At the moment, dozens of workflow management
systems are available on the market, examples
are Staffware, COSA, WebSphere Workflow, Visual
Workflo, SAP R/3 Workflow, Forté Conductor, Meteor,
and Mobile. Unfortunately, these systems all use
proprietary languages to specify workflows, each with
different constructs, possibilities, and impossibilities.

This papers focuses on the verification of workflows,
and in particular, on the control-flow aspect of
these workflows. Basically, this control-flow aspect
determines which tasks can be executed in which
order. Typically, all available workflow management
systems support the more basic control-flow patterns,
like sequence, choice, and parallel flow. However, more

advanced patterns exist [1] that are typically supported
by some, but not all, of these systems.

First, we use a simple YAWL example and explain
the two patterns that are targeted by this paper:
cancellation regions and OR-joins. Next, we address
the contribution of this paper.

1.1. The YAWL language

The YAWL (Yet Another Workflow Language) work-
flow language [2] was originally conceived as a workflow
language that would support all-but-one of the 20 most
frequently used patterns found in existing workflow lan-
guages. As such, YAWL supports the multiple instance
patterns, the OR-join pattern, and the cancellation pat-
terns. Figure 1 shows the symbols used by YAWL, and
gives an indication of the patterns supported by YAWL.
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FIGURE 1. Symbols used in YAWL

Exactly because YAWL supports these most frequent
patterns, it is positioned to be the ‘lingua franca’ for the
control-flow aspect of workflow languages. As such, it is
a desirable language for verification purposes: If one can
verify YAWL models, one can verify the most frequently
occurring patterns and, hopefully, most of the existing
workflow models in practice. However, exactly because
YAWL supports a lot of advanced patterns, verification
of YAWL models is not an easy journey.

1.1.1. Example model
Figure 2 shows a YAWL model which will be used
as a running example in the remainder of this paper.
Execution of the YAWL model starts at the far left, at
the input condition. This condition is reached as soon
as an instance of the workflow is created. If the input
condition has been reached, task A can be started. If
task A completes, tasks B and C can be started. Task E
can only be started after both task B and task C have
been completed. If task E completes, the tasks B and
D and the condition p are cancelled (that is, aborted or
withdrawn). Task F acts as an OR-join, that is, after it
is triggered via one of its input arcs, it waits if additional
triggers may arrive. If condition p is reached, then task
F is not to be started if task E can still be completed. If
task E has been completed, task F is not to be started
as long as condition p may be reached. YAWL uses
a kind of backwards reasoning technique to determine
whether a task with OR-join behavior such as task F
may be started or not [3].

Figures 1 and 2 illustrate the capabilities of YAWL.
From a verification point of view concepts such as
composite tasks, multiple instances, XOR/AND-joins,
and XOR/OR/AND-splits are fairly standard and not
complicating matters. The two constructs that are

more difficult to tackle are the cancellation region
and the OR-join. These are very useful constructs
and more and more languages start to support them.
Therefore, it is highly relevant to be able to verify
YAWL models, that is, the results can be transferred
to other contemporary languages ranging from BPML
and UML to Staffware and BPEL. The complicating
factor of both the cancellation region and the OR-join
is that they make the semantics non-local as is discussed
below.

1.1.2. Cancellation region
In Figure 2 the completion of task E results in the
removal of all tokens/activities in the region consisting
of B, D, and p. Clearly, the effect is non-local; besides
relating inputs to outputs the task influences a region
without being able to see the effect of the cancellation.
Note that the task initiating the cancellation cannot
tell whether something is actually cancelled. This
corresponds to the ability of reset nets [4, 5, 6].
A reset net is a Petri net with special arcs (reset
arcs) to empty a place independent of the number of
tokens involved. This seemingly innocent extension of
Petri nets has rather dramatic consequences. Simple
questions such as reachability become undecidable.
This shows that, although cancellation regions form
a very useful modeling construct, they complicate
matters. Note that several languages offer such a
construct, for example, Staffware allows one step to
withdraw another step, BPMN offers several ways to
model cancellations [7], and BPEL offers constructs
such as compensation and fault handlers that use
cancellation-like behaviors. Hence, it is important to
be able to analyze models with cancellations.

1.1.3. OR-join
Task F in Figure 2 is a so-called OR-join. Once the
OR-join is triggered it will wait as long as additional
triggers may arrive. This is also referred to as the
“bus-driver semantics” [3], that is, the OR-join is like
a bus driver that has to make a decision each time a
passenger enters the bus. Should the bus start moving
or not? The bus-driver semantics assumes that the bus
driver has “perfect knowledge”, that is, (s)he can see
whether there are still potential passengers on their way
to the bus. If there are no such passengers, the bus
starts to drive, otherwise the bus will continue to wait.
Since potential passengers may decide at any time not
to take the bus, the bus may start to drive at a moment
no new passengers are boarding, that is, only when
it becomes clear that no more passengers will actually
board the synchronization takes place. The bus-driver
semantics is very appealing for people making workflow
designs. Instead of using an explicit AND-join in case
of parallel routing and an explicit XOR-join in case of
alternative routing or even a small network of AND-
joins and XOR-joins to deal with mixtures of parallel
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FIGURE 2. Example YAWL model

and alternative routing, the designer can always use an
OR-join and let the system decide whether it needs to
synchronize of not. Therefore, many languages support
OR-join constructs having the bus-driver semantics,
for example, BPMN, BPEL, EPCs, and a variety of
workflow systems (Eastman, Domino Workflow, etc.)
support some notion of an OR-join. Unfortunately,
these languages are vague about the exact semantics
or they impose syntactical requirements to make the
interpretation easier. For example, in the context of
EPCs the OR-join has been debated for several years
[8, 9, 10] and it is even possible to create a paradox
(the vicious circle [11, 12]). To avoid such problems
many systems do not allow cycles in combination with
OR-joins, for example, the various implementations of
BPEL do not allow links to form a cycle. YAWL is
the only system we know that supports the OR-join
without any restrictions. Clearly the OR-join has non-
local semantics, the decision to wait or not does not
only depend on its direct predecessors but also on parts
of the model that may lead to future triggers (that is,
“passengers”).

1.2. Contribution of this paper

This paper presents a verification approach that can
deal with cancellation regions and the OR-joins. To
make things tangible and to be able to implement
and experiment with our approach, we use YAWL as
a target language. However, we again would like to
emphasize that the results are applicable to a large class
of models and systems (as has just been motivated).

Pivotal to our approach is the concept of “good
execution paths”, which corresponds to the so-called
relaxed soundness property [27, 28]. Basically, a part
of a model which is not covered by good execution
paths, must contain some kind of error. The use of
relaxed soundness allows us to abstract from the actual
semantics of OR-joins.

However, relaxed soundness is a behavioral property
which requires the entire state space needs to be
constructed, which might not be possible due to
the cancellation regions. For this reason, we may

approximate the good execution paths using T-
invariants [13, 14].

As a result of the aforementioned abstraction and
approximation, our approach cannot give a definitive
proof that the model at hand is sound: it can only
indicate the presence of errors, not the absence.

1.3. Structure of this paper

The remainder of this paper is organized as follows.
Section 2 discusses related work in the area of control-
flow verification for workflow models. Section 3
provides the formal concepts we need for our approach,
such as WF-nets, relaxed soundness, and T-invariants.
Section 4 introduces the mapping from YAWL models
onto WF-nets, the subclass of Petri nets on which our
approach is based. Section 5 introduces our verification
approach and its possibilities. Section 6 introduces
the tool WofYAWL, which implements our verification
approach. Sections 7 and 8 introduce two case studies
with our tool. Section 7 uses a well-known demo
example for YAWL, whereas Section 8 uses the SAP
reference model [15, 16]. Section 9 concludes the paper.

