
 155

Chapter VIII
Service-Oriented Processes:

An Introduction to BPEL
Chun Ouyang

Queensland University of Technology, Australia

Wil M.P. van der Aalst
Eindhoven University of Technology, The Netherlands and Queensland University of Technology,

Australia

Marlon Dumas
Queensland University of Technology, ���������Australia

Arthur H.M. ter Hofstede
Queensland University of Technology, ���������Australia

Marcello La Rosa
Queensland University of Technology, Australia

Copyright © 2007, Idea Group Inc., distributing in print or electronic forms without written permission of IGI is prohibited.

Abstract

The Business Process Execution Language for Web Services (BPEL) is an emerging standard for specifying
the behaviour of Web services at different levels of details using business process modeling constructs. It
represents a convergence between Web services and business process technology. This chapter introduces
the main concepts and constructs of BPEL and illustrates them by means of a comprehensive example.
In addition, the chapter reviews some ��� perceived limitations of BPEL and discusses proposals to address
these limitations. The chapter also considers the possibility of applying formal methods and Semantic
Web technology to support the rigorous development of service-oriented processes using BPEL.

156

Service-Oriented Processes

Introduction

Web services are a standardised technology for
building and integrating distributed software sys-
tems. Web services are an incarnation of a software
development paradigm known as Service-Ori-
ented Architectures (SOAs). Although there is no
broad consensus around the definition of SOAs,
it can be said that SOAs revolve around at least
three major principles: (1) software systems are
functionally decomposed into independently de-
veloped and maintained software entities (known
as “services”); (2) services interact through the
exchange of messages containing meta-data;
and (3) the interactions in which services can
or should engage are explicitly described in the
form of interfaces.

At present, the first generation of Web service
technology has reached a certain level of maturity
and is experiencing increasing levels of adoption,
especially in the context of business applications.
This first generation relies on XML, SOAP and
a number of so-called WS-* specifications for
message exchange (Curbera, Duftler, Khalaf,
Nagy, Mukhi, & Weerawarana, 2002), and on
XML Schema and WSDL for interface descrip-
tion. In the meantime, a second generation of Web
services, based on richer service descriptions is
gestating. Whereas in first-generation Web ser-
vices, interface descriptions are usually equated
to sets of operations and message types, in the
second generation the description of behavioural
dependencies between service interactions (e.g.,
the order in which messages must be exchanged)
plays a central role.

The Business Process Execution Language for
Web Services (BEA Systems, Microsoft, IBM, &
SAP, 2003), known as BPEL4WS or BPEL for
short, is emerging as a standard for describing
the behaviour of Web services at different levels
of abstraction. BPEL is essentially a layer on top
of WSDL and XML Schema, with WSDL and
XML Schema defining the structural aspects of
service interactions, and BPEL defining the be-

havioural aspects. To capture service behaviour,
BPEL adopts principles from business process
modeling. Indeed, the central idea of BPEL is
to capture the business logic and behavioural
interface of services in terms of process models.
These models may be expressed at different levels
of abstraction, down to the executable level. At the
executable level, BPEL can be used to describe the
entire behaviour of a new Web service that relies
on several other services to deliver its functional-
ity. This practice is known as service composition
(Casati & Shan, 2001). An example of a composite
service is a travel booking system integrating
flight booking, accommodation booking, travel
insurance, and car rental Web services.

In this chapter, we introduce BPEL by illustrat-
ing its key concepts and the usage of its constructs
to define service-oriented processes and to model
business protocols between interacting Web ser-
vices. We also discuss some perceived limitations
of BPEL and extensions that have been proposed
by industry vendors to address these limitations.
Finally, we review some research related to BPEL
and conclude with a note on future directions.

Why BPEL?

BPEL supports the specification of service-
oriented processes, that is, processes in which
each elementary step is either an internal action
performed by a Web service or a communication
action performed by a Web service (sending and/
or receiving a message). They can be executed
to implement a new Web service as a concrete
aggregation of existing services to deliver its
functionality (i.e. composite Web service). For
example, a service-oriented process may specify
that a when a “Sales” Web service receives a
“purchase order” from the “Procurement” Web
service of a customer, the Sales service engages
in a number of interactions with several the “Pro-
curement” Web service as well as several other

 157

Service-Oriented Processes

Web services related to invoicing, stock control,
and logistics, in order to fulfil the order.

BPEL draws upon concepts and constructs
from imperative programming languages includ-
ing: (1) lexically scoped variables; (2) variable
assignment; (3) sequential execution; (4) condi-
tional branching; (5) structured loops; and (6)
exception handling (try-catch blocks). However,
BPEL extends this basic set of constructs with
other constructs related to Web services and
business process management, to address the
following aspects:

•	 Messaging: BPEL provides primitive con-
structs for message exchange (i.e., send,
receive, send/receive).

•	 Concurrency: To deal with concurrency
between messages sent and received, BPEL
incorporates constructs such as block-struc-
tured parallel execution, race conditions,
and event-action rules.

•	 XML typing: To deal with the XML-inten-
sive nature of Web services, BPEL variables
have XML types described in WSDL and
XML Schema. In addition, expressions may
be written in XML-specific languages such
as XPath or XSLT.

BPEL process definitions can be either fully
executable or they can be left underspecified. Ex-
ecutable BPEL process definitions are intended to
be deployed into an execution engine. This deploy-
ment results in a new Web service being exposed,
which usually relies upon and coordinates several
other Web services. This is why BPEL is some-
times referred to as a language for “Web service
composition.” Meanwhile, underspecified BPEL
definitions (called abstract processes) capture
a non-executable set of interactions between a
given (Web) service and several other services.
One possible usage of abstract BPEL processes is
as a means for specifying the order in which the
interactions (or “operations”) that a given service
supports should occur for the service to deliver its

functionality. Such specification of dependencies
between interactions is usually called a business
protocol. Coming back to the above purchase order
process, one may capture the fact that an interac-
tion “request for quote” must precede a related
interaction “place order.” A business protocol
can be used for process monitoring, conformance
checking and analysis of service compatibility.
Importantly, a Web service whose business pro-
tocol is described as an abstract BPEL process
does not need to be implemented as an executable
BPEL process: it may very well be implemented
using any other technology (e.g., standard J2EE
or .Net libraries and extensions for Web service
development). Another usage of an abstract proc-
ess is as a template of a BPEL process that needs
to be refined into an executable implementation.
The use of BPEL abstract processes as business
protocols or as templates is still the subject of
ongoing research as discussed in the Section
“BPEL-Related Research Efforts”. At present,
commercial BPEL technology is mainly focused
on fully executable BPEL processes.

To further understand the reason for the emer-
gence of BPEL, it is interesting to view it from a
historical perspective. Since 2000 there has been
a growing interest in Web services. This resulted
in a stack of Internet standards (HTTP, XML,
SOAP, WSDL, and UDDI) which needed to be
complemented by a process layer. Several vendors
proposed competing languages, for example,, IBM
proposed WSFL (Web Services Flow Language)
(Leymann, 2001) building on FlowMark/MQ-
Series and Microsoft proposed XLANG (Web
Services for Business Process Design) (��������Thatte,
2001���������������� �������������������������) building on Biztalk. BPEL emerged as a
compromise between both languages, supersed-
ing the corresponding specifications. It combines
accordingly the features of a block-structured
language inherited from XLANG with those for
directed graphs originating from WSFL. The
first version of BPEL (1.0) has been published
in August 2002, and the second version (1.1)
has been released in May 2003 as input for the

158

Service-Oriented Processes

standardization within OASIS. The appropri-
ate technical committee (������������������� OASIS Web Services
Business Process Execution Language TC, 2006)�
is working since the time of submission and is in
the process of finalizing the appropriate standard
specification, namely Web Services Business
Process Execution Language (WS-BPEL) version
2.0 (�������������� OASIS, 2005).

Currently BPEL is implemented in a variety of
tools (see http://en.wikipedia.org/wiki/ BPEL for
a compendium). Systems such as BEA WebLogic,
IBM WebSphere, Microsoft BizTalk, SAP XI and
Oracle BPEL Process Manager support BPEL
to various degrees, thus illustrating the practi-
cal relevance of this language. Also, there is a
relatively complete open-source implementation
of BPEL, namely ActiveBPEL.

Overview of BPEL

B�� PEL defines a model and a grammar for describ-
ing the behaviour of a business process based on
interactions between the process and its partners.
A BPEL process is composed of activities that can
be combined through structured operators and
related through so-called control links. In addition
to the main process flow, BPEL provides event
handling, fault handling and compensation (i.e.,
“undo”) capabilities. In the long-running business
processes, BPEL applies correlation mechanism to
route messages to the correct process instance.

BPEL is layered on top of several XML specifi-
cations: WSDL, XML Schema and XPath. WSDL
message types and XML Schema type definitions
provide the data model used in BPEL processes.
XPath provides support for data manipulation. All
external resources and partners are represented
as WSDL services.

Partners and Partner Links

Business processes that involve Web services often
interact with different partners.����������������� ���������������� The interaction

with each partner occurs through Web service
interfaces called port types, and the structure of
the relationship at the interface level is identified
by a partner link. A partner link specifies which
port type must be supported by each of the part-
ners it connects, and which port type it offers to
each partner. A partner link is an instance of a
typed connector, known as a partner link type,
which specifies a set of roles and the port type
provided by each role.

Consider a simple purchase order process
which interacts with two partners: the client and
the invoicing service. Each interaction involves
one of the parties (i.e., the process or partner)
exposing the required functionality via a port
type, and the other party making use of that
functionality. Figure 1 briefly depicts this process
and the interactions between the process and each
of its two partners.

For the above process, two partner links are
created, namely “purchasing” and “invoicing”.
Figure 2 shows the XML code snippets defin-
ing these two partner links and their link types
“purchasingPLT” and “invoicingPLT.” The link
type “purchasingPLT” includes the definition of
a role “purchaseService” (played by the purchase
order process) referring to port type “purchasePT”
where a “purchase order” is received by the pro-
cess. Similarly, the link type “invoicingPLT” is
defined featuring two roles: “invoiceService”
(played by the invoicing service) referring to port
type “computerPricePT” where the operation of
a “request for price calculation” is called, and
“invoiceRequester” (played by the purchase order
process) referring to port type “invoiceCallback-
PT” where the invoice is received by the process.
Following common practice, we define the partner
link types in the WSDL document to which the
BPEL process definition refers. Meanwhile, the
partner links themselves are defined in the BPEL
process definition.

 159

Service-Oriented Processes

Activities

A BPEL process definition relates a number of
activities. Activities are split into two categories:
basic and structured activities. Basic activities are
also called primitive activities. They correspond
to atomic actions and stand for work being per-
formed within a process. Structured activities
impose behavioural and execution constraints on
a set of activities contained within them. Struc-
tured activities can be nested and combined in
arbitrary ways, thus enabling the presentation of
complex structures.

