
 Formal Modeling Approach for Supply Chain Event Management

Rong Liu and Akhil Kumar Wil van der Aalst
Smeal College of Business Faculty of Technology Management

Penn State University Eindhoven Technical University
University Park, PA 16802, USA Eindhoven, Netherlands
{rul110,akhilkumar}@psu.edu w.m.p.v.d.aalst@tm.tue.nl

Abstract: As supply chains become more dynamic, it is important to be able to model them

formally as business processes. In particular, there is a need for a sense-and-respond capability to

react to events in a real-time manner. In this paper, we propose Petri nets extended with time and

color (case data) as a formalism for doing so. Hence, we describe seven basic patterns that are

used to capture modeling concepts that arise commonly in supply chains. These basic patterns

may be used by themselves and also combined to create new patterns. Next, we show how to

combine the patterns to build a complete Petri net and analyze it using dependency graphs and

simulation. Dependency graphs can be used to analyze the various events and their causes.

Simulation was, in addition, used to analyze various performance indicators (e.g., fill rates,

replenishment times, and lead times) under different strategies. We showed it is possible to

performed sensitivity analysis to study the effect of changing parameter values on the

performance indicators. This approach thus makes a very complex problem tractable.

Keywords: Supply Chain Event Management, Petri nets, time Petri nets, colored Petri nets, event

causality, dependency graph, reachability.

1. Introduction

The pressures of global competition and the need for extensive inter-organizational collaboration

are forcing companies to streamline their supply chains and make them agile, flexible and

responsive. Consequently, a supply chain must be able to handle large numbers of events, both

expected and unexpected. The unexpected events, also called exceptions, typically arise because

there is usually a gap between supply chain planning and execution [3]. Supply chain planning

sets a target that can be achieved based on a given set of constraints at a given time. In a dynamic

supply chain environment, the constraints are always changing, so exceptions or deviations from

plans occur almost regularly. Examples of exceptions are inaccurate forecast, product out-of-

stock, shipment delay, etc., and they are costly. Moreover, events tend to propagate in

 1

collaborative supply chains across partners, resulting in the well-known bullwhip effect [13].

Such risks have given rise to a new research area of Supply Chain Event Management (SCEM).

The goal of SCEM is to introduce a control mechanism for managing events, in particular,

exceptions, and responding to them dynamically.

A supply chain event is “any individual outcome (or non-outcome) of a supply chain cycle, (sub)

process, activity, or task” [2]. Events are correlated with each other to form a “cloud” of events;

some events have significant consequences and therefore they must be monitored closely, while

others are of lesser importance. The critical problem lies in extracting the significant events and

responding to them in real-time. Doing so requires an ability to monitor them proactively,

simulate them to help decision-making, and use them to control and measure business processes

[21, 26]. In this paper, we present a methodology that uses a Petri net approach to formulating

supply chain event rules and analyzing the cause-effect relationships between events.

Petri-nets are a powerful modeling technique for problems involving coordination in a variety of

domains. A variant of Petri-nets called time Petri-nets allows us to model time intervals also.

Considering the dynamic characteristic of supply chain events, such Petri nets are useful for

describing the time constraints associated with events. Examples of time constraints are: “event

e1 follows event e2 after time T” and “N occurrences of event e1 within time T lead to event e2”.

These temporal constraints are important for proper correlation between events; otherwise, the

management could be unable to anticipate events or track causes of events. To deal with variety

in case data (e.g., order ids, order quantities, rush orders versus normal orders, etc.) we extend

the model with "token colors", i.e., we use time colored Petri-nets.

Using time colored Petri-nets we can model event patterns common in Supply Chain

Management (SCM). These patterns can be composed as will be demonstrated using a Vendor

Managed Inventory (VMI) example. To demonstrate that the Petri-net basis allows for different

types of analysis we used CPN Tools [23] to simulate different scenarios for the VMI example.

The mapping onto CPN Tools allows us to investigate the performance of event resolution

strategies. In addition, dependency graphs are used to analyze cause and effect relationships of

events.

There are a variety of SCEM systems from companies, such as SAP, i2, and Manugistics [26].

Most systems mainly perform monitoring and provide “early warning” rather than analyzing

 2

events and suggesting solutions [3, 5, 17, 19, 21, 26,]. Actually, the more powerful part of SCEM

would be the capability of “aggregating data from key business systems at a high level and

presenting the ramifications of exceptions and the possibilities of solutions” [17]. Therefore, this

research can contribute to the research area of SCEM in three ways. First, this work introduces a

formal and general approach to modeling events and event rules, and the approach provides

flexibility in associating occurrence counts and temporal constraints with events, avoiding the

customization problem which often poses as an obstacle to the implementation of the existing

SCEM systems [5]. Second, this approach allows excellent event analysis, including event

forecasting with time information and causality analysis, which provide real-time visibility about

the implications of events and traceability to the root causes for events. Third, it offers a way to

track supply chain performance metrics by events, and shows how through simulation decision

makers can compare different strategy alternatives or fine-tune a solution in terms of key

performance indicators.

The paper is structured as follows. Section 2 gives an overview of events, event rules, event

aggregation, event causality, and our notion of a dynamic supply chain. Section 3 describes Petri

nets briefly. Section 4 introduces event semantics and seven event patterns or building blocks of

event rules. It shows that a complete event Petri net can be constructed easily by using these

blocks. Section 5 presents a detailed example to illustrate how to use Petri nets to examine event

causality and forecast subsequent events. Section 6 gives simulation results of the example to

illustrate the practical value of our approach. Section 7 describes related work and compares our

approach with others, while Section 8 concludes the paper with a brief description of future work.

2. Overview of Supply Chain Events

When supply chain partners are integrated, events at one partner may have impact on other

partners, and their responses to these events may cause a storm of events. Therefore, causality

analysis is the key to controlling such a storm. Our analysis begins with events and event rules.

In general, events in an organization occur in the following three types: (1) Task status related

events, such as the end of a task or the beginning of a task. These events are usually regular; (2)

Events produced by a task: for example, events “stock partially available” and "out of stock" are

the result of the “check availability” task; and, (3) External events which may arrive from other

 3

supply chain partners or from the external environment, e.g., new order arrival, inbound

shipment delay, import policy change etc.

These types of events are captured directly during a process, and called simple or primitive (as

opposed to composite) events. Composite events are derived from simple events by event

aggregation. A composite event is deduced when a group of simple events occurs [16]. A group

of simple events may together reveal potential problems. For example, if a product is out of stock

once in a month, perhaps it is quite normal and an alarm should not be generated, but if this stock

out happens two times in a week, then it may reflect some underlying problems in the product

supply chain and this should be recognized by generating an event. As another example, a group

of stock trading events, related by accounts, timing and other data, taken together, may constitute

a violation of a policy or a regulation [16]. Event aggregation is a mechanism to filter simple

events and extract meaningful information from them by setting up alarms in advance.

Thus, event aggregation extracts value from a management point of view out of trivial and

unorganized simple events. In order to achieve this objective, it is important to recognize event

patterns and set up aggregation rules. Besides aggregation rules, business rules must also be

considered. Business rules capture the causal relationships between events. For example, if an

order is delayed for more than time T, then it is automatically cancelled. Therefore, a rule is

needed to express that the event “order delayed by T” is a cause of event “order cancelled”.

Moreover, a supply chain is viewed as a series of synchronous and asynchronous interactions

among trading partners. Usually, when an event, particularly an exception, happens, the trading

partner responsible for it may react to this event within a reasonable resolution time to resolve it.

For instance, suppose an order is delayed for delivery. If the delay is within an acceptable range

specified by the customer, the customer is notified of the delay and the order is processed.

However, if the delay exceeds the acceptable tolerance (also called expiration time), the order

should be automatically cancelled, and hence, the event “order delay” is not relevant in this case.

On the other hand, a series of new actions arise because of this new event, such as canceling the

order, removing any reservations made, refunding any payments, etc. Therefore, to model events

and event rules precisely, our modeling approach should be able to capture such temporal

constraints correctly. In our analysis, each event is associated with two time values: resolution

time and expiration time. In most cases, event resolution takes an unpredictable amount of time

 4

because of complexities of various business situations and it is more realistic to set up a

resolution time interval. We will show how to capture the dynamic aspect of events in the later

sections.

3. Petri Net Preliminaries

A Petri net is a directed graph consisting of two kinds of nodes called places and transitions. In

general, places are drawn as circles and transitions as boxes or bars. Directed arcs connect

transitions and places either from a transition to a place or from a place to a transition. Arcs are

labeled with positive integers as their weight (the default weight is 1). Places may contain tokens.