2. RELATED WORK

The workflow language YAWL has been introduced in
[2]. The design of the language is based on the patterns
presented in [1]. For detailed information on patterns
(including animations and product evaluations), a
website is available: www.workflowpatterns.com.
Documentation on YAWL and the software can be
downloaded from www.yawl-system.com (YAWL is an
open source workflow management system).

From a verification point of view, the cancellation
regions and the OR-joins are most challenging.
The YAWL OR-join semantics has been discussed
extensively in [3]. As far as we know, no publications
exist on the verification of the control-flow aspect
of YAWL models. In fact, we know of no analysis
techniques that aim at workflow languages supporting
both cancellation regions and OR-joins. For example,
the logic-based approach advocated in [17] can handle
structured OR constructs (that is, OR-joins that
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can be paired with OR-splits), but cannot handle
arbitrary OR-joins (like an OR-join that is paired
with a combination of AND-splits and XOR-splits) or
cancellation regions.

Many authors have been focusing on the verification
of workflow models with less expressive power. An
overview of verification problems for workflow models
is given in [18]. An early example is FlowMake
[19, 20], which aims at the verification of the control-
flow aspect of so-called acyclic workflow graphs using
graph reduction techniques. Although the workflow
graphs are fairly simple (just XOR/AND-split/join
nodes), their approach turned out to be flawed as shown
(and improved) in [21, 22]. Another example based
on workflow graphs is a decomposition-based approach
[23], which can also handle cyclic workflow graphs. A
third example is the Woflan tool [24, 25], the workflow
verification tool on which the WofYAWL tool (presented
in this paper) is built. Woflan focuses on the soundness
property for a subclass of Petri nets (WF-nets) [26].

This paper uses the notion of relaxed soundness. This
notion was introduced in [27, 28], where it was used as a
correctness criterion for EPCs [29]. Like YAWL, EPCs
also include OR-joins, which significantly complicates
the use of the traditional soundness property as defined
in [26]. To fix this, the relaxed soundness property
was introduced at the level of EPCs, and mappings
were defined from relaxed sound EPCs to sound WF-
nets. However, relaxed soundness uses the reachability
property, which is known to be undecidable if at least
two inhibitor arcs are present [30], and these inhibitor
arcs are closely related to the cancellation regions. As
result, in general, relaxed soundness can handle OR-
joins, but not cancellation regions.

Most other papers that deal with the verification of
the control-flow aspect of workflow models use model
checking techniques [31, 32, 33, 34, 35, 36]. These
techniques all require the construction of the state
space, and typically deal with different verification
questions than those addressed by this paper. For
us, a combination of our tools with model checking
techniques would be ideal: First we check with our
tools whether a process model adheres to some minimal
requirements that any process model should adhere
to, second we check additional properties using model
checking. Note that some of the model checking
techniques [34, 35] are not limited to the control-flow
aspect, but can also deal with the data aspect as well.
However, the main difficulty of incorporating data is the
requirement to truly model applications and humans.
This is often not feasible and therefore analysis needs
to abstract from data.

This paper heavily uses the fruits of more than 40
years of Petri net research. See [37, 14] for pointers.
Particularly relevant is the work on invariants [13], Petri
nets with inhibitors arcs, and reset nets [4, 5, 6].

3. PRELIMINARIES

This section introduces the formal Petri-net and YAWL
related definitions used in this paper. First of all,
we introduce WF-nets [38], a subclass of Petri nets
which we use to capture the essential part of the
process. Next, we introduce the well-known concepts
of soundness [38] and relaxed soundness [28] on WF-
nets. Both these concepts are used to verify processes.
A process is called sound if it can always complete
properly no matter what, and it is called relaxed
sound if all parts of the process can be involved in
proper completion. However, both these concepts
rely on the ability to generate the entire state space
of the process. If this state space is too large to
be generated within reasonable time, soundness and
relaxed soundness might remain inconclusive. For this
reason, we also introduce a new approach based on the
well-known T-invariants. As we will show later on, this
approach comes very close to relaxed soundness, but it
does not rely on the construction of the state space.
As indicated in Section 1, we focus on YAWL because
of its expressiveness. Unlike existing approaches, we
allow for cancellation regions and the OR-joins. Instead
of considering YAWL in detail, we introduce EWF-
nets, which capture the essential behavior of YAWL
processes. We motivate why it is possible to abstract
from the other parts of YAWL not contained in EWF-
nets at the end of this section.

3.1. WF-nets

Basically, a WF-net is a Petri net which has one source
place, usually denoted i, and one sink place, o, such
that all nodes are covered by the directed paths from i
to o. To be able to handle YAWL’s cancellation regions,
we include inhibitor arcs to our definition of nets. An
inhibitor arc specifies that a transition is only enabled
if a given place is empty.

Definition 3.1. net
A (Petri) net N is a tuple (P, T, Fi, Fo, I), where:
• P is a set of places,
• T is a set of transitions such that P ∩ T = ∅,
• Fi ∈ T → IP (P ) maps every transition onto a set

of input places,
• Fo ∈ T → IP (P ) maps every transition onto a set

of output places, and
• I ∈ T → IP (P ) maps every transition onto a set of

inhibitor places.

Usually, Fi(t) is denoted •t, and Fo(t) is denoted t•.
In a similar way, we denote I(t) as ◦t. Furthermore, we
extend these notations to places: •p = {t ∈ T |p ∈ t•},
p• = {t ∈ T |p ∈ •t}, and p◦ = {t ∈ T |p ∈ ◦t}.

Figure 3 shows an example of a Petri net with an
inhibitor arc. As usual, transitions are visualized using
rectangles and places are visualized using circles. There
is one source place i (•i = ∅), one sink place o (o• = ∅),

The Computer Journal Vol. 00 No. 0, 2005



Verifying Workflows with Cancellation Regions and OR-joins 5

FIGURE 3. An example net with an inhibitor arc

and four more places. There are five transitions. There
is one inhibitor arc connecting place nA and transition
end A∗.

The state of a Petri net, also called marking,
corresponds to a multiset of places, that is, M ∈ P →
IN . For any p ∈ P , M(p) is the number of tokens
residing in place p. We will use [p] to denote the
marking with just a token in p. A transition t ∈ T
is enabled in state M if and only if for all p ∈ •t:
M(p) > 0, and for all p ∈ ◦t: M(p) = 0. An enabled
transition t can fire by removing tokens from the input
places and producing tokens for the output places, that
is, in the resulting marking M ′(p) = M(p) + 1 if
p ∈ t • \ • t, M ′(p) = M(p) − 1 if p ∈ •t \ t•, and
M ′(p) = M(p) in all other cases.

Consider the net shown in Figure 3. Assume that
initially there is a token in place i, that is, the initial
state is [i]. In this state start A∗ can fire. This will
result in state [bA]. As long as there is a token in
bA, transition start A can fire. If startA fires in [bA],
the resulting state is [bA, sA, nA]. Transition startA can
fire repeatedly, that is, states of the form [bA, sAk, nAk]
for k ∈ IN are reachable. As a result, doA can
also fire repeatedly, resulting in states of the form
[bA, sAm, eAn, nAk] for k, m, n ∈ IN and k = m + n.
Transition endA can fire once for every firing of both
start A and do A. Transition end A∗ can only fire if
place bA contains a token and place nA is empty (note
the inhibitor arc), that is, the top part of the net
can be activated multiple times while the lower part
can only complete if the top part is “finished”. Note
that behavior of the net shown in Figure 3 cannot be
modelled using classical Petri nets (that is, a Petri net
without inhibitor arcs).