Basic activities. These contain: invoke, invok-
ing an operation on some Web service; receive,
waiting for a message from an external partner;
reply, replying to an external partner; wait, paus-
ing for a certain period of time; assign, copying
data from one place to another; throw, indicating
errors in the execution; compensate, undoing the
effects of already completed activities; exit, ter-
minating the entire service instance; and empty,
doing nothing. Below, we look closer into three
activities: invoke, receive, and reply.

Invoke, receive, and reply activities are three
types of interaction activities defined in BPEL.
Interaction activities must specify the partner
link through which the interaction occurs, the
operation involved, the port type in the partner

client invoicing

service

purchase
order

purchase
order

process

"purchasePT"

request for
price calculation

invoice

"computerPricePT"

"invoiceCallbackPT"

Figure 1. A purchase order process interacting with two partners

WSDL snippet:
...
<partnerLinkType name="purchasingPLT">
 <role name="purchaseService">
 <portType name="purchasePT"/>
 </role>
</partnerLinkType>

<partnerLinkType name="invoicingPLT">
 <role name="invoiceService">
 <portType name="computePricePT"/>
 </role>
 <role name="invoiceRequester">
 <portType name="invoiceCallbackPT"/>
 </role>
</partnerLinkType>
...

BPEL snippet:
...
<partnerLinks>
 <partnerLink name="purchasing"
 partnerLinkType="purchasingPLT"
 myRole="purchaseService"/>
 <partnerLink name="invoicing"
 partnerLinkType="invoicingPLT"
 myRole="invoiceRequester"
 partnerRole="invoiceService"/>
</partnerLinks>
...

Figure 2. Definition of the “purchasing” and
“invoicing” partner links and their types

160

Service-Oriented Processes

link that is being used, and the input and/or output
variables that will be read from or written to. Note
that variables are used to carry data (see Subsec-
tion on “Data Handling”) and are required only
in executable processes.

For an invoke activity, the operation and port
type that are specified are that of the service being
invoked. Such an operation can be a synchronous
“request-response” or an asynchronous “one-way”
operation. An invoke activity blocks to wait for
a response if it is calling a request-response op-
eration, whereas in the case of a one-way opera-
tion, invoke can be viewed as a “send” action. A
synchronous invocation requires both an input
variable and an output variable. An asynchronous
invocation requires only the input variable of the
operation because it does not expect a response
as part of the operation. For example, in the
purchase order process shown in Figure 1, the
process initiates a price calculation service by
sending a purchase order to the invoicing service.
Figure 3 provides the XML definition of this
invoke activity, which calls a one-way operation
“initiatePriceCalculation”.

A business process provides services to its
partners through receive activities and corre-
sponding reply activities. A receive activity al-
lows the process to block and wait for a matching
message to arrive, while a reply activity is used to
send a response to a request that was previously
accepted via a receive activity. Such responses
are only meaningful for synchronous interactions.
Therefore, a pair of receive and reply activities

must map to a request-response operation. In such
case, any control flow between these two activities
is effectively the implementation of that operation.
A receive with no corresponding reply must map
to a one-way operation, and the asynchronous
response is always sent by invoking the same
one-way operation on the same partner link.

A receive activity specifies the partner link
it expects to receive from, and the port type and
operation that it expects the partner to invoke.
In addition, it may specify a variable used to re-
ceive the message data being expected. A receive
activity also plays a key role in the lifecycle of
a business process. It is always associated with
a specific attribute called createInstance with
a value of “yes” or “no”. The default value of
this attribute is “no”. A receive activity with the
createInstance attribute set to “yes” must be an
initial activity in a business process, which pro-
vides the only way to instantiate the process in
BPEL (see structured activity pick for a variant).
A reply activity shares the same partner link, port
type and operation as the corresponding receive
activity, but may specify a variable that contains
the message data to be sent as the response.

Let’s revisit the purchase order process in
Figure 1. A process instance is instantiated upon
receiving a purchase order from the client, and
may be completed by replying to the client with
an invoice listing the price for that purchase
order. Figure 4 provides the XML definition of
the corresponding pair of receive and reply ac-
tivities over a request-response operation named
“sendPurchaseOrder”. In the same process, there
is another receive activity referring to a one-way
operation “sendInvoice”. It is used for receiving
the invoice produced by the invoicing service.
The process defines this activity as the response
to the price calculation request sent by the process
before (see the invoke activity defined in Figure
3). Figure 5 gives the XML definition of this
receive activity.

Before moving onto structured activities, it is
worth mentioning the following two restrictions

<invoke partnerLink="invoicing"
 portType="computePricePT"
 operation="initiatePriceCalculation"
 inputVariable="PurchaseOrder"/>

Figure 3. An invoke activity for initiating a price
calculation service

 161

Service-Oriented Processes

that BPEL applies on the above three interaction
activities:

•	 First, BPEL does not allow two receive ac-
tivities to be active (i.e., ready to consume
messages) at the same time if they have the
same partner link, port type, operation, and
correlation set which is used for routing mes-
sages to process instances (see Subsection
on “Correlation”). If this happens, a built-in
fault named “conflictingReceive” will be
raised at runtime.

•	 Second, BPEL does not allow a request to
call a request-response operation if an active
receive is found to consume that request, but
a reply has not yet been sent to a previous
request with the same operation, partner
link, and correlation set. If this happens, a
built-in fault named “conflictingRequest”
will be thrown.

Structured activities. BPEL defines six struc-
tured activities: sequence, switch, pick, while, flow,
and scope. The use of these activities and their
combinations enable BPEL to support most of the
workflow patterns described in (���������������� Aalst, van der,
Hofstede, ter, Kiepuszewski, & Barros, 2003��).

A sequence activity contains one or more ac-
tivities that are performed sequentially. It starts
once the first activity in the sequence starts, and
completes if the last activity in the sequence com-
pletes. For example, Figure 6 defines a sequence
of activities performed within the purchase order
process shown in Figure 1. To improve readability,
this and the following code snippets do not use
XML syntax. Instead, BPEL element names are
written in bold while the level of nestings of ele-
ments is captured through indentation.

	 A switch activity supports conditional rout-
ing between activities. It contains an ordered
list of one or more conditional branches called
case branches. The conditions of branches are
evaluated in order. Only the activity of the first
branch whose condition holds true will be taken.
There is also a default branch called otherwise
branch, which follows the list of case branches.
The otherwise branch will be selected if no case
branch is taken. This ensures that there is always
one branch taken in a switch activity. The switch
activity completes when the activity of the selected
branch completes. For example, consider a sup-
ply-chain process which interacts with a buyer
and a seller. Assume that the buyer has ordered

<receive partnerLink="purchasing"
 portType="purchasePT"
 operation="sendPurchaseOrder"
 variable="PurchaseOrder"
 createInstance="yes"/>
...

<reply partnerLink="purchasing"
 portType="purchasePT"
 operation="sendPurchaseOrder"
 variable="Invoice"/>

Figure 4. An initial receive activity for receiving
a purchase order from the client and the cor-
responding reply activity for replying with an
invoice for the order

<receive partnerLink="invoicing"
 portType="invoiceCallbackPT"
 operation="sendInvoice"
 variable="Invoice"/>

Figure 5. A receive activity for receiving an invoice
from the invoicing service

begin sequence
 receive PurchaseOrder from client;
 invoke PriceCalculation on invoicing service;
 receive Invoice from invoicing service;
 reply Invoice to client
end sequence

Figure 6. A sequence of activities performed in
the purchase order process in Figure 1

162

Service-Oriented Processes

a volume of 100 items of a certain product. The
process needs to check the stock inventory before
fulfilment. If the result shows more than 100 items
of the product in stock, the process performs the
fulfilment work (which may contain a number of
activities); if the result shows less than 100 items
in stock, a fault is thrown indicating the product is
out of stock; otherwise (i.e., no items are in stock),
another fault is thrown signalling the product is
discontinued. Figure 7 shows how to use a switch
construct to model these activities.

A pick activity captures race conditions based
on timing or external triggers. It has a set of
branches in the form of an event followed by an
activity, and exactly one of the branches is selected
upon the occurrence of the event associated with
it. If more than one of the events occurs, the selec-
tion of the activity to perform depends on which
event occurred first. If the events occur almost
simultaneously, there is a race and the choice of
activity to be performed depends on both tim-
ing and implementation. There are two types
of events: message events (onMessage) which
occur upon the arrival of an external message,
and alarm events (onAlarm) which occur upon a
system timeout.

Note that onMessage is a receive-like con-
struct and is thereby treated in much the same
manner as a receive activity, for example,, both
are used for process instantiation, share the same
attributes, and should not violate the constraint on
“conflictingReceive.” A pick activity completes
when one of the branches is triggered by the
occurrence of its associated event and the corre-
sponding activity completes. Figure 8 shows an
example of a typical usage of pick for modeling
the order entry/completion within a supply-chain
process. There are three events: a line item mes-
sage event whose occurrence will trigger an order
entry action; a completion message event whose
occurrence will trigger an order completion ac-
tion; and an alarm event which will occur after
a period of 3 days and 10 hours and thus trigger
a timeout action.

A while activity supports repeated perfor-
mance of an activity in a structured loop, that is, a
loop with one entry point and one exit point. The
iterative activity is performed until the specified
while condition (a boolean expression) no longer
holds true. For example, the pick activity defined
in Figure 8 can occur in a loop where the seller
is accepting line items for a large order from

begin switch
 case StockResult >100 : perform fulfillment work
 case StockResult > 0 : throw OutOfStock fault
 otherwise : throw ItemDiscoutinued fault
end switch

Figure 7. A switch activity modeling stock inven-
tory check in a supply-chain process

begin pick
 onMessage LineItem : add line item to order
 onMessage CompletionDetail : perform order
completion
 onAlarm for ‘P3DT10H’ : handle timeout for
order completion
end pick

Figure 8. A pick activity modeling order entry/
completion in a supply-chain process

While MoreOrderEntriesExpected = true
 begin pick
 onMessage LineItem : add line item to order
 onMessage CompletionDetail :
 begin sequence
 perform order completion;
 MoreOrderEntriesExpected := false
 end sequence
 onAlarm for ‘P3DT10H’ :
 begin sequence
 handle timeout for order completion;
 MoreOrderEntriesExpected := false
 end sequence
 end pick

Figure 9. A while activity modeling a loop of the
pick activity defined in Figure 8

 163

Service-Oriented Processes

the buyer. Figure 9 shows how this loop can be
specified using a while activity. The pick activity
nested within while can be repeated until no more
order entries are expected.