In Figure 1, one token is represented by a black dot in place p1. A marking is denoted by a vector

M, where its pth element M(p) is the number of tokens in place p. The firing rules of Petri nets are

[22]:

(1) A transition t is enabled if each input place of t contains at least w(p,t) tokens, where w(p,t)

is the weight of the arc from p to t. (By default, w(p,t) is 1.)

(2) The firing of an enabled transition t removes w(p,t) tokens from each input place p of t, and

adds w(t,p) tokens to each output place p of t, where w(t,p) is the weight on the arc from t to

p.

There is another special type of arc called the inhibitor arc with a small circle rather than arrow

at the end. An inhibitor from a place to a transition prohibits the transition from being enabled,

and thus firing, if there is a token in the place. An example of an inhibitor arc is given later.

In this paper, we use Time Colored Petri Nets (TCPN), i.e., Petri nets extended with time

intervals and token values. First of all, the above classical Petri nets can be extended by

associating a time interval [I1, I2] with each transition, where I1 (I2) is the minimum (maximum)

time the transition must wait for before firing after it is enabled. Such a Petri net is known as

Time Petri net (TPN) [27]. If I1 = I2, we just associate one time value with each transition1, while

if the interval is not specified, then I1 = I2 = 0. Analysis techniques for TPNs are discussed in [4,

27]. Second, tokens can be tagged with data values (or a color) to create a colored Petri net (CPN)

1 The Time Petri Nets discussed in this paper should not be confused with Timed Petri Nets. A Petri net is called
Timed Petri net [27, 30] if each transition is associated with a fixed time instead of a time interval. The two types of
Petri nets have very different semantics. As discussed in [4], Time Petri Nets are more general than Timed Petri Nets.

 5

[11, 12]. For example, we use tokens of different colors (or values) for each order or product. For

a given place, all tokens must be from one color set.

In Figure 1, Q, R and S represent different color sets. q, r, and s are variables, such that q∈Q,

r∈R, and s∈S. In a TCPN the arcs are also labeled with colors. For example, in Figure 1, two

tokens colored “q” are consumed if transition t1 fires. The fired transition t1 will put one token

colored “r” in place p2. Moreover, if there are two tokens colored “q” continuously existing in

place p1, transition t1 will fire no later than time 4. If there is still a token colored “q” remaining

in place p1 after time 4 (relative to arrival of this token), transition t2 will fire shortly after time 4

(denoted as 4+∆, where ∆ is a very short time period, close to 0) and before or at time 8.
R
p2

r
[0, 4]

t1

Q
2`q

p1

t2
[4+Δ, 8]

s
S

p3
q

 Figure 1: Colored time Petri net

4. Event Formulation and Event Patterns

4.1 Event semantics

Having given a preliminary introduction to Petri nets, now we turn to developing the techniques

to formulate event related rules as Petri net structures. In most cases, events are not only the

triggers but also consequences of supply chain tasks, i.e. one event causes another event.

Therefore, it is quite natural to model events as places that represent pre-conditions or post-

conditions of transitions. Thus, events and places will be used interchangeably while modeling

events. Moreover, time Petri nets offer an attractive choice for modeling the dynamic aspect in

supply chains. To make such models, we first formulate events and event rules as follows:

Event rule R: e1 (n1x1, I0) e1, 2[] I I⎯⎯⎯⎯→ 2(x2), where

e1 : input event class

n1 : number of event instances (for simplicity, we just say events), i.e., number of

tokens (by default, n1 = 1).

xi : data value of event i for i = 1,2. In other words, the color of tokens, xi ∈ color set Xi.

I0: expiration time of e1.

 6

→ : “imply” or “lead to”, which establishes a cause-effect relationship between the left

side and right side of the rule.

1, 2[]I I : an optional time interval which corresponds to the event resolution time. In order

not to make the problem trivial, we require I2 < I0. If this interval is not specified,

we assume I1 = I2 = 0

e2 : output event class. For every rule, only one instance of e2 is generated because it is

not necessary to repeat supply chain events.

This event rule shows the semantics of event e1 succinctly. Suppose e1 continues to arrive at a

system. If the number of its occurrences reaches a threshold, say n1, and these events persist in

the system long enough, event rule R can be triggered during interval [I1, I2], and e2 is then

generated. I0 is the expiration time of e1. If rule R does not fire within the [I1, I2] interval, then e1

expires. After e2 occurs, e1 may normally be consumed by rule R. However, if e1 is required by

another rule, then a token should be returned to e1. Hence, two representations are possible for

event rules:

Representation 1 (consumption case - e1 is consumed): This case can be modeled as a Petri net

shown in Figure 2. This representation is useful when an event is not required by multiple rules.

Order
delayed

Customer
notification

Q Q

t1

[0, T1]

e2
q q

e1

Figure 2: Petri net of Example 1 showing a rule R
Representation 2 (non-consumption case - e1 is not consumed): Event e1 is not consumed

because it may be required by another rule. Nevertheless, event e2 must not be generated

multiple times from these occurrences of e1. This case can be accurately modeled as a Petri net

as shown in Figure 3.

e'1 t2

[I1, I2]

t3

I0e″1

expired e″1

n1`x1

t1
x1

x1 n1`x1

x1

x2

n1`x1

x1

x1
e1 e2

Figure 3: Petri net representation for non-consumption case

 7

When comparing Figure 2 and Figure 3, one can note several differences. First of all, the

representation chosen in Figure 3 abstracts from color sets, and focuses on timing issues and

causalities. Second, events are not consumed. Third, we consider the situation where n1 events

need to occur to trigger another event. Since event e1 is not consumed by rule R, we need a

special mechanism to prevent event e2 from being generated repeatedly. Therefore, as Figure 3

shows, Place e1 is first transformed into two places, e′1 and e″1, through a transition t1. Tokens in

e″1 are consumed if transition t2 fires, while n1 x1 tokens (denoted as n1`x1) are brought back to

place e′1. (Note that n1 events are needed to enable transition t2.) Therefore, after the first firing,

although there are n1x1 tokens in place e′1, transition t2 cannot fire, and thus, at most one e2 event

is generated (with respect to n1x1 tokens). If transition t2 does not fire (because of insufficient

tokens in e′1), e″1 expires at the end of expiration time by firing transition t3. The notion of

expiration time will be discussed further in the next section.

These two representations are employed in our patterns in the next section.

4.2 Event patterns to model Supply Chain Rules

Next we will develop several patterns for constructing complex temporal event relationships and

also give equivalent logical expressions for these patterns. In general, three logic connectives,

OR (), AND (), Negation (¬), can be used on either the left or the right side of an event rule.

Since modeling of time is crucial in understanding the behavior of our Petri net models, we call

these patterns temporal event patterns.

∨ ∧

We will show later that these patterns can be used as building blocks to create event networks in

supply chains. We will demonstrate that these patterns allow us to capture sophisticated

relationships involving multiple event instances, event expiration times and resolution times.

Thus, this modeling approach can be used to model large varieties of typical supply chain events.

We will also illustrate the patterns by examples.

Pattern 1 (simple cause-result pattern): A cause-result pattern is the most basic pattern for

describing event relationships. It shows that event e1 can cause event e2 within a time period [I1,

I2]. More formally, this relationship is expressed as: e1 (x1) e1 2[,]I I⎯⎯⎯→ 2 (x2).

Example 1: If an order is delayed (e1), contact customer (e2) before time T1, i.e., e1 (q)

e

[0, 1]T⎯⎯⎯→

2 (q) (Note: q is order numbers).

 8

Figure 2 (in the previous section) shows the time Petri net model of this example. Note that order

numbers can be considered as a color set here, i.e., each order has a different color. We use Q to

denote this color set, and q is a variable for any order in Q. Transition t1 must fire within time T1

after it is enabled. Transition t1 corresponds to the action “notify customer”.

Pattern 2 (Repeat_cause-one_effect pattern): This pattern concerns the case where multiple

occurrences of one event within a certain time period cause another single event to occur.

Formally, this relationship can be described as: e1 (n1x1, I0) e1 2[,]I I⎯⎯⎯→ 2 (x2), where n1

occurrences of event e1 for instance x1 cause event e2 to occur. There are numerous situations

where this pattern is useful.

Example 2: If product s is out of stock (e1) more than once within period T2, contact the

supply chain manager (e2). (Note, s is the product ID). Formally, this rule can be represented as

e1 (2s, T2) e[0 ,]∆⎯⎯⎯→ 2 (s).