In the remainder of this paper, the concept of a path
is used regularly. To avoid confusion, we mention that
I is ignored for paths, that is, only Fi and Fo are taken
into account for paths. Thus, if n0n1 . . . nN is a path,
then nx+1 ∈ Fi(nx) ∪ Fo(nx), for all 0 ≤ x < N .

Figure 3 is a so-called WorkFlow-net (WF-net)
having a source place i, a sink place o, and all other
nodes on a path from i to o.

FIGURE 4. Another WF-net

Definition 3.2. WF-net
A WF-net [38] is a net (P, T, Fi, Fo, I) such that:

One source place There is exactly one place i ∈ P
such that •i = ∅.

One sink place There is exactly one place o ∈ P such
that o• = ∅.

Directed path Every node n ∈ P ∪ T is on some
directed path from i to o.

The example net shown in Figure 4 is also a WF-
net: the topmost place is its only source place, the
bottommost place its only sink place, and every node
is on some directed path from the topmost place to the
bottommost place.

3.2. Soundness and relaxed soundness

In the context of workflow, place i is the entry point for
new cases, while place o is the exit point. Furthermore,
ideally, every case that enters the WF-net (by adding
a token to place i) should exit it exactly once (by
removing a token from place o) while leaving no
references to that case behind in the WF-net (no tokens
should be left behind). Furthermore, every part of the
process should be viable, that is, every transition in the
corresponding WF-net should be executable. Together,
these requirements constitute the soundness property
[38].

Definition 3.3. Soundness
Let net N = (P, T, Fi, Fo, I) be a WF-net with source
place i and sink place o. Furthermore, let [p] denote the
state with exactly one token in place p (and no tokens in
all other places). Net N is said to be sound [38] iff:
• From every state reachable from [i], the state [o] is

reachable (completion is always possible).
• If in some state s reachable from [i] the place o is

marked, then s = [o] (completion is always proper).
• No transition is dead.

Figure 5 shows the state space of the example WF-net
shown in Figure 4. The topmost state corresponds to
the state [i], whereas the bottommost state corresponds
to the state [o]. From this state space, we can conclude
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FIGURE 5. The state space of the example net

FIGURE 6. The short-circuited example net

that the example WF-net is sound: (1) from every state
reachable from [i], there exists a path to [o], (2) [o] is
the only reachable state marking place o, and (3) all
transitions are present in Figure 5.1

Some verification techniques require the addition of
an extra transition ∗ such that •∗ = {o} and ∗• = {i}
to a WF-net N . We use ∗N to denote this short-
circuited WF-net. Figure 6 shows the short-circuited
example net. Note a short-circuited net is not a WF-
net. The short-circuited WF-net can be used to express
soundness in terms of well-known Petri-net properties:
A WF-net is sound if and only if its short-circuited
net is live and bounded [38]. Recall that liveness and
boundedness are two well-known properties supported
by a variety of analysis tools and techniques [37, 39, 14].

In some circumstances, the soundness property is too
restrictive. Usually, a designer of a process knows that
certain situations will not occur. As a result, certain
execution paths in the corresponding WF-net should be
considered impossible. Thus, certain reachable states
should be considered unreachable. Note that in the
verification process we are often forced to abstract from
data, applications, and human behavior. Note that it
is typically impossible to model the behavior of humans
and applications. However, by abstracting from these
aspects typically more execution paths become possible
in the model. In her thesis [28], Juliane Dehnert
introduced the notion of relaxed soundness to cope with
this phenomenon. A WF-net is called relaxed sound if
every transition can contribute to proper completion.

Definition 3.4. Relaxed soundness
Let net N = (P, T, Fi, Fo, I) be a WF-net with source

1Note that the transition and place labels have been omitted
throughout the paper since the mappings are obvious and explicit
labels would only distract from the core ideas.

1

2 4

5

3

FIGURE 7. An execution path for the example WF-net

place i and sink place o. A transition t ∈ T is said to be
relaxed sound [28] iff there exists an execution sequence
σ = t1t2 . . . tn such that:
• transition t is included, that is, t = ti for some

1 ≤ i ≤ n, and
• the net effect of σ is moving the token from place i

to place o.
Net N is said to be relaxed sound iff all transitions t ∈ T
are relaxed sound.

As mentioned before, every case that enters a WF-net
should exit it exactly once while leaving no references to
that case behind in the WF-net (no tokens should be left
behind). Thus, the ultimate goal of a WF-net is to move
from place i to place o. The notion of relaxed soundness
brings this goal down to the level of transitions: every
transition occurs in at least one firing sequence moving
a token from place i to place o. A transition that cannot
aid in moving a token from place i to place o, cannot
help the WF-net in achieving its goal. Hence, such a
transition has to be erroneous.

Figure 7 visualizes an execution path in the example
net: First transition 1 is executed, then transition
2, and so on. It is straightforward to check that in
the example net all transitions are covered by such
execution paths.

3.3. T-invariants

An interesting observation2 now is that an execution
path that moves a token from place i to place
o corresponds to a cyclic execution path in the
short-circuited net: By executing the short-circuiting
transition once, the token is back in place i. It is
well-known that a cyclic execution path corresponds
to a semi-positive transition invariant. A semi-positive
transition invariant (or T-invariant for short) is a bag
(multi set) of transitions such that the accumulated sets
of input places equals the accumulated sets of output
places (where accumulation yields bags, not sets). As a
result, the net effect of executing every transition from
the bag exactly once is zero.

2The same observation has also been used in, for example, [40,
41] to reduce computation time for deciding life-cycle inheritance.
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FIGURE 8. A T-invariant for the short-circuited example
WF-net

Definition 3.5. T-invariant
Let net N = (P, T, Fi, Fo, I) be a net and let w ∈ T →
IN be a function assigning a non-negative weight to each
of the transitions. Function w is a T-invariant of net N
if and only if for all p ∈ P :

∑
t∈•p w(t) =

∑
t∈p• w(t).

By definition, every relaxed sound transition is
covered by some path from the initial marking [i] to
the final marking [o]. As a result, every relaxed sound
transition is covered by some T-invariant in the short-
circuited net. However, this does not work the other
way around. T-invariants abstract from the state of
the net. Therefore, it might be possible that the bag
of transitions covered by some T-invariant cannot be
executed (because some tokens are lacking). As a
result, there may be a transition that is covered by
some T-invariant in the short-circuited net, but that
is not covered by any execution path from state [i]
to state [o]. Figure 8 visualizes a T-invariant for
the short-circuited example WF-net which does not
correspond to an execution path, where the numbers
indicate transition weights and black transitions have
weight zero. Note that the execution path would simply
block on the transition in the middle.

Thus, instead of trying to generate the entire state
space, we could use T-invariants as an approximation.
Note that for every execution path from state [i]
to state [o] the short-circuiting transition only needs
to be executed once to obtain a cyclic execution
path. Furthermore, note that there may be cyclic
execution paths present in the WF-net itself. For
these two reasons, we restrict ourselves to T-invariants
where the short-circuiting transition has either weight
0 (corresponds to a cycle in the WF-net itself) or 1
(corresponds to an execution path from [i] to [o]).