A flow activity provides parallel execution and
synchronization of activities. It also supports the
usage of control links for imposing further control
dependencies between the activities nested within
it. Control links are non-structural constructs in
BPEL and will be covered in more detail in the
next subsection. Figure 10 shows an example of
the simple usage of flow construct as equivalent to
a nested concurrency construct. In this example,
a supply-chain process sends questionnaires to
the buyer and seller in parallel, and then blocks to
wait for their responses. After both have replied,
the process continues to next task (e.g., to gener-
ate an evaluation report). In Figure 10, the two
invoke activities are enabled to start concurrently
as soon as the flow starts. Assume that both invoke
activities refer to synchronous request-response
operations. The flow is completed after the buyer
and the seller have both responded.

A scope is a special type of structured activity.
It ��� is used for grouping activities into blocks, and
each block is treated as a unit to which the same
event and exception handling can be applied.
A scope has a primary activity (i.e. main activ-
ity) that defines its normal behaviour, �������� and can
provide event handlers, fault handlers, and also
a compensation handler. Like other structured
activities, scopes can be nested to arbitrary depth,
and the whole process is implicitly regarded as

the top level scope. The usage of scope will be
discussed in detail further on in Subsections���� on
“Event Handlers”, “Fault Handling” and “Com-
pensation”.

Control Links

The sequence, flow, switch, pick, and while
described in the previous subsection provide a
means of expressing structured flow dependen-
cies. In addition to these constructs, BPEL pro-
vides another construct known as control links
which, together with the associated notions of
join condition and transition condition, support
the definition of precedence, synchronization and
conditional dependencies on top of those captured
by the structured activities.

A control link denotes a conditional transition
between two activities. A join condition, which is
associated to an activity, is a boolean expression
in terms of the tokens carried by incoming
control links to this activity. Each token, which
represents the status of the corresponding control
link, may take either a positive (true) or a negative
(false) value. For example, a control link between
activities A and B indicates that B cannot start
before A has either completed or has been skipped
(e.g., A is part of an unselected branch of a switch
or pick). Moreover, activity B can only be executed
if its associated join condition evaluates to true,
otherwise B will not run. A transition condition,
which is associated to a control link, is a boolean
expression over the process variables (just like

begin flow
 invoke FillQuestionnaire (request-response) operation on the buyer
 invoke FillQuestionnaire (request-response) operation on the seller
end flow

...

Figure 10. A flow activity modeling two concurrent questionnaire interactions in a supply-chain pro-
cess

164

Service-Oriented Processes

the conditions in a switch activity). For example,
an activity X propagates a token with a positive
value along an outgoing control link L, if and
only if X was executed (as opposed to being
skipped) and the transition condition associated
to L evaluates to true.

As mentioned above, if an activity has incoming
control links, one of the enabling conditions for
this activity to run is that its associated join
condition evaluates to true. Otherwise,��������� a fault
called join failure occurs. When a join failure
occurs at an activity, it can be handled in two
different ways as determined by the suppressJoin-
Failure attribute associated with the activity. This
attribute can be set to a value of “yes” or “no”.
If “yes,” it instructs to suppress the join failure.
In this case, the activity will be skipped, and the
tokens carried by all its outgoing links will take
a negative value. ������������������������������ The process by which positive
and negative tokens are propagated along control
links, causing activities to be executed or skipped,
is called dead path elimination. Otherwise, if ����the
suppressJoinFailure is set to “no,” the join fail-
ure is thrown, which triggers the standard fault
handling procedure (see Subsection on “Fault
Handling”).

Control links are non-structural constructs
defined in BPEL, and allow the definition of
directed graphs. However, it is important to
mention two link restrictions. First, control links
must not create cyclic graphs. Second, control
links must not cross the boundary of a loop
(i.e., a while activity) as that would lead to an
inconsistent state.

We revisit the example of the stock inventory
check within a supply-chain process. This has
been previously specified by a switch activity
shown in Figure 7. Below, we use control links
to replace the switch construct for the modeling.
For completeness, we add two activities: one is
that the process inquires the stock result from the
seller before the inventory check switch activity,
and the other is that the process informs the
seller about the updated stock result after the
switch activity. Using structured constructs, the
above two activities, together with the previous
switch activity for stock inventory check, can
be specified in a sequence construct. Using
control link constructs, we obtain a directed
graph representation shown in Figure 11. Figure
12 sketches the definition of the corresponding
abstract BPEL specification.

invoke
StockResultInquiry

activity
perform fulfillment

throw
OutOfStock

throw
ItemDiscontinued

invoke
UpdateStockResult

toFulfilment
(StockResult >100)

toDiscontinued
(StockResult = 0)

toOutOfStock
(100>StockResult>0)

afterFulfilment afterDiscontinued
afterOutOfStock

Control Link Activity Legend :

Figure 11. A directed graph representing the stock inventory check procedure within a supply-chain
process

 165

Service-Oriented Processes

From the above example, it can be observed that
any control link leaving an unexecuted activity
or whose transition condition evaluates to false
will have its link status set to false. As a result,
each control link will propagate either a true or
a false token so that the activities downstream
which have a control dependency on the link do
not end up waiting for ever. This is the mechanism
of dead path elimination that we have mentioned
before. Also note that, as a syntactical restriction

in BPEL, control links must be used within a
flow construct.

Event Handlers

The purpose of event handlers is to specify logic
to deal with events that take place concurrently
while the process is running. An event handler is
an event-action rule associated with a scope, and
is in the form of an event followed by an activity.

begin flow (suppressJoinFailure =”yes”)
 begin link declaration
 link “toFulfillment”
 link “toOutOfStock”
 link “toDiscontinued”
 link “afterFulfillment”
 link “afterOutOfStock”
 link “afterDiscontinued”
 end link declaration
 invoke StockResultQuery (request-response) operation on the seller
 source of link “toFulfillment” with
 transitionCondition (StockResult >100)
 source of link “toOutOfStock” with
 transitionCondition (StockResult > 0 and StockResult <100)
 source of link “toDiscontinued” with
 transitionCondition (StockResult = 0)
 activity : performing fulfillment work
 joinCondition LinkStatus(“toFulfillment”)
 target of link “toFulfillment”
 source of link “afterFulfillment”
 transitionCondition (true)
 throw OutOfStock fault
 joinCondition LinkStatus(“toOutOfStock”)
 target of link “toOutOfStock”
 source of link “afterOutOfStock”
 transitionCondition (true)
 throw ItemDiscoutinued fault
 joinCondition LinkStatus(“toDiscontinued”)
 target of link “toDiscontinued”
 source of link “afterDiscontinued”
 transitionCondition (true)
 invoke StockResultUpdate (one-way) operation on the seller
 joinCondition LinkStatus(“afterFulfillment”) or
 LinkStatus(“afterOutOfStock”) or
 LinkStatus(“afterDiscontinued”)
 target of link “afterFulfillment”
 target of link “afterOutOfStock”
 target of link “afterDiscontinued”
end flow

Figure 12. Using control links to model the stock inventory check procedure sketched in Figure 11

166

Service-Oriented Processes

An event handler is enabled when its associated
scope is under execution and may execute concur-
rently with the main activity of the scope. When
an occurrence of the event associated with an
enabled event handler is registered, the activity
within the handler is executed while the scope’s
main activity continues its execution. Also, the
activity within an event handler is invoked con-
currently when the corresponding event occurs.
For this reason, control links are not allowed to
cross the boundary of an event handler.

It is important to emphasize that event handlers
are part of the normal behaviour of a scope, unlike
fault and compensation handlers (see Subsections
on “Fault Handling” and “Compensation”).
The event handlers associated with a scope are
enabled when that scope commences, and are
disabled when the normal processing of the scope
is complete. Any event handler that has already
started is allowed to finish its execution. An entire
scope is not considered to complete until all event
handlers associated with the scope have finished
their executions.

BPEL allows any type of activity, except the
compensate activity, to handle events. There are
two types of events. One is the message events
(onEvent) triggered by the arrival of an external
message, the other is the alarm events (onAlarm)
triggered by an alarm which goes off after a user-
specified time.

Message event handlers. ����������������� The semantics of
onEvent message events is very similar to receive
activities, except that these message events cannot
create process instances. An event handler is not
enabled prior to the creation of a process instance,
and is capable of processing events only if an
instance has been created. The message that
triggers an event is identified by the partner link
from which the message arrives, the appropriate
port type, operation and optional variable and
correlation set. This message can be part of either
an asynchronous (one-way) or a synchronous
(request-response) operation. In the latter case,
the event handling logic is expected to have a

reply activity, in order to fulfil the requirements
of the operation.

When a message event is triggered, the activity
specified within the corresponding message event
handler is carried out. Message event handlers
remain active as long as the scope to which they
are attached is active. An active message event
handler can be triggered multiple times, even
simultaneously, if the expected message events
occur multiple times. However, it should be noted
that simultaneously active instances of a message
event handler is permitted, while the semantics of
simultaneous onEvent from the same partner, port
type, operation and with the same correlation set
are undefined. The reader may recall that receive
activities have a similar constraint.

Alarm event handlers. An onAlarm event
marks a system timeout. It has two alternative
attributes: for and until, and exactly one of them
must be specified. These two attributes determine
two forms of alarm events. The first specifies
duration within for attribute. In this form, a timer
for calculating the duration is started when the
associated scope is activated. As soon as the
specified duration is reached, the activity in the
corresponding event handler is executed. In the
second form, until attribute details a specific point
in time when the alarm will be fired. As soon as
this specific point in time is reached, the alarm
event is triggered and the corresponding event
handler is executed. It should be noted that, unlike
message events, alarm events can be processed at
most once while the associate scope is active.

Let’s revisit the purchase order process shown
in Figure 1. The process may terminate its execu-
tion if either a cancel message is received from
the client or the process has been running already
for two days in processing a purchase order from
the client. In the latter case, the process will reply
to the client with a cancel message (instead of
an invoice). The two event handlers defined in
Figure 13 are used to implement the above two
scenarios when the sequence activity defined in
Figure 6 is running.

 167

Service-Oriented Processes

Fault Handling

Fault handling in a business process enables the
process to recover locally from possible antici-
pated faults that may arise during its execution.
For example, consider a fault caused by insuf-
ficient funds in the client’s account for payment
during a purchase order process. The fault may be
handled by requesting the information of another
available account from the client, without having
to restart the entire process.

BPEL considers three types of faults. These
are: application faults (or service faults), which
are generated by services invoked by the process,
such as communication failures; process-defined
faults, which are explicitly generated by the
process using the throw activity; and system faults,
which are generated by the process engine, such
as “conflictingReceive,” “conflictingRequest” and
join failures introduced before. Note that the first
two types of faults are usually user-defined, while
the last one consists of built-in faults defined in
BPEL.

Fault handlers specify reactions to internal or
external faults that occur during the execution of
a scope, and are defined for a scope using catch
activities. Unlike event handlers, fault handlers

do not execute concurrently with the scope’s main
activity. Instead, this main activity is interrupted
before the body of the fault handler is executed.
In more detail, if a fault occurs during the normal
process of a scope, it will be caught by one of the
fault handlers defined for the scope. The scope
switches from the normal processing mode to the
fault handling mode. Note that it is never possible
to run more than one fault handler for the same
scope under any circumstances.