This example introduces the notion of expiration time of events. If an event is not consumed (in

this case, event e1) by a rule, it may expire after a time interval. The Petri net model in Figure 4

represents the time constraints pertaining to these events. Whenever tokens arrive at place e′1 and

e″1 (as a result of event e1) transition t2 and t3 are enabled, but they cannot fire immediately.

When there are two tokens arriving in place e′1 and e″1, transition t1 fires immediately and

produces the event e2, “Notify SC Manager”. After transition t1 fires, two tokens are returned to

place e′1, because event e′1 may be used by other rules. However, tokens in place e″1 are

consumed, so transition t1 cannot fire repeatedly. Since transition firing takes no time, t3 is still

continuously enabled. If a token stays in place e′1 for time T2 after its arrival, t3 fires and event

e1 expires. Thus, it is possible that event e′1 expires without t1 firing, if there is only one token

arriving within interval T2. Simultaneously, transition t2 fires so that e″1 expires.

e′1 t1

Notify SC
Manager

e2

T2

t2

T2 e″1

Expired e1

2`s
2`s

Expired e″1

t3

s

s

2`s

s t0

s
s

s

s

Out-of-stock
 e1

Figure 4: Petri net of Example 2 (Pattern 2)

 9

Pattern 3 (Inclusive choice): The need for this construct arises when multiple, alternative events

can occur based on temporal conditions. Formally, this rule can be expressed as:

 e0 (n0x0, I00) {[e11, 12[] I I⎯⎯⎯⎯→ 1 (x1)] [e∨ 21, 22[] I I⎯⎯⎯⎯→ 2 (x2)] ... [e∨ ∨ 1, 2[]m mI I⎯⎯⎯⎯→ m (xm)]}

Thus, in general, an event e0 could produce one of many events ranging from e1 to em based on

the time intervals associated with these events. In general, these time intervals could overlap;

however, by ensuring the intervals are non-overlapping it would be possible to make a

deterministic choice based on time. The following example illustrates this pattern.

Example 3: If an order, with lead time L2, has not been shipped (i.e., not consumed by some

other rule) within time L2 after it is confirmed (e0), the order is treated as delayed (e1) (but e0 is

not consumed yet); however, if an order is delayed by more than time T3, it is treated as

undeliverable and cancelled (e2). (Perhaps the customer does not want it if the delay is more than

T3. So e0 is consumed at this time.) This example can be formulated as:

[2, 2 3] 2 3
0 1 (, 2 3 2) { [()] [()] }L L T L Te q L T e q e q+ + +∆+ + ∆ ∨⎯⎯⎯⎯→ ⎯⎯⎯⎯→ 2

Order cancelled

Figure 5: Petri net model of an order process (Pattern 3)

Order delayed
e1t1

[L2, L2+T3]
e′0

Q Q

t4

q

 L2+T3 +∆
e2

Q

q

q

q

q

e″0 t2
L2+T3 +2∆

t0
q

q
q

q

e″0 expired

Q
e0

q
q

q

Inventory ready t5 e3
Qq

q
e4

Q

t3

e0 expired

L2+T3 +2∆
q

Order confirmed

Order shipped

When an order is confirmed (see Figure 5), a token is placed in place e′0 and e″0 as well.

Transitions t1, t2, t3, and t4 are enabled but do not fire at that moment. If this token is consumed

by the shipment transition t5 before time L2 (relative to its arrival), transitions t1, t3, and t4 are

disabled, but transition t2 will fire at time L2+T3+2∆ after the token arrival. Otherwise, if

during the time interval [L2, L2+T3] this token remains in place e′0, transition t1 will fire. After

transition t1 fires, this token is immediately brought back to e′0 because some other rules (like t4)

may use it later. If there is still a token in e′0 after L2+T3, transition t4 fires and produces event

 10

“order cancelled”. Thus, the token in e′0 is consumed. In general, if this rule is triggered, it can

produce two possible results: order delayed and cancelled, or only order delayed, depending

upon the temporal relationships. One can see this rule actually has complex semantics, yet its

Petri net model can precisely describe such temporal relationships. Note that in Figure 5,

transition t3 never fires and it can be removed. We keep this transition in the figure for

consistency with event semantics.

Pattern 4 (1 of N causes – single result Pattern): A result can have multiple alternative

(combination of one or more) causes. Hence, there is a need for this pattern, and its formal

logical expression is as follows:

{[e1(n1x1, I10)] [e11, 12[] I I⎯⎯⎯⎯→ ∨ 2(n2x2, I20)] ... [e21, 22[] I I⎯⎯⎯⎯→ ∨ ∨ m(nmxm, Im0)]} e1, 2[]m mI I⎯⎯⎯⎯→ 0(x0)

In this expression, the cause of event e0 may be any one of e1, e2, …, em. Typically, this structure

could be used to indicate the cause for an event. Figure 6 is the Petri net presentation of this

structure, if every source event e1, e2, …, em is consumed by this rule. Note that the notion of

expiration times can be applied to this pattern. For simplicity, the expiration times and expiration

transitions are not shown in Figure 6. For example, if transition t1 does not fire (because of

insufficient tokens), e1 will expire at time I10 by firing an expiration transition. The same

standard simplification is applied to the next three patterns. A specific example of Pattern 4 is

given as below.

Example 4: When a rush replenishment order is rejected (e1), or delayed (e2) by more than time

T4 (if the delay is less than T4, the delayed time can be compensated by faster shipment), contact

alternative vendors (e0). Logical form: . 4 [0, 5]
1 2 0{[()] [()]} T Te q e q e∨⎯⎯→ ⎯⎯⎯→

As the Petri net model in Figure 7 shows, in this example, if an order is rejected by a vendor, an

alternative vendor must be contacted in a short interval, say [0, T5]. If the order is delayed, a

token is put into place e2 immediately. How long this token remains in place e2 is exactly the

order delay time. If the order is delayed for time T4, then transition t2 has been continuously

enabled for the same time, so transition t2 fires immediately. The fired transition means that, in

order to replenish inventory in time, alternative sourcing is required. If the delay does not exceed

time T4 and then the inventory is ready, a fast shipment (e4) is used to compensate for this delay.

 11

Therefore, through these examples, we see that colored time Petri nets not only present the

transformation of events, but also simulate the underlying business activities. The latter

advantage cannot be achieved by its logical formulations.

Figure 6: Petri-net for 1 of N causes – single result
(Pattern 4) Figure 7: Petri net of Example 4 (Pattern 4)

e2

e0

t2

Order rejected

Contact alternative
vendors

Q

Q q q e1

Order delayed

Q

q

t1

q T4

[0, T5]

Inventory
ready e3 t3

Q
q

 q
q e4

n1`x1

tm
nm`xm

[Im1 , Im2] Xm

em

X1 [I11 , I12]

x0

x0

X0

e0

t1 e1

Fast
shipment

Pattern 5 (1 cause – N results Pattern): This pattern recognizes that a cause may have multiple

consequences and captures all concurrent consequences of a particular event. Logically, this is

expressed as: e0 (n0x0, I00) {e01, 02[] I I⎯⎯⎯⎯→ 1 (x1) ∧ e2 (x2) ∧ ... ∧ em (xm) }

In this expression, n0 occurrences of event e0 generate m different events concurrently. Figure 8

shows the Petri net representation of this rule. As Figure 8 shows, the m events are represented as

output places of transition t1, which is enabled by n0 occurrences of input event e0. Transition t1

fires within an interval [I01, I02] after n0 tokens are placed in e0. In this case, this Petri net

representation shows a 1 cause – N results pattern.

X1

e1

t1

 [I01 , I02]
x1

n0`x0
xm Xm

em

X0

e0

Shipment rescheduled

e2

Q q

qe0

Order delayed

Q

t1 Customer notified

[0, T6] q e1Q

Figure 8: Petri net for 1 cause – N results (Pattern 5) Figure 9: Petri net of Example 5 (Pattern 5)

Example 5: If an order is delayed (e0), notify customer (e1) and reschedule the shipment (e2)

immediately, i.e. . [0, 6]
0 1 () [() ()]Te q e q e q∧⎯⎯⎯→ 2

Figure 9 is the Petri net model of Example 5. If T6 approaches 0, t1 fires instantaneously. This

simple example illustrates that this structure can be used to present the concurrent events that

originate from the same cause.

Pattern 6 (N causes – 1 result Pattern): This pattern is the reverse of the above pattern, and it

is used to model the concurrent causes of a particular event. The following formulation shows

 12

that, there are m preconditions, e1, e2, …, em, which occur simultaneously to arrive at event e0.