For constructing a set of minimal (semi-positive)
T-invariants, we will use the generic algorithms as
introduced by Colom and Silva [13]. In the worst case,
these algorithms are exponential space in the number
of transitions, whereas the algorithm to construct a
coverability graph is non-primitive recursive space.
Thus, constructing a set of T-invariants has a better
complexity than constructing a coverability graph.
Nevertheless, it might be possible to improve the

complexity even further, as we do not need a complete
set of minimal T-invariants: We only require a subset
of minimal T-invariants that cover all transitions that
are covered by some minimal T-invariant. Although
there is room for improvement, experiments show that
our approach using T-invariants already outperforms
state-space methods and is able to deal with complex
workflows. The computation time is typically reduced
from minutes (or even hours) to just a few seconds.

3.4. YAWL

In the introduction, we used figures 1 and 2 to
illustrate the capabilities of YAWL. YAWL allows for
the hierarchical decomposition of workflow models, that
is, using composite tasks it is possible to decompose
parts of a model. In Section 3.5 we will explain why
we can abstract from this hierarchical decomposition
and focus on a single Extended WorkFlow net (EWF-
net). Figure 2 represents such an EWF-net. The next
definition formalizes the notion of an EWF-net.

Definition 3.6. EWF-net
An EWF-net [2] N is a tuple (C, i, o, T, F, s, j, r, n) such
that:
• C is a set of conditions,
• i ∈ C is the input condition,
• o ∈ C is the output condition,
• T is a set of tasks,
• F ⊆ ((C \ {o})× T ) ∪ (T × (C \ {i})) ∪ (T × T ) is

the flow relation,
• every node in the graph (C ∪ T, F ) is on a directed

path from i to o,
• s ∈ T → {∧,×,∨} specifies the split behavior of

each task, where ∧ corresponds to an AND-join, ×
to an XOR-join, and ∨ to an OR-join,

• j ∈ T → {∧,×,∨} specifies the join behavior of
each task, where ∧ corresponds to an AND-split, ×
to an XOR-split, and ∨ to an OR-split,

• r ∈ T 6→ IP (T ∪ C \ {i, o}) specifies the additional
tokens to be removed by emptying a part of the
workflow, and

• n ∈ T 6→ IN × IN inf × IN inf × {dynamic, static}
specifies the multiplicity of each task (mini-
mum, maximum, threshold for continuation and
dynamic/static creation of instances).

An EWF-net resembles a WF-net to a large extent:
a condition corresponds to a place, a unique input
condition and a unique output condition exist, a
task corresponds to a transition, the flow relation
corresponds to the input places and output places, and
every node is on some path from the input condition
to the output condition. Nevertheless, as the name
suggests, EWF-nets contain extensions to WF-nets:
• First of all, conditions are not mandatory in

between tasks: tasks can be directly connected to
tasks. Basically, an arc from task t to task u (that
is, (t, u) ∈ F ∩ (T × T )) is considered to be a
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placeholder for an implicit condition c such that
•c = {t} and c• = {u}.

• Second, every task has an associated join behavior,
which can be either ∧ (requires all inputs), ×
(requires one input), or ∨ (requires any non-
empty set of inputs). Likewise, every task has an
associated split behavior, which can also be either
∧ (produces all outputs), × (produces one output),
or ∨ (produces any non-empty set of outputs).

• Third, an EWF-net supports the concept of a
cancellation region through function r. If a task
t ∈ dom(r) is completed, then all nodes in r(t)
are cancelled (in Petri net terms: all tokens in the
corresponding places would be removed).

• Fourth and last, an EWF-net also supports the
concept of multiple task instances through function
n. Using this function, it is possible to specify
a lower bound and an upper bound for the
number of instances created after initiating the
task. Furthermore, it is possible to specify a
threshold for the number of completed instances.
If this threshold is reached, all remaining running
instances are terminated and the task completes
automatically. Finally, there is a fourth parameter
indicating whether the number of instances is fixed
after creating the initial instances. The value of the
parameter is “static” if after creation no instances
can be added and “dynamic” if it is possible to add
additional instances while there are still instances
being processed.

EWF-nets can be seen as an extension of WF-nets.
Therefore, we adopt some of the notations for WF-nets,
for example, for x ∈ (T ∪C): •x = {y | (y, x) ∈ F} and
x• = {y | (x, y) ∈ F}.

3.5. Abstractions

A complete YAWL model is a non-empty set of EWF-
nets with a special EWF-net Ntop. Composite tasks
are mapped onto EWF-nets such that the set of EWF-
nets forms a tree-like structure with Ntop as root node.
Furthermore, a complete YAWL model contains a map.
Tasks in the domain of this map are composite tasks
which are mapped onto EWF-nets. Throughout this
paper we will assume that there are no name clashes,
for example, names of conditions differ from names of
tasks and there is no overlap in names of conditions and
tasks originating from different EWF-nets. If there are
name clashes, tasks/conditions are simply renamed.

The goal of this paper is a verification approach for a
complete YAWL model based on relaxed soundness T-
invariants. As such, our approach pivots on the good
execution paths from the start to the end. As any
EWF-net has a well-defined point of entry (its input
condition) and a well-defined point of exit (its output
condition), there is no need to replace a composite task
by its underlying EWF-net when verifying the EWF-net
that contains that composite task. We can simply verify

that underlying EWF-net in isolation. As a result, we
can abstract from hierarchy.

In a similar way, we can also abstract from multiple
instances (function n). For the verification, we may
assume that the YAWL engine is able to keep the
multiple running instances from getting mixed (this is
indeed the case). Thus, if we have verified an EWF-net
for one instance in isolation, then we may assume that
running multiple instances in parallel on the engine will
not result in erroneous behavior.

4. MAPPING

This section presents the mapping from YAWL models
to WF-nets. As we have argued at the end of the
previous section, for our approach, it suffices to verify
the EWF-nets of the YAWL model in isolation, and we
can also abstract from multiple instances (function n of
the EWF-net). Furthermore, for our approach, we can
also abstract from the actual YAWL semantics of the
OR-joins (or-splits): We only want to know whether an
OR-join (or-split) with a specific set of inputs (outputs)
is viable, that is, whether it is covered by some good
execution path.

To keep the join behavior separated from the split
behavior, we map a task onto a busy place, a number
of join transitions, and a number of split transitions.
Conditions get mapped onto places, where explicit
conditions are mapped onto explicit places and implicit
conditions onto implicit places. A cancellation region
is mapped onto a set of cancel transitions, using also
inhibitor arcs. Figure 9 visualizes the mapping.

The remainder of this section presents the detailed
mapping. For this mapping, assume that we have an
EWF-net (C, i, o, T, F, s, j, r, n), and that we want to
map it onto a WF-net (P,U, Fi, Fo, I).

4.1. Places

The set of places P contains three types of places:
explicit places, implicit places, and busy places. An
explicit place e(c) corresponds to an explicit condition
c ∈ C, an implicit condition i(t, u) corresponds to an
implicit condition between tasks t ∈ T and u ∈ T , and
a busy place b(t) corresponds to a task t ∈ T .