A fault handler is defined either explicitly
or implicitly. An implicit fault handler is also
known as a default fault handler. It is created,
using a catch-all activity, to catch any fault that
is not caught by all explicit fault handlers within
the scope. Therefore, one can assume that each
scope has at least one (default) fault handler. If a
fault handler cannot handle a fault being caught
or another fault occurs during the fault handling,
both faults need to be re-thrown to the (parent)
scope that directly encloses the current scope. A
scope in which a fault has occurred is considered
to have ended abnormally and thus cannot be
compensated, no matter whether or not the fault
can be handled successfully (without being re-
thrown) by the corresponding fault handler.

Finally, control links may cross the boundary
of fault handlers. However, a control link is
only allowed to leave the boundary of a fault
handler, and the converse is not true. Also, if a
fault occurred within a scope has been handled
successfully, any control link leaving from that
scope will be evaluated normally.

Let’s refer back to the stock inventory check
specified in Figure 7. Figure 14 shows two fault
handlers used to catch the two faults that may
occur during the inventory check. If a fault oc-
curs indicating the product is out of stock, the
process invokes the order pending operation on
the buyer. Otherwise, if a fault occurs indicating
the product discontinued, the process invokes the
order rejection operation on the buyer.

begin scope
 onEvent Cancel from client : exit
 onAlarm for ‘P2DT’ :
 begin sequence
 reply Cancel to client;
 exit
 end sequence
 (* sequence activity defined in Figure 6 *)
end scope

Figure 13. Examples of the message and alarm
event handlers used for terminating the purchase
order process shown in Figure 1

168

Service-Oriented Processes

Compensation

As part of the exception handling, compensation
refers to application-specific activities that
attempt to undo the already completed actions.
For example, consider a client requests to cancel
the air ticket reservation with a ticket order
process. The process will need to carry out the
following compensation actions, which involve
the cancellation of the reservation with the airline,
and optionally the conduction of fee charges to the
client if there are fees applied for the cancellation
of a reservation.

In BPEL, compensation actions are specified
within a compensation handler. Each scope, except
the top level scope (i.e. process scope), provides
one compensation handler that is defined either
explicitly or implicitly. Similarly to a default fault
handler, an implicit (or default) compensation
handler is created for a scope, if the scope is asked
for compensation but an explicit compensation
handler is missing for that scope. A fault handler
or the compensation handler of a given scope,
may perform a compensate activity to invoke the
compensation of one of the sub-scopes nested
within the given scope. Similarly to the control
link restrictions applied to event handlers, control
links are not allowed to cross the boundary of
compensation handlers.

It is important to mention that whether the
compensation handler of a scope is available for

invocation depends on the current local state of the
scope. For example, it is not possible to conduct
the compensation of a scope that has never been
executed. BPEL uses a term “scope snapshot”
to refer to the preserved state of a successfully
completed uncompensated scope. In such state, the
data to which the scope has access is snapshotted
for use when the associated compensation handler
is running. Thus, the compensation handler of
a scope is available for invocation only if the
scope has a scope snapshot. Otherwise, invoking
a compensation handler that is unavailable is
equivalent to performing an empty activity. Since
the compensation of already completed activities
is a complex procedure, we decide not to include
an example here and the interested reader may
refer to (BEA Systems, Microsoft, IBM, & SAP,
2003) for more details.

Data Handling

In the previous subsections, we mainly focus
on the control logic of a BPEL process. Careful
readers may already notice that the process data
is necessary for the process logic to make data-
driven decisions (e.g., in a switch activity). In the
following, we introduce how data is represented
and manipulated in BPEL.

Messages. Business protocols specified in
BPEL prescribe exchange of messages between
interacting Web services. These messages are
WSDL messages defined in the appropriate WSDL
definitions. Briefly, a message consists of a set
of named parts, and each of these parts is typed
generally using XML Schema. For example, in
Figure 15 below, the orderMsg is shown with three
message parts: an orderNumber of an integer type,
an orderDetails of a string type, and a timeStamp
of a dateTime type. Note that the integer, string
and dateTime are all simple XML Schema types. If
a complex XML Schema type is needed, it needs
to be defined in the corresponding XML Schema
file (see Section on “BPEL At Work”).

begin scope
 catch OutOfStock fault :
 invoke OrderPending operation on the buyer
 catch ItemDiscontinued fault :
 invoke OrderRejection operation on the buyer
 (* switch activity defined in Figure 7 *)
end scope

Figure 14. Examples of the fault handlers for
catching the corresponding faults occurred during
the stock inventory check defined in Figure 7

 169

Service-Oriented Processes

Variables. In a BPEL process definition,
variables are used to hold messages exchanged
between the process and its partners as well as
internal data that is private to the process. Vari-
ables are typed, using WSDL message types, XML
Schema simple types or XML Schema elements.
Note that if a variable is of WSDL message type,
it also consists of a set of named parts (each of
which as specified in a part attribute). For exam-
ple, in Figure 16 both order and order_backup
variables are defined as of the orderMsg type
above, and the number variable is defined as of
an integer type.

Each variable is declared within a scope and
is said to belong to that scope. Variables that
belong to the global process scope are called
global variables, while others are called local
variables. BPEL follows the same rules as those
in imperative programming languages with lexical
scoping of variables. A variable is visible in the
scope (e.g., namely Q) to which it belongs and all
scopes that are nested within Q. Thus, a global
variable is visible in the entire process. Also, it
is possible to hide a variable in a scope (Q) by
defining a variable with the same name in one of
the scopes nested in Q.

Expressions. BPEL supports four types of
expressions: (1) boolean-valued expressions for
specifying transition conditions, join conditions,
and conditions in switch or while activities;
(2) deadline-valued expressions for specifying
until attribute of onAlarm or a wait activity; (3)

duration-valued expressions for specifying for
attribute of onAlarm or a wait activity; and (4) gen-
eral expressions for assignments (see next). BPEL
provides an extensible mechanism for specifying
the language used to define expressions. This lan-
guage must have facilities such as to query data
from variables, to query the status of control links,
and so forth XPath 1.0 is the default language for
specifying expressions. Another language that can
be used is XSLT. Figure 17 gives four examples
of expressions used in BPEL. The first two are
both boolean-valued expressions: one indicating
the status of a control link, the other indicating
whether the orderNumber of an order message is
greater than a given number (e.g. 50). The third
one is a deadline-valued expression, and the last
one is a duration-based expression.

Assignments. Data can be copied from one
variable to another using the assign activity.
An assign activity may consist of a number of
assignments, each of which being defined by a
copy element with from and to attributes. The

<message name="orderMsg"/>
 <part name="orderNumber"
type="integer"/>
 <part name="orderDetails"
type="string"/>
 <part name="timeStamp"
type="dateTime"/>
</message>

Figure 15. Example of a WSDL message defini-
tion

Figure 16. Examples of variable definitions in
BPEL

<variables>
 <variable name="order"
messageType="orderMsg"/>
 <variable name="order_backup"
messageType="orderMsg"/>
 <variable name="number"
type="integer"/>
</variables>

Figure 17. Examples of expressions used in
BPEL

... bpws:getLinkStatus('linkL2') ...

... bpws:getVariableData('order','orderNumber')>50

...

... until="'2006-01-31T18:00'" ...

... for="'P40D'" ...

170

Service-Oriented Processes

source of the copy (specified by from attribute)
and the target (specified by to attribute) must be
type-compatible. BPEL provides a complete set
of possible types of assignments. For example,
within common uses of assignment, the source
of the copy can be a variable, a part of a variable,
an XPath expression, and the target of the copy
can be a variable or a part of a variable. Figure 18
illustrates copying data from one variable (order)
to another (order_backup) as well as copying data
from a variable part (orderNumber part of order)
to a variable of compatible type (number), and
both assignments are defined within one assign
activity.

Correlation

Business processes may in practice occur over
a long period of time, possibly days or months.
In long-running business processes, it is neces-
sary to route messages to the correct process
instance. For example, when a request is issued
from a partner, it is necessary to identify whether
a new business process should be instantiated
or the request should be directed to an existing
process instance. Instead of using the concept of
instance ID as often used in distributed object
system, BPEL reuses the information that can
be identified from the specifically marked parts
in incoming messages, such as order number or
client id, to route messages to existing instances
of a business process. This mechanism is known
as correlation. The concept of correlation set is
then defined by naming specific combinations of
certain parts in the messages within a process.
This set can be used in receive, reply and invoke
activities, the onMessage branch of pick activities,
and the onEvent handlers.

Similarly to variables, each correlation set is
defined within a scope. Global correlation sets
are declared in the process scope, and local cor-
relation sets are declared in the scopes nested
within a process. Correlation sets are only visible
for the scope (Q) in which they are declared and

all scopes nested in Q. Also, correlation set can
only be initiated once during the lifetime of the
scope to which it belongs. How to define and use
correlation sets will be illustrated through the
example in the next section.

BPEL at Work

This section describes the example of a BPEL
process which provides sales service. This pro-
cess, namely salesBP, interacts with a customer
process (customerBP) by means of asynchronous
messages. The process salesBP enacts the role
of service provider, whilst the customer is the
service requester.

Process Description

Figure 19 depicts the behaviour of the process
salesBP. The process is instantiated upon receiv-
ing a request for quote (rfQ), which includes the
description and the amount of the goods needed, a
unique identifier of the request (rfQId), and a dead-
line (tO). Next, the process checks the availability
of the amount of the goods being requested. If not
available, a rejectRfQ is sent back to the customer,
providing the reason of the rejection. Otherwise,
the process prepares a quote with the cost of the

<assign>
 <copy>
 <from variable="order"/>
 <to variable="order_backup"/>
 </copy>
 <copy>
 <from variable="order"
part="orderNumber"/>
 <to variable="number"/>
 </copy>
</assign>

Figure 18. Examples of assignments used in
BPEL

 171

Service-Oriented Processes

Figure 19. Flow diagram of the salesBP process

172

Service-Oriented Processes

offer and then sends it back to the customer. After
sending the quote, the process waits for an order
until time-limit tO is reached. If the order is not
received by that time, no more activities will be
performed. Otherwise, if the order is returned
before the deadline tO, it will be processed. After
the order has been processed successfully, the
entire process instance will complete. However,
the processing of the order may be cancelled at
any time upon receiving a cancelOrder message
from the customer, and as a result, the process
will be forced to terminate.

XML Schema Definition

Figure 20 shows the XML Schema file “saleX.
xsd” for the process salesBP. It defines the complex
XML Schema types for messages rfQ, quote, or-
der, rejectRfQ and cancelOrder that are involved

in salesBP (lines 7-26). In particular, messages
order and cancelOrder have the same structure as
message quote (lines 4-6). Besides, each message
includes an element named rfQId (lines 9, 17, 23),
through whose value a BPEL-compliant execu-
tion engine is able to identify the proper process
instance. In this example, this value, which is
initially set by the requester (i.e., customerBP)
and then propagated to the provider, is supposed
to be unique.