Similarly, assuming every sourcing event is consumed by this rule, this structure can be

transformed into a Petri net as shown in Figure 10.

{e1 (n1x1, I10) e∧ 2 (n2x2, I20) ... e∧ ∧ m (nmxm, Im0) } e01, 02[] I I⎯⎯⎯⎯→ 0 (x0)

As the Petri net model, Figure 10 shows, each precondition can be modeled as an input place of

transition t0, and the result e0 is the output place of this transition. This Petri net exhibits an N

causes – 1 result pattern; so does the Petri net representation of Example 6.

Example 6: When the shipper of a confirmed order (e2) is not available (e1), find another shipper

(e3) in a short time T7. This rule can be logically formulated as: . [0, 7]
1 2 3[() ()] ()Te q e q e q∧ ⎯⎯⎯→

The Petri net of Figure 11 shows the precise representation of this rule. In Figure 11, two events

e1 and e2 in conjunction produce one result, event e3.

n1`x1

X1

e0t0
x0

 [I01, I02]

nm`xm

Xm

em

e1

e1

Shipper unavailable
Q Q

q q
[0, T7]

t1
q

Order Confirmed

e2

e3

X0

Find another shipper

 Figure 11: Petri net of Example 6 (Pattern 6) Figure 10: “N causes – 1 result” Petri net (Pattern 6)

Pattern 7 (non-occurrence of an event pattern): The above patterns were all based on the

occurrence of events. However, non-occurrence of an event can also signal valuable information

and hence we need a pattern for that. Negation is usually used to express the non-occurrence of

a particular event. Typically, non-occurrence of an event and occurrence of some other events

may, in conjunction, cause some other significant events to happen. The following logical

formula describes this situation:

 {e1 (n1x1, I10) [¬e∧ 2 (n2x2, I20)]} e31, 32[] I I⎯⎯⎯⎯→ 3 (x3)

Event e1 and non-outcome of e2 cause e3. Actually, if event e1 is consumed by this rule, this

formulation can be transformed into a Petri net similar to Figure 11, except the arc from place e2

to transition t1 replaced by an inhibitor arc, as Figure 12 shows. (See [7] for the semantics of

inhibitor arcs in colored Petri nets.) In general, Figure 12 and the Petri net representation of

Example 7 have a non-occurrence pattern.

 13

Example 7: When an order arrives (e1), if there is no out-of-stock (e2) situation, the order is

confirmed (e3). Logically, this rule can be formulated as: { . [0, 8]
1 2 3 () [(, 2)]} ()Te q e s T e q∧ ¬ ⎯⎯⎯→

X1

Figure 13 is the Petri net model of Example 7. After the order arrives, a token is put into place e1.

At that time, if there is no token in place e2 it means there is no out-of-stock event, and transition

t1 fires in a short time, say [0, T8], and puts a token in place e3 to indicate the order is confirmed.

Otherwise, if there is a token in place e2, it inhibits the firing of transition t1.

However, some Petri net tools may not support inhibitor arcs. We can substitute inhibitor arcs

with an equivalent structure that works for CPN tools [23] and is described in Appendix 1.

In this section, we have developed 7 basic patterns that capture cause-effect relationships in

Petri-nets. Next, we will use an example to show that these patterns can be combined together as

building blocks to create more complex Petri-nets.

4.3. Composing new patterns and creating user-defined patterns

Above we discussed 7 basic patterns to capture complex cause effect relationships. Now we

demonstrate how they can be combined to create new user-defined patterns. In general, patterns

can be combined (or composed) if they have common input or output events (i.e., places that

have the same label). By superimposing common places shared by existing patterns, new

patterns can be created. This approach has been used in modeling logic programs as Petri nets

[25]. Obviously, if two patterns do not share any events then they cannot be directly composed.

The possible scenarios for pattern combination are as follows:

(1) The output place of one pattern is the input place of another pattern (sequential)

(2) The two patterns have one or more common input places (Parallel 1)

(3) The two patterns have one or more common output places (Parallel 2)

(4) The two patterns have common input and output places (Parallel 3)

e2

e3

Out-of-stock
S

Q
q

q e1

Order arrival

Qe1

s
t1

Order confirmed

Figure 13: Petri net of Example 7 (Pattern 7)

[0, T8] n1`x1

t3

X3[I31 , I32]
e3

x3

n2`x2

e2

X2 I20

Figure 12: Non-occurrence pattern (Pattern 7)

 14

When two patterns are composed in sequence, they form more complex cause-effect chains. On

the other hand, if they share common inputs, the patterns will compete for firing by taking tokens

from the common event places and have exhibit more complex interactions. A detailed analysis

of the various possible interactions for the different combinations is beyond the scope of this

paper; however, we will illustrate our approach by showing how two new, non-trivial and useful,

user-defined patterns can be created.

First, we create a new pattern to "initialize B when A occurs", as shown in Figure 14. Thus, when

event A occurs, already existing occurrences of event B must be cleared. This event initialization

pattern can be created by composing existing patterns as follows:

(1) Using Pattern 6, when event A happens, if prior B events exist, they are cleared (Figure

14(a)).

(2) Then, Pattern 7 is used such that transition t2 fires when the place for event B is empty and

puts a token in the place marked "No B since A" (Figure 14 (b)).

(3) Combine Pattern 6 and Pattern 7 by superimposing common places for events A and B

(Figure 14 (c)).

Similarly, in Figure 15 we show how another new pattern called consecutive events can be

created using this new event initialization pattern as a building block. The consecutive events

pattern generates an exception event when events A and B (initialized after A) happen within a

time interval T. To create this pattern, we first apply Pattern 6 to places “No B since A” and B, as

shown in Figure 15(a). If tokens do not arrive in B within the required interval, then tokens in

places “No B since A” are said to expire. Later, we combine the new event initialization pattern

with Pattern 6, as shown in Figure 15(b). We can foresee various applications for these new

patterns. For example, the consecutive events pattern could be used in a supply chain to notify

the manager if a "machine breakdown" and "no shipment arrival" events occurred within 1 day.

Similarly, in telecommunication applications also such consecutive events would be useful [8].

Clearly, although the seven basic patterns are not exhaustive, the ability to compose them and

create new patterns is a powerful feature that allows us to model most realistic situations.

Moreover, if necessary, new primitive patterns can also be created from scratch by giving their

Petri net description.

 15

B

t1

A

B is empty

B

t2

A

No B since A
 B

t1A

B is empty

t2

No B
since A

Initialize B

(a) Apply Pattern 6 (b) Apply Pattern 7 (c) Combine Patterns 6 and 7
Figure 14: Composing a new event initialization pattern by combining Patterns 6 and 7

(a) Apply Pattern 6 (b) Combine event initialization and Pattern 6

B

Initialize B

A

No B since A

t4

t3
2+

Expire

Exception

∆

t4B

No B since A

t3

2+
Exception

Expire

∆

Figure 15: Composing a new consecutive events pattern from event initialization and Pattern 6

5. An Example of Event Causality Analysis Using Petri Nets

In this section, we will first show a Petri net that is built using the above seven patterns in the

context of a realistic supply chain scenario. Subsequently, we will analyze event causality by

simulation and dependency graphs.

5.1. Scenario of events and rules for a complete Petri net

First, we will give an example scenario description. Suppose there is a Vendor Managed

Inventory (VMI) arrangement between a distributor and a vendor. In this arrangement, the

vendor manages the inventory level for the distributor, proposes the new supply orders to the

distributor, and ships them after the distributor’s approval. The distributor sells products to its

customers, and normally ships its customers' orders (for simplicity, we just call them orders)

from stock, but whenever there is an out-of-stock situation, a rush supply order is placed with the

vendor. When there is more than one out-of-stock event in a week at the distributor, this situation

should be considered as a supply chain exception and reported to the supply chain manager

immediately. The vendor would usually respond to rush supply orders as soon as possible, but

they may be rejected if there is a serious production delay. Moreover, in case of production delay,

all supply orders may be delayed. The distributor can contact an alternative vendor for

replenishment in case that its normal or rush supply order is delayed or rejected. Figure 16 shows

 16

all the trading partners in such a supply chain. For simplicity, in this figure we assume there is

one product, but one can similarly model multiple products also as we show in Section 6. First,

we need to identify the events and then write the rules that connect them together. The events of

interest are summarized in Figure 17 and each event corresponds to a place in the Petri net.