P = {e(c)|c ∈ C}
∪ {i(t, u)|(t, u) ∈ F ∩ (T × T )}
∪ {b(t)|t ∈ T}

(1)

4.2. Transitions

The set of transitions U contains three types of
transitions: join transitions, split transitions, and
cancel transitions. A join transition j(t,X) corresponds
to starting task t ∈ T given the input set X ⊆ C ∪ T , a
split transition s(t,X) corresponds to completing task
t ∈ T given the output set X ⊆ C ∪ T , and a cancel
transition c(t, x) corresponds to canceling a task or an
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FIGURE 9. Mapping templates

explicit or implicit condition x ∈ C ∪ T ∪ (F ∩ (T × T ))
because task t ∈ T has completed. Note that the
validity of the actual input set depends on the task’s join
behavior, that is, on j(t), and that the validity of the
actual output set depends on the task’s split behavior.

validj(X, t) =




|X| = | • t| if j(t) = ∧
|X| = 1 if j(t) = ×
|X| > 0 if j(t) = ∨

(2)

valids(X, t) =




|X| = |t • | if s(t) = ∧
|X| = 1 if s(t) = ×
|X| > 0 if s(t) = ∨

(3)

Cancel transitions can either cancel a busy place (if
the task cancels itself or another task), an explicit
place (if the task cancels an explicit condition), or an
implicit place (if the task cancels two tasks who have
this implicit condition in between). If the task cancels
another task, then all tokens from the corresponding
busy place need to be removed. However, if a task
cancels itself, then all but one token need to be removed
as we need the last one to continue. Normally, this
would be hard to model in a WF-net, if possible at
all. However, because we are only interested in good
execution paths (and simply ignore the bad ones), we
can model this in a simple and elegant way: Any
model that could remove all but one token and then
continue will do. Figure 9 shows how we can model
this: We add a cancel transition to the task, but do not
add an inhibitor arc between its busy place and any
split transition (as this would effectively block the split

transitions).

U = {j(t,X)|t ∈ T ∧X ⊆ •t ∧ validj(X, t)}
∪ {s(t, X)|t ∈ T ∧X ⊆ t • ∧valids(X, t)}
∪ {c(t, x)|t ∈ dom(r) ∧ x ∈ r(t)}
∪ {c(t, (u, v))|t ∈ dom(r) ∧ u, v ∈ r(t)∧

(u, v) ∈ F ∩ (T × T )}

(4)

4.3. Input places

The set of input places depends on the transition type.
Join transitions have only explicit or implicit places
as input places, split transitions only busy places, and
cancel transitions explicit, implicit, and busy places. A
join transition j(t,X) has an explicit place e(c) as input
iff c ∈ X ∩ C and has implicit place i(u, v) as input iff
u ∈ X ∧ v = t.

Fi(j(t, X)) = {e(c)|c ∈ X ∩ C}
∪ {i(u, t)|u ∈ X∧

(u, t) ∈ (F ∩ (T × T ))}
(5)

A split transition s(t,X) only has busy place b(t) as
input place.

Fi(s(t,X)) = {b(t)} (6)

A cancel transition c(t, x) has an explicit place e(c) as
input place iff x = c, has implicit place i(u, v) as input
place iff x = (u, v), and has busy place b(u) as input
place iff t = u (to check whether it may cancel, that is,
whether it is active) or x = u (to actually cancel task
u). Note that a cancel transition c(t, x) has place b(t)
as input. Later on, we will see that this transition has
this place as output place as well. As a result, the token
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is only tested, but not removed.

Fi(c(t, x)) = {b(t)} ∪



{e(x)} if x ∈ C
{i(x)} if x ∈ T × T
{b(x)} if x ∈ T

(7)

4.4. Output places

The set of output places also depends on the transition
type. Join transitions have only busy places as output
places, split transitions only explicit or implicit places,
and cancel transitions only busy places. A join
transition j(t,X) has busy place b(t) as output.

Fo(j(t,X)) = {b(t)} (8)

A split transition s(t,X) has an explicit place e(c) as
output iff c ∈ X ∩ C and has implicit place i(u, v) as
output place iff u = t ∧ v ∈ X.

Fo(s(t,X)) = {e(c)|c ∈ X ∩ C}
∪ {i(t, v)|v ∈ X∧

(t, v) ∈ (F ∩ (T × T ))}
(9)

A cancel transition c(t, x) has busy place b(t) as output
place (as mentioned before, we only want to test this
token).

Fo(c(t,X)) = {b(t)} (10)

4.5. Inhibitor places

A task may only complete if its cancellation region is
empty, that is, if all tokens in the corresponding places
(whether they be explicit, implicit, or busy places) have
been removed. Thus, the transitions that model the
completion of the task, that is, the split transitions,
need to be inhibited by all these places. As a result,
a split transition s(t,X) has an explicit place e(c) as
inhibitor place iff c ∈ r(t), has implicit place i(u, v) as
inhibitor place iff u, v ∈ r(t), and has busy place b(u)
as inhibitor place iff u 6= t ∧ u ∈ r(t). As mentioned
earlier, a busy place of some task should not inhibit any
of the task’s split transitions, as this would effectively
block the split transitions. Therefore, we require u 6= t.
Join transitions and cancel transitions have no inhibitor
places.

I(j(t,X)) = ∅
I(s(t,X)) = {e(c)|c ∈ r(t) ∩ C}

∪ {i(u, v)|u, v ∈ r(t) ∩ T ∧ (u, v) ∈ F}
∪ {b(u)|u 6= t ∧ u ∈ r(t) ∩ T}

I(c(t, x)) = ∅
(11)

4.6. Example

Figure 10 shows the WF-net that results from applying
the mapping to the example EWF-net from Figure 2.

5. VERIFICATION

With the mapping in place, we can now turn our
attention towards the verification of the YAWL models.
As mentioned in Section 1, our goal is not a complete
and exhaustive verification of a YAWL model, as such a
verification would have to take the complex semantics of
the OR-joins into account. Instead, we propose a much
simpler form of verification that can simply abstract
from this complex semantics.

5.1. Goal

Pivotal to our approach is the concept of good execution
paths. A good execution path is a path that, if
started from the initial state (the state where the
instance has just been created, that is, the state
where the input place contains one token), ends in
the completed state (the state where the instance has
been properly completed, that is, the state where only
the output place contains one token). All other paths
are considered bad execution paths. Clearly, any task
should be viable, that is, should be covered by a
good execution path. As a result, at least one of its
corresponding join transitions and at least one of its
corresponding split transitions should be on some good
execution path. Furthermore, it could be the case that
no good execution path exists in which a task cancels
some node in its cancellation region. Thus, the entire
cancellation region of a task should be covered as well
by the good execution paths.

Definition 5.1. Viability
Let N = (C, i, o, T, F, s, j, r, n) be an EWF-net, and let
(P, U, FI , Fo, I) be the WF-net EWF-net N is mapped
onto. A transition u ∈ U is called viable iff it is covered
by some good execution path (that is, a firing sequence
starting in state [i] and resulting in state [o]). The join
behavior of a task t ∈ T is called viable iff at least one of
its join transitions is viable. Likewise, the split behavior
of a task t ∈ T is called viable iff at least one of its split
transitions is viable. The cancel behavior of a task t ∈ T
is called viable iff all its cancel transitions are viable. A
task t ∈ T is called viable iff its join and split behavior
are viable.

5.1.1. Relaxed soundness
The definition of viability on the level of WF-nets
corresponds to the definition of relaxed soundness: A
transition is viable iff it is relaxed sound.

Theorem 5.1. Let N = (P, U, Fi, Fo, I) be a WF-
net. A transition t ∈ U is viable iff it is relaxed sound.

Proof By definition, the set of good execution paths
coincides with the execution sequences that move the
token from the input place to the output place.