WSDL Document

The BPEL process salesBP is layered on top of the
WSDL document “sales.wsdl” shown in Figure 21.
In particular, the first part of the code concerns
the description of the messages exchanged by the
service, and their mapping with the related ele-
ments in the salesX.xsd schema (lines 2-16). In the

01: <schema ...>
02: <element name="rfQ" type="rfQMsgType"/>
03: <element name="quote" type="quoteMsgType"/>
04: <element name="order" type="quoteMsgType"/>
05: <element name="cancelOrder" type="quoteMsgType"/>
06: <element name="rejectRfQ" type="rejectRfQMsgType"/>
07: <complexType name="rfQMsgType">
08: <sequence>
09: <element name="rfQId" type="string"/>
10: <element name="description" type="string"/>
11: <element name="amount" type="integer"/>
12: <element name="tO" type="dateTime"/>
13: </sequence>
14: </complexType>
15: <complexType name="quoteMsgType">
16: <sequence>
17: <element name="rfQId" type="string"/>
18: <element name="cost" type="double"/>
19: </sequence>
20: </complexType>
21: <complexType name="rejectRfQMsgType">
22: <sequence>
23: <element name="rfQId" type="string"/>
24: <element name="reason" type="string"/>
25: </sequence>
26: </complexType>
27: </schema>

Figure 20. XML Schema definition - salesX.xsd

 173

Service-Oriented Processes

second part, two port types called “providerPT”
and “requesterPT” are defined: the former groups
all the input messages of the salesBP process,
that is, rfQ, order and cancelOrder (lines 17-27),
the latter groups all its output messages, that is,
quote and rejectRfQ (lines 28-35). Each message
is enclosed in a corresponding operation featuring
the same name; each operation is asynchronous
(i.e. one-way operation) since it contains only one
input message.

BPEL requires the port types involved in an
interaction to be included in a partner link type
construct together with their corresponding roles.
Therefore the partner link type “salesPLT” has
been defined, featuring two roles: provider (played
by salesBP) and requester (played by custom-
erBP), assigned to port types “providerPT” and
“requesterPT,” respectively (lines 36-43).

BPEL Process Definition

Figure 22 shows an excerpt from the BPEL code
that defines an executable salesBP process. A
BPEL process basically consists of a header,
regarding the general process definition, and the
process flow, which will be concretely executed
by the BPEL engine.

In the initial part, a partner link named
“salesPL” is defined (lines 2-5): it refers to the
partner link type “salesPLT” previously declared
in the WSDL file and is used to allow the process
to interact with its partner (customerBP). salesPL
has two roles: provider, played by the process
itself (line 3), and requester, played by the cus-
tomer (line 4). A list of variables is also declared,
which corresponds to the messages handled by
the process (lines 6-13), and a correlation set
called “salesCS”, where rfQId (set as a value of
the so-called properties attribute) contains the
information for routing messages to the correct
process instance (lines 14-16).

The process flow (lines 17-105) is basically
a sequence of three activities: a receive, a check
on some data and a switch, corresponding to the

01: <definitions name="sales".../>
02: <message name="rfQMsg">
03: <part name="payload" element="rfQ"/>
04: </message>
05: <message name="orderMsg">
06: <part name="payload" element="order"/>
07: </message>
08: <message name="quoteMsg">
09: <part name="payload" element="quote"/>
10: </message>
11: <message name="cancelOrderMsg">
12: <part name="payload" element="cancelOrder"/>
13: </message>
14: <message name="rejectRfQMsg">
15: <part name="payload" element="rejectRfQ"/>
16: </message>
17: <portType name="providerPT">
18: <operation name="rfQ">
19: <input message="rfQMsg"/>
20: </operation>
21: <operation name="order">
22: <input message="orderMsg"/>
23: </operation>
24: <operation name="cancelOrder">
25: <input message="cancelOrderMsg"/>
26: </operation>
27: </portType>
28: <portType name="requesterPT">
29: <operation name="quote">
30: <input message="quoteMsg"/>
31: </operation>
32: <operation name="rejectRfQ">
33: <input message="rejectRfQMsg"/>
34: </operation>
35: </portType>
36: <partnerLinkType name="salesPLT">
37: <role name="provider">
38: <portType name="providerPT"/>
39: </role>
40: <role name="requester">
41: <portType name="requesterPT"/>
42: </role>
43: </partnerLinkType>
44: . . .
45: </definitions>

Figure 21. WSDL interface document - sales.
wsdl

174

Service-Oriented Processes

001: <process name="salesBP"...>
002: <partnerLinks>
003: <partnerLink name="salesPL" myRole="provider"
004: partnerRole="requester" partnerLinkType="salesPLT"/>
005: </partnerLinks>
006: <variables>
007: <variable name="rfQ" messageType="rfQMsg"/>
008: <variable name="quote" messageType="quoteMsg"/>
009: <variable name="order" messageType="orderMsg"/>
010: <variable name="cancelOrder" messageType="cancelOrderMsg"/>
011: <variable name="rejectRfQ" messageType="rejectRfQMsg"/>
012: <variable name="goodsAvailable" type="boolean"/>
013: </variables>
014: <correlationSets>
015: <correlationSet name="salesCS" properties="rfQId"/>
016: </correlationSets>
017: <sequence>
018: <receive name="receiveRfQ" partnerLink="salesPL"
019: portType="providerPT" operation="rfQ" variable="rfQ"
020: createInstance="yes">
021: <correlations>
022: <correlation set="salesCS" initiate="yes"/>
023: </correlations>
024: </receive>
025: ...checkAvailability: set variable "goodsAvailable" to true
026: or false...
027: <switch>
028: <case condition="getVariableData('goodsAvailable')">
029: <sequence>
030: <assign name="prepareQuote">
031: <copy>
032: <from variable="rfQ" part="payload" query="/rfQ/rfQId"/>
033: <to variable="quote" part="payload" query="/quote/rfQId"/>
034: </copy>
035: <copy>
036: <from expression="120"/>
037: <to variable="quote" part="payload" query="/quote/cost"/>
038: </copy>
039: </assign>
040: <invoke name="sendQuote" partnerLink="salesPL"
041: portType="requesterPT" operation="quote"
042: inputVariable="quote">
043: <correlations>
044: <correlation set="salesCS" initiate="no".../>
045: </correlations>
046: </invoke>
047: <pick name="receiveOrder">
048: <onMessage partnerLink="salesPL" portType="providerPT"
049: operation="order" variable="order">
050: <correlations>
051: <correlation set="salesCS" initiate="no"/>
052: </correlations>

Figure 22. BPEL executable process salesBP.bpel

 175

Service-Oriented Processes

053: <scope name="processOrder_s">
054: <faultHandlers>
055: <catch faultName="forcedTermination">
056: <exit/>
057: </catch>
058: </faultHandlers>
059: <eventHandlers>
060: <onMessage portType="sales:providerPT"
061: operation="cancelOrder" variable="cancelOrder"
062: partnerLink="salesPL">
063: <correlations>
064: <correlation set="salesCS" initiate="no"/>
065: </correlations>
066: <throw name="forcedTermination"
067: faultName="forcedTermination"/>
068: </onMessage>
069: </eventHandlers>
070: ...processOrder...
071: </scope>
072: </onMessage>
073: <onAlarm
074: until="getVariableData('rfQ','payload','/rfQ/tO')">
075: <empty/>
076: </onAlarm>
077: </pick>
078: </sequence>
079: </case>
080: <otherwise>
081: <sequence>
082: <assign name="prepareRejectRfQ">
083: <copy>
084: <from variable="rfQ" part="payload"
085: query="/rfQ/rfQId"/>
086: <to variable="rejectRfQ" part="payload"
087: query="/rejectRfQ/rfQId"/>
088: </copy>
089: <copy>
090: <from expression="'goods unavailable'"/>
091: <to variable="rejectRfQ" part="payload"...
092: query="/rejectRfQ/reason"/>
093: </copy>
094: </assign>
095: <invoke name="sendRejectRfQ" partnerLink="salesPL"
096: portType="requesterPT" operation="rejectRfQ"
097: inputVariable="rejectRfQ">
098: <correlations>
099: <correlation set="salesCS" initiate="no".../>
100: </correlations>
101: </invoke>
102: </sequence>
103: </otherwise>
104: </switch>
105: </sequence>
106: </process>

Figure 22. continued

176

Service-Oriented Processes

main flow depicted in Figure 15. Through the first
activity, receiveRfQ, a new process instance is
created once the initial message rfQ is received
(line 20). This is then copied into variable rfQ
(line 19), and the current instance is tagged with
the value read from the correlation set “salesCS”
(lines 21-23). The second activity, checkAvailabil-
ity (not shown in the code for simplicity), sets the
boolean variable goodsAvailable to “true” if the
amount of the goods being requested is available,
otherwise to “false”.

Next, the switch activity checks the value of
goodsAvailable to determine whether or not to
continue processing the request for quote. This
corresponds to take one of the two branches in
the switch activity (line 28).

If the goods are available, the case branch
will be executed leading to a sequence of four
sub-activities, as shown in Figure 15 under the
[goods available] branch. The first activity is the
assign prepareQuote (lines 30-39), through which
salesBP can generate the quote message to be sent
to the customer copying into variable quote the
value of rfQId taken out from variable rfQ and
setting the amount of the offer to 120 (in a real
scenario, this value can be read from a proper
database). Then the quote is sent by means of
the following invoke activity, sendQuote (lines
40-46), using the same correlation set “salesCS”
(lines 43-45). Now the process should be able to
receive an order within a given time-limit: if this
happens the order can be processed, otherwise the
process must end. Accordingly, receiveOrder is
realised with a pick activity specified to wait for the
order to arrive (onMessage branch – lines 48-72)
or for the corresponding timeout alarm to go off
(onAlarm branch – lines 73-76). In more detail,
if the order arrives before the timeout expires, it
will be processed by the system; otherwise, the
process will terminate doing nothing (specified
by an empty activity – line 75). Assume that the
onMessage branch is taken. The execution of the
activity processOrder may be interrupted when a
cancelOrder message arrives. For this reason, a

scope activity, processOrder_s, is defined (lines
53-71), featuring a fault handler, an event handler
and having processOrder as its main activity.

In particular, the event handler (lines 59-69)
captures the receipt of a cancelOrder message
during the processing of the order, and then throws
a “forcedTermination” fault, which interrupts the
above order processing (lines 66-67). This fault
will be immediately caught by the fault handler
attached to the scope (lines 54-58), and as a result,
the process will be forced terminate. Note that the
exit activity (within the fault handler – line 56)
models the explicit termination, since a BPEL
process automatically ends when there is nothing
left to do. The timeout value which triggers the
onAlarm branch is extrapolated from the field tO
of variable rfQ (line 74).