Distributor Main supply order
(normal or rush)

Alternative supply order (rush)

Customer
Order

Alternative Vendor

Main Vendor Customers

Figure 16: Interactions between trading partners in the example supply chain

Place (or event) description

p1: Customer order arrival p2: Out-of-Stock
p3: Back order p4: Rush supply order
p5: Rush supply order confirmed p6: Customer order confirmed
p7: Customer order delayed p8: Notify customer of order delay
p9: Customer order cancelled p10: Customer order shipped
p11: Out-of-Stock event expires p12: Notify supply chain manager
p13: Rush supply order rejected p14: Production delay
p15: Supply order delayed p16: Contact alternative vendors
p17: Stock unavailable when delivery is due p18: Rush supply order shipped
p19: Alternative sourcing failed p20: Customer order rejected
p21: Production delay (p14) resolved p25: Back order cancelled
p22: p2′ expired p23: p3′ expired p24: p5′ expired
p26: p5″ expired p27: p6′ expired p28: p2″ expired

Figure 17: Possible events in the supply chain

Next, we consider the rules that relate these events to one another, and also refer to the

corresponding patterns used for modeling these rules (in parentheses).

1. When a customer order arrives (p1) and there is no out of stock (not p2), the order is

confirmed (p6). (Pattern 7: Non-occurrence)

2. When a customer order arrives (p1) but there is an out-of-stock (p2), a back order (p3) is

generated. (Pattern 6: N causes – 1 result)

3. When a back order occurs, a rush supply order with lead time L1 is sent to the vendor (p4).

(Pattern 1: Simple cause-effect)

4. When the rush supply order is confirmed by the vendor (p5), the back order is also confirmed

to the customer (p6). A back order must be confirmed within L2+T3, where L2 is the lead

 17

time of the back order, and T3 is the maximum allowed delay time; otherwise, it expires and

is cancelled (p25) (Pattern 6: N causes –1 result)

5. If there is a production delay (p14), any incoming rush supply order is rejected (p13),

because there is no production capacity left to fulfill any rush supply order in a short time.

Otherwise, the rush supply order is confirmed. A production delay can be resolved in time

interval [a, b]. (Pattern 6: N causes – 1 result; Pattern 7: Non-occurrence)

6. A rush supply order is shipped during time [0, L1] if there is no production delay (not p14).

(Pattern 7: Non-occurrence)

7. A production delay (p14) can cause a supply order delay (p15). If a rush supply order is

delayed (p15) for more than time T4, it leads to unavailable inventory when customer order

delivery is due (p17). (Pattern 5: 1 cause – N results; Pattern 1: Simple cause-effect)

8. If a rush supply order is rejected (p13) or delayed (p15) for more than time T4, contact

alternative vendors for alternative sourcing (p16). (Pattern 4: 1 of N causes-single result)

9. When a rush supply order is shipped (p18) by one of alternative vendors, the corresponding

back order can be confirmed (p6) and shipped (p10); otherwise, the customer order can be

rejected (p20). (Pattern 6: N causes – 1 results; Pattern 1: Simple cause-effect)

10. When a supply order is shipped from a vendor (p18), inventory is available for delivery (so if

there is a token in p17, it is removed). (Pattern 6: N causes – 1 result)

11. When delivery is due, if inventory is available (not p17), the order is shipped (p10). (Pattern

7: Non-occurrence)

12. a. If an order (with lead time L2) has not been shipped in time L2 after it is confirmed (p6),

the order is delayed (p7).

 b. If an order is delayed (p7) more than time T3, then the order is cancelled (p9). (Pattern 3:

Inclusive choice)

13. If there are two unresolved out-of-stock events (p2) during time T2, the supply chain

manager is contacted immediately (p12). (Pattern 2: Repeat_cause-one_effect)

14. If the order is delayed (p7), notify the customer at time T1 (p8). (Pattern 1: Simple cause-

effect)

The above 14 rules can be easily formulated in terms of colored time Petri nets as shown in

Figure 18. The darkened places in the figure are input events of this net. Place p1 contains two

different tokens representing the two order arrivals. Events which are not consumed by event

 18

rules are transformed into multiple places, such as p2, p2', and p2", where p2 holds tokens for

events, and the others are special mechanism for preventing repetitive firing of transitions.2

Figure 18: A supply chain event Petri net

This Petri net was implemented using CPN Tools [23]. CPN Tools is a graphical computer tool

supporting Colored Petri nets (CPN). The details of the CPN implementation are given in

Appendix 1. In addition, since CPN Tools does not explicitly support time, a workaround is

introduced to add temporal constraints to a transition.3 Figure 19(b) shows an implementation of

Rule 1 and Rule 2 from the detailed supply chain example above (See Figure 19(a)) in CPN

Tools. In Figure 19(b), “ORDER”, “STOCKOUT”, and “BACKORDER” are color sets of

different places. Place p1 contains two tokens. For example, 1`(2, [a, c])@10 means there is one

token (1`) with color (2, [a, c]) and timestamp 10 (@10). Note that “2” is the order number (of

2 This point was explained in Section 4.1in the non-consumption case
3 CPN Tools supports a notion of time. However, since it is an executable language allowing for automatic
simulation it requires deterministic or stochastic time. Hence, the interval times are translated into guards based on
an explicit clock.

Production
delay

Note:
Color: q∈ {Q: order set}
Dark places: external events
Dotted part: input of external events
∆: a short time period, ∆→0.

copy
of p6'

copy
of p6 copy

of p3

p4

p3

3-1

p6

11-1 4-1 p10

p7 12-1

12-2 p9

14-1 p8q

5-1

q

5-3
p17

8-1

p15

7-1

p14

p16

9-2

p18

10-1

9-1

p19

6-1

p13

8-2 9-3

p5

9-4 p20

copy
of p14

2-1

p1

Order Arrival

13-1 13-2
T2

p12 p11

2

q

∆

p2

p2'
Availability

checking

p2"

1-1

p3'

p5'

p5"

p6'

2-2

p22

13-3

p28

3-2

p23

7-2

p26

4-2

p24

12-3 p27

2

q

q

q
q

q

q q

q

q
q

q

q q

q
q

q
q q

q

q q

q

q q

q

q

5-2

p21

q

q

q

q q

q

q
q q q

q

q q

q

q

qqq
qq

q

q

q

q

q

q q
q

q

q

[L2, L2+T3] [0, ∆]

 L2+T3+∆

 [0, L2+T3]

T2 [0, L1]

L1+T4

[0, L1]

[a, b]

∆

∆

∆

 L2+T3+∆

token
sink

2

 L2+T3+∆ q

q
p254-3

q

q [0, L1]

L1+T4+∆

 19

integer data type) and [a,c] is a list of products (of list data type), which here denotes two

products, “a” and “c” for order 2. In addition, Figure 19(b) is a hierarchical Petri net. The tag

“rule1&2” attached to a transition shows this transition can be substituted with the sub-Petri net

of Figure 19(a). It should also be noted that an inhibitor arc is substituted by an equivalent

structure with normal arcs, so inhibitor arcs also reflect causal relationships between events. For

example, in Figure 19(b), p6 (confirmed order) depends on both p1 (order arrival event) and

p2_1 (out-of-stock). More precisely, an occurrence of p1 and non-occurrence of p2_1 lead to p6.

Details of CPN Tools and hierarchical Petri nets can be found in [11]. Next, we will analyze

events using dependency graphs based on running this model.

(a) Rules 1 & 2

(b) CPN implementation

p3

q

2-1

p1

q

p2

p2'

q

1-1

∆

q

p22
2-2

p6'

Figure 19: Mapping rules 1 and 2 to CPN Tools (from the detailed example)

5.2. Dependency graph Analysis

The Petri net shown in Figure 18 (and its CPN Tool representation shown in Figure 22,

Appendix 1) can be considered as an “event machine,” i.e. when fed with input events, it will

generate a set of composite events (both intermediate and final), and show the causal

relationships between them. The behavior of this “machine” for the life of a particular instance or

for a given time period can be represented by a simple dependency graph [9]. A dependency

graph is a cause-effect graph of events produced from one or more Petri net instances (say, one

or more orders) over a time period. The dependency graph is created from the Petri net by using

the rule that the output event(s) of a transition depends upon its input event(s).

By executing the Petri net model with actual case data, we can create dependency graphs to show

causal relationships that actually transpired between events. Table 1 describes the sequence of

event occurrences and the transitions that fire when the events take place. The relationships are

 20

reflected in Figure 20 that shows an event dependency graph generated based on the Petri net of

Figure 18. Moreover, it also gives the correspondence between place numbers and event

numbers. (Note that the events and the corresponding place numbers are not always the same.)