As a result, we can use the relaxed soundness
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FIGURE 10. The example EWF-net mapped onto a WF-net

property to compute the set of viable transitions.
However, the relaxed soundness property requires the
entire state space to be computed, and constructing
that state space might not be an option. For instance,
if the number of reachable states is unbounded, we
simply cannot construct the state space. Furthermore,
for Petri nets that include inhibitor arcs the reacha-
bility problem is known to be undecidable [30]. As a
result (we could use a state space to decide reachabil-
ity), computing the state space might also not be an
option if inhibitor arcs are present. For these reasons,
we introduce a structural property that can be used to
approximate the set of viable transitions: T-invariants.

5.1.2. T-invariants
By definition, every good execution path removes a
token from the input place and adds a token to the
output place. As a result, every good execution path
corresponds to a T-invariant in the short-circuited net
(see also Section 3). Thus, the set of transitions covered
by T-invariants contains the set of viable transitions.
However, this does not hold in the other direction: T-
invariants might exist that do not correspond to a good
execution path. Some of these ‘bad’ T-invariants can
be detected quite easily:
• A T-invariants should have weight 0 or 1 for the

short-circuiting transition (we do not want to fire
the short-circuiting transition more than once; note
that if the weight is 0 then the T-invariant might
correspond to an internal cycle).

• A T-invariant that includes a cancel transition for
some task should also include a join transition for
that task (a task can only cancel other nodes if it
has been started).

Nevertheless, ‘bad’ T-invariants might remain, and the
remaining set of transitions covered by T-invariants
might still cover some non-viable transitions. As a
result, the warnings obtained by our approach might
not be complete, but they will be correct.

5.2. Viability

Using either the relaxed soundness property or the T-
invariant property, we can obtain (an approximation of)

the set of viable transitions. However, we still need to
map the results back onto the level of the YAWL model.

5.2.1. Input and output nodes
Figure 11 shows how we can map the viability
information from the WF-net level back to the EWF-
net level, using the join behavior of task F (see also
Figure 2 and Figure 10).
• If all corresponding join transitions are viable, then

no errors are detected and no warnings are issued.
• If only transition j(F, {p,E}) is not viable (that is,

only j(F, {p}) and j(F, {E}) are viable in Figure 11),
then task F might as well have been an XOR-join,
and a warning is issued.

• If only transition j(F, {p}) is viable, then (appar-
ently) task F cannot be executed successfully using
the input from task E, and a warning is issued.

• . . .

Note that we have used a binary OR-join to explain our
approach, but that other joins are covered as well by our
approach. In general, if some input is not covered by
any of the viable transitions, then a warning is issued
that the uncovered inputs are not viable for this task;
if only the transition with all inputs is viable, then a
warning that the OR-join could have been an AND-
join is issued; if only transitions with only one input are
viable, then a warning that the OR-join could have been
an XOR-join is issued; and if none of the transitions is
viable, then a warning is issued that this task is not
viable. Formally, let t ∈ T be a task, and let its set of
join transitions be

{j(t,X1), . . . , j(t,Xk), j(t, Xk+1), . . . , j(t,Xn)}, (12)

such that only the first k join transitions are viable.
Then:
• task t is not viable if k = 0,
• node n is not viable for task t if n ∈ (X1 ∪ . . . ∪

Xn) \ (X1 ∪ . . . ∪Xk),
• task t could have been an AND-join if j(t) =
∨ ∧ k = 1 ∧ |X1| = | • t|, and

• task t could have been an XOR-join if j(t) =
∨ ∧ ∀1≤i≤k|Xi| = 1.
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FIGURE 11. Possibilities for an OR-join

Mutatis mutandis, the same holds for output nodes
and splits.

5.2.2. Cancel nodes
A cancellation region of task t is viable iff all cancel
transitions for task t are viable. Only nodes x for which
the cancel transitions c(t, x) is viable can be cancelled
successfully by task t. As a result, if a cancel transition
c(t, x) is not viable, then the cancellation of node x by
task t is not viable.

5.3. Example

The transitions j(F, {p}), j(F, {p, E}), and c(E,B) in
Figure 10 are not relaxed sound. As a result, these
transitions are not viable, and the following warnings
are issued:
• Condition p is not viable for task F.
• Task F could have been an XOR-join.
• The cancellation of task B by task E is not viable.
Figure 12 shows a fragment of the example WF-

net that corresponds to a T-invariant. It is trivial to
check that this fragment does not correspond to a good
execution path (see also Figure 10), because transition
s(E, {F}) can only fire if the places i(B,D), b(D), and
e(p) are empty. Thus, the example EWF-net contains
a T-invariant that does not correspond to a good
execution sequence, and we might not detect all non-
viable transitions. Indeed, we only detect transitions
j(F, {p}) and c(E, B) to be not viable. As a result, using
T-invariants, only the following warning is issued:
• The cancellation of task B by task E is not viable.

This example illustrates that without computing the
state space we can issue useful warnings. However,
these warnings are not necessarily complete.

6. TOOL

Based on the mapping and the properties as described
in the previous two sections, we can now present our
tool, called WofYAWL. WofYAWL is a command-line
utility that uses the core algorithms of the Woflan
workflow verification tool.

6.1. Woflan

Woflan [24, 25] is a workflow verification tool that has
been around now for almost ten years. It started as
a soundness verification tool that uses the fact that
soundness corresponds to the well-known boundedness
and liveness properties. During the years, several things
have been added and/or changed. At the moment,
Woflan can determine soundness for WF-nets, can
provide diagnostic information if a WF-net is not sound,
can check several inheritance relations between two
WF-nets, can reduce WF-nets using boundedness and
liveness preserving reduction rules [39], and can import
for example PNML [42], Staffware, and BPEL files [43].

For the diagnostic information, Woflan uses algo-
rithms for computing minimal sets of semi-positive
invariants that are as efficient as possible [13]. For com-
puting a state space, Woflan uses the algorithm to con-
struct a coverability graph in combination with a bal-
anced binary search tree. Unlike the state space, a cov-
erability graph is always finite. Therefore, given suffi-
cient time and space, a coverability graph can always be
constructed. From the constructed coverability graph,
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FIGURE 12. A T-invariant in the example WF-net

we can deduce whether the state space is finite. Further-
more, if the state space is finite, then the coverability
graph is identical to the state space.

6.2. WofYAWL

The command-line utility WofYAWL imports a YAWL
model, maps all embedded EWF-nets to WF-nets,
optionally reduces the resulting WF-nets using bound-
edness and liveness preserving reduction rules, and
optionally generates a report using relaxed soundness
and/or T-invariants. For sake of completeness, we men-
tion that we used version 1.0 of WofYAWL.

6.2.1. Import
First, WofYAWL imports the provided YAWL model.
For this import, we use the XML file that the YAWL
editor exports for the YAWL engine. At the moment,
the latest version of the corresponding XML Schema
is version 4, and WofYAWL can import any file that
adheres to this schema or previous versions of this
schema.

6.2.2. Mapping
Second, WofYAWL maps every embedded EWF-net
onto a WF-net, using the mapping as specified in
Section 4. The resulting WF-nets are combined into
one WF-net together with a new input place, a new
output place, an input transition for every WF-net,
and an output transition for every WF-net. Figure 13
visualizes this combining of WF-nets into one WF-net,
assuming that the YAWL model embeds M EWF-nets.
Note that every good execution in one of the ‘sub’ WF-
nets is also a good execution path in the resulting WF-
net. Note that for brute-force state-based methods it
would not have been a good idea to merge the EWF-
nets onto one big WF-net. However, since we use
reductions and can always resort to the calculation of
invariants, the performance is typically good even after
merging the EWF-nets.