On the other hand, if the goods are unavailable,
the otherwise branch of the switch is executed
incorporating two activities (lines 80-103), as
illustrated in Figure 15 under the [goods unavail-
able] branch. With the first one, prepareRejectRfQ,
salesBP copies into variable rejectRfQ the value
of rfQId taken out from variable rfQ, and sets
the reason of the rejection with the string “goods
unavailable” (lines 82-94). The second activity,
sendRejectRfQ allows the process to send the
message rejectRfQ back to the customer, report-
ing the rejection (lines 95-101).

Now, we take closer look into the correlation
mechanism used in this example. When the rfQ
is sent by an instance of customerBP, the BPEL
run-time system performs the following tasks
step by step. It generates a new instance of the
receiving process salesBP (line 20), reads the
value of rfQId from the input message, initiates
the corresponding correlation set “salesCS,” and
associates a tag with that value to the newly gen-
erated instance (lines 21-23). Next, if the amount
in the request is available (line 28), the quote is
sent back to the customer with the same correla-
tion set as rfQ (lines 40-46), and hence it will be
delivered to the requester process instance that
previously sent the rfQ. When an order is sent

 177

Service-Oriented Processes

by the customer, since it has the same correlation
set as the quote and rfQ, it will be delivered to
the process instance of salesBP that previously
sent the quote (lines 48-52). Analogously, mes-
sages rejectRfQ and cancelOrder are sent to the
correct instances of customerBP (lines 95-101)
and salesBP (lines 60-65, for the correspond-
ing receipt). Therefore in this example, from a
global point of view, customerBP is the initiator
for the correlation set salesCS, whilst salesBP is
the follower.

BPEL Process Execution

We use Oracle BPEL Process Manager platform
10.1.2 (see http://www.oracle.com/ technol-
ogy/products/ias/bpel) to edit and execute the
salesBP process. Figure 23 provides a graphical
view of the BPEL process definition of salesBP
in Oracle JDeveloper, a BPEL editor integrated in
the Oracle platform. In JDeveloper, both the code
and graphical perspectives are available to the
user. After compiling the source files (including
“salesBP.bpel,” “sales.wsdl” and “salesX.xsd”), a
BPEL process can be exposed as a Web Service
deployed in a compliant run-time environment. A
screenshot showing a running instance of salesBP
on top of the Oracle BPEL engine is depicted in
Figure 24. In the running instance, the amount
of the goods being requested by the customer is
available and the process salesBP is waiting for
an order from the customer.

Note that in the salesBP process pictured in
Figures 23 and 24, activity checkAvailability
has been implemented by means of a scope
(checkAvailability_s) which encloses the
necessary activities to interact with another
partner link representing an internal Web
Service. This service is responsible to check the
availability of the goods and to send the result
back to salesBP.

BPEL Extensions

The BPEL specification defines only the kernel
of BPEL, which mainly involves the control logic
of BPEL, limited definitions on the data handling
and even less in the communication aspect. Given
the fact that BPEL is already a very complicated
language, a complete BPEL specification covering
full definitions of BPEL will make the specifica-
tion less maintainable and the corresponding
implementation will become less manageable. For
this reason, the OASIS technical committee on
WS-BPEL decides to keep the scope of the current
specification and allows future extensions to be
made in separate documentations. So far, there
have been three extensions proposed to BPEL.

BPEL-SPE. BPEL currently does not support
the modularization and reuse of “fragments” of a
business process. This has driven the publication
of a joint proposal of WS-BPEL Extension for Sub-
Processes, known as BPEL-SPE (Kloppmann,
Koenig, Leymann, Pfau, Richayzen, Riegen, et
al., 2005 September), by two major companies
involved in Web services standards: IBM and
SAP. BPEL-SPE proposes an extension to BPEL
that allows for the definition of sub-processes
which are fragments of BPEL code that can be
reused within the same or across multiple BPEL
processes.

BPEL4People. In practice, many business
process scenarios require human user interac-
tions. For example, it may be desirable to define
which people are eligible to start a certain business
process; a process may be stuck because no one
has been assigned to perform a particular task;
or it is not clear who should perform the task in
hand. BPEL currently does not cover human user
interactions. To fill in this blank, IBM and SAP
have recently proposed an extension to BPEL,
namely BPEL4People (Kloppmann, Koenig,
Leymann, Pfau, Richayzen, Riegen, et al., 2005
July). BPEL4People mainly defines how human
tasks can be implemented in a process. This can
be viewed as to add (human) resource and resource

178

Service-Oriented Processes

Figure 23. Oracle JDeveloper 10.1.2: Graphical view of the BPEL process salesBP

 179

Service-Oriented Processes

Figure 24. OracleBPEL Process Manager Console 10.1.2: Execution flow of a running instance of the
BPEL process salesBP

allocation considerations to BPEL. In parallel,
another tool vendor, Oracle, has implemented
its own extension to BPEL for handling human
tasks into its BPEL engine.

BPELJ. In BPEL, everything is seen as a
service. A BPEL executable process is an im-
plementation of a service that relies on other
services. To express that a given service uses
certain resources, such as a database, a file or a
legacy application, it is necessary to expose the

database system, the file system or the legacy
application as services. Since BPEL needs to be
used in environments where not all resources
are exposed as services, it is sometimes handy
to be able to break the “all-service” paradigm of
BPEL. Driven by this imperative, an extension
of BPEL allowing for Java code to be inserted at
specific points has been defined, namely BPELJ
(�� Blow, Goland, Kloppmann, Leymann, Pfau,
Roller, Rowley, 2004 March����������������������). This is similar to

180

Service-Oriented Processes

how Java code can be embedded into HTML code
in the context of Java Server Pages (JSPs). As
BPEL gains more adoption both in the .Net and
the Java platforms, one can expect other similar
dialects of BPEL to emerge. Also, as a competing
product to BPELJ, Oracle has implemented its
own Java Snippet for embedding Java program
into a BPEL process.

BPEL-RELATED RESEARCH
EFFORTS

There has been a number of research activities
conducted on BPEL. These include: systemati-
cal evaluation of BPEL based on the so-called
workflow patterns (����������������������������� van der Aalst, ter Hofstede,
Kiepuszewski, & Barros, 2003��������������������), analysis of BPEL
process models, generating BPEL code from a
“high-level” notations, and choreography con-
formance checking based on BPEL.

Pattern-based Analysis of BPEL

There are 20 control-flow patterns (van der Aalst,
ter Hofstede, Kiepuszewski, & Barros, 2003) and
40 data patterns (Russell, ter Hofstede, Edmond,
& van der Aalst, 2005), and accordingly the
evaluation has been performed from control-flow
perspective (Wohed, van der Aalst, Dumas, & ter
Hofstede, 2003) as well as from data perspective
(Russel, ter Hofstede, Edmond, & van der Aalst,
2005). The results of the pattern-based evaluation
of BPEL show that BPEL is more powerful than
most traditional process languages. The control-
flow part of BPEL inherits almost all constructs
of the block-structured language XLANG and
the directed graphs of WSFL. Therefore, it is no
surprise that BPEL indeed supports the union of
patterns supported by XLANG and WSFL. In par-
ticular, the BPEL pick construct (namely “deferred
choice” in workflow control-flow patterns) is not
supported in many existing workflow languages.
From the data perspective, BPEL is one of the few

languages that fully support the notion of “scope
data” elements (one of the workflow data patterns).
It provides support for a scope construct which
allows related activities, variables and exception
handlers to be logically grouped together. The
default binding for data elements in BPEL is at
process instance level and they are visible to all
of the components in a process. In addition to the
above evaluation of BPEL, work that has been
conducted on the pattern-based evaluation of
Oracle BPEL Process Manager (�������������� Mulyar, 2005��)
also involves the evaluation based on a set of
43 workflow resource patterns (Russell, van der
Aalst, ter Hofstede, & Edmond, 2005).

Generating and Analyzing BPEL
Models

Since BPEL is increasingly supported by various
engines, it becomes interesting to link it to other
types of models. In this respect, it is insightful to
consider the following: (1) BPEL more closely re-
sembles a programming language than a modeling
language and (2) BPEL supports the specification
of service-oriented processes at various levels of
details, down to executable specifications, but it
is not designed to support any form of analysis
(e.g., behaviour verification, performance analy-
sis, etc.). In other words, BPEL definitions are
somewhere in-between the higher-level process
models that analysts and designers manipulate
in the early phases of the development lifecycle,
and fully-functional code. Hence, there are two
interesting translations relating to BPEL: (1) a
translation from a higher-level notation to BPEL
and (2) a translation from BPEL to a model for
which established analysis techniques can be
applied.

Until now, attention has focused on the second
translation. Several attempts have been made to
capture the behaviour of BPEL in a formal way. A
comparative summary of mappings from BPEL to
formal languages can be found in (��������������� van der Aalst,
Dumas, ���ter Hofstede, Russell, Verbeek, & Wohed,

 181

Service-Oriented Processes

2005���). The result of comparison shows that the
work in (Ouyang, van der Aalst, Breutel, Dumas,
ter Hofstede, & Verbeek, 2005) presents the first
full formalization of control flow in BPEL that
has led to a translation tool called BPEL2PNML
and a verification tool called WofBPEL. Both
tools are publicly available at http://www.bpm.
fit.qut.edu.au/projects/babel/tools. WofBPEL is
capable of performing useful and non-syntactic
analysis, for example,, detection of unreachable
activities and detection of potentially “conflictin-
gReceive“ faults in a BPEL process. With respect
to the verification issues related communication
aspects, the work in (Fu, Bultan, & Su, 2004)
discusses how to verify the correctness of col-
lection of inter-communicating BPEL processes,
and similarly, the work in (Martens, 2005) shows
how to check the compatibility of two services
with respect to communication.

In industry, various tools and mappings are
being developed to generate BPEL code from a
graphical representation. Tools such as the IBM
WebSphere Choreographer and the Oracle BPEL
Process Manager offer a graphical notation for
BPEL. However, this notation directly reflects
the code and there is no intelligent mapping. This
implies that users have to think in terms of BPEL
constructs (e.g., blocks, syntactical restrictions on
control links, etc.). More interesting is the work
of White (2005) that discusses the mapping of
Business Process Modelling Notations (BPMN)
to BPEL, the work of Mantell (2005) on the map-
ping from UML Activity Diagrams to BPEL,
and the work by Koehler and Hauser (2004) on
removing loops in the context of BPEL. However,
none of these publications provides a mapping of
some (graphical) process modeling language onto
BPEL: White (2005) and Mantell (2005) merely
present the problem and discusses some issues
using examples and Koehler and Hauser (2004)
focuses on only one piece of the puzzle. This then
motivated the recent work on develop mappings
from Workflow nets to BPEL (van der Aalst &
Lassen, 2005) and from a core subset of BPMN

to BPEL (Ouyang, van der Aalst, Dumas, & ter
Hofstede, 2006).