The table also gives time values in the last column. These times are based on assigning suitable

values for a hypothetical case to the parameters of Figure 18 as follows in time units (say, days):

L1 = 20, L2 = 50, T1 = 1, T2 = 50, T3 = 20, T4 = 10, a = 60, b = 80.

Event Description Trans. fired Place Time
E1 Order O1 arrival - p1 0
E2 Out-of-Stock of product A (forO1) - p2 0
E3 O1 is on back order 1-1 p3 0
E4 Rush supply order R1 is placed for O1 3-1 p4 0
E5 Supply order R1 is confirmed to customer 5-3 p5 0
E6 Order O1 is confirmed 4-1 p6 0
E7 Order O2 is received - p1 10
E8 Product A is out-of-stock (forO2) - p2 10
E9 O2 is placed on back order 1-1 p3 10

E10 Rush supply order R2 is placed for O2 3-1 p4 10
E11 Contact supply chain manager 13-1 p12 10
E12 Product A production is delayed - p14 10
E13 Rush supply order R2 is rejected 5-1 p13 10
E14 Alternative vendor is contacted for R2 8-2 p16 10
E15 Rush supply order R1 is delayed for time T4 7-1 p15 30
E16 Product A is unavailable when O1 is due 7-1 p17 30
E17 Alternative vendor is contacted for R1 8-1 p16 30
E18 Rush supply order R2 is shipped from the alternative

vendor (i.e., non-occurrence of event “product
unavailable when O2 due”)

9-1 p18 30

E19 Order O2 is confirmed 9-3 p6 30
E20 Order O2 is shipped 11-1 p10 31
E21 Order O1 is delayed 12-1 p7 50
E22 Alternative sourcing attempt for R1 failed 9-2 p19 50
E23 Notify customer about order O1 delay 14-1 p8 50
E24 Order O1 is cancelled 12-1 p9 71

Table 1: A trace of possible event sequence generated from Figure 18

Figure 20 enables us to analyze the various events and their causes. The events that represent

exceptions are shaded in this figure. The consequences of a particular event can be traced

forward along this directed graph, while the causes of it should be traced backwards until one or

more root nodes are reached. For example, it is not difficult to see that E8 and E12 are the main

causes of exception E13, i.e., product A was out of stock with the distributor and a rush supply

order R2 was issued, but this rush supply order was rejected by the vendor because of a

 21

production delay. Similarly, the graph shows that the ultimate exceptions resulting from E12 are

E21, E22 and E24. The sequence of main events is as follows:

Production is delayed (E12) rush supply order R1 is also delayed (E15) another vendor is

contacted (E17) alternative sourcing failed (E22) Order O1 cancelled (E24)

Moreover, notice that the exception E11 (notify supply chain manager) happens because of two

stock-out events of product A within 50 time units as denoted by events E2 and E8. Thus:

Stock out of A for order O1 (E2) & Stock out of A for order O2 (E8) Notify supply manager (E11)

Actually, Figure 20 only shows one possible scenario and gives the ultimate disposition of orders

O1 and O2 (O1 was cancelled, while O2 was fulfilled). Figure 21 shows another out-of-stock

situation during order fulfillment; however, now the outcome is different. Here, E16 (Product A

unavailable when O1 is due) is resolved by E18 (Rush supply order for R2 shipped from the

alternative vendor). Therefore, order O1 is shipped (E20) within its lead-time. Later on, in spite

of E21 (alternative sourcing for R1 fails), rush supply order R1 is shipped (E22) from the main

vendor after some delay. Eventually, order O2 is also fulfilled (E24) by the incoming inventory

from rush order R1. The modified events for this scenario are shown in Table 2 (events E1

through E17 are the same as in Table 1). Figure 21 shows the new dependency graph for these

events. Nevertheless, E11 (notify supply chain manager) still happens as before.

Event Description Trans. fired Place Time
… Events E1 thru E17 are same as in Table 1 …

E18 Rush supply order for R2 shipped from the alternative vendor. 9-1 p18 30
E19 Product available for O1 (token in p17 removed) (i.e., non-

occurrence of event “product unavailable when O1 due”)
10-1 p17 30

E20 Order O1 shipped 11-1 p10 30
E21 Alternative sourcing for R1 fails 9-2 p19 50
E22 R1 Shipped from the main vendor 6-1 p18 80
E23 Order O2 confirmed 9-3 p6 80
E24 Order O2 shipped 11-1 p10 80

Table 2: An alternative scenario of events generated from Figure 18

These two dependency graphs show only two of many possible scenarios and serve to illustrate

our approach. The advantage of this approach is that using a Petri net model as an event machine

we can generate dependency graphs to predict and analyze different "interesting" scenarios.

Moreover, by playing "token games", supply chain managers can explore a large number of

possible event dependency graphs which lead to desirable results (e.g. order fulfilled successfully)

 22

or significant exceptions (e.g., order cancellation). The design of an algorithm or heuristic that

can automatically generate dependency graphs containing such events of interest is left as a

future exercise. In this context it should be noted that it is possible to analyze all possible

dependency graphs using reachability analysis techniques [4] for time colored Petri nets.

However, as discussed there this is not very feasible for large problems for complexity reasons

and heuristic techniques are required. Next, we provide a summary of simulation results and

analyze their implications for supply chain management.

Figure 20: Dependency graph of Table 1
(exceptions are shaded) Figure 21: Dependency graph of Table 2

E2

E3

E17

E24
E10

E13

E11

E5

E7

E15

E1

E6

E9

E4

E8

E14

E16

E21

E23
E12

E22 E18

E19

E20

E2

E3

E17

E20

E10

E13

E11

E5

E7

E15

E1

E6

E9
E4

E8

E14E16

E12

E21

E18

E22

E24

E19

E23

6. Simulation Results

To demonstrate the practical value of our approach, a detailed simulation experiment was

conducted. In this simulation, we generated a large number of customer order arrival events and

traced the order fulfillment process in terms of times of occurrence of each event. To make the

simulation realistic, we assume there are three products, say A, B, and C. In general, more

products can also be supported. Table 3 shows the parameters of our simulation experiment.

Parameter Name Value or Distribution
Set of items in a customer order Random selection from three products: A, B, and C
Customer order inter-arrival time Exponential distribution with mean of 7 time units
Prob. of successful alternative sourcing (PSAS) 0.5
Inter-arrival time between production delayed
events

Exponential distribution with mean of 100

Resolution time for production delay (RT) Uniform distribution range [60, 80]
Normal supply arrival schedule 2 arrivals for each item every 30 time units

Table 3: Simulation parameter settings

 23

 The simulation runs for a period from 0 to 3500 time units. 500 customer orders are generated

and processed. Among them, 445 orders were successfully shipped, and the other 55 orders were

cancelled or rejected because of out-of-stock events and failures to find alternative sourcing. In

Table 4, the “baseline case” column summarizes the number of main events generated during the

simulation interval. Table 4 also shows that although about one quarter of customer orders (135

out of 500) occur in stock out situations, yet most of them (84 out of 135) can still be

successfully fulfilled through rush supply orders. In addition, about 10% of customer orders (48

out of 500) are fulfilled by alternative sourcing, which shows that alternative sourcing is

important.

Baseline case Strategy 1 Strategy 2
Events RT = [60, 80],

PSAS = 0.5 RT = [30, 50] PSAS = 0.7

Order arrivals (p1)* 500 500 500
 -- Customer order shipped (p10) 445 473 475
 -- Customer order cancelled (p9) 4 3 1
 -- Customer order rejected (p20) 47 21 20
 -- Back order cancelled (p25) 4 3 4
Out-of-stock events (p2) * 182 182 182
Production delay (p14) * 35 35 35
Customer order delayed (p7) 4 4 1
Back order (p3) 135 135 135
rush supply order (p4) 135 135 135
rush supply order fulfilled 84 111 111
 -- by main vendor 36 77 33
 -- by alternative vendors 48 34 78
Rush supply order rejected by main vendor (p13) 102 60 102
Supply order delayed (p15) 8 16 6
Contact alternative vendors (p16) 110 76 108
Alternative sourcing failed (p19) 62 42 30
Performance Indexes
Customer order fill rate 89% 95% 95%
Average customer order fulfillment time 28 27 28
Average replenishment time of rush supply orders
(main vendor) 54 18 27

Average replenishment time of supply orders
(alternative vendors) 10 10 11

*: These are input events. The three strategies have the same input events.