As the transitions that are added in this step are of
no interest to the user, they will not be added to the
report even if they are not viable.

M

i o

...

...

...

FIGURE 13. The resulting WF-net

6.2.3. Reduction
Third, WofYAWL optionally reduces the WF-net using
boundedness and liveness preserving reduction rules
[39]. Typically, a reduced WF-net will result in a
smaller state space. Therefore, if WofYAWL has
problems constructing the state space, it might be a
good idea to have the WF-net reduced before the state
space is constructed. Note, however, that the report
will be based on a different WF-net, that is, on the
reduced WF-net, and that this might complicate the
interpretation of the report.

Fourth, WofYAWL optionally creates a report based
on relaxed soundness and/or T-invariants.

6.2.4. Relaxed soundness
If we can construct a coverability graph within
reasonable time, and if from this coverability graph we
learn that the state space is finite, then we propose to
use relaxed soundness as it provides a more complete
report. If we fail to construct a coverability graph
within reasonable time, we propose to construct a
coverability graph for the reduced WF-net. If no errors
are found for the reduced WF-net, then no errors will be
found for the original WF-net. If the state space turns
out to be infinite, then we could use the constructed
coverability graph as an approximation for that infinite
state space. However, the results obtained from this
approximation might be incorrect. Recall that good
execution paths are paths that start in the state with
one token in the input place and end in the state with
one token in the output place. In the coverability graph,
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this latter state may be obscured by other states, and
it might not even be present at all. As a result, only
a subset of the good execution paths might be found,
which could result in incorrect results. Therefore we
do not propose to use this approximative approach.
Instead, we propose to use only the results based on
the T-invariants.

6.2.5. T-invariants
If constructing the state space for the reduced WF-net
is also a problem, then we propose to use T-invariants.
Errors found using T-invariants will correspond to
errors found using relaxed soundness, but possibly not
all errors will be detected using T-invariants.

6.3. Example

Figure 14 shows a sample report for the example EWF-
net (see Figure 2). For this report, no reductions were
applied, and both a report based on relaxed soundness
(see the behavior element in the report) and a report
based on T-invariants (the structure element) were
generated. Note that the names of tasks and conditions
have been extended by an underscore and a number (for
example, F 3, p 2). The YAWL editor (Version 1.4)
used for the example generates these extensions when
exporting to a YAWL engine file. From both reports,
we learn that the condition p is not viable for task F,
that task F could be and XOR-join instead of an OR-
join, and that the cancellation of task B by task E is
not viable.

7. CASE STUDY: LIFESTYLE EXAMPLE

As a case study we use a YAWL model describing
the lifestyle of some famous artist shown in Figure 15.
This example is one of the standard examples for
the YAWL toolset and can be downloaded from
www.yawl-system.com and executed using the YAWL
workflow engine. This particular example contains
relevant control-flow patterns and is easy to explain, as
it doesn’t require much domain knowledge. Therefore,
it is a nice example to demonstrate and test our
verification approach.

Figure 15 shows this model using Version 1.4 of the
YAWL Editor, after we have added several errors to
it:
• The task “Do everything you are told” now

cancels the tasks “Decide to make music”, “Do
audition”, “Learn to play instrument”, the conditions
“Audition failed?” and “Audition passed”, and the
(unnamed) condition following the task “Learn to
play instrument”.

• The join behavior of the task “Choose songs” has
been changed from an XOR-join to an AND-join.

• The split behavior of the task “Initial solo
performance” has been changed from an XOR-split
to an AND-split.

The resulting YAWL file can be found in Appendix A
of [44].

Appendix B of [44] shows the initial report. From
this report, we learn that the state space could not be
generated (the YAWL net is reported to be unbounded).
Therefore, we restrict ourselves to the results obtained
using the T-invariants:

(i) The task “Decide to go solo” is not viable for
the task “initial solo performance” (as any path
that goes through task “Decide to go solo” and
that starts task “initial solo performance” cannot
complete properly).

(ii) The task “Join band” is not viable for the task
“initial solo performance”.

(iii) The condition “Done?” is not viable for the task
“Send record to marketing dept”.

(iv) The task “Send record to marketing dept” is not
viable.

(v) The task “initial solo performance” is not viable for
the task “Decide to go solo”.

(vi) The task “Decide to go solo” could be an XOR-split
instead of an OR-split.

(vii) The task “initial solo performance” is not viable for
the task “Join band”.

(viii) The task “Join band” could be an XOR-split
instead of an OR-split.

The warnings 1, 2, 5, and 7 clearly indicate
that something is wrong with the task “initial solo
performance”. Warnings 1 and 5 state that the arc from
task “Decide to go solo” to task “initial solo performance”
cannot successfully be taken, warnings 2 and 7 state the
same for the arc from task “Join band” to task “initial
solo performance”. But apparently, nothing is wrong
with the alternative task, task “Write a song”. These
warnings should be sufficient for the designer to have a
closer look at the “initial solo performance” task, and to
reconsider its split behavior.

The warnings 6 and 8 are a direct result of the
previous error. As task “initial solo performance” is not
viable, both preceding or-splits should choose to do only
the task “Write a song”. As a result, both could have
been XOR-splits instead of OR-splits.

The warnings 3 and 4 indicate that something is
wrong with the entire “Make record” process, as the
arc from condition “Done?” to task “Send record to
marketing dept” is not viable, which makes the entire
process not viable. In such a case, it usually pays
off to do a sample execution for this process: The
process is not viable, hence no execution can lead to
proper completion, thus, every execution should go
wrong somewhere. Using a sample execution, a designer
should have no problems at all to detect that the task
“Choose songs” should be an XOR-join instead of an
AND-join.

After having repaired both errors, we generate a new
report. From this report, we learn that the state space
is finite (and could be constructed within reasonable
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<wofyawl version="0.6" status="released">

<net file="example.xml">

<structure>

<uncovered task="t:example.ywl:example:F_3:join:p_2"/>

<uncovered task="t:example.ywl:example:E_7:reset:*B_6"/>

<warning specification="example.ywl"

decomposition="example"

task="E_7"

cancel="B_6"

/>

</structure>

<behavior>

<uncovered task="t:example.ywl:example:F_3:join:p_2"/>

<uncovered task="t:example.ywl:example:F_3:join:E_7*F_3:p_2"/>

<uncovered task="t:example.ywl:example:E_7:reset:*B_6"/>

<warning specification="example.ywl"

decomposition="example"

task="F_3"

input="p_2"

/>

<warning specification="example.ywl"

decomposition="example"

task="F_3"

OR-join="XOR-join"

/>

<warning specification="example.ywl"

decomposition="example"

task="E_7"

cancel="B_6"

/>

</behavior>

</net>

</wofyawl>

FIGURE 14. A report for the example EWF-net

time). As a result, we use the results obtained using
relaxed soundness:

(i) Cancellation of task “Decide to make Music” by
task “Do everything you are told” is not viable.

(ii) Cancellation of task “Do audition” by task “Do
everything you are told” is not viable.

(iii) Cancellation of task “Learn to play instrument” by
task “Do everything you are told” is not viable.

(iv) Cancellation of condition “” by task “Do everything
you are told” is not viable.

(v) Cancellation of condition “Audition failed” by task
“Do everything you are told” is not viable.

(vi) Cancellation of condition “Audition passed” by task
“Do everything you are told” is not viable.