Choreography Conformance
Checking based on BPEL

To coordinate a collection of inter-communicat-
ing Web services, the concept of “choreography”
defines collaborations between interacting parties,
that is,, the coordination process of interconnected
Web services that all partners need to agree on.
A choreography specification is used to describe
the desired behaviour of interacting parties.
Language such as BPEL and the Web Services
Choreography Description Language (WS-CDL)
(��Kavantzas, Burdett, Ritzinger, Fletcher, & Lafon,
2004 December����������������������������������) can be used to define a desired
choreography specification.

Assuming that there is a running process and
a choreography specification, it is interesting to
check whether each partner (exposed as Web
service) is well behaved. Note that partners have
no control over each other’s services. Moreover,
partners will not expose the internal structure
and state of their services. This triggers the ques-
tion of conformance: “Do all parties involved
operate as described?” The term “choreography
conformance checking” is then used to refer to
this question. To address the question, one can
assume the existence of both a process model
which describes the desired choreography and
an event log which records the actual observed
behaviour, that is, an actual choreography.

Choreography conformance checking benefits
from the coexistence of event logs and process
models and may be viewed from two angles. First
of all, the model may be assumed to be “correct”
because it represents the way partners should
work, and the question is whether the events in
the log are consistent with the process model. For
example, the log may contain “incorrect” event
sequences which are not possible according to
the definition of the model. This may indicate
violations of choreography that all parties

182

Service-Oriented Processes

previously agreed upon. Second, the event log
may be assumed to be “correct” because it is what
really happened. In the latter case the question is
whether the choreography that has been agreed
upon is no longer valid and should be modified.

The work in (van der Aalst, Dumas, Ouyang,
Rozinat, & Verbeek, 2005) presents an approach
for choreography conformance checking based
on BPEL and Petri nets (Murata, 1989). Based
on a process model described in terms of BPEL
abstract processes, a Petri net description of the
intended choreography can be created by using
the translation defined in (Ouyang, van der Aalst,
Dumas, & ter Hofstede, 2006) and implemented
in the tool BPEL2PNML. The conformance
checking is then performed by comparing a
Petri net and an event log (transformed from
SOAP messages under monitoring). To actually
measure conformance, a tool called Conformance
Checker has been developed in the context of the
ProM framework (see http://www.processmining.
org, which offers a wide range of tools related to
process mining.

BPEL and Semantic Web Technology

Researchers in the field of Semantic Web have
put forward approaches to enhance BPEL proc-
ess definitions with additional information in
order to enable automated reasoning for a variety
of purposes. One area in which Semantic Web
technology can add value to service-oriented
processes is that of dynamic binding. The idea of
dynamic binding is that rather than hard-coding
in the BPEL process definition (or in an associ-
ated deployment descriptor) the identities and/or
locations of the “partner services” with which the
BPEL process interacts, these partner services
are determined based on information that is only
available at runtime. For example, Verma, ���Ak-
kiraju, Goodwin, Doshi, and Lee���������������� (2004) present
an approach to achieve dynamic binding of Web

services to service-oriented processes described
in BPEL by considering inter-service dependen-
cies and constraints. They present a prototype that
can handle BPEL process definitions extended
with such dependencies and constraints and can
exploit this additional information for runtime
discovery of suitable Web services. The paper
also discusses another area where Semantic Web
technology complements service-oriented process
technology: that of semi-automated refinement
of process templates described as BPEL abstract
processes (see Introduction) into fully executable
processes. An example of a tool that implements
such refinement techniques is presented in (Be-
rardi, �� Calvanese, De Giacomo, Hull, & Mecella,�
2005).

Mandell and McIlraith (2003) present another
approach to dynamic binding of Web services
to BPEL processes. Their approach is based on
the DAML Web service ontology (DAML-S)
(Ankolekar, Burstein, Hobbs, Lasilla, Martin,
McDermott, McIlraith, Narayanan, Paolucci,
Payne, & Sycara, 2002), the DAML Query Lan-
guage (DQL) (Fikes, Hayes, & Horrocks, 2002),
and the Java Theorem Prover (JTP) (Frank, 1999)
which implements DQL. Other approaches to
capture Web service semantics include WSDL-S
(Akkiraju, Farrell, Miller, Nagarajan, Schmidt,
Sheth, & Verma, 2005) and OWL-S (Martin et
al., 2005).

While the potential outcomes of these and simi-
lar research efforts are appealing, the scalability
of the proposed techniques is still unproven and
the involved tradeoffs restrict their applicability.
Several questions remain open such as: “which
languages or approaches to describe service
semantics provide the best tradeoffs between
expressiveness and computational complexity?”
or “How much can a user trust the decisions made
by an automated Web service discovery engine,
especially at runtime?”

 183

Service-Oriented Processes

Conclusion

In this chapter, we have presented the core con-
cepts of BPEL and the usage of its constructs to
describe executable service-oriented processes.
We have also discussed extensions to BPEL that
have been proposed by tool vendors to address
some of its perceived limitations, as well as
long-term challenges related to the use of BPEL
in the context of rigorous system development
methodologies.

Currently, BPEL is being used primarily as a
language for implementing Web services using
a process-oriented paradigm. In this respect,
BPEL is competing with existing enhancements
to mainstream programming environments such
as WSE and WCF (which enhance the Microsoft
.Net framework with functionality for Web service
development), or Apache Axis and Beehive (which
do the same for the Java platform). Certainly, BPEL
is making inroads in this area, and there is little
doubt that it will occupy at least a niche position in
the space of service implementation approaches.
Several case studies related to the use of BPEL in
system development projects have been reported
in the trade press. ������������������������������� These include a report of BPEL
use at the European Space Agency and in an out-
sourcing project conducted by Policy Systems for
a state health care service (http://tinyurl.com/zrcje
and http://tinyurl.com/krg3o).

However, it must not be forgotten that BPEL can
also be used to describe the behaviour of services
at a more abstract level. Unfortunately, up to now,
tool vendors have given little attention to exploring
the possibilities opened by the description of BPEL
abstract processes. BPEL abstract processes can be
used to represent “service behaviour” at different
levels of details. In particular, they enable the
representation of temporal, casual and exclusion
dependencies between message exchanges. In this
respect, BPEL abstract processes can be viewed
as adding “behaviour semantics” on top of the
basic structural definitions of service interactions
provided by WSDL interfaces. Two open questions

at the moment are: (1) how to best exploit this
additional behaviour semantics in order to support
the analysis, testing, operation and maintenance
of service-oriented systems; (2) what level of
automated support can be realistically provided
to aid in refinement of abstract BPEL processes
into executable ones. These and the other research
directions reviewed in this chapter are only the tip
of the iceberg of what can be achieved when richer
semantic descriptions of Web services covering
behavioural aspects are available.

References

Akkiraju, R., Farrell, J., Miller, J., Nagarajan, M.,
Schmidt, M., Sheth, A., & Verma, V. (2005, April).
Web Service Semantics – WSDL-S (Technical
note). University of Georgia and IBM. Retrieved
October 18, 2006, from http://lsdis.cs.uga.edu/li-
brary/download/WSDL-S-V1.html.

Ankolekar, A., Burstein, M., Hobbs, J., Lasilla,
O., Martin, D., McDermott, D., McIlraith, S.,
Narayanan, S., Paolucci, M., Payne, T., & Sycara,
K. (2002). �������������������������������� DAML-S: Web service description
for the Semantic Web. In Proceedings of the 1st
International Semantic Web Conference (pp.
348-363).

BEA Systems, Microsoft, IBM & SAP (2003,
May). Business process execution language for
Web services (BPEL4WS).������������������� Retrieved October
18, 2006, from ftp://www6.software.ibm.com/
software/developer/library/ws-bpel.pdf.

Berardi, D., Calvanese, D., De Giacomo, G.,
Hull, R., & Mecella, M. (2005). Automatic
composition of transition-based Semantic Web
services with messaging. In Proceedings of the
31st International Conference on Very Large Data
Bases (pp. 613-624).

Blow, M., Goland, Y., Kloppmann, M., Leymann,
F., Pfau, G., Roller, D., & Rowley, M. (2004,

184

Service-Oriented Processes

March). BPELJ: BPEL for Java (White paper).
BEA and IBM.

Casati, F., & Shan, M.-C. (2001). Dynamic and
adaptive composition of e-services. Information
Systems, 26(3), 143-162.

Curbera, F., Duftler, M., Khalaf, R., Nagy, W.,
Mukhi, N., & Weerawarana, S. (2002). �����������Unraveling
the Web services Web: An introduction to SOAP,
WSDL, and UDDI. IEEE Internet Computing,
6(2), 86-93.

Fikes, R., Hayes, P., & Horrocks, I. (2002). DAML
Query Language, Abstract Specification. Re-
trieved October 18, 2006, from http://www.daml.
org/2002/08/dql/dql.

Frank, G. (1999) A general interface for interaction
of special-purpose reasoners within a modular
reasoning system. In Proceedings of the 1999
AAAI Fall Symposium on Question Answering
Systems (pp. 57-62).

Fu, X., Bultan, T., & Su, J. (2004). Analysis of
interacting BPEL Web services. In Proceedings of
the 13th International Conference on World Wide
Web (pp. 621-630). New York, NY: ACM Press.

Kavantzas, N., Burdett, D., Ritzinger, G., Fletcher,
T., & Lafon, Y. (2004, December). Web services
choreography description language version 1.0
(W3C Working Draft 17). Retrieved October 18,
2006, from http://www.w3.org/TR/2004/WD-ws-
cdl-10-20041217/.

Kloppmann, M., Koenig, D., Leymann, F., Pfau,
G., Richayzen, A., Riegen, von, C., Schmidt, P.,
& Trickovic, I. (2005, July). ������������������ WS-BPEL extension
for people: BPEL4People. A Joint White Paper
by IBM and SAP.

Kloppmann, M., Koenig, D., Leymann, F., Pfau,
G., Richayzen, A., von Riegen, C., Schmidt, P.,
& Trickovic, I. (2005, September). ��������WS-BPEL
extension for sub-processes: BPEL-SPE. A Joint
White Paper by IBM and SAP.

Koehler, J., & Hauser, R. (2004). Untangling
unstructured cyclic flows: A solution based on
continuations. In Proceedings of OTM Con-
federated International Conferences, CoopIS,
DOA, and ODBASE 2004 (pp. 121–138). ��������Berlin:
Springer-Verlag.

Leymann, F. (2001). Web services flow language,
version 1.0. Retrieved October 18, 2006, from
http://www-306.ibm.com/software/solutions/
Webservices/pdf/WSFL.pdf

Mandel, D., & McIIraith S. (2003). Adapting
BPEL4WS for the semantic Web: The bottom
up approach to Web service interoperation. In
Proceedings of the 2nd ����������������������� International Semantic
Web Conference.