Table 4: Comparing different strategies in terms of events

 24

Table 5 shows the detailed distribution of out-of-stock events by product. Each product accounts

for about one third of these 182 out-of-stock events. In practice, it may be difficult for a supply

chain manager to trace each one of these 182 events individually. Using Rule 13 (see Section

5.1), we can filter these events and reduce the number of events sent to the manager. Thus, the

supply chain manager may be notified only when there are two out-of-stock events within a 50

time unit interval. Therefore, the number of events which needs management attention is reduced

to 80, about 40% of the original number of events. Moreover, the manager can adjust Rule 13 to

further reduce this number suitably.

Products A B C Total

Out-of-stock events 53 66 63 182

Notify supply chain manager of out-of-stock events 24 29 27 80

Table 5: Numbers of out-of-stock events

In addition, the events in Table 4 can be used to calculate key performance indexes of the supply

chain. As Table 4 shows, the fill rate of customer orders is 89% and the average time between an

order arrival and the shipment of the order is 28 time units. In addition, on average, it takes 54

time units for the main vendor to replenish rush supply orders, because production delays occur

frequently (35 delay events) and they last a while before being resolved. In contrast, it takes a

shorter average time (10 time units) to get supplies from alternative vendors. In general, since the

customer order fill rate is somewhat low, the performance of this system may need to be

improved. We show next how this can be done with our approach.

An important aspect of our approach is the ability to do sensitivity analysis. To show how such

analysis can help to improve the performance of this supply chain, we alternately considered the

effect on performance of changing two parameters: reducing the resolution time of production

delays (Strategy 1), and increasing the probability of finding alternative sourcing (Strategy 2).

Strategy 1 considers the possibility that a production delay can be resolved in a time interval [30,

50] instead of [60, 80]. For Strategy 2, another alternative vendor is introduced into the supply

chain so that the probability of finding alternative sourcing is increased to 0.7. The simulation

results of these two strategies are also shown in Table 4. Using Strategy 1, although there is a

large number of back orders, more than a half of them (77 out of 135) are still delivered through

successful rush supply orders from the main vendor (only 34 back orders are replenished by

alternative vendors). For the second strategy, 70% of back orders (78 out of 111) are fulfilled by

 25

alternative vendors. Both strategies lead to an increase in the fill rate of customer orders. Thus,

compared with the baseline strategy, Strategy 1 and Strategy 2 can increase the fill rate to 95%.

Similarly, other scenarios can be explored and analyzed in detail with this technique.

7. Comparison with Related Work

Related research for detailed modeling of supply chains is still limited. Active databases rely on

event-condition-action (ECA) rules [18]. Such rules make databases "active" by allowing them

to react to events, i.e., when an event occurs, if some conditions hold, an action (such as database

update, insert, query) is taken. However, the drawback of ECA rules is that they cannot do event

chaining in a natural way, and hence cannot easily facilitate the analysis of cause-effect

relationships between events. Moreover, they are also unable to trace back the causes of events,

or forecast future events. Finally, temporal attributes cannot be modeled explicitly.

One domain in which event management has been studied with considerable interest and success

is the area of network management. Here the objective is to manage large number of low-level

events that may be related and to extract high-level events that require management attention

while ignoring the unimportant ones. Hasan et al [10] provide a conceptual framework for

describing causal and temporal relationships between network events. In [9], Gruschke give a

dependency graph based algorithm for event correlation in networks. This algorithm is used to

map raw events in the network to faulty objects based on the links in the graph. These

approaches are relevant in supply chains also, but they lack a precise representation of temporal

constraints. In [6], Time Petri nets are integrated into databases and used for semantic mapping

of events in computer networks. The transitions are associated with guard conditions expressed

as database constraints. It is an interesting approach with possible applications in supply chains,

but harder to implement and verify. In particular, there is no standard approach to transform an

event rule to a Petri net and time constraints are captured in an ad-hoc way. Case-based

approaches for event correlation in networks are given in [14]. These methods compare a new

case against a database of cases and look for stored solutions; however, they require an

application-specific model and are computationally complex. Rule-based or knowledge-based

approaches are discussed in [8, 28]. Here the knowledge of the expert is described in rules and

the rules are applied to diagnose a new problem. However, formal representations of rules are

not provided, and hence it is difficult to extend those approaches to other domains.

 26

Other related work includes a proactive SCEM system with agent technology discussed in [5].

While it focuses on event monitoring and alert generation, this system lacks the capability of

analyzing events and suggesting solutions. Patterns have been studied in many domains, but the

ones developed in the context of workflow management [1, 24] are the closest to our work;

however, they do not address the complex temporal constraints. Classical Petri nets have been

used to model rules in knowledge bases [15, 20, 29]. However, high-level time colored Petri nets

are naturally more expressive because, besides capturing temporal constraints elegantly, they can

support a rich vocabulary of event rules, such as sequence operators (and, or), modifiers (last,

nth, any, none), and predicates [8]. We have modeled the part of this vocabulary that is relevant

in supply chains, such as and, or, any, and none, in these seven patterns because our focus is on

the most common patterns that arise in supply chains. The other part of the vocabulary

consisting of modifiers can also be modeled as a further extension using the concepts of guards

or multi-set colors in Petri nets (see [11, 12]).

8. Conclusions

We developed an approach for modeling event relationships in a supply chain through Petri-nets.

The formalism consists of seven basic patterns that capture cause-effect relationships in Petri-

nets. These patterns can be combined together as building blocks to create other patterns and also

more complex Petri-nets. We used a very extensive example to illustrate this approach and

showed in detail how dependency graph analysis can be used to determine causal relationships

between events in a dynamic supply chain. It should be noted that these relationships are

complex and depend upon the exact timing of events. We demonstrated that slight changes in

temporal relationships can result in a very different dependency graph and also final outcome.

Petri net simulation offers a mature technique for analyzing the Petri net models, and the easy

availability of many Petri net software packages is an asset. We implemented Petri net models

using CPN tools and performed sensitivity analysis by simulation. By changing a specific event

parameter, such as event resolution time, we can show how supply chain performance is affected.

Such scenario analysis can suggest solutions to improve supply chain performance. Therefore, by

managing events, we can actually manage supply chain performance. We ran comprehensive

simulation experiments illustrated how this approach can help decision makers to improve

supply chain performance.

 27

In summary, as supply chains become more tightly integrated across partners, it is becoming

increasingly important to respond in real-time to events (also called sense-and-respond

capability). We described a novel approach to model event relationships in a supply chain using

Petri-net patterns that can be combined to create realistic Petri-net models of supply chains. We

further implemented a model in a Petri-net modeling and simulation tool, and ran simulation

experiments with it. A unique feature of the approach is that the Petri-nets are constructed from

patterns or building blocks which can be composed together and extended to create new user-

defined patterns. In future work, we would like to develop more formal verification techniques

for the supply chain models, and also develop heuristics for reachability analysis of dependency

graphs to predict "interesting" events.

Acknowledgements

The work of the first two authors was supported in part by a grant from IBM.

References
1. Aalst, W.M.P. van der, Hofstede, A.H.M. ter, Kiepuszewski, B., and Barros, A.P. “Workflow

Patterns,” Distributed and Parallel Databases, 14(1):5-51, 2003.

2. Alvarenga, C.A. and Schoenthaler, R.C. “A New Take on Supply Chain Event

Management,” Supply Chain Management Review, March/April, 2003, pp. 29-35.

3. Asgekar, V. “Event Management Graduates with Distinction,” Supply Chain Management

Review, September/October, pp. 15-16, 2003.

4. Berthomieu, B., and Diaz, M. “Modeling and Verification of Time Dependent Systems

Using Time Petri Nets,” IEEE Transactions on Software Engineering, 17(3):259-273, 1991.

5. Bodendorf, F. and Zimmermann, R. “Proactive Supply-Chain Event Management with Agent

Technology,” International Journal of Electronic Commerce, 9(4): 57-89, Summer 2005.

6. Casati, F., Du, W. and Shan, M. “Semantic Mapping of Events,” HP Labs Technical, HPL-

98-74 980421.

7. Christensen, and S., Hansen, N.D. "Coloured Petri Nets Extended with Place Capacities, Test

Arcs and Inhibitor Arcs". Application and Theory of Petri Nets 1993, Marsan, M. A. (ed.),

Lecture Notes in Computer Science, 691:(186-205). Springer-Verlag, Berlin, 1993.

 28

8. Gardner, R. and Harle, D. “Pattern discovery and specification translation for alarm

correlation,” In proceedings of Network Operations and Management Symposium

(NOMS’98), New Orleans, USA, February 1998, IEEE.

9. Gruschke, B. “Integrated Event Management: Event Correlation Using Dependency Graphs”,

In Proceedings of the 9th IFIP/IEEE International Workshop on Distributed Systems:

Operations & Management (DSOM 98), Newark, DE, USA, October 1998.