(vii) Cancellation of the implicit condition between task
“Decide to make Music” and task “Do audition” by
task “Do everything you are told” is not viable.

(viii) Cancellation of the implicit condition between task
“Decide to make Music” and task “Learn to play

instrument” by task “Do everything you are told” is
not viable.

Clearly, these warnings correspond to the first error we
introduced. After having repaired this error as well, we
obtain a report containing no warnings and the resulting
model is indeed correct.

8. CASE STUDY: SAP REFERENCE
MODEL

The SAP reference model [15, 16] contains more than
600 non-trivial process models expressed in terms
of Event-driven Process Chains (EPCs). Figure 16
shows the EPC model for “Certificate Creation” as an
example of one of these models. We have automatically
translated these EPCs into YAWL models and analyzed
these models using WofYAWL. As the state spaces of
many of the models were simply too large to generate,
we could not use the relaxed soundness property to
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FIGURE 15. The lifestyle model
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approximate the good execution paths. As a result,
we used the T-invariants instead.

In the end, we discovered that at least 34 of the
SAP reference model EPCs contain errors (i.e., at least
5.6% is flawed). This systematic analysis of the SAP
reference model illustrates the need for verification tools
such as WofYAWL. For more details on this case study,
we refer to [45].

Figure 17 gives the result of mapping the “Certificate
Creation” EPC to YAWL. Note that connectors are
mapped onto dummy tasks. To identify these tasks they
are given a unique label extracted from the internal
representation of the EPC, e.g., task “and (c8z0)”
corresponds to the AND-split connector following event
“Customer requires certificate”.

8.1. WofYAWL Analysis

After mapping the EPC onto YAWL, we can use our
verification tool WofYAWL. Figure 18 sketches a small
fragment of the Petri net that results from mapping the
YAWL model of Figure 17. The fragment only considers
the dummy tasks resulting from the mapping of the top
four connectors in Figure 16. Moreover, from the initial
OR-split task “Split” in Figure 17 we only consider the
arcs connected to these four dummy tasks. Note that
when mapping this OR-split onto transitions all possible
interpretations are generated (23 − 1 = 7 transitions).
Similarly, all other XOR/OR-splits/joins are unfolded.

The “happy smileys” in Figure 18 are used to identify
net elements that are involved in so-called “good
execution paths”, that is, the execution paths in the
Petri net that lead from the initial state to the desired
final state. In Figure 18, there exist two such paths,
which join at the XOR-join named “xor (c8z9)”. The
“sad smileys” visualize relevant parts in the Petri net
that are not covered by some good execution path.
As a result, these parts can in no way contribute to
reaching the desired final state from the initial state.
Since there is definitely something wrong with such
parts, WofYAWL issues the following warnings for this
fragment:

(i) The task “or (c8yr)” is not viable for the task “and
(c8z0)”,

(ii) The task “or (c8z9)” is not viable for the task “and
(c8z0)”,

(iii) The task “or (c8yr)” could be an XOR-join instead
of an OR-join,

(iv) The task “or (c8z9)” could be an XOR-join instead
of an OR-join.

These warnings indicate that there is a problem
involving the top four connectors in Figure 16. Note
that AND-split connector splits the flow into two paths
that join with and XOR-join. Hence these two paths
cannot be involved in a good execution as indicated
by first two warnings. Moreover, if the AND-split

connector is not allowed to occur, the two OR-joins
could as well be XOR-joins.

9. CONCLUSION

This paper presented a verification approach for the
control-flow aspect of YAWL models. This verification
approach is based on two properties that are known
in the Petri-net literature: relaxed soundness and T-
invariants. First, the YAWL model is mapped onto
a WF-net, which is a subclass of Petri nets especially
tailored towards workflow verification. Second, using
the relaxed soundness property and/or the T-invariants
property, a report with warnings is generated. If the
state space of the WF-net can be constructed within
reasonable time, the relaxed soundness property can be
used, which yields a more complete report. Otherwise,
the T-invariants property can be used, as T-invariants
do not require this state space to be constructed.
However, using T-invariants we possibly obtain less
warnings (that is, a correct but possibly incomplete
error report).

The disadvantage of our verification approach is that
it is not complete, in the sense that our approach
detects only those parts of the model that are not
covered by any good execution path. The reason for this
incompleteness is twofold. First, our approach relies on
the relaxed soundness property for deciding the good
execution paths, which is unable to detect, for example,
deadlocks. Second, if the relaxed soundness property
cannot be used, our approach relies on T-invariants
to approximate the good execution paths, in which
case some additional errors may remain undetected.
However, note that for a complete approach, we would
have to take the complex OR-join semantics into
account. Unfortunately, many workflow languages lack
a clear semantics of the OR-join. For such workflow
languages, a complete verification approach is simply
impossible. Note that our verification approach can
abstract from the OR-join semantics precisely because
we did not require it to be complete. As a result, we
believe that, at the moment, our verification is a fair
trade off between a complete verification approach and
no verification approach at all. In the near future, we
hope to be able to also introduce a complete verification
approach, which takes the YAWL OR-join semantics
into account. However, as mentioned, this might be
very hard, as this requires a formalism that makes
many (but not all) relevant properties undecidable [3].
Note that besides the OR-join, the cancellation region is
complicating matters. Using just cancellation regions,
we get the expressive power of reset nets and it is known
that reachability is undecidable for reset nets [4, 5, 6].

The advantage of our verification approach is that
is enables us to verify YAWL models, that is, models
containing OR joins and cancellation regions, even
if some of the corresponding state spaces cannot be
constructed. Any part of the model that is not covered
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Certificate
profile assign-
ment exists

Certificate
recipient is to

be created

Customer
requires

certificate

Quality certifi-
cate is released

for use

Certificate has
to be created for

delivery item

Certificate
request
exists

Certificate
should be printed

on request

Creation
of a Quality
Certificate
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for delivery item

is triggered
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Certificate

Certificate
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FIGURE 16. The “Certificate Creation” EPC from the SAP reference model
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xor
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FIGURE 17. YAWL model for “Certificate Creation”
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and (c8z0)

or (c8yr)

or (c8z9)

xor (c8z9)

FIGURE 18. Petri net fragment for “Certificate Creation”

by any good execution path is reported by our approach
as being erroneous. Given the fact that YAWL models
support the most frequently occurring patterns found
in existing workflow models today, our verification
approach can also be applied to many existing workflow
models found today. That is, its application is not
limited to YAWL. Our verification approach could
immediately be applied to any proprietary workflow
language for which a mapping to YAWL exists. For
example, our verification approach can be applied
directly to other languages, like EPCs, BPMN [7] and
BPEL [43]. Note that our approach can also be applied
to languages which support OR joins, but which lack a
clear semantics of the OR join (like EPCs and BPMN).

In the near future, we plan to come up with an
approach based on the reduction rules for reset nets.
First, we map a YAWL model onto a reset net and,
second, we apply the reduction rules. If the result
is a trivial reset net, then the YAWL models verifies
green. Otherwise, we use an additional approach
(for example, the one presented in this paper) on
the reduced net. Another interesting idea is to use
the presented approach to rule out unviable OR-join
behavior. Given the tasks that have been executed for
some running case, we can determine the set of good
execution paths that are still open for this case. If
these good execution paths do not contain some join
transition that corresponds to an OR-join, than that
join transition should not be executed, and that OR-
join has to wait for additional tokens. In general, only
join transitions that are covered by the good execution
paths should be enabled and considered for execution.
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