Mantell, K. (2005). From UML to BPEL. Re-
trieved October, 18, 2006, from http://www.ibm.
com/developerworks/Webservices/library/ws-
uml2bpel

Martens, A. (2005). Analyzing Web service
based business processes. In Proceedings of the
8th International Conference on Fundamental
Approaches to Software Engineering (pp. 19-33).
Berlin: Springer-Verlag.

Martin, D., et al. (2005, November). OWL-S: Se-
mantic markup for Web services, W3C Member
Submission. Retrieved October 18, 2006, from
http://www.w3.org/Submission/OWL-S

Mulyar, N. (2005). Pattern-based evaluation of
Oracle-BPEL (BPM Center Report BPM-05-24).
BPMcenter.org.

Murata, T. (1989). ��������������������������������� Petri nets: Properties, analysis
and applications. Proceedings of the IEEE, 77(4),
541–580.

OASIS (2005, December 21). Web Services
Business Process Execution Language version 2.0
(Committee Draft). ���������������������������� Retrieved October 18, 2006,
from �������������������������������������http://www.oasis-open.org/committees/
download.php/16024/wsbpel-specification-draft-
Dec-22-2005.htm

 185

Service-Oriented Processes

OASIS Web Services Business Process Execution
Language TC (2006). Retrieved October 18, 2006,
from �������������������������������������http://www.oasis-open.org/committees/
tc_home.php?wg_abbrev=wsbpel.

Ouyang, C., van der Aalst, W.M.P., Breutel, S.,
Dumas, M., ter Hofstede, A.H.M., & Verbeek,
H.M.W. (2005). Formal semantics and analysis
of control flow in WS-BPEL (BPM Center Report
BPM-05-15). BPMcenter.org.

Ouyang, C., van der Aalst, W.M.P., Dumas, M., &
ter Hofstede, A.H.M. (2006). Translating BPMN
to BPEL (BPM Center Report BPM-06-02). BP-
Mcenter.org.

Russell, N., ter Hofstede, A.H.M., Edmond, D.,
& van der Aalst, W.M.P. (2005). Workflow data
patterns: Identification, representation and tool
support. ���In Proceedings of the 24th International
Conference on Conceptual Modeling (pp. ����353-
368���������������������������). Berlin: Springer-Verlag.

Russell, N., van der Aalst, W.M.P., ter Hofstede,
A.H.M., & Edmond, D. (2005). Workflow resource
patterns: Identification, representation and tool
support. ���In Proceedings of the 17th International
Conference on Advanced Information Systems
Engineering (pp. 216������������������������ -232��������������������). Berlin: Springer-
Verlag.

Thatte, S. (2001). XLANG Web services for
business process design. Retrieved October 18,
2006, from http://www.gotdotnet.com/team/
xml_wsspecs/xlang-c/default.htm�

van der Aalst, W.M.P., Dumas, M., Ouyang, C.,
Rozinat, A., & Verbeek, H.M.W. (2005). Chore-
ography conformance checking: An approach

based on BPEL and Petri nets (BPM Center
Report BPM-05-25). BPMcenter.org.

van der Aalst, W.M.P., Dumas, M., ter Hofstede,
A.H.M., Russell, N., Verbeek, H.M.W., & Wohed,
P. (2005). ��������������� �� ���Life after BPEL? In Proceedings of
European Performance Engineering Workshop
and International Workshop on Web Services and
Formal Methods ������������������������������ (pp. 35-50). Berlin: Springer-
Verlag.

van der Aalst, W.M.P., & Lassen, K.B. (2005).
Translating workflow nets to BPEL (BETA Work-
ing Paper Series). Eindhoven, The Netherlands:
Eindhoven University of Technology.

van der Aalst, W.M.P., ter Hofstede, A.H.M., Kie-
puszewski, B., & Barros, A.P. (2003). ���������Workflow
patterns. Distributed and Parallel Databases,
14(1), 5-51.

Verma, K., Akkiraju, R., Goodwin, R., Doshi, P.,
& Lee, J. (2004). ������������������������������� On accommodating inter-service
dependencies in Web process flow composition.
In Proceedings of the American Association for
Artificial Intelligence (AAAI) 2004 Spring Sym-
posium. Stanford, CA: AAAI.

White, S. (2005). Using BPMN to model a BPEL
process. BPTrends, 3(3), 1-18. Retrieved October,
2006, from http://www.bptrends.com/

Wohed, P., van der Aalst, W.M.P., Dumas, M.,
& ter Hofstede, A.H.M. (2003). ���������������� Analysis of Web
services composition languages: The case of
BPEL4WS. In Proceedings of the 22nd Interna-
tional Conference on Conceptual Modelling (pp.�
200-215����������������������������)��������������������������� . Chicago: Springer-Verlag.

186

Service-Oriented Processes

Appendex 1

Exercises
1.	 Describe two different ways supported by BPEL for describing business processes. What are the

differences between them? What are the usages of them?
2.	 Describe how BPEL uses WSDL, XML Schema, and XPath.
3.	 Define the partner link between a purchase order process and the external shipping service, and

the corresponding partner link type. In this relationship, the purchase order process plays the
role of the service requester, and the shipping service plays the role of the service provider. The
requester role is defined by a single port type �� called “shippingCallbackPT”. The provider role is
defined by a single port type called “shippingPT”.

4.	 Consider the following fragments of a BPEL process definition:
	 (a)	 Write down all possible execution sequences of activities in the above definition.

(b)	 Can we add the following pick activity in parallel to the two existing sequence activities in the
above flow? If yes, write down all possible execution sequences of activities in this updated
process definition, otherwise explain why not.

	
5.	 This exercise involves two interacting BPEL processes P1 and P2. ����������������������������� P1 consists of a sequence of

activities starting with a receive activity and ends with a reply activity. The pair of receive and reply
defines an interaction with process P2. In P2, there is an invoke activity ������������������������� calls a request-response
operation on P1��� , which triggers the executions of the above pair of receive and reply activities in
P1.
(a)	 Define an appropriate partner link between P1 and P2 (Assume that P1 plays myRole, and P2

plays partnerRole).
(b)	 Define the pair of receive and reply activities in P1.
(c)	 Define the invoke activity in P2.

6.	 Describe the difference between switch and pick constructs. Given the four scenarios described
below, which of them can be defined using switch and which of them can be defined using pick?
(a)	 After a survey is sent to a customer, the process starts to wait for a reply. If the customer

returns the survey in two weeks, the survey is processed; otherwise the result of the survey
is discarded.

(b)	 Based on the client’s credit rating, the client’s loan application is either approved or requires
further financial capability analysis.

(c)	 After an insurance claim is evaluated, based on the findings the insurance service either
starts to organize the payment for the claimed damage, or contacts the customer for further
details.

(d)	 The escalation service of a call centre may receive a storm alert from a weather service which
triggers a storm alert escalation, or it may receive a long waiting time alert from the queue
management service which triggers a queue alert escalation.

7.	 The diagram below sketches a process with five activities A0, A1, A2, A3 and A4. A multi-choice
node splits one incoming control flow into multiple outgoing flows. Based on the conditions as-
sociated with these outgoing flows, one or more of them may be chosen. A sync-merge node
synchronises all active incoming control flows into one outgoing flow. Based on the above, sketch

 187

Service-Oriented Processes

two possible BPEL definitions for this process using sequence, flow and switch constructs. Also,
sketch another BPEL definition of the process using only control link constructs (within a flow).

	
8.	 The definition below specifies the execution order of the activities within a BPEL process:

(a)	 Can we create the following two control links? Justify your answer.
i)	 a control link leading from “activityA1” to “activityA3”
ii)	 a control link leading from “activityA3” to “activityA5”

(b)	 Can we re-define the original process using only control links within the flow activity? If
so, re-write the process definition, otherwise explain why not.

(c)	 Assume that there exist two control links: one leading from “activityA1” to “activityA4”, the
other from “activityA2” to “activityA4”. Both links have a default transition condition, that
is, a transition condition that always evaluates to true if the source of the link is executed.
Consider the following two scenarios:
i)	 “activityA4” has a join condition that is a disjunction of all incoming links.
ii)	 “activityA4” has a join condition that is a conjunction of all incoming links.
		 In both scenarios, “activityA4” �������� has its suppressJoinFailure attribute set to “yes”.

Determine whether ��� �� ������������� “activityA4” will be performed in each scenario? Justify your
answer and provide a possible execution sequence for each scenario.

(d)	 What could verification do when analysing a syntactically correct BPEL process? Argue
why automated verification of a BPEL specification is useful.

9.	 Sketch the control logic of a BPEL process for requesting quotes from an a priori known set of
N suppliers. The process is instantiated upon receiving a QuoteServiceRequest from the Client,
and then a QuoteRequest is sent in parallel to each of the N suppliers (Supplier1, Supplier2, …,
SupplierN). Next, the process waits for QuoteResponse from these suppliers. Assume that (a) each
supplier replies with at most one response and (b) only M out of N responses are required (M<=N),
which means that after receiving the responses from M suppliers, the process can continue without
waiting for the responses from the remaining N-M suppliers. To provide the ability to define how
many responses are required, a loop is created that repeats until the required number of responses
are received. The responses are collected in the order in which they are received. For each response
received, the number of responses received (NofResponse) is incremented, and the variable contain-
ing the result (Result) so far is updated. Also, to provide the ability to stop collecting responses
after some period of time (e.g., 2 hours), the above loop is contained within a scope activity that
has an alarm event handler. If the alarm is triggered, an exception (TimeOutFault) is thrown to
be caught in the outer scope, thus allowing the process to exit the loop before it finishes. If the
exception is thrown, then all that needs to be done is to incorporate a “Timed Out” indication to
the Result. Finally, the process completes by sending the Result to the Client.

10.	 Below is the BPEL code for the definition of a Supplier abstract process. Since it is an abstract
BPEL process, not all elements are fully specified. In particular, you may note that the condition
in each while loop is omitted, which means that the loop may execute for an arbitrary number of
times.

Appendex 1. Continued

188

Service-Oriented Processes

(a)	 Given the following sequences of executions, indicate which of them are possible and which
of them are not possible based on the above definition. Justify your answer.
i)	 receive order;
ii)	 receive order, send orderResponse;
iii)	 receive order, send orderResponse, receive change;
iv)	 receive order, send orderResponse, send orderResponse, receive change, send order-

ChangeResponse;
v)	 receive order, send orderResponse, receive change, send orderResponse, send order-

ChangeResponse.
(b)	 In the current process definition, the execution sequence “receive order, receive change, send

orderChangeResponse” is not possible. Indicate what minimal changes need to be made to
the current process definition, so that this execution sequence becomes possible and all the
previous valid execution sequences are preserved.

Appendex 1. Continued