10. Hasan, M, Sugla, B., and Viswanathan, R. “A conceptual framework for network

management event correlation and filtering systems,” In M. Sloman, S. Mazumdar, and E.

Lupu, editors, Integrated Network Management VI, pages 233–246, Boston, MA, May 1999.

11. Jensen, K. Coloured Petri Nets: Basic Concepts, Analysis Methods and Practical Use,

Volume 1, Springer-Verlag, Berlin Heidelberg, 1996.

12. Jensen, K. “An Introduction to the Practical Use of Coloured Petri Nets,” Lectures on Petri

Nets II: Applications, Reisig, W and Rozenberg, G (eds.), Lecture Notes in Computer

Science, 1492:(237-292), Springer-Verlag 1998.

13. Lee, H., Padmanabhan, V. and Whang, S. “The Bullwhip Effect in Supply Chains,” Sloan

Management Review(38), 1997, pp.93-102.

14. Lewis, L. “A case–based reasoning approach to the resolution of faults in communication

networks,” In Proceedings of the IFIP TC6/WG6.6 Third International Sysposium on

Integrated Network Management, Hegering, H. G. and Yemini, Y. (eds.) San Francisco,

USA, April 1993, pp. 671–682.

15. Liu, N.K and Dillon, T. “An approach towards the verification of expert systems using

numerical Petri net,” International Journal of Intelligent Systems, Vol. 6, No. 3, pages 255-

276. 1991.

16. Luckham, D. The Power of Events, Addison-Wesley, Boston, 2002.

17. Marabotti, D. “Information Technology Insights: Supply Chain Event Management Emerges

in Enterprise Software,” Chemical Market Reporter, 262(9):21-22, September 2002.

18. McCarthy, D.R., and Dayal, U. “The Architecture of an Active Database System,”

Proceedings of ACM SIGMOD Conference on Management of Data, J. Clifford, B. G.

Lindsay, and D. Maier (eds.). ACM Press, New York, 1989, pp. 215-224

19. McCrea, B. “EMS Completes the Visibility Picture,” Logistics Management, 44(6):57-61,

June 2005.

 29

20. Meseguer, P. “A New Method to Checking Rule Bases for Inconsistency: A Petri Net

Approach,” In Proceedings of the 9th European Conference on Artificial Intelligence (ECAI-

90), Stockholm, August 1990.

21. Montgomery N. and Waheed, R. “Supply Chain Event Management Enables Companies to

Take Control of Extended Supply Chains,” Report on European E-Business, AMR Research,

September 2001.

22. Murata, T. “Petri Nets: Properties, Analysis and Application,” In Proceedings of the Institute

of Electrical and Electronics Engineers, 77(4): 541-580, April 1989.

23. Ratzer, V. A., Wells, L., Lassen, M. H, Laursen, M., Qvortrup, F. J., Stissing, S. M.,

Westergaard, M., Christensen, and S., Jensen, K. “CPN Tools for Editing, Simulating, and

Analysing Coloured Petri Nets,” Applications and Theory of Petri Nets 2003, W. van der

Aalst, E. Best (Eds.), Lecture Notes in Computer Science, 2679: (450 - 462), Springer-

Verlag GmbH, 2003.

24. Russell, N., Aalst, W.M.P.van der, Hofstede, A.H.M. ter, and Edmond, D. Workflow

Resource Patterns: Identification, Representation and Tool Support. In O. Pastor and J.

Falcao e Cunha, editors, Proceedings of the 17th Conference on Advanced Information

Systems Engineering (CAiSE'05), volume 3520 of Lecture Notes in Computer Science, pages

216-232. Springer-Verlag, Berlin, 2005.

25. Shimura, T., Lobo, J. and Murata, T. “An Extended Petri Net Model for Normal Logic

Programs,” IEEE Transactions on Knowledge and Data Engineering, 7(1): 150-162, 1995.

26. Strozniak, P. “Exception Management,” Frontline Solutions, 3(8): 16-24, August 2002.

27. Wang, J. Timed Petri Nets Theory and Application, Kluwer Academic Publishers, Boston,

1998, pp. 63-123.

28. Wu, P., Bhatnagar, R., L. Epshtein, Shi, Z. Alarm correlation engine (ace). In Proceedings of

the 1998 IEEE Network Operations and Management Symposium (NOMS'98), New Orleans,

Louisiana, USA, 1998, pages 733-742.

29. Zhang, D and Nguyen, D. “PREPARE: A Tool for Knowledge Base Verification,” IEEE

Transactions on Knowledge and Data Engineering, 6(6):983-989, 1994

30. Zuberek, W.M. “Timed Petri nets - definitions, properties, and applications,”

Microelectronics and Reliability, 31(4):627-644, 1991.

 30

Appendix 1: Simulation of Petri net in Figure 18

1. Hierarchical CPN mapping

Here we show how our Petri nets are implemented using CPN Tools. Figure 22 gives a Colored

Petri net (CPN or CP-net) mapping from Figure 18. To make this mapping readable, a

hierarchical CPN is used. In Figure 22, each transition with a small tag, called HS-tag, is a

substitution transaction, and it is mapped onto a so-called subpage. This CPN has three levels.

The first level is shown in Figure 22. The transaction “rule8&9” here can be expanded as a sub-

page as shown in Figure 23 (Level 2). Furthermore, transaction “rule8” in Figure 23 can be

substituted by a sub-page as shown in Figure 24.

Figure 22: CP-net (Level 1)

2. Implementation of time constraints

CPN tools cannot directly support the subtle time semantics used in this paper, but it can support

timed CP-nets. In a timed CP-net, a global clock is introduced and a token can carry a time stamp.

 31

The time stamp describes the earliest model time when the token can be used. In addition, after

firing a transition, the output tokens can be delayed for a fixed time. The details of timed CP-nets

can be found in [12].

Figure 23: Subpage for “rule8&9” (Level 2) Figure 24: Subpage for “rule8” (Level 3)

e1

EVENT
ev ev

e2

EVENT

6

Expire

ev

ev
EVENT

e1 expired

[2, 5]

Rule 1

Figure 25: Time Petri net Figure 26: Implementation with CPN Tools

Since CPN tools are not designed for handling time intervals attached to transitions, we had to

improvise and come up with a general approach for doing so. In mapping a time Petri net, a

“clock” was introduced with each transition that has an associated time interval. Whenever this

transition is enabled, the clock starts and then moves independently until timeout. Figure 26 is

the mapping of the time Petri net of Figure 25, and shows a timed CPN with two “clocks”. In

Figure 26, transition “Start 1” fires whenever there is a token in e1. According to Figure 25, Rule

1 should fire in the [2,5] time interval after it is enabled. This interval is modeled by the L1.ran()

function, which generates a random number between 2 and 5. Therefore, “Timer 1” has an initial

 32

token with a color showing the ID of event e1, allowed waiting time, and actual waiting time 0.

Then transition “Clock 1” fires. For each firing, the actual waiting time is increased by 1 and this

token will be delayed for 1 time unit. Transition “Clock 1” fires until the allowed waiting time is

reached. This is controlled by a guard “c2 < d2” placed on this transition. At that time, if the

transition “Rule 1” is still enabled, it fires. The other “clock” controls the expiration of e1.

3. Implementation of inhibitor arcs

We can substitute inhibitor arcs with an equivalent structure as discussed in [7]. Figure 28 shows

an equivalent Petri net of Rule 1 (see Figure 27). In Figure 28, each order arrival into p1 sends an

empty list to the place “stockout list”. Then transition “makelist’ fires if there is any token in

place p2 (i.e., out-of-stock event) and this list is appended with any item which is currently out-

of-stock. In order to ensure this list is completely generated before it is actually used by Rule 1,

Rule 1 always fires 1 time unit later than transition “makelist”. This delay is achieved by the

place “delay”, where a token arrives one time unit after transition “start” fires. Later, this list is

used to control the firing of Rule 1. Two functions are used in the guard conditions of the

transitions. Function contain(item1, itemls1) checks whether item1 exists in list itemls1 to

prevent duplicates. Function containls(itemls2, itemls1) returns true if any item of list itemls1 is

contained in list itemls2. Therefore, transition “rule 1” fires only if none of the ordered items is

in the stockout list.

Figure 27: Rule 1 with an
inhibitor arc Figure 28: CPN implementation of Rule 1

Out-of-stock

p2

p6

S

Q
q

q

s
Order

confirmed

rule 1

Q

Order
arrival

p1

T2

 33

